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ABSTRACT: 
 
Digital spatial data are underlying strong temporal changes. The typical approach of updating these changes is to check the data 
manually by superimposing them on up-to-date orthoimages from aerial or satellite camera systems. The update cycles of large data 
sets are in the range of several years because the manual inspection of the data is very cost and time consuming. However, spatial 
analyses for planning purposes are only meaningful if they are calculated with up-to-date data. Automatic data acquisition, update 
and quality control procedures are needed in order to provide up-to-date geo-databases. In this paper an approach is presented that 
increases the quality of the interpretation process on the one hand by using already existing data from Geographical Information 
Systems (GIS) as prior information and on the other hand by combining image data from different sources. The approach is based on 
the evaluation of automatically derived training data sets from existing GIS data. Therefore the approach is fully automatic and no 
human interaction is necessary. The result is not only a classification of the objects but also a distance vector that describes the 
quality of the classification. This distance vector can be used for an automatic evaluation of the automatic image interpretation as 
well as for automatic quality control of already existing GIS databases.  
 
 
 

1. INTRODUCTION 

A lot of research in the field of automatic data acquisition, 
update and quality control of spatial databases has been done. 
One of the main problems is, that the used methods are often 
based on a high number of data dependent tuning factors, like 
thresholds for example. This leads to the situation that the 
approaches work very well for specific test areas but become 
problems if there are variations in the input data. But especially 
remote sensing data have a very high variability because of 
different seasons, positions of the sun, atmospheric conditions, 
soil humidity, etc. In order to solve the problem of data 
dependent tuning factors, we suggest an approach that is based 
on the evaluation of automatically generated training areas 
(supervised classification). Supervised approaches are already 
used for pixel-based classification of remote sensing data since 
many years. In this paper we will show how this approach can 
be used for the classification of objects. 
 
Another problem of the automatic interpretation of remote 
sensing data is that most of the existing approaches work only 
in rural areas. The interpretation of urban areas is still a problem 
because of the complexity of these areas. One approach to 
overcome this problem is to increase the information content in 
the input data. The information content is limited mainly by the 
spatial and spectral resolution of the images. If we combine data 
from different sources that have different spatial or spectral 
characteristics it can be possible to detect objects that are not 
detectable with only one of the sources. In our approach we 
combine multispectral and laser data. Using object information 
from an existing GIS database further supports the image 
interpretation.  
 
 

2. EXISTING WORK 

A comprehensive introduction into image data fusion can be 
found in [Pohl and Genderen 1998] and [Hahn and 
Samadzadegan 2004]. The fusion of multispectral and LIDAR 
data is applied in several approaches. [Zeng et. al 2002] discuss 
the use of IKONOS imagery and airborne LIDAR data for the 
classification of urban areas. It could be demonstrated that the 
classification accuracy can be considerably enhanced by the 
integrated use of LIDAR and multispectral data. Other 
approaches are for example [Collins, Parker and Evans 2004] 
which use multispectral imagery and multi-return LIDAR for 
estimating tree attributes, [Rottensteiner et. al. 2003] which use 
integrated LIDAR and multispectral data for the detection of 
buildings and roof segments or [Hu, Tao and Hu 2004] which 
extract roads in urban areas from integrated high resolution 
imagery and LIDAR data.  
 
Object-based image analysis approaches for the interpretation of 
aerial and satellite images can be subdivided into approaches 
that use object-oriented classification rules without any GIS 
input (but use object-oriented modelling techniques [Blaschke 
et. al. 2000]) and approaches that use existing GIS data to 
superimpose it on an image (also known as per-field, per-parcel 
or knowledge-based classification). Most of the existing 
approaches that use GIS data as prior information are used for 
the detection and verification of roads (e.g. [Zhang 2004]) or 
buildings (e.g. [Suveg and Vosselman 2002]). The current 
status of the art of image analysis approaches that use existing 
GIS data is discussed in [Baltsavias 2004]. An example for a 
per-field classification approach is introduced in [Aplin et. al. 
1999] in which first the image is classified into different 
landuse classes. Afterwards the fields (which are representing 
forest parcels from a GIS database) are subdivided into different 
classes, depending on the classification result by using 
thresholds. A similar approach can be found in [Arikan 2004] 



where also first a pixel-based classification is computed and 
then the parcels (which are representing agricultural areas) are 
subdivided into different object classes based on the distribution 
of the classified pixels.  
 
Object-based image analysis is also used in [Benz et. al. 2004]. 
The basic units in this approach are also image segments instead 
of single pixels. But these segments are derived from image 
segmentation techniques and not from existing databases. 
Therefore, this approach is more designed for the first 
acquisition of GIS objects and not for the update of existing 
databases or for quality control.  
 
The use of existing data for an automatic evaluation of GIS 
databases and for quality control is discussed on the example of 
road network data in [Wiedemann 2003] and in [Willrich 
2002]. A method for quality assessment for roads using 
information extracted from aerial images is developed in [Gerke 
2004]. Aspects of data quality management in GIS are discussed 
in [Veregin 1999] and [Devillers et. al. 2002]. A system for the 
semi-automatic quality control and management of linear and 
area features is introduced in [Busch et.al. 2004]. 
 
 

3. OBJECT-BASED CLASSIFICATION 

The approach (see Figure 1) consists of two classification steps. 
In a first step, a pixel-based classification is calculated. The 
result of the pixel-based classification as well as the input 
channels (the multispectral and LIDAR data) are used as an 
input for the object-based classification that classifies not single 
pixels but groups of pixels that represent already existing 
objects in a GIS database. Both classification steps are based on 
a supervised maximum likelihood classification.  
 
The pixel-based classification is a well-known approach and is 
not described further. In the following we describe how the 
object-based classification is calculated. An n-dimensional 
feature vector f describes each object in the object-based 
classification. The components of this vector are measures mi 

that describe the spectral and textural characteristics of an 
object: 
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In this paper we use the object-based classification to 
distinguish between residential and industrial settlement 
objects. The following five characteristics are used in order to 
decide if a settlement object represents a residential or an 
industrial area (these characteristics are especially valid in 
Germany – in other countries they may differ): 
 

• m1 = average size of houses: in industrial areas houses 
are typically very large whereas in residential areas 
houses are typically smaller 

• m2 = average roof slope of houses: in industrial areas 
are typically houses with flat roofs whereas in 
residential areas are typically houses with sloped roofs  

• m3 = percentage of trees: trees can be found very often 
in residential areas but only rarely in industrial areas 

• m4 = percentage of sealed ground: the percentage of 
sealed ground is typically higher in industrial areas as in 
residential areas 

• m5 = textural appearance: the textural appearance of 
industrial areas is more homogenous as in residential 
areas 

 
A detailed description how this measures are calculated can be 
found in (Walter 2004). Not all characteristics must be valid for 
an object. Very often only three or four characteristics apply for 
a specific object but this is not a problem because the object-
based classification classifies the object to the most likely class. 
This is a very robust approach that can handle also fuzzy 
descriptions of objects. Figure 2 shows a typical example of a 
residential and an industrial area. 

 
The decision to which object class Ki an object with vector f 
belongs is calculated with the distances di: 
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Figure 2. Comparison of residential (a) & (b) and industrial 
areas (c) & (d) 
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p1 are the apriory-probabilities that an object is classified to an 
object class Ki. These probabilities are normally unknown and 
have to be estimated. p2 are the conditional probabilities that an 
object with vector f is classified to an object class Ki. The 
distances are calculated for each object class and the object is 
classified to that object class where the distance di has its 
maximum. In the maximum likelihood classification an n-
dimensional Gaussian distribution is assumed and the 
conditional probabilities are approximated with: 
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Ci is the covariance matrix and zi is the mean vector of all 
training vectors that are derived automatically from a GIS 
database in order to avoid the time consuming task of manual 
acquisition. Because of the monotony of the logarithm it is 
possible to logarithmise the distance equation. This is done, 
because the logarithmised equation can be calculated faster. For 
the apriori-probabilities an equal distribution is assumed. 
Finally, after removing all constants parts, the distances are 
calculated with: 
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4. QUALITY MEASURES 

 
The workflow of fully automatic change detection approaches 
can be subdivided into two steps. First, a program is running 
autonomous without any user input. Then, in a second step, the 
results have to be controlled by a human operator because the 
approach can fail in situations where objects have an untypical 
spectral appearance although they were collected correctly. If 
the human operator has no information about the quality of the 
classification result, he has to control all objects of the database, 
which is nearly the same work as to make the change detection 
completely manually.  
 
This problem can be solved with quality measures. In a 
maximum likelihood classification each object is described with 
a distance vector D that represents the classification distances 
for each object class: 
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These distances can be evaluated in order to derive local quality 
measures that describe the reliability of the classification. For 
example a vector D1(Object) = (55, 40, 1, 1, 1, 1, 1) represents a 
less reliable classification result as the vector D2(Object) = (55, 
7, 8, 7, 8, 8, 7) because the maximum distances in D1 and D2 are 
55, but D1 contains two object classes with high distances 
whereas D2 contains only one object class with a high distance, 
whereas the other object classes have equal distributed low 
distances. 
  
A global quality measure that describes the quality of the whole 
classification can be for example the average maximum distance 
of all objects. The higher the average maximum distance the 
more reliable is the result of the classification. Another quality 

measure can be the average difference between the highest and 
second highest classification distance of all objects. If this 
distance is low, then the differentiation between the object 
classes is difficult. 
 
 

5. RESULTS 

5.1 Classification 

The approach was tested on a test area with 24 km2 that contains 
190 residential settlement objects and 84 industrial settlement 
objects. The test site is Vaihingen/Enz that is located in the 
southern part of Germany and represents a rural environment 
and smaller settlements. The multispectral data were captured 
with the DMC camera system, which is a CCD-matrix based 
camera system with 4 multispectral channels: R, G, B and Near 
Infrared (Hinz 2001). The LIDAR data were captured with the 
TopScan system and have an average point distance of 
approximately 1 m (Schleyer 2001). The LIDAR data and the 
multispectral data were resampled into regular raster images 
with a pixel size of 1m. The tests were carried out with ATKIS 
datasets. ATKIS is the German national topographic and 
cartographic database and captures the landscape in the scale 
1:25,000 (ADV 1988). A detailed description of this test can be 
found in (Walter 2004). 
 
In a manual classification all residential and industrial 
settlement objects of the databases were compared with the 
images and subdivided into the classes OK, unclear and not OK 
(see Figure 3). The class OK contains all objects with no change 
in the landscape (234 objects). The class unclear contains all 
objects where it is unclear if there is a change or not without 
evaluating additional sources (37 objects). The class not OK 
contains all objects where definitely a change in the landscape 
happened or which were captured wrongly.  
 
The result of the automatic classification can also be seen in 
Figure 3. The automatic approach classified 214 objects of the 
class OK to same object class as they were collected in the GIS 
database. The classification of the objects of the class unclear 
reflects the situation that even a human operator is not able to 
classify these objects unambiguous: 24 objects were classified 
to the same object class as they were collected and 13 were 
classified to the other class. All objects of the class not OK were 
classified to the other class, as they were collected. It is very 
important for a change detection approach that all objects where 
definitely a change has happened, are found by the program. 
Otherwise an operator has to overwork the whole result of the 
automatic approach which is nearly as much work as a manual 
change detection.  
 

not OK 
(36) 

OK 
(238) 

not OK 
(3) 

OK 
(234) 

unclear 
(37) 

3 13 20 24 
214 

manual classification 

automatic classification 

Figure 3. Classification result 



5.2 Local quality measures 

The object-based classification classified 36 objects to the class 
not ok. That means that approximately 13 percent of all objects 
have to be controlled by a human operator. The question is now, 
if the object-based classification can be extended that the 
objects are classified into three classes as in the manual 
classification in order to identify automatically those objects 
that are classified as unclear in the manual classification.  
 
Two quality measures are used to identify objects where the 
classification result is not reliable. Figure 4 a shows the 
distribution of the maximum classification distance of the 
objects that are classified manually to the object class OK and 
Figure 4 b the distribution of the maximum classification 
distance of the objects that are classified manually to the class 
unclear. 

 
The maximum classification distance was calculated according 
equation (*) in section 2. It can be seen that the maximum 
classification distance of objects that are classified manually to 
the class unclear is tendential smaller than the maximum 
classification distance of objects that are classified manually to 
the class OK. Of course there is also an overlap area, but it 
represents the fact, that objects that are classified manually to 
the class unclear cannot be classified so reliable as objects that 
are classified manually to the class OK. 
 
The second quality measure is the difference between the 
classification distances of both object classes (industrial and 

residential settlement objects). A small difference is an indicator 
that it is difficult to decide to which object class an object 
belongs.  
 
Figure 5 a shows the distribution of the classification distance 
difference of the objects that are classified manually to the class 
OK and Figure 5 b the distribution of the classification distance 
difference of the objects that are classified manually to the class 
unclear. 

 
Again there is an overlap area but it can be seen that the 
classification distance difference of the objects that are 
classified manually to the class unclear is tendential smaller 
than the classification distance difference of the objects that are 
classified manually to the class OK.   
 
The two measures are used in order to identify the objects that 
are classified manually to the class unclear. The result can be 
seen in Figure 6. The automatic classification classified 38 
objects to the class unclear. From the manually as unclear 
classified objects are 13 objects classified automatically to the 
class not OK, 13 to the class unclear and 11 to the class OK.  
 
By changing the thresholds it can be influenced how strict the 
classification is. Figure 7 shows the result of a very strict 
classification where all objects, that are classified manually to 
the class unclear, are automatically classified to the class not 
OK or unclear. But this very strict classification has the side 
effect that only 139 objects are classified to the class OK. That 
means that 135 (36 not OK + 99 unclear) objects have to be 
controlled which is nearly 50 percent of the objects of the 
database.  
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5.3 Global quality measure 

The calculation of the average maximum distance and the 
average distance difference shows the expected results (see 
Table 1). The class OK contains all objects where the human 
operator comes to the result that there is definitely no change. 
This is reflected with a higher average maximum distance and 
higher average distance difference. In the class unclear where 
the human operator was not sure how to classify the objects, the 
average maximum distance and the average distance difference 
are significantly lower. 
 
 

 AVG maximum 
distance 

AVG distance 
difference 

class OK -17.79 1.85 
class unclear -19.30 1.23 

 
Table 1: Global quality measures 

 
 

6. CONCLUSION 

The basic idea of the approach is that image interpretation is not 
based only on the interpretation of single pixels but on whole 
object structures. Therefore, we classify not only single pixels 

but also groups of pixels which represent already existing 
objects in a GIS database. Each object is described by an 5-
dimensional feature vector and classified to the most likely class 
based on a supervised maximum likelihood classification. The 
object-based classification needs no tuning parameters like user-
defined thresholds. It works fully automatically because all 
information for the classification are derived from automatically 
generated training areas.  
 
The object-based classification finds all changes where 
definitely a change in the landscape happened. In this paper we 
put our focus on identifying those objects where it is unclear if 
there is a change or not. In a manual classification we identified 
37 objects where a human operator was not able to decide to 
which object class these objects belong without having further 
information sources.  
 
Two quality measures have been defined in order to estimate the 
classification reliability. The maximum classification distance 
measures how likely the classification of an object is and the 
classification distance difference measures how difficult the 
differentiation between the two object classes is. If all objects 
should be automatically identified that are classified manually 
to the class unclear, only those objects can be accepted where 
the maximum classification distance and the classification 
distance difference are very high. But then, many objects where 
definitely no change in the landscape happened, are classified 
automatically to the class unclear. The approach has to be 
refined in order to overcome this problem. Increasing the 
dimension of the feature space by adding more object 
characteristics can do this. Another approach would be to use 
more different object classes in the object-based classification.  
 
The results of the evaluation of the global quality measures are 
very promising. It could be shown that there is a significant 
difference of these measures if they are calculated on the one 
hand for all objects which are classified manually to the class 
unclear and on the other hand for all objects which are 
classified manually to the class OK. This enables a fully 
automatic quality control of databases with up-to-date remote 
sensing data. 
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