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We investigate the existence, stability and bifurcation of phase-locked motions in a ring
network consisting of phase-only oscillators arranged in multiple simple rings (sub-rings)
which are themselves arranged in a single large ring. In the case of networks with three
or four sub-rings, we give approximate expressions for critical coupling coefficients which
must be exceeded in order for phase-locking to occur.
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1. Introduction

Recent research has dealt with the dynamics of a simple ring of oscillators, variously modeled as phase-only oscillators,
and as van der Pol oscillators in both sinusoidal and relaxation limits [1,5,3,8,7,4,2]. In this work we consider the dynamics of
a system composed of multiple simple rings of phase-only oscillators which themselves are arranged in a single large ring,
resulting in a structure which we refer to as a ring network, see Fig. 1. Each individual ring, called a sub-ring, is composed of a
number of identical phase-only oscillators which are nearest-neighbor coupled by sine functions of phase differences, all
with identical coupling coefficients. The ith sub-ring is composed of ni oscillators with uncoupled frequencies wi and cou-
pling coefficients ai. We consider a system composed of m sub-rings which are connected by a larger ring called the commu-
nication ring. One oscillator on each sub-ring is identified as the communication oscillator, and it is these m communication
oscillators which compose the communication ring, which has coupling coefficient a.

We label the phase of the ni oscillators which comprise the ith sub-ring by hi,j, where j = 1,. . .,ni. In particular the commu-
nication oscillator is labelled hi,1. Using this notation the equations of motion become:
d
dt

hi;j ¼ wi þ aiðsinðhi;jþ1 � hi;jÞ þ sinðhi;j�1 � hi;jÞÞ þ dj;1aðsinðhiþ1;1 � hi;1Þ þ sinðhi�1;1 � hi;1ÞÞ;

where i ¼ 1; . . . ;m; j ¼ 1; . . . ;ni ð1Þ

where dj,i is the Kronecker delta, and where we use the convention that
hi;niþ1 ¼ hi;1; hi;0 ¼ hi;ni
and hmþ1;1 ¼ h1;1; h0;1 ¼ hm;1 ð2Þ
. All rights reserved.
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.

mailto:rrand1@twenty.rr.com
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


Fig. 1. A ring network.
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It is convenient to define the phase differences
/i;j ¼ hi;jþ1 � hi;j ð3Þ
wi ¼ hiþ1;1 � hi;1 ð4Þ
where /i;0 ¼ hi;1 � hi;0 ¼ hi;niþ1 � hi;ni
¼ /i;ni

and w0 = h1,1 � h0,1 = hm+1,1 � hm,1 = w m

whereupon the equations of motion become:
d
dt

hi;j ¼ wi þ aiðsin /i;j � sin /i;j�1Þ þ dj;1aðsin wi � sin wi�1Þ; where i ¼ 1; . . . ;m; j ¼ 1; . . . ; ni ð5Þ
For example, in the case of a network consisting of three sub-rings, each of size 3, we have the following nine equations of
motion (Fig. 2):
d
dt

h1;1 ¼ w1 þ a1ðsin /1;1 � sin /1;3Þ þ aðsin w1 � sin w3Þ; ð6Þ

d
dt

h1;2 ¼ w1 þ a1ðsin /1;2 � sin /1;1Þ; ð7Þ

d
dt

h1;3 ¼ w1 þ a1ðsin /1;3 � sin /1;2Þ; ð8Þ

d
dt

h2;1 ¼ w2 þ a2ðsin /2;1 � sin /2;3Þ þ aðsin w2 � sin w1Þ; ð9Þ

d
dt

h2;2 ¼ w2 þ a2ðsin /2;2 � sin /2;1Þ; ð10Þ

d
dt

h2;3 ¼ w2 þ a2ðsin /2;3 � sin /2;2Þ; ð11Þ

d
dt

h3;1 ¼ w3 þ a3ðsin /3;1 � sin /3;3Þ þ aðsin w3 � sin w2Þ; ð12Þ

d
dt

h3;2 ¼ w3 þ a3ðsin /3;2 � sin /3;1Þ; ð13Þ

d
dt

h3;3 ¼ w3 þ a3ðsin /3;3 � sin /3;2Þ ð14Þ
Fig. 2. A network consisting of three sub-rings, each of size 3.
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2. Phase-locked motions

The dynamics of a system like that in Fig. 2 may be expected to be complicated, exhibiting various steady state modes of
behavior in response to parameter changes. Amongst all such steady state motions perhaps the simplest is phase-locked mo-
tion in which each of the oscillators has the same constant frequency X:
hi;j ¼ Xt þ ki;j ð15Þ
where ki,j is a phase angle, constant in time. Substituting (15) into (5) we get
X ¼ wi þ aiðsin /i;j � sin /i;j�1Þ þ dj;1aðsin wi � sin wi�1Þ; where i ¼ 1; . . . ; m; j ¼ 1; . . . ; ni ð16Þ
where now
/i;j ¼ hi;jþ1 � hi;j ¼ ki;jþ1 � ki;j ð17Þ
wi ¼ hiþ1;1 � hi;1 ¼ kiþ1;1 � ki;1 ð18Þ
Thus /i,j and wi are constants. Examination of the example of Fig. 2, Eqs. (6)–(14), shows that by adding up all the equations
we obtain (in the general case)
NX ¼
X

niwi ð19Þ
where N ¼
P

ni is the total number of oscillators. This yields the interesting result that the phase-locked frequency X equals
the average frequency of all N oscillators.

A natural question to ask is what are the conditions on the parameters of the system such that phase-locked motion is
possible?

As an example we take the three sub-ring network of Fig. 2, Eqs. (6)–(14).
X ¼ w1 þ a1ðsin /1;1 � sin /1;3Þ þ aðsin w1 � sin w3Þ; ð20Þ
X ¼ w1 þ a1ðsin /1;2 � sin /1;1Þ; ð21Þ
X ¼ w1 þ a1ðsin /1;3 � sin /1;2Þ; ð22Þ
X ¼ w2 þ a2ðsin /2;1 � sin /2;3Þ þ aðsin w2 � sin w1Þ; ð23Þ
X ¼ w2 þ a2ðsin /2;2 � sin /2;1Þ; ð24Þ
X ¼ w2 þ a2ðsin /2;3 � sin /2;2Þ; ð25Þ
X ¼ w3 þ a3ðsin /3;1 � sin /3;3Þ þ aðsin w3 � sin w2Þ; ð26Þ
X ¼ w3 þ a3ðsin /3;2 � sin /3;1Þ; ð27Þ
X ¼ w3 þ a3ðsin /3;3 � sin /3;2Þ ð28Þ
Adding the first three, the second three and third three of these equations, we obtain
w1 þw2 þw3 ¼ 3w1 þ aðsin w1 � sin w3Þ; ð29Þ
w1 þw2 þw3 ¼ 3w2 þ aðsin w2 � sin w1Þ; ð30Þ
w1 þw2 þw3 ¼ 3w3 þ aðsin w3 � sin w2Þ ð31Þ
where we have used 3X=(w1 + w2 + w3) from Eq. (19). We may think of Eqs. (29)–(31) as replacing Eqs. (20),(23) and (26),
respectively. Note that (31) is equivalent to the sum of (29) and (30). Thus we have:
w1 þw2 þw3 ¼ 3w1 þ aðsin w1 � sinð�w2 � w1ÞÞ; ð32Þ
w1 þw2 þw3 ¼ 3w2 þ aðsin w2 � sin w1Þ ð33Þ
where we have used w3 = � w2 � w1. Trig-expanding, we obtain
� 2w1 þw2 þw3 ¼ aðsin w1 þ sin w2 cos w1 þ cos w2 sin w1Þ; ð34Þ
w1 � 2w2 þw3 ¼ aðsin w2 � sin w1Þ ð35Þ
For given values of w1, w2, w3 and a, we may or may not be able to solve these equations for w1 and w2. In order to find con-
ditions on the parameters such that these equations are solvable, i.e., for a phase-locked solution to exist, we need to do some
algebraic manipulations which we describe next. We used the computer algebra system Macsyma to accomplish these cal-
culations. First we solve Eq. (34) for cosw2, square the result and use the identity (cosw2)2 = 1�(sinw2)2 to eliminate cosw2.
Call the result equation A. Next we solve (35) for sinw2 and substitute it into equation A. The resulting equation is free of w2

but contains w1 in the form sinw1 and cosw1. Using the identity (cosw1)2 = 1�(sinw1)2, we eliminate all powers of cosw1

except the first. Then we solve for cosw1, square the result, and use the foregoing identity to eliminate cosw1. Call the result
equation B, which turns out to be a 6th degree polynomial on sinw1. The general form of the equation is listed in the Appen-
dix. We continue with a specific example defined by the frequencies:
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w1 ¼ 1; w2 ¼ 2:5; w3 ¼ 3:1 ð36Þ
For these values, equation B takes the form:
�4a4s6 þ 36a3s5 þ 3a4s4 � 106:92a2s4 � 18a3s3 þ 116:64as3 � 1:62a2s2 � 41:9904s2 þ 131:22as� 147:622 ¼ 0

ð37Þ
where we have used the abbreviation s = sinw1. For a given value of a, Eq. (37) may or may not have a solution for w1. By
inspection, there is no solution for a = 0, and by continuity there is no solution for sufficiently small a. The critical case will
correspond to a double root, which may be computed by requiring both Eq. (37) and its derivative with respect to s to simul-
taneously vanish. Eliminating s between these two equations gives the following equation on acr:
a12
cr � 112:32a10

cr þ 3145:73a8
cr � 19851:3a6

cr þ 90477:9a4
cr � 188704:9a2

cr � 3470:49 ¼ 0 ð38Þ
The smallest real positive root of Eq. (38) is
acr ¼ 1:8579 ð39Þ
When this value of a is substituted back into Eq. (37) we find the double root occurs at approximately s = sinw1 = 0.96. This
observation suggests a method for efficiently obtaining an approximation for acr. Returning to Eqs. (34) and (35), we assert
that the critical case will occur when jsinw1j � 1. So we set sinw1 = 1, in which case cosw1 = 0. Eqs. (34) and (35) become:
� 2w1 þw2 þw3 ¼ að1þ cos w2Þ; ð40Þ
w1 � 2w2 þw3 ¼ aðsin w2 � 1Þ ð41Þ
For given values of w1, w2, w3, we may obtain an expression for acr, the critical value of a, by eliminating w2 from these equa-
tions via the identity sin2 + cos2 = 1. This results in a quadratic equation on acr:
a2
cr þ 6ðw1 �w2Þacr þ 2w2

3 � 2w2w3 � 2w1w3 þ 5w2
2 � 8w1w2 þ 5w2

1 ¼ 0 ð42Þ
which gives
acr ¼ �
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðw3 � 2w2 þw1Þðw3 þw2 � 2w1Þ
p

þ 3ðw2 �w1Þ ð43Þ
In a similar way, the case for which sinw1 = � 1 gives the following candidates for acr:
acr ¼ �
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðw3 � 2w2 þw1Þðw3 þw2 � 2w1Þ
p

� 3ðw2 �w1Þ ð44Þ
Eqs. (43) and (44) may be written in the following form:
acr ¼ �
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð3X� 3w2Þð3X� 3w1Þ
p

� 3ðw2 �w1Þ ð45Þ
where the two ± signs are to be taken independently, giving four candidate values. Note that Eqs. (29)–(31) are invariant
under permutation of subscripts. Thus we may obtain eight more candidate values for acr by replacing the subscripts 1,2
in Eq. (45) by 2,3, and again by 3,1. Of these 12 candidate values for acr, our approximate method says that the value for
acr is the minimum of those values which are both real and positive. (Note that the cases for which jsinw2j = 1 turn out
to be the same as that obtained by replacing subscripts 1,2 in (45) by 2,3.)

Returning to the example of Eq. (36), we find X=(w1 + w2 + w3)/3 = 2.2. Eq. (45) gives the following four candidate values
for acr:
�9
5

ffiffiffi
2
p
� 9

2
¼ ½1:95442;7:04558;�1:95442;�7:04558� ð46Þ
Permuting subscripts gives eight additional candidate values:
� 9
5

ffiffiffi
6
p
� 63

10
¼ ½1:89092;10:7091;�1:89092;�10:7091� ð47Þ

� 9
10

ffiffiffi
6
p

i� 9
5
¼ �2:20454i� 1:8 ð48Þ
Choosing the minimum of those real and positive values given in Eqs. (46)–(48), we see that
acr ¼ �
9
5

ffiffiffi
6
p
þ 63

10
¼ 1:89092 ð49Þ
which is close to the exact value (39).
So far we have obtained a method for determining acr. Now we present a similar method for determining the critical val-

ues of the other coupling coefficients, aicr . In order to obtain a1cr , we rewrite Eqs. (21) and (22) in the form
X ¼ w1 þ a1ðsin /1;2 � sin /1;1Þ; ð50Þ
X ¼ w1 þ a1ðsinð�/1;2 � /1;1Þ � sin /1;2Þ ð51Þ
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where we have used /1,3 = � /1,2 � /1,1. Trig-expanding, we obtain
X ¼ w1 þ a1ðsin /1;2 � sin /1;1Þ; ð52Þ
X ¼ w1 þ a1ð� sin /1;2 cos /1;1 � cos /1;2 sin /1;1 � sin /1;2Þ ð53Þ
For given values of X, w1 and a1, we may or may not be able to solve these equations for /1,1 and /1,2. Note that Eqs. (52) and
(53) are similar in form to Eqs. (34) and (35), except here the left hand sides are the same in both equations, whereas they are
in general different in Eqs. (34) and (35). We solve Eqs. (52) and (53) for sin/1,2 and cos/1,2, and use the identity sin2 +
cos2 = 1 and some trig-simplification to obtain the following equation on /1,1:
ðsin /1;1 þ kÞð2 cos /1;1 sin /1;1 þ sin /1;1 þ 4k cos /1;1 þ 5kÞ ¼ 0 ð54Þ
where we have used k to abbreviate k=(X � w1)/a1. The first factor has the root
sin /1;1 ¼ �k ¼ �X�w1

a1
ð55Þ
This may or may not yield a value for /1,1. The critical case corresponds to jsin/1,1j = 1 which generates the following can-
didates for a1cr : ±(X � w1).

Now let us consider the second factor in Eq. (54). Solving this for cos/1,1 and using the identity sin2 + cos2 = 1 gives the
following polynomial on sin/1,1 which we abbreviate as s:
4s4 þ 16ks3 þ ð16k2 � 3Þs2 � 6ksþ 9k2 ¼ 0 ð56Þ
In order to have a real solution /1,1 of Eq. (56), the root s = sin/1,1 must be (a) real and (b) its absolute value must be less than
unity. The critical case for (a) is that (56) have a double root, while the critical case for (b) is that s = 1. For a double root we
differentiate (56) with respect to s and eliminate s, giving a polynomial on k:
k2ð4k� 1Þ2ð4kþ 1Þ2ðk2 þ 3Þ ¼ 0 ð57Þ
which has the real solution k = ± 1/4, giving the following candidates for a1cr : ±4(X � w1).
For (b) the critical case corresponds to s = ± 1, which together with (56) gives k = ± 1/5, giving the following candidates for

a1cr : ±5(X � w1).
Thus Eq. (54) has yielded six candidates for a1cr , namely ±(X � w1), ±4(X � w1) and ± 5(X � w1). Of these six candidate

values, the true value of a1cr is the minimum of those values which are both real and positive. Thus we conclude that
a1cr ¼ jX�w1j ð58Þ
Similarly,
a2cr ¼ jX�w2j; a3cr ¼ jX�w3j ð59Þ
Continuing with the previous example, we again suppose that w1 = 1, w2 = 2.5 and w3 = 3.1, giving X = 2.2. We previously
found that (see Eq. (49)) acr = 1.89092. We now obtain
a1cr ¼ 1:2; a2cr ¼ 0:3; a3cr ¼ 0:9 ð60Þ
Numerically simulating the network in Fig. 2 for w1 = 1, w2 = 2.5 and w3 = 3.1 by numerically integrating Eqs. (6)–(14), we
find that phase-locking occurs as long as each of a, a1, a2, a3 is larger than the respective critical value obtained above.

3. Generalization

The formulas for acr, a1cr , a2cr , a3cr derived above apply to the example of Fig. 2 which consists of m=3 sub-rings, each hav-
ing n1 = n2 = n3 = 3 oscillators. These formulas have been extended to a general system with m = 3 sub-rings, each sub-ring
with ni oscillators. We find that for each sub-ring,
aicr ¼
ni � 1

2
jX�wij; i ¼ 1;2;3 ð61Þ
And for the communication ring, an approximate expression for acr is obtained by taking the minimum of those values which
are both real and positive from amongst the following 12:
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2CiCj

q
� ðCi � CjÞ; ði; jÞ ¼ ð1;2Þ; ð2;3Þ; ð3;1Þ ð62Þ
where the two ± signs are to be taken independently, giving four candidate values, and where
Ci ¼ niðX�wiÞ ð63Þ
As an example, we take a system in which n1 = 3, n2 = 4 and n3 = 5, with frequencies w1 = 1, w2 = 2.5 and w3 = 3.1. From Eq.
(19) we obtain the phase-locked frequency
X ¼ ð3w1 þ 4w2 þ 5w3Þ=12 ¼ 2:375 ð64Þ
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Eq. (61) then gives us the following values for the critical coupling coefficients of the sub-rings:
a1cr ¼ 1:375; a2cr ¼ 0:1875; a3cr ¼ 1:45 ð65Þ
To obtain an approximate value for the critical coupling coefficient of the communication ring, acr, we start by computing the
Ci’s from Eq. (63):
C1 ¼ 4:125; C2 ¼ �0:5; C3 ¼ �3:625 ð66Þ
Then from Eq. (62), acr is the minimum of those values which are both real and positive from amongst the following list:
½�6:65602;�2:59399;�1:90395i� 3:125;�2:28134;�13:2187� ð67Þ
Therefore we obtain
acr ¼ 2:28134 ð68Þ
Numerical simulation of the 12 ODE’s which describe the system of Fig. 3 gives a value of acr = 2.22 which is close to the
value (68) given by our approximate method.

4. Systems with four Sub-rings

In this section we consider conditions for phase-locking in systems which have m = 4 sub-rings, each with ni oscillators.
As in the previous section, we find that for each sub-ring,
aicr ¼
ni � 1

2
jX�wij; i ¼ 1;2;3;4 ð69Þ
where X = (w1 + w2 + w3 + w4)/4. For the communication ring we offer an approximate formula for acr which involves taking
the minimum of those values which are positive and which are greater than maxfaicrg, i.e., the largest of the aicr , from
amongst the following four permutations:
� 2CiCjðCj þ CkÞ
4CiCj þ ðCi þ CkÞ2

; ði; j; kÞ ¼ ð1;2;3Þ; ð2;3;4Þ; ð3;4;1Þ; ð4;1;2Þ ð70Þ
where
Ci ¼ niðX�wiÞ ð71Þ
As an example, we take the system in Fig. 4, in which each sub-ring has ni=4 oscillators with frequencies
w1 ¼ 1; w2 ¼ 2:5; w3 ¼ 3:1; w4 ¼ 1:7 ð72Þ
We find:
C1 ¼ 4:3; C2 ¼ �1:7; C3 ¼ �4:1; C4 ¼ 1:5 ð73Þ
a1cr ¼ 1:6125; a2cr ¼ 0:6375; a3cr ¼ 1:5375; a4cr ¼ 0:5625 ð74Þ
An approximate value for the critical coupling coefficient of the communication ring, acr, is given by the minimum of those
values which are positive and which are greater than maxfaicrg ¼ 1:6125 from the following list (Eq. (70)):
½�2:904;�1:298;�2:904;�1:298� ð75Þ
Therefore we obtain
acr ¼ 2:904 ð76Þ
Fig. 3. A system with three sub-rings with frequencies w1 = 1, w2 = 2.5 and w3 = 3.1.
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Numerical integration of the governing differential equations for the system of Fig. 4 with frequencies (72) in the case that all
coupling parameters are taken to be equal, a = a1 = a2 = a3 = a4, gives that acr = 2.903, in close agreement with the foregoing.
In the case that four of the five coupling parameters are fixed at values greater than their critical values, e.g., a = 3, a1 = 1.7,
a3 = 1.6, a4 = 0.6, and a2 is allowed to vary, we find that locking occurs at a2 = 0.6375, in agreement with the foregoing.

As another example, we take the system in Fig. 5, in which n1 = 3, n2 = 4, n3 = 5 and n4 = 6, with frequencies Eq. (72). The
phase-locked frequency is
X ¼ ð3w1 þ 4w2 þ 5w3 þ 6w4Þ=18 ¼ 2:15 ð77Þ
And from Eq. (69) we obtain the following values for the critical coupling coefficients of sub-rings:
a1cr ¼ 1:15; a2cr ¼ 0:525; a3cr ¼ 1:9; a4cr ¼ 1:125 ð78Þ
In order to find an approximate value for the critical coupling coefficient of the communication ring, acr, we first compute the
Ci’s:
C1 ¼ 3:45; C2 ¼ �1:4; C3 ¼ �4:75; C4 ¼ 2:7 ð79Þ
Then from Eq. (70), acr is the minimum of those values which are positive and which are greater than max faicrg ¼ 1:9 from
the following list:
½�3:370;�0:964;�3:180;�0:981� ð80Þ
Therefore we obtain
acr ¼ 3:180 ð81Þ
Numerical integration of the 18 ODE’s which describe the system with frequencies Eq. (72) in the case that all sub-ring cou-
pling parameters are larger than their respective critical values, e.g., a1 = 1.2, a2 = 0.6, a3 = 2, a4 = 1.2, gives that acr = 3.15
which is close to the above approximate value.

For a third example, we again take the system in Fig. 5 but with frequencies:
w1 ¼ 3:3; w2 ¼ 1:7; w3 ¼ 2:1; w4 ¼ 1 ð82Þ
We find
a1cr ¼ 1:456; a2cr ¼ 0:217; a3cr ¼ 0:511; a4cr ¼ 2:111 ð83Þ
Fig. 5. A system with four sub-rings, with n1 = 3, n2 = 4, n3 = 5 and n4 = 6.
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The list of candidates for max faicrg is
½�0:162;�0:194;�1:520;�2:960� ð84Þ
giving the approximate result:
acr ¼ 2:960 ð85Þ
Numerical integration with all sub-ring coupling parameters taken larger than their respective critical values gives acr = 2.90.
In the first example, which involves Fig. 4 with frequencies (72), there are only 2 positive candidates for acr. One of these is

less than maxfaicrg. In the second example, which involves Fig. 5 with frequencies (72), there are four positive candidates for
acr. Two of these are less than maxfaicrg. In the third example, which involves Fig. 5 with frequencies (82), there are 4 positive
candidates for acr. Three of these are less than maxfaicrg. In all three cases the rule of choosing the minimum of those positive
candidate values which are greater than maxfaicrg gives a reasonable approximation of the numerically computed value for acr.

5. Symmetric solutions

We have thus far focused on conditions for phase-locking, but we have not considered the phases themselves in a phase-
locked motion. So let us return to Eq. (55) which we used to obtain a condition on a1 for locking. Now however we will use it
to study the phases. Substituting Eq. (55) into (52), we see that
sin /1;2 ¼ 0 ð86Þ
Subtracting (22) from (21) and using (86), we obtain
� sin /1;3 ¼ sin /1;1 ) sinðh1;3 � h1;1Þ ¼ sinðh1;2 � h1;1Þ ð87Þ
One solution of this equation is h1,2 = h1,3, in which case the sub-ring is said to be symmetric. A phase-locked solution will be
said to be symmetric if all its sub-rings are symmetric. Eq. (55) gives a value for sin/1,1:
sin /1;1 ¼ sinðh1;2 � h1;1Þ ¼ �
X�w1

a1
ð88Þ
Since arcsine is a multivalued function, Eq. (88) will give two values for /1,1. One of these will have cos/1,1 > 0, and the other
will have cos/1,1 < 0.

As an example we consider the system of Fig. 2 with Eqs. (6)–(14) and frequencies (36) for parameters a = a1 = a2 = a3 = 2.
Note that these values lie above the previously computed critical values, cf. Eqs. (49) and (60), so a phase-locked motion is
expected to exist. Numerical integration of Eqs. (6)–(14) gives the following values for the phase-locked steady state:
h1;1 ¼ 0 ð89Þ
h1;2 ¼ 5:6397 ð90Þ
h1;3 ¼ 5:6397 ð91Þ
h2;1 ¼ 0:9683 ð92Þ
h2;2 ¼ 1:1189 ð93Þ
h2;3 ¼ 1:1189 ð94Þ
h3;1 ¼ 1:3516 ð95Þ
h3;2 ¼ 1:8183 ð96Þ
h3;3 ¼ 1:8183 ð97Þ
Since the phase of this periodic motion is arbitrary, we have chosen h1,1 as zero in the above list. These give the following
values for /i,j and wi:
/1;1 ¼ 5:6397; sin /1;1 ¼ �0:6; cos /1;1 ¼ 0:8 ð98Þ
/1;2 ¼ 0; sin /1;2 ¼ 0; cos /1;2 ¼ 1 ð99Þ
/1;3 ¼ �5:6397; sin /1;3 ¼ 0:6; cos /1;3 ¼ 0:8 ð100Þ
/2;1 ¼ 0:1506; sin /2;1 ¼ 0:15; cos /2;1 ¼ 0:9887 ð101Þ
/2;2 ¼ 0; sin /2;2 ¼ 0; cos /2;2 ¼ 1 ð102Þ
/2;3 ¼ �0:1506; sin /2;3 ¼ �0:15; cos /2;3 ¼ 0:9887 ð103Þ
/3;1 ¼ 0:4667; sin /3;1 ¼ 0:45; cos /3;1 ¼ 0:8930 ð104Þ
/3;2 ¼ 0; sin /3;2 ¼ 0; cos /3;2 ¼ 1 ð105Þ
/3;3 ¼ �0:4667; sin /3;3 ¼ �0:45; cos /3;3 ¼ 0:8930 ð106Þ
w1 ¼ 0:9683; sin w1 ¼ 0:8239; cos w1 ¼ 0:5667 ð107Þ
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w2 ¼ 0:3833; sin w2 ¼ 0:3740; cos w2 ¼ 0:9274 ð108Þ
w3 ¼ �1:3516; sin w3 ¼ �0:9761; cos w3 ¼ 0:2174 ð109Þ
All of these agree with the derived formula for symmetric solutions, cf. Eq. (88). Note that all have positive values for the
cosines of /i,j and wi. This raises the following question: since we have seen in Eq. (87) that there are other solutions besides
symmetric solutions, and since we have seen in Eq. (88) that in the case of symmetric solutions, they exist with both positive
and negative cos/i,j, we may ask why the numerical result showed only symmetric solutions, and those with only positive
cos/i,j? The answer lies in the stability of motion.

6. Stability considerations

So far we have studied the existence of phase-locked motions in ring networks. We have identified critical values of the
coupling coefficients a and ai which must be exceeded for phase-locked motions to exist. In this section we consider the
question of the stability of phase-locked motions [6].

We have defined phase-locked motions by Eq. (15):
hi;j ¼ Xt þ ki;j ð110Þ
In order to study the stability of such a motion, we set
hi;j ¼ Xt þ ki;j þ ui;j ð111Þ
and linearize in ui,j. This will result in a linear system with constant coefficients, the eigenvalues of which will determine
stability.

As an example we consider the system of Fig. 2 with Eqs. (6)–(14). Substituting (111) in (6)–(14) and linearizing, we obtain:
d
dt

u1;1 ¼ a1½cos /1;1ðu1;2 � u1;1Þ � cos /1;3ðu1;1 � u1;3Þ� þ a½cos w1ðu2;1 � u1;1Þ � cos w3ðu1;1 � u3;1Þ�; ð112Þ

d
dt

u1;2 ¼ a1½cos /1;2ðu1;3 � u1;2Þ � cos /1;1ðu1;2 � u1;1Þ�; ð113Þ

d
dt

u1;3 ¼ a1½cos /1;3ðu1;1 � u1;3Þ � cos /1;2ðu1;3 � u1;2Þ�; ð114Þ

d
dt

u2;1 ¼ a2½cos /2;1ðu2;2 � u2;1Þ � cos /2;3ðu2;1 � u2;3Þ� þ a½cos w2ðu3;1 � u2;1Þ � cos w1ðu2;1 � u1;1Þ�; ð115Þ

d
dt

u2;2 ¼ a2½cos /2;2ðu2;3 � u2;2Þ � cos /2;1ðu2;2 � u2;1Þ�; ð116Þ

d
dt

u2;3 ¼ a2½cos /2;3ðu2;1 � u2;3Þ � cos /2;2ðu2;3 � u2;2Þ�; ð117Þ

d
dt

u3;1 ¼ a3½cos /3;1ðu3;2 � u3;1Þ � cos /3;3ðu3;1 � u3;3Þ� þ aðcos w3ðu1;1 � u3;1Þ � cos w2ðu3;1 � u2;1ÞÞ; ð118Þ

d
dt

u3;2 ¼ a3½cos /3;2ðu3;3 � u3;2Þ � cos /3;1ðu3;2 � u3;1Þ�; ð119Þ

d
dt

u3;3 ¼ a3½cos /3;3ðu3;1 � u3;3Þ � cos /3;2ðu3;3 � u3;2Þ� ð120Þ
where the arguments of the trig terms are to be evaluated on the solution whose stability is being sought.
As in the previous section, we take as an example this system with frequencies (36) and parameters a = a1 = a2 = a3 = 2.

We substitute the values for cos/i,j and coswi derived in Eqs. (98) thru (109) into Eqs. (112) thru (120), and obtain the fol-
lowing 9 � 9 matrix:
�4:76 1:60 1:60 1:13 0 0 0:43 0 0
1:60 �3:60 2:0 0 0 0 0 0 0
1:60 2:0 �3:60 0 0 0 0 0 0
1:13 0 0 �6:94 1:97 1:97 1:85 0 0

0 0 0 1:97 �3:97 2:0 0 0 0
0 0 0 1:97 2:0 �3:97 0 0 0

0:43 0 0 1:85 0 0 �5:86 1:79 1:79
0 0 0 0 0 0 1:79 �3:79 2:0
0 0 0 0 0 0 1:79 2:0 �3:79

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð121Þ
which turns out to have the following nine eigenvalues:
k ¼ 0; �0:55; �0:94; �4:66; �5:42� 1:00i; �6:93� 0:73i; �9:45 ð122Þ
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The presence of the zero eigenvalue is associated with the non-uniqueness of h1,1, corresponding to a one dimensional con-
tinuum of equilibria. The other eight eigenvalues all have negative real parts, confirming the stability of the phase-locked
motion.

This example suggests the result that if coupling parameters a and ai are larger than their critical values, then there will
exist a phase-locked solution which is symmetric and stable.

This may be proved by following an approach taken by Rogge and Aeyels [8] (for simple rings) based on Gershgorin’s the-
orem: Let A be a square matrix. Imagine a disk in the complex plane centered at a point corresponding to aii, being an ele-
ment on the main diagonal. Now let the radius of this disk be the sum of the absolute value of all the other terms in that rowP

j–ijaijj. Then every eigenvalue of A lies in one of these disks.
In order to use this theorem we need to have an expression for the general stability matrix, this being a generalization of

the example matrix (121). The row corresponding to a generic non-communication oscillator hi,j contains three non-zero
terms:
ai cos /i;j�1 � aiðcos /i;j þ cos /i;j�1Þ ai cos /i;j ð123Þ
where the middle term lies on the main diagonal and the other two terms lie on other diagonals. In the case of a commu-
nication oscillator, the corresponding row contains three additional terms:
a cos wi . . .� aðcos wi þ cos wi�1Þ . . .a cos wi�1 ð124Þ
where again the middle term lies on the main diagonal and the other two terms lie on other diagonals. By choosing the cou-
pling coefficients ai and a larger than their critical values we guarantee that sin/i,j and sinwi will give real values for /i,j and
wi. However since sine is multivalued, each of /i,j and wi can take on two values mod 2p, leading to each of the cosine terms
in (121) being either positive or negative. If we choose the solution for which the cosine terms are positive, then we may use
Gershgorin’s theorem to prove that the phase-locked solution is stable.

Note that the row sum of each row is zero. Also note that the terms on the main diagonal are negative and all other terms
are positive. Thus the Gershgorin disks lie in the left half-plane and are tangent to the imaginary axis at the origin. Then
Gershgorin’s theorem tells us that all eigenvalues lie in the left half-plane or are 0, which proves stability of the phase-locked
motion.

7. Bifurcations

In this section, the number of phase-locked solutions is investigated for varying coupling coefficients ai and a. We again use
the example of the system in Fig. 2 with parameters (x1, x2, x3) = (1, 2.5, 3.1) and a = a1 = a2 = a3 = 2. We saw previously that
for this case (a) a stable symmetric solution exists, (b) that there are other unstable solutions which exist, and (c) the critical
coupling coefficient within each sub-ring (ai,cr) is independent of the corresponding values in the other sub-rings and the com-
munication ring. Consequently, we may independently investigate the effect of varying each coupling coefficient.

7.1. The communication ring

The Appendix gives the generalized formula for the existence of phase-locked solutions in the communication ring. Note
that if a = 0, there are no phase-locked solutions but as a ?1, there are six solutions for the phase-locked equation. We
therefore expect the appearance of new roots at critical values of a, i.e. where there is a double root.

Thus, for the x parameters discussed above, Eq. (38) yields critical communication ring coupling coefficients at
a = ±1.8579, ±5.7564, ±8.5119, with the corresponding number of real solutions to sinw1 increasing from 0 to 2, from 2 to
4 and from 4 to 6, respectively. Each of these is accompanied by an appropriate sinw2 and sinw3 which satisfies Eq.
(126). We note that there are two possible candidates for wi for each term; however the appropriate phase-locked solution
must further satisfy the consistency condition,
w1 þ w2 þ w3 ¼ 0 modð2pÞ:
Imposing this condition yields a single possible solution (w1, w2, w3) per root of Eq. (127). Fig. 6 shows the corresponding
bifurcation diagram.

7.2. The sub-rings

From Eqs. (54) and (57), the critical coupling coefficients for the sub-rings are (a) ai=(X �xi) and (b) ai = 4(X �xi). Con-
dition (a) yields
sin /1;2 ¼ 0
from which
/1;2 ¼ 0;p:
Eq. (88) gives the actual phase difference.



Fig. 6. Bifurcation diagram for the communication ring dynamics.

Fig. 7. Bifurcation diagram for the sub-ring dynamics.
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Combining this with the consistency condition,
/i;1 þ /i;2 þ /i;3 ¼ 0 mod2p
the solutions corresponding to /1,2 = 0 are equivalent to h1,2 = h1,3, i.e. the solution is symmetric. For one of these symmetric
solutions all the cos/i,j terms are positive while the other has two negative cos/i,j terms. The other combination /1,2 = p and
the consistency condition, yields two solutions of the form h1,2 = p � h1,3. These solutions also have two negative cos/i,j

terms. Thus on exceeding the lower critical coupling coefficient, four phase-locked solution candidates appear.
Now consider (b). Eq. (57) shows that there are two double roots of the sub-ring coupling coefficient equation at a = ± 4

(X �xi). Thus four new phase-locked solutions emerge at the second critical coefficient, two corresponding to sin/1,1 = 1
and two with sin/1,1 = � 1. Imposing the consistency condition yields Fig. 7, the bifurcation diagram for sub-ring 1; similar
curves are obtained for the other sub-rings.

8. Conclusions

We have studied the existence, stability and bifurcation of phase-locked motions in ring networks which consist of a large
communication ring, each node of which contains an oscillator attached to a sub-ring. In the case of systems with three or
four sub-rings we have given approximate expressions for critical coupling coefficients which must be exceeded for phase-
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locking to occur. We have identified a type of phase-locked motion called symmetric, and we have shown that if the coupling
coefficients are all greater than critical, a stable symmetric phase-locked motion will exist.

An important conclusion of this work is that phase-locking in each sub-ring can occur independently of the motion in the
other sub-rings, cf. Eq. (61). On the other hand phase-locking in each sub-ring is not sufficient for phase-locking of the entire
structure. For the latter an additional condition must be satisfied, cf. Eqs. (62) and (70).

This work represents a first step towards understanding the dynamics of networks of oscillators that are more compli-
cated than simple rings. Future research is expected to include comparable studies of yet more complicated networks,
and of motions within such networks which are more complicated than phase-locked motions.
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Appendix. The equations for the phase differences within the communication ring in the general three sub-ring system
may be written as (cf. Eqs. (33) and (32)):
sin w2 ¼ sin w1 þ
C2

a
ð125Þ

� sinðw1 þ w2Þ ¼ sin w1 þ
C2

a
þ C3

a
ð126Þ
where Ci is defined by Eq. (63).
Expanding the trigonometric term and substituting for sinw2 in Eq. (126)
� cos w2 ¼ �1þ cot w1 sin w1 þ
C2

a

� �
þ C2

a sin w1
þ C3

a sin w1
Squaring, adding to (125) squared, and finally substituting for cosw1, yields the following relationship for sinw1 (cf. Eq. (37)):
Faðsin w1Þ ¼ a6 sin6 w1 þ a5 sin5 w1 þ a4 sin4 w1 þ a3 sin3 w1 þ a2 sin2 w1 þ a1 sin w1 þ a0 ¼ 0 ð127Þ
where
a6 ¼ 4a4

a5 ¼ 8a3ðC2 þ 2C3Þ
a4 ¼ 4a2ðC2

3 þ 6C2C3 þ 6C2
2Þ � 3a4

a3 ¼ 8aC2ðC2 þ C3Þð2C2 þ C3Þ � 4a3ðC3 þ 2C2Þ
a2 ¼ 4C2

2ðC2 þ C3Þ2 þ 2a2ðC2
3 � 2C3C2 � 2C2

2Þ
a1 ¼ 4aC2

3ðC3 þ 2C2Þ
a0 ¼ C2

3ðC3 þ 2C2Þ2
When a = 0, Eq. (127) is reduced to
F0ðsin w1Þ ¼ 4C2
2ðC2 þ C3Þ2 sin2 w1 þ C2

3ðC3 þ 2C2Þ2 ¼ 0:
Since both terms are semi-positive definite, this equation has no real roots unless C3 = 0 or C3 + 2C2 = 0. Meanwhile as a ?1,
the equation is reduced to
F1ðsin w1Þ ¼ 4a4 sin6 w1 � 3a4 sin4 w1 ¼ 0
which yields six real roots (two simple roots at �
ffiffiffi
3
p

=2 and a quadruple root at 0) for sinw1. Therefore, as a is increased
the number of real roots of the equation increases from 0 to 6. There is therefore a minimum value of a for which a real solu-
tion will exist. If we let sinw1 = s, then the number of roots change when both F(s) and dF/ds = 0, i.e., when there is a double
root.
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