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ABSTRACT
We investigate the dynamics of the parametrically-excited
P.D.E.
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where O< p< 1. Our approach involves expanding,y,t) in a
3-term Fourier series truncation:

u= fo(t) + f1(t) cosx—+ fa(t) cospy )
By substituting (2) into (1) we obtain a system of 3 coupled non-
linear Mathieu equations which we analyze using averaging in
the neighborhood of 2 : 1 resonance.

By varying the parameters and & we obtain bifurcation
curves which divide thed-plane into more than forty regions,
each containing a distinct slow flow. Individual regions are found
to differ from one another with respect to such features as the
number and character of slow flow equilibria, and the presence
or absence of a limit cycle. When interpreted in the original vari-
ableu, these regions account for a variety of patterns which may
be classified as stationary, traveling or rotating.

This type of behavior is comparable to various experimen-
tal observations made by other investigators on vertically driven
fluids or sand.
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1 Introduction

Parametrically-excited O.D.E.’s and P.D.E.’s have found nu-
merous applications in mechaniesg. dynamic buckling, stabil-

ity of motion, and water waves in a vertically forced tank (Miles
and Henderson, 1990). More recent applications include patter
formation in vertically forced granular layers (Medpal,, 1995),
(Rothman, 1998).

Three recent works have treated the dynamics of equatio
(1) with only one spatial dimensiox (Rand, 1996), (Newman
et al, 1999), (Armbrusteet al, 2001). It was shown that the
steady state behavior consists either of (i) the trivial solution
u = 0; (ii) a single spatial mode of the form cws varying pe-
riodically in time; (iii) a more complicated motion consisting of
more than one mode, varying periodically or quasiperiodically in
time; or (iv) unbounded growth. The question of which of these
occurs was shown to depend upon both the parameters as well
the initial conditions.

In this paper we extend these previous works to include twc
spatial dimensions. The resulting steady states will be shown t
consist of patterns. Our treatment closely follows that of (Rand
1996).

2 Averaging

After substituting (2) into (1), simplifying the expression,
and minimizing the error of this projection by making the resid-
ual orthogonal to (2) (as is usual in Galerkin projection), we ar-
rive at the following three O.D.E.’s
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a (f03+2f0f12+2f0f22> _0 . + 6ahoby + 689b3 + 9a0a3 + 9aga? + 6a3))
o _ — g(ay[8y+ 163+ 16¢2] — a[6asb? + 12asb; by

d°fy + SB%+(CZ—|—5+£ cost) f Yt
de Yeosh + 9ayb? + 24aobobs + 128103 + 180103 + 93 + 36a3a4))
— ga ( 343621+ = flfz) 3 ddk:z — g(ag[8y+ 163+ 16u°c3] — a[6azb? + 12a1b;by,
d?f + 9aph3 + 24agboby + 12a5b% + 18282 4 9a3 + 36a3a;
7dt22 +s[3d—t2+(u202+6+sycost)f2 2b5 -+ 24aobobz 270 28 + 98 + 36%2))
— € (j f§’+3f§ fo+ g fleZ) -0 where we have s = 0 in order to simplify the following anal-
ysis.

These equations are a system of three coupled damped nonlin-

ear Mathieu equations. In the nonlinear, undamped, uncoupled3 Slow Flow Equilibria

case, the major resonance is the 2:1 resonaregethe forcing Sinceu in equation (1) may be scaled to absorbonly the

frequency is twice the natural frequency) which causes the trivial sign ofa is significant. We assune > 0 and sett = 1 in what

solutionu = 0 to become unstable. With damping present, this follows for brevity. We also note that sineein eq.(1) may be

results in attractive periodic motions. For (3), we are interested scaled to absori we takey = 1 in the following.

in exploring the dynamics of the system in the neighborhood of Equilibria of (6) represent periodic motions of (3) and are

this 2:1 resonance, where we expect to find stable periodic or- termed “modes” (Rand, 1996). These will be denoted by theil

bits. These periodic orbits will correspond to spatial patterns in non-zero components. In order to obtain these equilibria it is

(1) which vary periodically in time. In order to perturb off of this  necessary to solve 6 simultaneous nonlinear algebraic equatio!

resonance, we set for the unknownsy, ai, ap, bp, by, bp. We present an extensive
list of such equilibria, which, however, may not be complete.

1 Our purpose is to illustrate that the three term truncation (2) o

0=, +5E C= c1ve (4) the P.D.E. has a very complicated bifurcation structure, and th

addition of more equilibria not on this list would only increase

so that the natural frequencies of (3) becow@& 1/4 4 3¢, the complexity of the results. The modes we found in closed

W2 = 1/4+ (2 +8y)e, andwl = 1/4+ (2c2 + & e respectively, ~ 10M are
We then use the method of averaging to approximate (3) for small

&. We simplify by neglecting terms @(&?) after the substitution u=0: {ag12="bg12=0} )
of (4) into (3), and then set 2(1+25
a: {3(2) = %7 a2=bo12= 0} (8)
t t
fi = q(t)cos= +bj(t)sin-, 1=0,12. 5 -2(1-25
| =ai(t)cos, + bi(t)sin (5) by {bgzw,ao_lyzzbl,zzo} ©)
. . . 2
By averaging over one period £ 1) we then obtain six au- 2 8(1+4 2061 + 2¢1) Cbeis— 0 10
tonomous first order equations eift) andb;(t), namely & 9 » 802 ="bo12 (10)
8(14 26, + 2c32
dao a: {a% _& 19 L )7 a1 =Dbo12= 0} (11)
4= — — g(bo[4y — 831] + a[9bob? + 9bob3 + 6apas by
dt (. —8(1—25—2c2)
+ Bagaghy + 6b3 + 3aZbg -+ 3a3ho -+ 6a3ho)) by: (b= 5 ,8012=Dbo2=0 (12)
day 2 2,2
kiR — — —8(1—20, -2
8 £(b1[8y — 1651 — 16¢3] + [180103 + 128 apby by : {b% _ 8 91 CIH ), a012=boz = o} (13)
+ 903 + 3603y + 6a5by + 9ab + 12a3by + 24aab
oo 1 001 501 101 285 RENEY] 0]) . - 2(1+251+4ci) 2 16(1+261*C%)
SE = — €(b2[8y— 160, — 16[1205] + G[lezb% +12a0a;b - (8= 15 P91 45 ’
+ 903+ 3602, + 6aZby + 9a2by, + 1282, + 248032b0)) 3 =Do12=0} , 2(14)
_ 2(1+ 25, +4c2?) 16(1+ 25 —cf)
4% = — g(ap|4y+ 85— a[3agb3 + 6axbob, 4 3agh? (6) a3 {a% = 15 T &= 45 =,
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a1 =bo12=0} (15)
{ > 2(5+20;—4c) o — ~16(1—¢2)
aO - 3 I 1— 3 ]
a2 =boo =0} (16)
—2(—5-25; +4c?) 16(c2p2 — 1)
2 1 2 1
{a{)_ 3 ) b - 3 bl
ag12 =bo1 =0} (17)
o2 —2(5— 28, +4c3) 2 16(1+¢3)
- y 4 — )
3 3
ag2 =by 2 =0} (18)
2 —25- 201 +4c3) 5,  16(1+cip)
- y A2 — )
3 3
ap1 = b1 =0} (19)
o2 - —2(1-25 - 4c2) b2 ~16(1—28+ ch
- 15 R 45 ’
ap12=by =0} (20)
02— —2(1—-28; —4c3) o2 — —16(1— 281 +c32)
- 15 HCh 45 ’
ag12 = by =0} (21)
8(1+ 28 — 2¢2 4 4c3|P
{a - BT EZZTIAE, @2)
8(1+ 287 +4c¢2 — 232
a = ( 2 271 1H),aobo,l,zo}
4(10+ 48, + 12¢2 — 8¢ 2
ERES e @3)
—4(10— 43, + 8¢5 — 12c5
bgz ( 115 1 :]J"l)7 aO,Z_bO,l_O}
—4(10— 48, — 12¢3 + 8c21?)
2 1 1
{b = s , (24)
4(104 401 — 8¢2 + 12c212
a§: ( 1 151 1u>7a071:b0,2:0}
8(—14 281 — 22 + 4c32)
2 1 1
{b _ ~ , (25)
—8(1— 25, — 4% + A2
b% _ ( 127 1+CIH) ,a012="bo= 0}
2(14-28; +4c? + 4c3?)
2 1 1
»  8(2+48; — 103 +8c31P)
al - 5
81
8(2+ 43, + 8¢ — 10c22
a% — ( 1 811 lu )’ b07]_72 — 0}
2(15+ 658; + 28c7 — 12c312)
2 1 1

agbray :

agb1 by :

boa1a2 .

boagby :

bob]_az .

b0b1b2 .

o 4(20+83; — 4ct — 16631

a 93 ’
g 16114 8519—340% ISR e 0}
{a% _ 2(15+ 65 +:38C% —12c§y¢) 7 (28)
g 204801~ 164 — 4chy?)

93
bf _ 16(—11+ 851;;315(3% - 4{:%“2), bo1=ay= 0}
{a% _ 2(13+10% 154C§ —4ciiP) , (29)
o —16(3+ 255 —~ 4c%u2)’
b3 = _16(3_2(5 +C%L12)7 a2 =Dho= O}
{bz _ —4(6-5% 1 52(:% 4G (30)
2 163 Ci 5+ 405u2)’
2 16(3+4:§— c§u2)7 20— by = 0}
{bg _ 2(-—15+68 - :1320§ +2801) (31)
2 —16(-11-85; —150F + 4cky)

93 ’

% —16(5—262—::40%—1—0@2)7 202 by = 0}
{bz _ —2(15—68; —9:2%805 +12c§1P) 7 (32)
o —16(5— 28, + €2 + 4c32) 7

93
o2 16(11+ 86, _9;:(:% +15c1°) agy—by— 0}
{bzz 2(_1+26142r740§+40flv12)7 (33)
2 16(—1+ 28; — 562+ 4c22) ?

81
g ~1601- 2618—1405 +5c512) agns— 0}

4 Conditions for Existence of the Modes

The conditions which determine the existence of the solu-

tions in equations (7)—(33) may be found by requiring aab;
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be real. This yields, for each mode, a set of inequalities which
when satisfied by the parameters indicate the existence of that

mode. These are found to be

u=0: always exists
1 ¢
ao.6>Z—é
1 ¢
1 ¢
1 ¢
m.6>2+5—8
. 1 ¢ 2
@.6>Z—é—8p
1 ¢
m.6>4+§—8p
ap: 0> i §+§
B 0>775773
1 & A2
D> o
32 0> 45+
1
aghy 6>Z %+2c2, andc®>¢
aghy: &> % % 2c212, and 2 > €
1 5
boay 6>4 > +2¢?
1 b5e
: S+ = 4o
boay 6>4+2+ CZ|J
1 ¢ ¢
bob; : 6>4 2+E
_ 1 & @
boby : 6>Z+E+T
1 ¢
ajay: 6> >2-5+ + 2 — 2c%
1
aghy 6>4+528+2c2—302u2, and
1 G5t 2 5
5> - 3c? 4 2c%u
1
bay: &> Z+%—3c2+202u, and
1 2 22
6>4 2+20 3cu
1 ¢
mm.6>4+2+8 2021
1 & 5
aaay 6>Z 2+7—2c2u
_ 1 11 & 1532
a()a1b2.6>21 B T3 "8 , and

(34)

(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)

(50)

(51)

(52)
(53)

(54)

1 5 ¢ 5
5>Z—§+§we8u
1 11 152 AP
aghias : 6>4+?—?+ 2”, and (55)
1 5e [l
Z =492
6>4 5 +2C°+ —— >
1 13k 22 2c38
aobiby: 8> 5~ o+ o+ 5”,am (56)
A’ —c? > 3¢
1 13 22 238
boazay: &> Z+E+?+ 5“, and (57)
c®— 4P < 3¢
1 5e A2
boahy : 5>Z+§+2c2+7“ (58)
1 5 c?
mm@:5>4+2+2+2;ﬁ (59)
1 & b5
mmm:6>z+é+7;—mm2 (60)

5 Conditions for Stability of the Modes

The conditions which determine the stability of the slow
flow equilibria in equations (7)—(33) can be found by lineariz-
ing (6) about each equilibrium point and requiring that all eigen-
values of the linear system be pure imaginary. Since there is n
asymptotic stability possible,e., we have seff = 0, this pro-
cedure will determine which equilibrium points in the slow-flow
equations are centers, and hence, because of their structural
stability, will become stable spirals when the damping is small
but non-zero.

After linearization of the slow-flow equations, the character-
istic equation whose roots are the eigenvalues of the Jacobian
always of the general form:

A+ AN £ BA24+C=0 (61)

whereA, B,C are polynomial functions a3, €, ¢, andp. The nec-
essary and sufficient conditions for this equation to have six pur
imaginary roots are

A>0 B>0, C>0, and (62)
AB 2A3 A2
—27<C—3+27> 4<B—3) >0, (63)

which can been derived by considering (61) to be a cubic eque
tion in A (Birkhoff and MacLane, 1965). These criteria indicate
that the respective modes are stable in the following regions @
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parameter space

1 ¢
1 ¢
5<Z—§—&, (65)
1 & 55 1 ¢
6>Z+§_C“’6<Z_§’ (66)
1 ¢ 1 ¢
5> Z_E_CZ’ d< Z—é—czuz (67)
1 & ¢
a: 6>21_§+§’ £>c? (68)
1 ¢ ¢ 1 & A2
T T B ol 69
4 27 2°°“3 32" 2 (69)
Al <e<c?
1 ¢ 1 & A&
Z_§<6<Z_§+T“’S<C2“2; (70)
bo: always unstable (71)
1 ¢
ap: 6>27572c2+02p2, (72)
1 5
- X 02 322
6<4+ 5 +2c — 3¢y
b, : always unstable (73)
1 ¢
a: 6>Z—§+02—202u2, (74)
1 b5e
1 9€ 22 2
8< 2+ 3c2 4 2c%\2;
1 5¢
8> 2+ - 3c? +2c%12, (75)
1 b5e
g, Yy
6<4+2+ 22,
1 ¢
1 € 2212
5< g 2+c2 ot
b, : always unstable (76)
1 4e 4 1 11t & 15382
e Sl ST 77
apay 4+7 7<6<4+8+2 g (77)

33124% + 1121153+ 72384c% €% — 280283
+540963% €2 + 61344c% 5e2 — 27048>¢?
—140096:* €2 — 1533602 €2 + 3381¢?

—68992°% — 1480322 5% ¢ + 517445%¢
+2176c*d¢ + 74016c% 5 — 12936d¢

+44544c%s — 544c*s — 9252c%¢

+1078¢ + 125445 + 37632 5% — 12544°
+3136c* 3% — 28224c% 5% 4 47045% — 376353
—1568c* 5+ 7056¢% 5 — 7845+ 12544c 4 94088
+196¢* — 588c%+49> 0

Note,

the notationd > (<)x, & < (>)y

denotes that

0>X, O0<y andd<x 0>y are both valid regions of sta-
bility. Clearly, given a particular set of parameter values, at mos
one of these may be satisfied.

apay .

agby :
aghy :

boal .

boaz .

bob1 .
bob2 .

aiap .

a1b2 .

5> (<)%1 — g + % —2c22,
1 11 15¢2

0<(>)y+—5 5 T
1, 4% 4c22
4" 7 7
12544c8 18 4 44544c% ¢ |© — 37635 5.°
+9408c8 16 — 140096c* €2 * + 2176¢* e
—544c*e p* +3136c* 57 it — 1568t ot
+196¢* p* + 723847 €3 |42 + 613442 52 2
—15336c2€? p? — 1480322 5% ¢ |2
+74016c2 3¢ 2 — 9252¢% € P2 + 376327 5% |2
—28224c? 8 |2 + 7056¢% 5|2 — 588¢2 |2
+33124e% + 11211 D¢ — 2802&°
+540965% €2 — 270485¢2 + 33812 — 68992D° ¢
+517445%s —12936d¢ + 1078 + 12544*
—125445° + 47045° — 7845+ 49> 0
5> %—%+2c2+i2”2, 5> %f4£+402
422 — ¢ > (<)3e,

5¢ 2

1 2
6>(<)Z_§+§+2CZ“’

5> %1—4£+4c2u2

(78)
22

2

o>

(79)
(80)

1 5¢ 2 1
R, T S Ml il = 2
4+2+ c+ 5 <6<4+4e+4c
c? — 4 > (<)3,

1 5% & _,,
6<(>)Z+§+E+2CH,

1
d< 21+4s+4c2pz

always unstable
always unstable

1 5 & A2
51, % & G

(81)
(82)

(83)
(84)

(85)

(86)

1 5e 5 5
5> Z—E—3cz+2cp
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bray: 4c® — 4c?p? < 3¢
biby : always unstable

(87)
(88)

For the triple-modes, the stability conditions turn out to be very
large, and hence we only examine the special pasd. in order
to simplify the expressions. They are found to be

R

4711 11’
30250¢* + 111320 + 109760@2 ¢
—27830¢:3 + 8305447 €% + 13419842 5¢?
—41527D¢” — 1990272 €2 — 33549652 €2
+5190%? — 3562248°¢ — 159801&° &€
+267168°¢ — 516864 3¢ + 79900&2 3¢
—6679D¢ + 702464%¢ + 129216 ¢
—99876c% € + 5566¢ + 309765 + 2168322 5°
—309765° + 2555524 8% — 1626242 5% + 1161657
—433664°5— 127776 5+ 40656¢° 5
—19365+ 123904 + 1084165 + 1597x*

aay: O (89)

33882+ 121> 0
1 8 8¢
apga1hy : 6<Z+§—? (90)
1 8 8¢
agbiay : 6<Z+§—? (91)
agb1b, : always unstable (92)
1 8 8¢
boa]_az. o< Z+€+? (93)
boaib, : always unstable (94)
bobiaz : always unstable (95)
bob1by : always unstable (96)

The regions of stability in (64)—(96) are found to divide the

co-plane into more than forty regions. These are shown in Fig.1,

implying that the long-time behavior is dependent on initial con-
ditions. As the number of terms in the truncation (2) is increased
the complexity of the corresponding Fig.1 will increase. This is
apparent from a comparison of the results obtained in this ps
per with those obtained in (Rand, 1996), where only the first twc
terms of equation (2) were taken, resulting in 18 separate regior
of Fig.1, instead of the 49 regions obtained here by including
one additional term. Of course the P.D.E. (1) is expected to pos
sess a diagramnfinitely more complicated than Fig.1. It is likely
that there will be infinitely many comparable regions, each with
many, perhaps infinitely many, steady states.

Numerical integration of the slow flow eqgs.(6) has confirmed
the stable steady states of Fig.1, as listed in Table 1.

The various steady state modes exhibited by the average
equations (6) may be viewed as a surfaeceu(x,y,t) moving in
time via the ansatz (2). By coloring the valuesuddifferently,
these may be viewed as patterns, as shown in Fig.2. The pe
turbation assumptions made in our treatment restrict the steac
state behavior of the coefficienfgt) in equation (2) to be peri-
odic with twice the period of the forcing functioof. equation
(5). This means that our approximation yields steady state pa
ternsu(x,y,t) which vary periodically in time. Examination of
the various resulting steady state patterns allows us to classi
them as either stationary, traveling, or rotating, see Fig.2.

Recall that we set the damping const@nt 0 in order to
simplify the analysis. In the presence of dampifig; 0, equa-
tions (6) may also exhibit stable limit cycle solutions. These
will correspond to quasiperiodic motions in equations (3), and
to quasiperiodic patterns. Although the present paper has not ir
vestigated such motions, numerical integration of equations (6
has shown them to exist, as expected from structural stability an
generic bifurcation considerations.
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Figure 1. Regions of stable steady state motions of the averaged equa-
tions (6). The parameters used are: o0=1,p=0,vy=1,€ =0.1, and u =1.
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apaihy
aghiap

o1

arhy
blag

ajap

boay
boaz

aghy
aghy

doay
dpap

a1
a

ao

u=0

region

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49

Table 1. Stable steady states corresponding to Figure (1).
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Figure 2. Representative patterns obtained by numerically integrating the
slow flow equations (6).

Left: A "stationary" pattern, the ajap, mode.
Center: A "traveling" pattern, the agbq mode.
Right: A "rotating" pattern, the a;bo mode.
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