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ABSTRACT
We investigate the dynamics of the parametrically-excited

P.D.E.

∂2u
∂t2 −c2

(
∂2u
∂x2 +

∂2u
∂y2

)
+ εβ

∂u
∂t

+(δ+ εγcost) u = εαu3 (1)

with Neumann boundary conditions on a rectangular region:

∂u
∂x

= 0 for x = 0,π and
∂u
∂y

= 0 for y = 0,
π
µ

where 0< µ≤ 1. Our approach involves expandingu(x,y, t) in a
3-term Fourier series truncation:

u = f0(t)+ f1(t)cosx+ f2(t)cosµy (2)

By substituting (2) into (1) we obtain a system of 3 coupled non-
linear Mathieu equations which we analyze using averaging in
the neighborhood of 2 : 1 resonance.

By varying the parametersc and δ we obtain bifurcation
curves which divide thecδ-plane into more than forty regions,
each containing a distinct slow flow. Individual regions are found
to differ from one another with respect to such features as the
number and character of slow flow equilibria, and the presence
or absence of a limit cycle. When interpreted in the original vari-
ableu, these regions account for a variety of patterns which may
be classified as stationary, traveling or rotating.

This type of behavior is comparable to various experimen-
tal observations made by other investigators on vertically driven
fluids or sand.

1 Introduction
Parametrically-excited O.D.E.’s and P.D.E.’s have found nu-

merous applications in mechanics,e.g.dynamic buckling, stabil-
ity of motion, and water waves in a vertically forced tank (Miles
and Henderson, 1990). More recent applications include pattern
formation in vertically forced granular layers (Meloet al., 1995),
(Rothman, 1998).

Three recent works have treated the dynamics of equation
(1) with only one spatial dimensionx (Rand, 1996), (Newman
et al., 1999), (Armbrusteret al., 2001). It was shown that the
steady state behavior consists either of (i) the trivial solution
u = 0; (ii) a single spatial mode of the form cosnx, varying pe-
riodically in time; (iii) a more complicated motion consisting of
more than one mode, varying periodically or quasiperiodically in
time; or (iv) unbounded growth. The question of which of these
occurs was shown to depend upon both the parameters as well as
the initial conditions.

In this paper we extend these previous works to include two
spatial dimensions. The resulting steady states will be shown to
consist of patterns. Our treatment closely follows that of (Rand,
1996).

2 Averaging
After substituting (2) into (1), simplifying the expression,

and minimizing the error of this projection by making the resid-
ual orthogonal to (2) (as is usual in Galerkin projection), we ar-
rive at the following three O.D.E.’s

d2 f0
dt2

+ εβ
d f0
dt

+(δ+ εγcost) f0
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− εα
(

f 3
0 +

3
2

f0 f 2
1 +

3
2

f0 f 2
2

)
= 0

d2 f1
dt2

+ εβ
d f1
dt

+(c2 +δ+ εγcost) f1

− εα
(

3
4

f 3
1 +3 f 2

0 f1 +
3
2

f1 f 2
2

)
= 0 (3)

d2 f2
dt2

+ εβ
d f2
dt

+(µ2c2 +δ+ εγcost) f2

− εα
(

3
4

f 3
2 +3 f 2

0 f2 +
3
2

f1 f 2
2

)
= 0

These equations are a system of three coupled damped nonlin-
ear Mathieu equations. In the nonlinear, undamped, uncoupled
case, the major resonance is the 2:1 resonance (i.e., the forcing
frequency is twice the natural frequency) which causes the trivial
solutionu = 0 to become unstable. With damping present, this
results in attractive periodic motions. For (3), we are interested
in exploring the dynamics of the system in the neighborhood of
this 2:1 resonance, where we expect to find stable periodic or-
bits. These periodic orbits will correspond to spatial patterns in
(1) which vary periodically in time. In order to perturb off of this
resonance, we set

δ =
1
4

+δ1ε, c = c1
√

ε (4)

so that the natural frequencies of (3) becomeω2
0 = 1/4+ δ1ε,

ω2
1 = 1/4+(c2

1+δ1)ε, andω2
2 = 1/4+(µ2c2

1+δ1)ε respectively.
We then use the method of averaging to approximate (3) for small
ε. We simplify by neglecting terms ofO(ε2) after the substitution
of (4) into (3), and then set

fi = ai(t)cos
t
2

+bi(t)sin
t
2
, i = 0,1,2. (5)

By averaging over one period (t = π) we then obtain six au-
tonomous first order equations onai(t) andbi(t), namely

4
da0

dt
= − ε(b0[4γ−8δ1]+α[9b0b2

1 +9b0b2
2 +6a0a1b1

+ 6a0a2b2 +6b3
0 +3a2

1b0 +3a2
2b0 +6a2

0b0])

8
da1

dt
= − ε(b1[8γ−16δ1−16c2

1]+α[18b1b2
2 +12a1a2b2

+ 9b3
1 +36b2

0b1 +6a2
2b1 +9a2

1b1 +12a2
0b1 +24a0a1b0])

8
da2

dt
= − ε(b2[8γ−16δ1−16µ2c2

1]+α[18b2b2
1 +12a2a1b1

+ 9b3
2 +36b2

0b2 +6a2
1b2 +9a2

2b2 +12a2
0b2 +24a0a2b0])

4
db0

dt
= − ε(a0[4γ+8δ−α[3a0b2

2 +6a2b0b2 +3a0b2
1 (6)

+ 6a1b0b1 +6a0b2
0 +9a0a2

2 +9a0a2
1 +6a3

0])

8
db1

dt
= − ε(a1[8γ+16δ+16c2

1]−α[6a1b2
2 +12a2b1b2

+ 9a1b2
1 +24a0b0b1 +12a1b2

0 +18a1a2
2 +9a3

1 +36a2
0a1])

8
db2

dt
= − ε(a2[8γ+16δ+16µ2c2

1]−α[6a2b2
1 +12a1b1b2

+ 9a2b2
2 +24a0b0b2 +12a2b2

0 +18a2a2
1 +9a3

2 +36a2
0a2])

where we have setβ = 0 in order to simplify the following anal-
ysis.

3 Slow Flow Equilibria
Sinceu in equation (1) may be scaled to absorbα, only the

sign ofα is significant. We assumeα > 0 and setα = 1 in what
follows for brevity. We also note that sinceε in eq.(1) may be
scaled to absorbγ, we takeγ = 1 in the following.

Equilibria of (6) represent periodic motions of (3) and are
termed “modes” (Rand, 1996). These will be denoted by their
non-zero components. In order to obtain these equilibria it is
necessary to solve 6 simultaneous nonlinear algebraic equations
for the unknownsa0, a1, a2, b0, b1, b2. We present an extensive
list of such equilibria, which, however, may not be complete.
Our purpose is to illustrate that the three term truncation (2) of
the P.D.E. has a very complicated bifurcation structure, and the
addition of more equilibria not on this list would only increase
the complexity of the results. The modes we found in closed-
form are

u = 0 : {a0,1,2 = b0,1,2 = 0} (7)

a0 :

{
a2

0 =
2(1+2δ1)

3
, a1,2 = b0,1,2 = 0

}
(8)

b0 :

{
b2

0 =
−2(1−2δ1)

3
, a0,1,2 = b1,2 = 0

}
(9)

a1 :

{
a2

1 =
8(1+2δ1 +2c2

1)
9

, a0,2 = b0,1,2 = 0

}
(10)

a2 :

{
a2

2 =
8(1+2δ1 +2c2

1µ2)
9

, a0,1 = b0,1,2 = 0

}
(11)

b1 :

{
b2

1 =
−8(1−2δ1−2c2

1)
9

, a0,1,2 = b0,2 = 0

}
(12)

b2 :

{
b2

2 =
−8(1−2δ1−2c2

1µ2)
9

, a0,1,2 = b0,2 = 0

}
(13)

a0a1 :

{
a2

0 =
2(1+2δ1 +4c2

1)
15

, a2
1 =

16(1+2δ1−c2
1)

45
,

a2 = b0,1,2 = 0} (14)

a0a2 :

{
a2

0 =
2(1+2δ1 +4c2

1µ2)
15

, a2
2 =

16(1+2δ1−c2
1µ2)

45
,
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a1 = b0,1,2 = 0} (15)

a0b1 :

{
a2

0 =
2(5+2δ1−4c2

1)
3

, b2
1 =

−16(1−c2
1)

3
,

a1,2 = b0,2 = 0} (16)

a0b2 :

{
a2

0 =
−2(−5−2δ1 +4c2

1)
3

, b2
2 =

16(c2
1µ2−1)
3

,

a0,1,2 = b0,1 = 0} (17)

b0a1 :

{
b2

0 =
−2(5−2δ1 +4c2

1)
3

, a2
1 =

16(1+c2
1)

3
,

a0,2 = b1,2 = 0} (18)

b0a2 :

{
b2

0 =
−2(5−2δ1 +4c2

1)
3

, a2
2 =

16(1+c2
1µ2)

3
,

a0,1 = b1,2 = 0} (19)

b0b1 :

{
b2

0 =
−2(1−2δ1−4c2

1)
15

, b2
1 =

−16(1−2δ1 +c1
1)

45
,

a0,1,2 = b2 = 0} (20)

b0b2 :

{
b2

0 =
−2(1−2δ1−4c2

1)
15

, b2
2 =

−16(1−2δ1 +c2
1µ2)

45
,

a0,1,2 = b1 = 0} (21)

a1a2 :

{
a2

1 =
8(1+2δ1−2c2

1 +4c2
1µ2)

27
, (22)

a2
2 =

8(1+2δ1 +4c2
1−2c2

1µ2)
27

, a0 = b0,1,2 = 0

}
a1b2 :

{
a2

1 =
4(10+4δ1 +12c2

1−8c2
1µ2)

15
, (23)

b2
2 =

−4(10−4δ1 +8c2
1−12c2

1µ2)
15

, a0,2 = b0,1 = 0

}
b1a2 :

{
b2

1 =
−4(10−4δ1−12c2

1 +8c2
1µ2)

15
, (24)

a2
2 =

4(10+4δ1−8c2
1 +12c2

1µ2)
15

, a0,1 = b0,2 = 0

}
b1b2 :

{
b2

1 =
8(−1+2δ1−2c2

1 +4c2
1µ2)

27
, (25)

b2
2 =

−8(1−2δ1−4c2
1 +c2

1µ2)
27

, a0,1,2 = b0 = 0

}
a0a1a2 :

{
a2

0 =
2(1+2δ1 +4c2

1 +4c2
1µ2)

27
, (26)

a2
1 =

8(2+4δ1−10c2
1 +8c2

1µ2)
81

,

a2
2 =

8(2+4δ1 +8c2
1−10c2

1µ2)
81

, b0,1,2 = 0

}
a0a1b2 :

{
a2

0 =
2(15+6δ1 +28c2

1−12c2
1µ2)

93
, (27)

a2
1 =

4(20+8δ1−4c2
1−16c2

1µ2)
93

,

b2
2 =

16(−11+8δ1−4c2
1 +15c2

1µ2)
93

, b0,1 = a2 = 0

}
a0b1a2 :

{
a2

0 =
2(15+6δ1 +28c2

1−12c2
1µ2)

93
, (28)

a2
2 =

4(20+8δ1−16c2
1−4c2

1µ2)
93

,

b2
1 =

16(−11+8δ1 +15c2
1−4c2

1µ2)
93

, b0,1 = a2 = 0

}
a0b1b2 :

{
a2

0 =
2(13+10δ1−4c2

1−4c2
1µ2)

15
, (29)

b2
1 =

−16(3+c2
1−4c2

1µ2)
45

,

b2
2 =

−16(3−4c2
1 +c2

1µ2)
45

, a1,2 = b0 = 0

}
b0a1a2 :

{
b2

0 =
−4(6−5δ1 +2c2

1 +4c2
1µ2)

15
, (30)

a2
1 =

16(3−c2
1 +4c2

1µ2)
45

,

a2
2 =

16(3+4c2
1−c2

1µ2)
45

, a0 = b1,2 = 0

}
b0a1b2 :

{
b2

0 =
2(−15+6δ1−12c2

1 +28c2
1µ2)

93
, (31)

a2
1 =

−16(−11−8δ1−15c2
1 +4c2

1µ2)
93

,

b2
2 =

−16(5−2δ1 +4c2
1 +c2

1µ2)
93

, a0,2 = b1 = 0

}
b0b1a2 :

{
b2

0 =
−2(15−6δ1−28c2

1 +12c2
1µ2)

93
, (32)

b2
1 =

−16(5−2δ1 +c2
1 +4c2

1µ2)
93

,

a2
2 =

16(11+8δ1−4c2
1 +15c2

1µ2)
93

, a0,1 = b2 = 0

}
b0b1b2 :

{
b2

0 =
2(−1+2δ1 +4c2

1 +4c2
1µ2)

27
, (33)

b2
1 =

16(−1+2δ1−5c2
1 +4c2

1µ2)
81

,

b2
2 =

−16(1−2δ1−4c2
1 +5c2

1µ2)
81

, a0,1,2 = 0

}

4 Conditions for Existence of the Modes
The conditions which determine the existence of the solu-

tions in equations (7)–(33) may be found by requiring thatai , bi
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be real. This yields, for each mode, a set of inequalities which
when satisfied by the parameters indicate the existence of that
mode. These are found to be

u = 0 : always exists (34)

a0 : δ >
1
4
− ε

2
(35)

b0 : δ >
1
4

+
ε
2

(36)

a1 : δ >
1
4
− ε

2
−c2 (37)

b1 : δ >
1
4

+
ε
2
−c2 (38)

a2 : δ >
1
4
− ε

2
−c2µ2 (39)

b2 : δ >
1
4

+
ε
2
−c2µ2 (40)

a0a1 : δ >
1
4
− ε

2
+

c2

2
(41)

a0a2 : δ >
1
4
− ε

2
+

c2µ2

2
(42)

a0b1 : δ >
1
4
− 5ε

2
+2c2, and c2 > ε (43)

a0b2 : δ >
1
4
− 5ε

2
+2c2µ2, and c2µ2 > ε (44)

b0a1 : δ >
1
4

+
5ε
2

+2c2 (45)

b0a2 : δ >
1
4

+
5ε
2

+2c2µ2 (46)

b0b1 : δ >
1
4

+
ε
2

+
c2

2
(47)

b0b2 : δ >
1
4

+
ε
2

+
c2µ2

2
(48)

a1a2 : δ >
1
4
− ε

2
+c2−2c2µ2 (49)

a1b2 : δ >
1
4

+
5ε
2

+2c2−3c2µ2, and (50)

δ >
1
4
− 5ε

2
−3c2 +2c2µ2

b1a2 : δ >
1
4

+
5ε
2
−3c2 +2c2µ2, and (51)

δ >
1
4
− 5ε

2
+2c2−3c2µ2

b1b2 : δ >
1
4

+
ε
2

+c2−2c2µ2 (52)

a0a1a2 : δ >
1
4
− ε

2
+

5c2

2
−2c2µ2 (53)

a0a1b2 : δ >
1
4

+
11ε
8

+
c2

2
− 15c2µ2

8
, and (54)

δ >
1
4
− 5ε

2
+

c2

2
+2c2µ2

a0b1a2 : δ >
1
4

+
11ε
8
− 15c2

8
+

c2µ2

2
, and (55)

δ >
1
4
− 5ε

2
+2c2 +

c2µ2

2

a0b1b2 : δ >
1
4
− 13ε

10
+

2c2

5
+

2c2µ2

5
, and (56)

4c2µ2−c2 > 3ε

b0a1a2 : δ >
1
4

+
13ε
10

+
2c2

5
+

2c2µ2

5
, and (57)

c2−4c2µ2 < 3ε

b0a1b2 : δ >
1
4

+
5ε
2

+2c2 +
c2µ2

2
(58)

b0b1a2 : δ >
1
4

+
5ε
2

+
c2

2
+2c2µ2 (59)

b0b1b2 : δ >
1
4

+
ε
2

+
5c2

2
−2c2µ2 (60)

5 Conditions for Stability of the Modes
The conditions which determine the stability of the slow

flow equilibria in equations (7)–(33) can be found by lineariz-
ing (6) about each equilibrium point and requiring that all eigen-
values of the linear system be pure imaginary. Since there is no
asymptotic stability possible,i.e., we have setβ = 0, this pro-
cedure will determine which equilibrium points in the slow-flow
equations are centers, and hence, because of their structural in-
stability, will become stable spirals when the damping is small
but non-zero.

After linearization of the slow-flow equations, the character-
istic equation whose roots are the eigenvalues of the Jacobian is
always of the general form:

λ6 +Aλ4 +Bλ2 +C = 0 (61)

whereA,B,C are polynomial functions ofδ,ε,c, andµ. The nec-
essary and sufficient conditions for this equation to have six pure
imaginary roots are

A > 0, B > 0, C > 0, and (62)

−27

(
C− AB

3
+

2A3

27

)2

−4

(
B− A2

3

)3

> 0, (63)

which can been derived by considering (61) to be a cubic equa-
tion in λ2 (Birkhoff and MacLane, 1965). These criteria indicate
that the respective modes are stable in the following regions of
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parameter space

u = 0 : δ >
1
4

+
ε
2

; (64)

δ <
1
4
− ε

2
−c2; (65)

δ >
1
4

+
ε
2
−c2µ2, δ <

1
4
− ε

2
; (66)

δ >
1
4
− ε

2
−c2, δ <

1
4
− ε

2
−c2µ2 (67)

a0 : δ >
1
4
− ε

2
+

c2

2
, ε > c2; (68)

1
4
− ε

2
+

c2

2
< δ <

1
4
− ε

2
+

c2µ2

2
, (69)

c2µ2 < ε < c2;

1
4
− ε

2
< δ <

1
4
− ε

2
+

c2µ2

2
, ε < c2µ2; (70)

b0 : always unstable (71)

a1 : δ >
1
4
− ε

2
−2c2 +c2µ2, (72)

δ <
1
4

+
5ε
2

+2c2−3c2µ2

b1 : always unstable (73)

a2 : δ >
1
4
− ε

2
+c2−2c2µ2, (74)

δ <
1
4

+
5ε
2
−3c2 +2c2µ2;

δ >
1
4

+
5ε
2
−3c2 +2c2µ2, (75)

δ <
1
4

+
5ε
2

+2c2µ2,

δ <
1
4
− ε

2
+c2−2c2µ2

b2 : always unstable (76)

a0a1 :
1
4

+
4ε
7
− 4c2

7
< δ <

1
4

+
11ε
8

+
c2

2
− 15c2µ2

8
, (77)

33124ε4 +112112δε3 +72384c2 ε3−28028ε3

+54096δ2 ε2 +61344c2 δε2−27048δε2

−140096c4 ε2−15336c2 ε2 +3381ε2

−68992δ3 ε −148032c2 δ2 ε +51744δ2 ε
+2176c4 δε +74016c2 δε −12936δε
+44544c6 ε −544c4 ε −9252c2 ε
+1078ε +12544δ4 +37632c2 δ3−12544δ3

+3136c4 δ2−28224c2 δ2 +4704δ2−37632c6 δ
−1568c4 δ+7056c2 δ−784δ+12544c8 +9408c6

+196c4−588c2 +49> 0

Note, the notationδ > (<)x, δ < (>)y denotes that
δ > x, δ < y andδ < x, δ > y are both valid regions of sta-
bility. Clearly, given a particular set of parameter values, at most
one of these may be satisfied.

a0a2 : δ > (<)
1
4
− ε

2
+

5c2

2
−2c2µ2, (78)

δ < (>)
1
4

+
11ε
8
− 15c2

8
+

c2µ2

2
,

δ >
1
4

+
4ε
7
− 4c2µ2

7
,

12544c8µ8 +44544c6 ε µ6−37632c6 δµ6

+9408c6µ6−140096c4 ε2µ4 +2176c4 δε µ4

−544c4 ε µ4 +3136c4 δ2µ4−1568c4 δµ4

+196c4µ4 +72384c2 ε3µ2 +61344c2 δε2µ2

−15336c2 ε2µ2−148032c2 δ2 ε µ2

+74016c2 δε µ2−9252c2 ε µ2 +37632c2 δ3µ2

−28224c2 δ2µ2 +7056c2 δµ2−588c2µ2

+33124ε4 +112112δε3−28028ε3

+54096δ2 ε2−27048δε2 +3381ε2−68992δ3 ε
+51744δ2 ε −12936δε +1078ε +12544δ4

−12544δ3 +4704δ2−784δ+49> 0

a0b1 : δ >
1
4
− 5ε

2
+2c2 +

c2µ2

2
, δ >

1
4
−4ε+4c2 (79)

a0b2 : 4c2µ2−c2 > (<)3ε, (80)

δ > (<)
1
4
− 5ε

2
+

c2

2
+2c2µ2,

δ >
1
4
−4ε+4c2µ2

b0a1 :
1
4

+
5ε
2

+2c2 +
c2µ2

2
< δ <

1
4

+4ε+4c2 (81)

b0a2 : c2−4c2µ2 > (<)3ε, (82)

δ < (>)
1
4

+
5ε
2

+
c2

2
+2c2µ2,

δ <
1
4

+4ε+4c2µ2

b0b1 : always unstable (83)

b0b2 : always unstable (84)

a1a2 : δ >
1
4

+
5ε
8
− c2

2
− c2µ2

2
, (85)

δ <
1
4

+
13ε
10

+
2c2

5
+

2c2µ2

5

a1b2 : δ >
1
4

+
5ε
2

+2c2−3c2µ2, (86)

δ >
1
4
− 5ε

2
−3c2 +2c2µ2
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b1a2 : 4c2−4c2µ2 < 3ε (87)

b1b2 : always unstable (88)

For the triple-modes, the stability conditions turn out to be very
large, and hence we only examine the special caseµ= 1 in order
to simplify the expressions. They are found to be

a0a1a2 : δ >
1
4

+
8ε
11
− 8c2

11
, (89)

302500ε4 +1113200δε3 +1097600c2 ε3

−278300ε3 +830544δ2 ε2 +1341984c2 δε2

−415272δε2−1990272c4 ε2−335496c2 ε2

+51909ε2−356224δ3 ε −1598016c2 δ2 ε
+267168δ2 ε −516864c4 δε +799008c2 δε
−66792δε +702464c6 ε +129216c4 ε
−99876c2 ε +5566ε +30976δ4 +216832c2 δ3

−30976δ3 +255552c4 δ2−162624c2 δ2 +11616δ2

−433664c6 δ−127776c4 δ+40656c2 δ
−1936δ+123904c8 +108416c6 +15972c4

−3388c2 +121> 0

a0a1b2 : δ <
1
4

+
8ε
3
− 8c2

3
(90)

a0b1a2 : δ <
1
4

+
8ε
3
− 8c2

3
(91)

a0b1b2 : always unstable (92)

b0a1a2 : δ <
1
4

+
8ε
5

+
8c2

5
(93)

b0a1b2 : always unstable (94)

b0b1a2 : always unstable (95)

b0b1b2 : always unstable (96)

The regions of stability in (64)–(96) are found to divide the
cδ-plane into more than forty regions. These are shown in Fig.1,
and are tabulated in Table 1 for the specific case of a square do-
main (i.e., µ= 1), and the parameter valuesα = 1, β = 0, γ = 1,
andε = 0.1. All changes in stability correspond either to a pair
of zero eigenvalues, in which case the associated bifurcation is a
saddle-center, or to a pair of repeated pure imaginary eigenval-
ues, in which case the bifurcation is a Hamiltonian-Hopf (van der
Meer, 1985).

6 Conclusions
Inspection of Fig.1 shows that the dynamics of the averaged

three-term-truncation in equations (3) is very complicated. In
most regions shown there is more than one stable steady state,

implying that the long-time behavior is dependent on initial con-
ditions. As the number of terms in the truncation (2) is increased,
the complexity of the corresponding Fig.1 will increase. This is
apparent from a comparison of the results obtained in this pa-
per with those obtained in (Rand, 1996), where only the first two
terms of equation (2) were taken, resulting in 18 separate regions
of Fig.1, instead of the 49 regions obtained here by including
one additional term. Of course the P.D.E. (1) is expected to pos-
sess a diagraminfinitelymore complicated than Fig.1. It is likely
that there will be infinitely many comparable regions, each with
many, perhaps infinitely many, steady states.

Numerical integration of the slow flow eqs.(6) has confirmed
the stable steady states of Fig.1, as listed in Table 1.

The various steady state modes exhibited by the averaged
equations (6) may be viewed as a surfaceu= u(x,y, t) moving in
time via the ansatz (2). By coloring the values ofu differently,
these may be viewed as patterns, as shown in Fig.2. The per-
turbation assumptions made in our treatment restrict the steady
state behavior of the coefficientsfi(t) in equation (2) to be peri-
odic with twice the period of the forcing function,cf. equation
(5). This means that our approximation yields steady state pat-
ternsu(x,y, t) which vary periodically in time. Examination of
the various resulting steady state patterns allows us to classify
them as either stationary, traveling, or rotating, see Fig.2.

Recall that we set the damping constantβ = 0 in order to
simplify the analysis. In the presence of damping,β > 0, equa-
tions (6) may also exhibit stable limit cycle solutions. These
will correspond to quasiperiodic motions in equations (3), and
to quasiperiodic patterns. Although the present paper has not in-
vestigated such motions, numerical integration of equations (6)
has shown them to exist, as expected from structural stability and
generic bifurcation considerations.
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region
u = 0 a 0 a1 a0a1 a0b1 b0a1 a1a2 a1b2 a0a1a2 a0a1b2 b0a1a2

a2 a0a2 a0b2 b0a2 b1a2 a0b1a2

1 x
2 x
3 x x x
4 x x
5 x x x
6 x x x x
7 x x x x x
8 x x x x
9 x x
10 x x
11 x x
12 x x x
13 x x x
14 x x x
15 x x x x
16 x x x x
17 x x x x
18 x x x
19 x x x x
20 x
21 x x x x
22 x x x x x x
23 x x x x x x
24 x x x x x
25 x x x x x
26 x x x
27 x x x x x x
28 x x x x x x
29 x x x x x
30 x x x x x
31 x x x x x
32 x x x x x
33 x x x x
34 x x x x x
35 x x x x
36 x x x x x
37 x x x x x x x
38 x x x x x x
39 x x x x x
40 x x x x
41 x x x x
42 x x x
43 x x x x
44 x x x
45 x x x x
46 x x x
47 x x x x x
48 x x x x x
49 x x x x x

Table 1. Stable steady states corresponding to Figure (1).
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Figure 2.  Representative patterns obtained by numerically integrating the
slow flow equations (6).

Left:  A "stationary" pattern, the
Center:  A "traveling" pattern, the
Right:  A "rotating" pattern, the

a1a2
a0b1

a1b2

mode.
mode.

mode.


