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Abstract

In a previous paper [Chaos Solitons Fract. 14(2) (2002) 173], the authors investigated the dynamics of
the equation:

d2x
dt2
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þ Bx2
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dt
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¼ 0

We used the method of averaging in the neighborhood of the 2:1 resonance in the limit of small forcing and
small nonlinearity. We found that a degenerate bifurcation point occurs in the resulting slow flow and some
of the bifurcations near this point were looked at. In this work we present additional results concerning the
bifurcations around this point using analytic techniques and AUTO. An analytic approximation for a
heteroclinic bifurcation curve is obtained. Additional results on the bifurcations of periodic orbits in the
slow flow are also presented.
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1. Introduction

In a previous paper [6], we looked at the following equation:

d2x
dt2

þ ðd þ � cos tÞxþ � Ax3
"

þ Bx2
dx
dt

� �
þ Cx

dx
dt

� �2

þ D
dx
dt

� �3
#
¼ 0 ð1Þ

Omitting nonlinear terms in Eq. (1) results in the linear Mathieu equation which frequently arises
in physics and engineering. The additional x3 term may come from a nonlinear stiffness (e.g. the
vertically forced pendulum). The ðdx=dtÞ3 term could come from nonlinear damping (e.g., a model
of high speed drag). The x2ðdx=dtÞ term is a nonlinear position-dependent damping like the term
in the Van der Pol equation. The xðdx=dtÞ2 term may come from a nonlinear inertia term (e.g. in
systems where the kinetic energy T ¼ 1

2
mx2ðdx=dtÞ2).

Some other recent studies involving nonlinear Mathieu equations are as follows: Norris [5]
studied the bifurcations in a Mathieu equation with x2 and x3 terms. Kidachi and Onogi [4] looked
at the stability of a Mathieu equation with only the x3 term. El-Dib [2] analyzed an equation of the
form:

d2x
dt2

þ ða1 � 2�q1 cos 2tÞxþ ða2 � 2�q2 cos 4tÞx2 þ ða3 � 2�q3 cos 6tÞx3 ¼ 0 ð2Þ

To detune off the 2:1 resonance we set:

d ¼ 1

4
þ d1� ð3Þ

Applying the method of averaging to first-order gives the following slow flow:

dR
dt

¼ �
R
2
sin 2w

�
� bR3

�
ð4Þ

dw
dt

¼ � d1

�
þ 1

2
cos 2w þ aR2

�
ð5Þ

where

a ¼ 3

4
Aþ 1

16
C and b ¼ 1

8
Bþ 3

32
D ð6Þ

and where

x � R cos
t
2

�
þ w

�
; _xx � �R

2
sin

t
2

�
þ w

�
ð7Þ

To explain some of the features observed by numerically integrating the system, we found that it
was necessary to go to second-order in the averaging procedure [9,10]. To make the problem more
tractable, we arbitrarily fixed the parameters:

A ¼ 1; B ¼ 3 ð8Þ
and we scaled:

a ¼ b ¼ �l ð9Þ
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We also expanded d to Oð�2Þ terms:

d ¼ 1

4
þ d1�þ d2�

2 ð10Þ

Substituting Eqs. (8)–(10) into Eq. (1) and applying the method of averaging to second-order
results in the simplified slow flow equations:

dR
dt

¼ �
1

2
R sin 2w

� �
þ �2

�
� d1R sin 2w þ 3

2
d1

�
� l þ 1

2
sin 2w þ 1

4
cos 2w

�
R3

�
ð11Þ

dw
dt

¼ � d1

�
þ 1

2
cos 2w

�
þ �2 d2

�
� d2

1 �
1

8
� d1 cos 2w þ ðl � 3d1 þ sin 2w � 2 cos 2wÞR2 � 15

8
R4

�
ð12Þ

A combination of analytic and numerical techniques were used to analyze the simplified slow flow
equations. The AUTO bifurcation and continuation software [1] was used to numerically generate
bifurcation diagrams. A degenerate bifurcation pointQwas found to occur for the parameter values
d1 ¼ �1=2, d2 ¼ �1=8 and l ¼ 0. Fig. 1 illustrates the bifurcations near point Q and Fig. 2 shows
the corresponding phase portraits for the path in parameter space shown in Fig. 1 from (a) to (e).

In Fig. 1, bifurcations occur along the solid curves. The left transition curve of the 2:1 resonance
in the linear Mathieu equation corresponds to LM1 where a bifurcation of fixed points on R ¼ 0
occurs in the slow flow. In our previous paper, we refer to type 1 periodic orbits as those which plot
as a topological circle in the R� w phase space (see Fig. 2d) and to type 2 periodic orbits as those
which are topologically equivalent to R ¼ const (see Fig. 2b). On the curve labelled LC, a type 2
limit cycle is created at 1. An analytic expression for the LC curve was obtained in the previous
paper. HPF corresponds to a curve of Hopf bifurcations where a type 1 periodic orbit is created.
HO denotes a curve of heteroclinic bifurcations where a periodic orbit changes from type 1 to type
2. It appears that the HO and HPF curves meet at a common point Q on the LM1 curve.

Fig. 1. Bifurcations near point Q (d1 ¼ �1=2, d2 ¼ �1=8 and l ¼ 0). Phase portraits along path (dashed line) shown in

Fig. 2.
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In this paper, we are interested in the behavior of Eqs. (11) and (12) in the neighborhood of the
bifurcation point Q. We shall see that although Fig. 1 is correct, it is incomplete, in the sense that
there is a lot of detail (in the form of additional bifurcations) occurring near point Q which is
omitted from Fig. 1. Since we are interested in the neighborhood of point Q, for which d1 ¼ �1=2,
d2 ¼ �1=8 and l ¼ 0, wewill set d1 ¼ �1=2 in Eqs. (11) and (12) throughout this paper, which gives:

dR
dt

¼ �
1

2
R sin 2w

� �
þ �2

1

2
R sin 2w

�
þ
�
� 3

4
� l þ 1

2
sin 2w þ 1

4
cos 2w

�
R3

�
ð13Þ

dw
dt

¼ �

�
� 1

2
þ 1

2
cos 2w

�
þ �2 d2

�
� 3

8
þ 1

2
cos 2w þ l

�
þ 3

2
þ sin 2w � 2 cos 2w

�
R2 � 15

8
R4

�
ð14Þ

For these equations, we will take l and d2 as unfolding parameters and we will consider � to be
small but fixed.

2. Analytic results obtained in part I [6]

To investigate the bifurcations near point Q, an unfolding around Q was performed [6]. We
began by using the rescaling:

R ¼ r
ffiffiffi
u

p
; w ¼ rv; l ¼ rm1; d2 ¼ �1=8þ r2m2; s ¼ �rt; for r small ð15Þ

The rescaling was chosen so that when r ¼ 0, the system is Hamiltonian with a heteroclinic
connection (which will be needed in a later calculation). Substituting Eq. (15) into Eqs. (13) and
(14) and Taylor expanding in r gives:

Fig. 2. Phase portraits corresponding to Fig. 1. Darker line corresponds to a stable periodic orbit.
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du
ds

¼ 2ð1þ �Þuv� �u2r � 2ðm1
�

� vÞ�u2 þ 4

3
ð1þ �Þuv3

�
r2 � �u2v2r3 þOðr4Þ ð16Þ

dv
ds

¼ m2�� ð1þ �Þv2 � �

2
uþ ðm1 þ 2vÞ�ur þ 4�uv2

�
� 15

8
�u2 þ 1

3
ð1þ �Þv4

�
r2 � 4

3
�uv3r3 þOðr4Þ

ð17Þ
In our previous analysis of the unfolding, we obtained the following approximation of the Hopf
bifurcation curve HPF emanating out of point Q [6]:

l ¼ 3�ðd2 þ 1=8Þ
1þ �

þ 9�ð11�þ 5Þðd2 þ 1=8Þ2

2ð1þ �Þ2
þ 	 	 	 ð18Þ

3. Analytic approximation of heteroclinic bifurcation

Although the approximation (18) for the Hopf bifurcation curve HPF was found in our pre-
vious work [6], we did not have an analytic approximation for the heteroclinic bifurcation curve
HO. In this section, we will derive such an approximation. We begin by assuming a series
expansion for u of the form:

uðvÞ ¼ u0ðvÞ þ u1ðvÞr þ u2ðvÞr2 þ u3ðvÞr3 þ 	 	 	 ð19Þ
We then divide Eq. (16) by Eq. (17) and substitute in Eq. (19). Taylor expanding in r, we get:

du0
dv

þ du1
dv

r þ du2
dv

r2 þ du3
dv

r3 þ 	 	 	 ¼ F0ðu0; vÞ þ F1ðu0; u1; vÞr þ F2ðu0; u1; u2; vÞr2

þ F3ðu0; u1; u2; u3; vÞr3 þ 	 	 	 ð20Þ
Equating like powers of r, we get a series of first-order ODE’s for ui:

Oð1Þ : du0
dv

¼ F0ðu0; vÞ ¼ � 4ð1þ �Þu0v
2ð1þ �Þv2 þ �u0 � 2�m2

ð21Þ

OðrÞ : du1
dv

¼ F1ðu0; u1; vÞ ¼
N1ðu0; u1; vÞ
D1ðu0; u1; vÞ

ð22Þ

Oðr2Þ : du2
dv

¼ F2ðu0; u1; u2; vÞ ¼
N2ðu0; u1; u2; vÞ
D2ðu0; u1; u2; vÞ

ð23Þ

Oðr3Þ : du3
dv

¼ F3ðu0; u1; u2; u3; vÞ ¼
N3ðu0; u1; u2; u3; vÞ
D3ðu0; u1; u2; u3; vÞ

ð24Þ

where the functions Ni and Di are too long to be given here.
We can solve for u0ðvÞ from the Oð1Þ ODE (21) and then substitute the solution into the OðrÞ

ODE (22) for u1ðvÞ where F1ðu0; u1; vÞ becomes only a function of u1 and v which we can now
solve. Similarly, we can substitute our solution for u1ðvÞ into the ODE (23) for u2ðvÞ and so on.
The constants of integration Ci that we get when solving each ODE for the ui are determined by
requiring the solution go through the two fixed points of the heteroclinic orbit.
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In applying this procedure, we start by finding a series approximation for the two fixed points
on the heteroclinic orbit. We know that these points occur at u
 ¼ 0 and finding a series solution
for v
 is straight-forward using regular perturbations. The series approximations for the two fixed
points on the heteroclinic orbit (denoted by þ and �) are

u
� ¼ 0; v
� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
�m2
�þ 1

r
� r2�2m22
6ð�þ 1Þ2

ffiffiffiffiffiffiffiffiffiffiffi
�þ 1

�m2

s
þOðr4Þ ð25Þ

Now to solve for the constants Ci obtained from solving each ODE, we require that our series
expansion for uðvÞ goes through the fixed points u
�, v



� (valid up to order OðriÞÞ. When solving the

Oð1Þ ODE (21), a value for C0 can be chosen so that the solution goes through both fixed points.
The solution of u0ðvÞ corresponds to the Hamiltonian case which are perturbing off so this is
expected. We find that this is also the case for C1 when solving the OðrÞ ODE (22). When solving
the Oðr2Þ and Oðr3Þ ODE’s, C2 and C3 can no longer be chosen so the solution uðvÞ goes through
both fixed points for all parameter values. At this order in r, the heteroclinic orbit only exists for
specific parameter values (at the heteroclinic bifurcation). We choose values for C2 and C3 so uðvÞ
goes through only one of the two fixed points. For uðvÞ to go through the other of the two fixed
points, we obtain a condition on the parameters of the system for the heteroclinic orbit to exist.

The result of this calculation is the following equation for the heteroclinic bifurcation curve HO
(see [7] for details):

l ¼ 45�ðd2 þ 1=8Þ
14ð1þ �Þ � 16095�2ðd2 þ 1=8Þ2

392ð1þ �Þ2
þ 	 	 	 ð26Þ

4. Crossing of Hopf and heteroclinic bifurcation curves

From Fig. 1, we see that the HPF bifurcation curve lies above the HO bifurcation curve away
from the point Q (d1 ¼ �1=2, d2 ¼ �1=8, l ¼ 0) in the d2 � l parameter plane. However, using
the analytic approximations we have obtained, valid in the neighborhood of point Q, we find that
the opposite is true! The first term of the HPF approximation (Eq. (18)) is

l ¼ 3�ðd2 þ 1=8Þ
1þ �

þ 	 	 	 ð27Þ

The first term of the HO approximation (Eq. (26)) is

l ¼ 45�ðd2 þ 1=8Þ
14ð1þ �Þ þ 	 	 	 ð28Þ

Comparing Eqs. (27) and (28), it is clear that the HO curve comes out of point Q with a steeper
slope that the HPF curve. It turns out that the HO curves lies above the HPF curve only in a very
small region near point Q. As we get farther away from point Q, the two curves eventually in-
tersect after which the HO curve lies below the HPF curve and we are back to the situation
outlined in Fig. 2. We use AUTO to verify this. Fig. 3 shows the HO and HPF curves obtained
using AUTO near the degenerate bifurcation point Q. Here, we hold � ¼ 0:01 fixed and varying d2

and l since we are concerned with the behavior close the degenerate bifurcation point.

112 L. Ng, R. Rand / Communications in Nonlinear Science and Numerical Simulation 7 (2002) 107–121

CNSNS 16 No. of Pages 121, DTD=4.3.1
26 July 2002 Disk used SPS-N, ChennaiARTICLE IN PRESS



5. Bifurcation diagram about point Q

We now present a complete picture of the bifurcations that occur near the degenerate bifur-
cation point Q. We first summarize our results. Fig. 4 shows the bifurcation diagram near point Q
(see Table 1) and Fig. 5 shows the phase portraits corresponding to different regions in Fig. 4.
Note that in Fig. 4 the features have been exaggerated to make them more visible.

We find that there are three additional bifurcation curves involving the bifurcation of periodic
orbits: SPO1 which corresponds to a saddle-node bifurcation of type 1 periodic orbits, SPO2

Fig. 3. HPF and HO curves for A ¼ 1, B ¼ 3, � ¼ 0:01, a ¼ b ¼ �l obtained by using AUTO for Eqs. (13) and (14) near

the degenerate bifurcation point Q (l ¼ 0, d2 ¼ � 1
8
). Solid line is HPF curve, dashed line is HO curve.

Fig. 4. Bifurcation diagram for A ¼ 1, B ¼ 3, d1 ¼ �1=2 near point Q. Regions denoted by lower case letters in ( ) have

corresponding phase portraits shown in Fig. 5. See Table 1.

L. Ng, R. Rand / Communications in Nonlinear Science and Numerical Simulation 7 (2002) 107–121 113

CNSNS 16 No. of Pages 121, DTD=4.3.1
26 July 2002 Disk used SPS-N, ChennaiARTICLE IN PRESS



Table 1

Labels for bifurcation curves used in Fig. 4

Label Curve

LM1 Transition curve of linear Mathieu equation

LC Limit cycle created at 1
HO Heteroclinic bifurcation

HPF Hopf bifurcation

SPO1 Saddle-node of type 1 period orbits

SPO2 Saddle-node of type 2 period orbits

DHPF Degenerate Hopf bifurcation

Fig. 5. Phase portraits for different regions near point Q (see Fig. 4). Darker lines correspond to stable periodic orbits.

Dashed lines correspond to unstable periodic orbits.
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which corresponds to a saddle-node bifurcation of type 2 periodic orbits and a curve of degenerate
Hopf bifurcations DHPF which corresponds to a type 2 periodic orbit emerging from R ¼ 0 (to be
discussed in a following section). The point S denotes where the SPO1 curve appears to emanate
from the HPF curve and the point T denotes a point on the HO curve where the both SPO1 and
SPO2 curves appear to come out from. AUTO was again used to obtain numerical data for these
new bifurcation curves.

6. Approximation of saddle-node bifurcation of periodic orbits and degenerate Hopf bifurcation
curves using AUTO

To obtain an approximation for the SPO1 curve, we use AUTO to continue periodic orbits
from points on the Hopf bifurcation curve HPF. Holding d2 fixed, we continue in l from points
on the HPF curve near the intersection of the HO and HPF curves where we expect to find the
SPO1 curve. When we start the continuation, l initially decreases because we have chosen to
continue from a point on the HPF curve where the periodic orbits grow out of the equilibrium
point as l decreases. At some point AUTO will detect a fold and l starts to increase. This cor-
responds to a point on the SPO1 curve. If we continue after the fold, we will eventually reach the
HO curve in a heteroclinic bifurcation. This procedure can be repeated for different starting points
on the HPF curve to obtain the SPO1 curve. Fig. 6 shows an illustration of this procedure. Fig. 7
shows the SPO1 curve obtained along with the HO and HPF curves in a region zoomed in around
where the HO and HPF curves cross.

To investigate the SPO2 and DHPF curves, it is more convenient to look at the slow flow
equations around point Q, Eqs. (13) and (14), if we transform to cartesian coordinates. We do this
for the following reasons:

(1) The resulting equations are polynomial equations and do not contain trigonometric terms
which are more difficult to deal with computationally.

(2) The origin x ¼ 0, _xx ¼ 0 in the original equation is singular in polar coordinates (for R ¼ 0, w is
undefined). This is not the case in cartesian coordinates where the origin in the original equa-
tion is now w ¼ 0, z ¼ 0. In cartesian coordinates, the type 1 periodic orbits encircle non-
origin equilibria and the type 2 periodic orbits encircle the origin. Also, the bifurcation we
refer to as a heteroclinic bifurcation in polar coordinates is a homoclinic bifurcation with
two loops in cartesian coordinates. Fig. 8 shows some phase portraits in both polar R� w
and cartesian w� z coordinates.

To transform to cartesian coordinates we set w ¼ R cosw, z ¼ �R sinw in Eqs. (13) and (14)
and take j ¼ d2 þ 1=8 which gives

dw
dt

¼ ��zþ �2 l

��
þ 7

2

�
z3 � ðl þ 3Þwz2 þ l

�
� 3

2

�
w2zþ ðj � 1Þz� 15

8
ðw2 þ z2Þ2z

� l

�
þ 1

2

�
w3

�
ð29Þ
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Fig. 6. Continuation procedure to obtain points on the SPO1 curve. Top shows continuation path in parameter space

(dashed line). Bottom shows the evolution of the periodic orbit along the path (in polar coordinates). Point (a) cor-

responds to a point on the HPF curve where a Hopf bifurcation occurs, (b) is a point on the SPO1 curve and (c) is on

the HO curve where a heteroclinic bifurcation occurs (straight-line segment of the heteroclinic orbit corresponds to

R ¼ 0). Between (b) and (c), there are two periodic orbits.

Fig. 7. Zoom-in of region close to intersection of HO, HPF cuvres. HO is dashed line. HPF is solid line. SPO1 is

dashed–dotted line.
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dz
dt

¼ �2
�
� ðl þ 1Þz3 � l

�
þ 9

2

�
wz2 � l

�
� 3

2

�
w2z� l

�
� 1

2

�
w3 � jwþ 15

8
ðw2 þ z2Þ2w

�
ð30Þ

Obtaining an approximation for the SPO2 curve is more difficult because we cannot continue
solutions from the HPF curve to the SPO2 curve. This is because in between the two curves is the
heteroclinic bifurcation curve and AUTO cannot continue a periodic orbit through a heteroclinic
trajectory. However, AUTO can perform continuation starting from numerical data which

Fig. 8. Phase portraits in polar and cartesian coordinates. Darker lines correspond to stable periodic orbits. Dashed

lines correspond to unstable periodic orbits.
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specifies a periodic orbit. Thus, we can use numerical integration to obtain a starting point for
AUTO to continue type 2 periodic orbits.

A numerical approximation for a type 2 limit cycle was obtained by numerically integrating
Eqs. (29) and (30). To get a point on the SPO2 curve, we continue the type 2 periodic orbit de-
creasing d2 holding l fixed. At some point AUTO will detect a fold and d2 will start to increase.
This corresponds to a point on the SPO2 curve and if we continue after the fold, we will eventually
reach the HO curve in a heteroclinic bifurcation. Fig. 9 shows an illustration of the procedure to
obtain a point on the SPO2 curve.

We could have just as easily performed the same procedure holding d2 fixed and varying l as
long as we choose an appropriate starting point. As was done for the SPO1 curve, this procedure
is repeated starting at different parameter values to obtain the SPO2 curve.

In the degenerate Hopf bifurcation, a type 2 limit cycle grows out of the origin. Although
AUTO is normally able to continue Hopf bifurcation curves, the DHPF curve is degenerate and
we cannot use AUTO to continue this curve directly. To see why this bifurcation is degenerate we
look at the slow flow equations in cartesian coordinates. Note that if we linearize about the origin
(w ¼ 0, z ¼ 0), the trace of the Jacobian is always zero. This is the condition for a non-degenerate
Hopf bifurcation. We can obtain an approximation for the DHPF curve indirectly by continuing
the type 2 periodic orbit down to a point where it shrinks to the origin which corresponds to the

Fig. 9. Continuation procedure to obtain points on the SPO2 curve. Top shows continuation path in parameter space

(dashed line). Bottom shows the evolution of the periodic orbit along the path (in cartesian coordinates). Point (a)

corresponds to the trajectory obtained from numerical integration, (b) is a point on the SPO2 curve and (c) is on the HO

curve. Between (b) and (c), there are two periodic orbits.
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degenerate Hopf bifurcation. In a procedure similar to those used to obtain the SPO1 and SPO2
curves, we can get an approximation for the DHPF curve.

Finally, Fig. 10 shows the completed bifurcation diagram near point Q obtained using AUTO.
In Fig. 10, it is difficult to see the crossing of the HO and HPF curves and the SPO1 curve because
they occur for a narrow band of parameter values. However, these features are distinguishable if
we zoom into a region as was shown in Fig. 7.

7. Analytic expression for degenerate Hopf bifurcation

To obtain an expression for the degenerate Hopf bifurcation curve, we start by looking at the
normal form for a Hopf bifurcation. In polar coordinates, the normal form of a Hopf bifurcation
is

_rr ¼ ðdl þ rr2 þ fr4 þ 	 	 	Þr ð31Þ

_hh ¼ ðwþ cl þ br2 þ 	 	 	Þ ð32Þ
When l changes sign a limit cycle is created or destroyed at the origin and the sign of the cubic
coefficient r in the _rr Eq. (31) determines whether the Hopf bifurcation is supercritical or sub-
critical. In the non-degenerate case, l ¼ 0 defines the curve in parameter space for a Hopf bi-
furcation. In our system (29) and (30), however, the trace of the Jacobian is identically zero for all
parameter values. Thus l ¼ 0 and we have a degenerate Hopf. When l ¼ 0 Eq. (31) becomes,
neglecting terms of Oðr7Þ:

Fig. 10. Bifurcation diagram obtained using AUTO near point Q. Bifurcation curves involving fixed points (LM1,

HPF, DHF) are solid lines. HO curve is a dashed line. SPO1, SPO2 curves are dashed–dotted lines. Note, it is difficult to

see the crossing of the HO and HPF curves and the SPO1 curve because they occur for a narrow band of parameter

values. However, these features are distinguishable if we zoom into a region as was shown in Fig. 7.
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_rr ¼ ðr þ fr2Þr3 ð33Þ

Now, when r changes sign a limit cycle is created or destroyed at the origin and f determines if the
bifurcation is supercritical or subcritical. Thus, the condition for the degenerate Hopf bifurcation
is r ¼ 0. Guckenheimer and Holmes [3] provide a formula for this coefficient r. For our calcu-
lations, we find it easier to use an alternative form for r given by Perko [8] and found by
Andronov for a general planar analytic system with Taylor series:

_xx ¼ a10xþ a01y þ a20x2 þ a11xy þ a02y2 þ a30x3 þ a21x2y þ a12x2y2 þ a03y3 þ 	 	 	
_yy ¼ b10xþ b01y þ b20x2 þ b11xy þ b02y2 þ b30x3 þ b21x2y þ b12x2y2 þ b03y3 þ 	 	 	

ð34Þ

r ¼ �3p

2a01D
3=2

½a10b10ða211
�

þ a11b02 þ a02b11Þ þ a10a01ðb211 þ a20b11 þ a11b02Þ

þ b210ða11a02 þ 2a02b02Þ � 2a10b10ðb202 � a20a02Þ � 2a10a01ða220 � b20b02Þ
� a201ð2a20b20 þ b11b20Þ þ ða01b10 � 2a210Þðb11b02 � a11a20Þ

� ða210 þ a01b10Þ½3ðb10b03 � a01a30Þ þ 2a10ða21 þ b12Þ þ ðb10a12 � a01b21Þ




ð35Þ

where, D ¼ a10b01 � a01b10. In general, it is not easy to derive explicit expressions for the coeffi-
cients in the normal form. However, there are symbolic computer algebra programs which can be
used to find explicit formula for the coefficients (see [10,11]).

Substituting the values for the coefficients aij, bij from Eqs. (29) and (30), we obtain an ex-
pression for the degenerate Hopf bifurcation curve DHPF. After simplifying and factoring the
resulting expression we obtain:

2�6jð�j � �� 1Þð4�jl � 2�l � 2l þ 3�jÞ ¼ 0 ð36Þ
Taking the last factored term in Eq. (36), solving for l and substituting j ¼ d2 � 1=8 gives

l ¼ � 3�ðd2 � 1=8Þ
4�ðd2 � 1=8Þ � 2�� 2

ð37Þ

Eq. (37) agrees with numerical results obtained by use of AUTO.

8. Conclusions

We have presented a complete picture of the bifurcations that occur near a degenerate bifur-
cation point Q for the second-order slow flow equations from a Mathieu equation with cubic
nonlinearities. An analytic approximation for the heteroclinic bifurcation curve near point Q was
obtained. Additional bifurcation curves for periodic orbits were also investigated numerically
using AUTO. An expression for a curve of degenerate Hopf bifurcations was also obtained
analytically. The second-order analysis was motivated by features observed from numerical in-
tegrations (see [6]) that first-order averaging could not explain. It is possible that going to third-
order in the averaging procedure may uncover even more dynamical behavior.
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