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INTRODUCTION

In this work, we will derive and analyze a non-linear partial difference

equation which has application to cardiac dynamics. We begin with a

review of the relevant biology.

The major cause of human death in the United States is catastrophic

disturbances in electrical rhythms in the heart [7]. Ventricular

fibrillation, a particularly lethal phenomenon, consists of the heart

being totally ineffectual at pumping blood due to disorganized irregular

patterns of electrical activity in the heart. The electrical patterns of

excitation during fibrillation are disordered in both space and time, and

exhibit a lack of synchrony which is essential for normal heart

functioning.

An understanding of how normal regular electrical patterns in the

heart ultimately progress to lethal phenomena such as ventricular

fibrillation is at this point incomplete. Previous studies have suggested

that the disordered behavior of the heart during fibrillation may arise

from orderly behavior through a series of bifurcations as some

parameters of the mathematical models or characteristics of the

biological systems are changed. In previous works, in a step towards

understanding cardiac dynamics, periodically-excited heart tissue has

been modeled as a single one-dimensional iterated map [1,3,4,8]. In this

paper, we extend these models to a chain of coupled one-dimensional

maps and attempt to understand the dynamics and bifurcations of the

chain. This model is still far simpler than a realistic three-dimensional

model of the spatially complex heart, but it does accurately reflect some

biological situations (namely the Purkinje fibers found in the heart), as

well as provide an analytically tractable model of complex cardiac

rhythms in one spatial dimension.

Our mathematical model takes the form of a non-linear partial difference

equation. In the following section, we outline the biological motivation

behind this work. In Third section, we present a derivation of the governing

equation. Fourth–Six sections contain an analysis of the dynamics and
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bifurcations of the model, and involve the use of singular perturbation

methods as well as numerical simulation.

BIOLOGY OF THE PROBLEM

The wave of electrical activity which propagates through the heart is the

aggregate behavior of many excitable cells, each producing an action

potential. An action potential for a single cell is a measurable quantity,

namely the voltage difference across the membrane of the cell, which is

produced either when the cell is excited above threshold (as in the case of

normal heart cells) or spontaneously in a periodic nature (as in pacemaker

cells). Single neuron models and single-compartment models of heart

tissue have been widely studied, and the generation of action potentials in

single neurons is well understood biologically and from a modeling

standpoint.

Even though there are usually many ionic currents involved in the

production of an action potential, it is possible in some cases to capture the

dynamics of the system with particularly simple models. For example,

experiments have shown that one can characterize the dynamics of a small

patch of heart tissue with a single function which relates the duration of an

action potential to that of the duration of the previous refractory or rest

period [3]. This is based on the idea that the tissue’s response to a stimulus

is strongly dependent on how long that tissue has had to rest and recover

from the previous action potential.

In experiments, such a system is periodically excited by an applied

stimulus which results in a one-dimensional iterated map xnþ1 ¼ f ðxnÞ;

with n being the stimulus number, x being the action potential duration

corresponding to the stimulus n, and f being derived from the

experimentally determined function which relates the action potential

duration to the previous rest interval. One-dimensional maps have been

widely studied mathematically and are well understood. The resulting

behavior, if the function f is non-monotic, can include such phenomenon as

period doubling and chaos as a bifurcation parameter (in this case the

period of the forcing) is changed. These simple models show

remarkably good agreement with biological experiments on heart tissue

[8]. In the present work, we will investigate the dynamics of a coupled

chain of such one-dimensional maps.
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DERIVATION OF THE GOVERNING EQUATION

In this work, we will consider a strip of cardiac tissue to be composed of a

string of individual cardiac units, each of which could be loosely

interpreted as a small conglomeration of synchronous excitable cells.

As shown in Fig. 1, each individual cardiac unit involves a point in time

F at which the unit “fires”, i.e. undergoes a sudden increase in voltage, and

a second point in time Q at which the cell becomes “quiescent”, i.e. the

voltage drops to zero. Each of these units fires repetitively, so we denote by

Fi, n the time at which the ith unit fires its nth pulse beat, and Qi, n as the time

at which ith unit becomes quiescent after the nth pulse beat. The duration

for which the ith unit has a non-zero voltage during its nth pulse beat is

denoted by APDi, n (for the action potential duration). The duration for

which the ith unit has a zero voltage during its nth pulse beat is denoted by

DIi, n (for the diastolic interval).

Our model is based on two experimental observations, which we take as

facts. The first fact is that for a single cardiac unit, the duration of an action

potential is solely determined by a single function of the previous

diastolic interval. That is, in terms of our model,

APDi; n ¼ f ðDIi; n21Þ: ð1Þ

The second experimental fact is that the speed of propagation of the nth

excitation signal from the ith unit to the (i þ 1)th unit is also solely

determined by a single function of the previous diastolic interval. We

denote this speed as CVi, n for conduction velocity and have therefore

CVi; n ¼ gðDIi; n21Þ: ð2Þ

Note that CVi, n refers only to the point in the cycle where the unit

becomes excited, i.e. where the voltage undergoes a sudden increase.

The governing equation for the chain can now be constructed. Each unit

is assumed to receive a signal from the unit to the left of it. The first unit in

the chain is being excited periodically by the experimenter, and we treat

this as a boundary condition, see below. Our derivation involves relating

the nth period of the ith unit, which we represent by Pi, n, to the nth period

of the (i þ 1)th unit Piþ1, n. It is evident that

Pi; n ¼ APDi; n þ DIi; n: ð3Þ
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Note that Pi, n is not identical to Piþ1, n because the CV is not the same for

the nth pulse beat as the (n þ 1)th pulse beat. To resolve how Pi, n is related

to Piþ1, n we observe (as shown in Fig. 2) that the leading edge of the nth

wave of excitation propagates at speed CVi, n, so the front of wave n reaches

the (i þ 1)th unit after a delay of Dx=CVi; n: Dx is the cardiac unit spacing

and is assumed to be constant throughout the chain. Similarly, the back of

wave n of excitation (which is the front of wave n þ 1) reaches the

(i þ 1)th unit after a delay of Dx/CVi, nþ1. Thus, the change in the period

from one cell to the next for a particular wave n is given by

Piþ1; n ¼ Pi; n þ
Dx

CVi; nþ1

2
Dx

CVi; n

� �
: ð4Þ

This is the fundamental governing equation. In this equation, we substitute

Eq. (3) to give

APDi; nþ1 þ DIi; nþ1 þ
Dx

CVi; nþ1

¼
Dx

CVi; n

þ APDiþ1; nþ1 þ DIiþ1; nþ1: ð5Þ

FIGURE 2 Illustration of the derivation of the governing equation; relating the period Pi,n of
a pulse beat at spatial position i to the period Piþ1,n of the same pulse beat at spatial position
i þ 1:
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Then, substituting Eqs. (1) and (2), defining hðxÞ ¼ Dx=gðxÞ and rewriting

ui; n ; DIi; n for clarity, results in

uiþ1; nþ1 þ f ðuiþ1; nÞ2 ui; nþ1 2 f ðui; nÞ þ hðui; nÞ2 hðui; nþ1Þ ¼ 0 ð6Þ

which is a partial difference equation on the dependent variable ui, n

with the independent variables i, n which indicate space and time,

respectively.

Although working with functions for f and h fitted directly from

experimental data is possible (see Fig. 3), we further simplify the

problem by taking f and h as idealized functions which give

similar qualitative behavior to the experimentally determined functions,

namely

f ðui; nÞ ¼ 21 þ mð1 2 ui; nð1 2 ui; nÞÞ; ð7Þ

hðui; nÞ ¼ aui; n þ b: ð8Þ

Extensive numerical simulations have shown that these functions

capture the essential details of the more complicated system. Notice that

Eq. (7) is a variant on the well known Logistic equation, as might be

expected from the bifurcation diagram in Fig. 4 which looks similar to

the corresponding diagram for the Logistic equation. Thus, the governing

Eq. (6) becomes

uiþ1; nþ1 2 muiþ1; nð1 2 uiþ1; nÞ2 ui; nþ1 þ mui; nð1 2 ui; nÞ

þ aðui; n 2 ui; nþ1Þ ¼ 0:
ð9Þ

PROBLEM STATEMENT

As derived above, the system of interest is a partial difference equation

which models a chain of cardiac cell units on a one-dimensional

domain

uiþ1; nþ1 2 muiþ1; nð1 2 uiþ1; nÞ ¼ ui; nþ1 2 mui; nð1 2 ui; nÞ

þ aðui; nþ1 2 ui; nÞ:
ð10Þ
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Here i is the discrete space index, n is the discrete time index, ui, n is

the amplitude of the unit at a point i in space at time n. Also, m and a

are parameters. The boundary condition at i ¼ 0 is taken as

u0; nþ1 ¼ 1 þ mu0; nð1 2 u0; nÞ; ð11Þ

that is, the unit at i ¼ 0 is driving the rest of the chain. Physically this

corresponds to periodic stimulation of one end of the tissue by the

experimenter. We will be interested in values of m for which the unit at

i ¼ 0 (a modified Logistic equation) is undergoing period-2 behavior.

The boundary condition at i ¼ L (the other end of the chain) is not

important because the coupling is “uni-directional”, i.e. the oscillator at

i is only affected by the oscillator at i 2 1 and not the oscillator at

i þ 1:

Being discrete in both indices makes simulation of the system on a

computer particularly easy. Such simulations show that for a range of

parameters m and a, a stable steady state is reached where each oscillator is

undergoing period-2 behavior in time, and for fixed n has a complicated

spatial structure. Two sequential snapshots of the chain at steady state are

FIGURE 4 Bifurcation diagram for the single periodically excited cardiac unit. This diagram
was generated numerically using the function f shown in Fig. 3.
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shown in Fig. 5. As time n is incremented further, the pictures would just

repeat, since the overall behavior is period-2 in time.

The aim of our work on this problem is to understand the dynamics of the

system as shown in Fig. 5 through the use of perturbation techniques.

ANALYSIS

To begin with, we introduce a small parameter e into the problem by

assuming that a in Eq. (10) is small, and we replace a by ea:

uiþ1; nþ1 2 muiþ1; nð1 2 uiþ1; nÞ2 ui; nþ1 þ mui; nð1 2 ui; nÞ

þ eaðui; n 2 ui; nþ1Þ ¼ 0:
ð12Þ

FIGURE 5 Sequential snapshots of the simulated partial difference equation (10) at steady
state. Parameters used are m ¼ 23:2; a ¼ 2:0003:
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Regular Perturbations

Attempting to solve for the steady state with a regular perturbation

expansion proceeds as follows. An ansatz is assumed of the form

ui; n ¼ u0
i; n þ eu1

i; n þ Oðe 2Þ: ð13Þ

Plugging Eq. (13) into Eq. (12) and collecting terms gives

Oðe 0Þ : u0
iþ1; nþ1 2 mu0

iþ1; nð1 2 u0
iþ1; nÞ

2 u0
i; nþ1 þ mu0

i; nð1 2 u0
i; nÞ ¼ 0;

ð14Þ

Oðe 1Þ : u1
iþ1; nþ1 2 mu1

iþ1; nð1 2 2u0
iþ1; nÞ2 u1

i; nþ1

þ mu1
i; nð1 2 2u0

i; nÞ þ aðu0
i; n 2 u0

i; nþ1Þ ¼ 0;
ð15Þ

and the equations are solved sequentially. Equation (14) may be rewritten

in a more transparent way, namely

u0
iþ1; nþ1 2 mu0

iþ1; nð1 2 u0
iþ1; nÞ ¼ u0

i; nþ1 2 mu0
i; nð1 2 u0

i; nÞ: ð16Þ

By observing that the LHS of the equation contains only terms with

subscripts of i þ 1 and the RHS contains terms with subscripts of i, it may

be concluded that

u0
i; nþ1 2 mu0

i; nð1 2 u0
i; nÞ ¼ Cn ð17Þ

where Cn is an arbitrary function of n which is determined by the boundary

condition. Applying Eq. (11) implies that Cn ¼ 1 for all n, so that

u0
i; nþ1 ¼ 1 þ mu0

i; nð1 2 u0
i; nÞ: ð18Þ

Since we are interested in values ofm for which this equation exhibits period-

2 dynamics (as mentioned above), we write the solution to Eq. (18) as

u0
i; n ¼ v1 þ v2ð21Þn: ð19Þ

The perturbation method allows us to approximate steady state solutions

which are periodic in time, but it cannot be used to approximate transient

solutions. In Eq. (19), v1, v2 are constants which are determined completely

by the boundary condition in Eq. (11). Specifically, v1 ¼ ðmþ 1Þ=2m;
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v2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2m2 3

p
Þ=2m: Carrying out the method to next order requires

plugging Eq. (19) back into Eq. (15) and results in

u1
iþ1; nþ1 þ ð2mþ 2mv1 þ 2mv2ð21ÞnÞu1

iþ1; n 2 u1
i; nþ1

2 ð2mþ 2mv1 þ 2mv2ð21ÞnÞu1
i; n þ 2av2ð21Þn ¼ 0:

ð20Þ

This equation is a linear non-homogeneous partial difference equation with

periodic coefficients. It may be rewritten more simply (see, for example,

Ref. [6]) by using the shift-operator notation: E1ui; n ¼ uiþ1; n; E2ui; n ¼

ui; nþ1 as

E1E2u1
i; n þ ð2mþ 2mv1 þ 2mv2ð21ÞnÞE1u1

i; n 2 E2u1
i; n

2 ð2mþ 2mv1 þ 2mv2ð21ÞnÞu1
i; n þ 2av2ð21Þn ¼ 0

ð21Þ

which may be further factored to give

½ðE1 2 1ÞðE2 2 mþ 2mv1 þ 2mv2ð21ÞnÞ�u1
i; n ¼ 22av2ð21Þn: ð22Þ

The homogeneous solution to Eq. (22) can be found by setting the LHS ¼ 0;

and in general will involve two arbitrary functions of i, n since the problem is

of second order. The homogeneous solution is found to be

u1
i; n

� �
homog

¼ ½ð2mv1Þ
2 2 ð2mv2Þ

2�n=2fi þ cn; for n ¼ 0; 2; 4; . . . ð23Þ

which contains two arbitrary functions fi, cn. The particular solution to

Eq. (22) can be found immediately by an ansatz of the form ðu1
i; nÞpart ¼

iða þ bð21ÞnÞ; and solving for a, b such that Eq. (22) (now including the

RHS) is satisfied. Doing so, we find that

ðu1
i; nÞpart ¼ i

24amv2
2 þ ð4mv1 2 2mþ 2Þav2ð21Þn

4m2ðv2
2 2 v2

1Þ þ 4m2v1 2 m2 þ 1

� �
: ð24Þ

So, the total solution to Eq. (22) is

u1
i; n ¼ ½ð2mv1Þ

2 2 ð2mv2Þ
2�n=2fi

þ cn þ i
24amv2

2 þ ð4mv1 2 2mþ 2Þav2ð21Þn

4m2ðv2
2 2 v2

1Þ þ 4m2v1 2 m2 þ 1

� �
;

for n ¼ 0; 2; 4; . . .

ð25Þ
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The main result from all this analysis is to show that the solution is secular in

space since it contains terms proportional to i, and hence the regular

perturbation approximation is only valid for i , Oð1Þ:

Singular Perturbations

The secular terms in Eq. (25) may be eliminated by using the method of

multiple scales (see, for example, Ref. [5]). The multiple scales procedure

consists of assuming the existence of two space scales: regular space i

and “stretched” space s ; e i: The method assumes that u depends

explicitly on i, s and n. Expanding ui, n of Eq. (12) in a perturbation

series, we get

ui; n ¼ u0
i;s; n þ eu1

i;s; n þ Oðe 2Þ: ð26Þ

Note that as i ! i þ 1; s ¼ ei ! eði þ 1Þ ¼ s þ e : Consequently, shifting

the index i ! i þ 1 in Eq. (26) produces

uiþ1; n ¼ u0
iþ1;sþe ; n þ eu1

iþ1;sþe ; n þ Oðe 2Þ: ð27Þ

Expanding Eq. (27) in powers of e gives

uiþ1; n ¼ u0
iþ1;s; n þ e u1

iþ1;s; n þ
›u0

iþ1;s; n

›s

 !
þ Oðe 2Þ ð28Þ

Equations (26) and (28) are the new perturbation ansatzes, to be

substituted into Eq. (12).

Since the method is identical to regular perturbations at O(e 0), the

solution to u0
i;s; n is still given by Eq. (19), i.e.

u0
i;s; n ¼ v1 þ v2ð21Þn ð29Þ

Now, however, v1, v2 (which were constants) are now allowed to be

explicit functions of the stretched space variable s:

u0
i;s; n ¼ v1ðsÞ þ v2ðsÞð21Þn ð30Þ

A NON-LINEAR PARTIAL DIFFERENCE EQUATION 1159



This equation, along with Eq. (28) is plugged back into Eq. (12) and terms

of O(e 1) are collected to give

u1
iþ1;s; nþ1 2 u1

i;s; nþ1 þ ð2mv2ð21Þn þ 2mv1 2 mÞu1
iþ1;s; n

þ ð22mv2ð21Þn 2 2mv1 þ mÞu1
i;s; n

¼ ½22mv1v0
2 2 2mv0

1v2 þ ðmþ 1Þv0
2 2 2av2�ð21Þn

2 2mv1v0
1 2 2mv2v0

2 þ ðm2 1Þv0
1

ð31Þ

where ð Þ0 ; dð Þ=ds: Here we need only to remove resonant terms in the

particular solution, so we ignore the homogeneous solution and concentrate

on the RHS of Eq. (31). Two groups of troublesome terms appear there:

those which are not explicit functions of i and n, and those which are not

explicit functions of i but depend on n in the functional form of (21)n.

Non-zero terms from either group will result, as we saw above, in secular

growth proportional to i. Each group of terms must be set to zero

independently of the other, because v1, v2 are not allowed to be functions of

either i or n. Doing so, we arrive at two coupled “slow-flow” equations for

the two slow variables v1(s ), v2(s ):

22mv1v0
2 2 2mv0

1v2 þ ðmþ 1Þv0
2 2 2av2 ¼ 0; ð32Þ

22mv1v0
1 2 2mv2v0

2 þ ðm2 1Þv0
1 ¼ 0; ð33Þ

where primes denote differentiation with respect to s. The second of these

equations may be integrated directly to give

2mv2
1 2 mv2

2 þ ðm2 1Þv1 ¼ H: ð34Þ

The constant H may be determined by enforcing the boundary condition at

s ¼ 0; i.e. the left-hand end of the chain. Consequently, using the boundary

condition v1ðs ¼ 0Þ ¼ ðmþ 1Þ=2m; v2ðs ¼ 0Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2m2 3

p
Þ=2m in

Eq. (34) gives that H ¼ 21: Thus, the first integral may be rewritten as

v2 ¼ ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mv2

1 þ ðm2 1Þv1 þ 1

m

s
ð35Þ
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Substituting this into Eq. (32) gives a single first order ODE

dv1

ds
¼ 2

4aðv1 2 1Þðmv1 þ 1Þ

8m2v2
1 2 8m2v1 þ 4mv1 þ m2 2 4m2 1

: ð36Þ

with the boundary condition v1ðs ¼ 0Þ ¼ ðmþ 1Þ=2m: Although this

equation can be integrated in closed form giving an analytical expression

for s in terms of v1, for brevity we numerically integrate Eq. (36) to

obtain v1(s ) and then use Eq. (35) to obtain v2(s ). We substitute these

results into Eq. (30) and plot in Fig. 6 the resulting values of u0
i; s; n

together with the results of numerical simulation of Eq. (10) that was

shown in Fig. 5. Although the agreement appears to be excellent, the

perturbation solution ceases to exist at the point where the denominator

of Eq. (36) vanishes. We deal with this problem in “Singularities”

section of the paper.

The slow-flow equations given in Eqs. (32) and (33) can also be used to

quantitatively answer various questions about the system. For example,

it is possible to derive an exact (to the order of the perturbation method)

FIGURE 6 Comparison of numerical simulation and singular perturbation method.
Parameters used are m ¼ 23:2; a ¼ 20:001:
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expression for where in space (i ) the first singularity occurs in the chain

(c.f. Fig. 5). Using the analytical solution to Eq. (36) and substituting in

the value of v1 for which the denominator of Eq. (36) equals zero, the

desired result for the spatial position i w of the first singularity is

obtained:

iw ¼ 2
1

4ae
{ðmþ 3Þlogð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 þ 4mþ 3

p
þ 2mþ 3Þ

þ ð1 2 mÞlogð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 þ 4mþ 3

p
2 2m2 1Þ

£ ð2m2 3Þlogðmþ 3Þ2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 þ 4mþ 3

p
þ logð1 2 mÞm2 logð1 2 mÞ2 4 log 2 þ 6}

ð37Þ

For m ¼ 23:2; ea ¼ 20:0003; Eq. (37) gives i w ¼ 152.0 which agrees

approximately with the results of direct simulation of the original Eq. (12),

c.f. Fig. 5.

SINGULARITIES

The singular perturbation method used above matches the numerical

solution of the chain quite well up to a point: the ODE’s in Eqs. (32) and

(33) have a singularity, where the derivatives become infinite. This problem

arises because the ansatz used in Eq. (28) tacitly assumes that the solution

we are interested in can be approximated by a continuous function.

Continuity is assumed because we assumed the derivative ð›u0
iþ1; s; nÞ=›s

exists. Of course, since we are dealing with a discrete governing equation,

the actual solution is never continuous; we would expect the method to

work if the solution is slowly varying enough and has no large jumps. From

examining Fig. 5, it is evident that there do exist places in space where the

solution undergoes large discrete jumps in value. We have found that the

singular perturbation method cannot replicate this discontinuity; the ODE’s

in Eqs. (32) and (33) have a singularity at this point. This section of the

paper deals with how we chose to resolve this issue.

To finish the approximation and find out what happens after the

singularity, we return to the original partial difference equation Eq. (10) and

use the following reasoning. We assume that at a particular point in space
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(denoted i 2), a single cell is existing exactly at the values predicted by the

singularity in the slow flow. We denote by u2
n the values that this cell takes

on. Our goal at this point is to determine the behavior of the cardiac unit at

iþð¼ i2 þ 1Þ; i.e. immediately to the right of the singularity.

The cardiac unit at the location i 2 by hypothesis is undergoing behavior

which is represented by

u2
n ¼ v2

1 þ v2
2 ð21Þn ð38Þ

where v2
1;2 are the values where the denominators of Eqs. (32) and (33)

vanish, specifically

v2
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 þ 4mþ 3

p
þ 2m2 1

4m
;

v2
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2 þ 4mþ 3

p
þ m2 þ 2m

q
2
ffiffiffi
2

p
m

ð39Þ

Using u2
n ; u2

nþ1 for ui, n, ui, nþ1 in Eq. (10), using Eq. (38), and denoting

uiþ1, n as uþ
n ; we have

uþ
nþ1 ¼ muþ

n ð1 2 uþ
n Þ þ ½v2

1 ð2mþ 1 þ mv2
1 Þ þ mðv2

2 Þ
2�

þ ½2mv2
1 2 m2 2a2 1�v2

2 ð21Þn:
ð40Þ

which is just an ordinary difference equation in n on uþ
n : By simulating

this equation for given parameters we can obtain information about the

solution that is missing from the slow-flow equations in the previous

section.

Samples of the time history of Eq. (40) are shown in Figs. 7 and 8 for

m ¼ 23:2 and m ¼ 23:35, respectively. The initial condition in both cases

is uþ
0 ¼ v2

1 þ v2
2 : From these figures, we see that as n (time) increases, the

amplitude “switches phase”. That is, at steady state, uþ
n ends up being out of

phase with u2
n : This phase-switching phenomenon explains the jumps in

phase which appear in Fig. 5.

The steady-state amplitude of uþ
n as displayed in Figs. 7 and 8 can be

characterized by the bifurcation diagram which is shown in Fig. 9. It is

interesting that this bifurcation diagram (which is only over values of m

for which the first cell in the chain exhibits period-2 behavior) shows

that the next cell after the singularity may exhibit period-2, period-4,

A NON-LINEAR PARTIAL DIFFERENCE EQUATION 1163



FIGURE 7 Time history of a simulation of Eq. (40). m ¼ 23:2:

FIGURE 8 Time history of a simulation of Eq. (40). m ¼ 23:35:
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period-8, etc. behavior (including chaotic behavior) depending on the

value of m. This corresponds to the prediction of the appearance of

higher-periodic or chaotic behavior at steady state in the chain of cardiac

units while the first cell is being forced into period-2 motion, an effect

we refer to as a “spatial bifurcation”.

To see that this actually happens in the model system of Eq. (10), we

present in Fig. 10 simulations of the chain for various values of m. In

Fig. 10(a), which is a repeat of Fig. 5, all parts of the chain are undergoing

period-2 behavior, which is apparent from the two values that each point in

space takes on as time n is increased. In Fig. 10(b), however, immediately

after the singularity, a small part of the chain is undergoing period-4

behavior (indicated by the four different values that part of the chain takes

on). This is expected from our analysis because for that particular value of

m ¼ 23:35; the bifurcation diagram in Fig. 9 predicts that the cell

immediately to the right of the singularity will undergo period-4 behavior.

FIGURE 9 Numerically produced bifurcation diagram for the steady state solutions of
Eq. (40) as a function of the bifurcation parameter m. Note that this diagram (which is only
over values of m for which the first cell in the chain exhibits period-2 behavior) indicates
that the first cell after the singularity may be undergoing higher-periodic or even chaotic
behavior.
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The remaining quadrants of Fig. 10 are understood in the same way. So, in

summary, although the outer solution breaks down at a singularity in the

slow flow, by referring to Fig. 9, one can predict the extent of the spatial

bifurcation in the chain.

The final part of our analysis is aimed at understanding the transition

from the higher-period behavior back to period-2 behavior which is

observed as we move along the chain by increasing location i. See, e.g.

Fig. 10(b) in which period-4 behavior transitions into period-2 behavior

further along the chain. It turns out that this evolution is well approximated

by another outer-type solution. Specifically, for the case shown in

Fig. 10(b), one assumes that the first cell is undergoing period-4 behavior

FIGURE 10 Shown in each quadrant are two sequential snapshots of the chain for a
particular value of the parameter m (a ¼ 20.001 in all quadrants). In (a), each part of the chain
is undergoing period-2 behavior in time (hence the two dots for each value of i ), however, the
amplitude of the motion varies along the length. As m is decreased further, parts of the chain
bifurcate to period-4 behavior, then period-8 behavior, until (d), where a whole range of
motions can be found occurring simultaneously at different parts of the chain, from periodic to
chaotic.
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and modifies the singular perturbation method appropriately. First, the new

perturbation ansatz (c.f. Eq. (30)) is taken to be

u0
i; s; n ¼ v1ðsÞ þ v2ðsÞcosðnpÞ þ v3ðsÞsinðnp=2Þ þ v4ðsÞcosðnp=2Þ: ð41Þ

This form is chosen because it is possible to represent any period-4

motion by choosing appropriate values of v1,2,3,4. The rest of the

perturbation scheme is carried out exactly as above, with the exception

of when it comes to eliminating secular terms. The coefficients of the

constant term, and of the cos(np ), sin(np/2), and cos(np/2) terms must

all be set to zero, thus producing four coupled ODE’s. For brevity, these

are not reprinted here, but their numerical solution for m ¼ 23:35; a ¼

20:001 is shown in Fig. 11. As can be seen, the method captures the

transition from period-4 to period-2 behavior quite well, up until the

point where the next singularity is reached. In summary, by pasting

together outer solutions, along with the information provided by the

bifurcation diagram Fig. 9, the total dynamics of the chain can be

understood.

CONCLUSIONS

We have demonstrated, though the use of numerical simulations and

singular perturbation analysis, that the partial difference equation studied in

this work, Eq. (10), exhibits a “spatial bifurcation” structure at steady state.

That is, for certain parameter ranges, parts of the chain may be oscillating

in period-2 motion while other parts may be oscillating in higher periodic

motion or even chaotic motion. The spatial structure of the solution may be

understood as regions of outer solutions (from ODE’s) which are connected

together at singularities where the ODE’s break down. The behavior at the

singularities is understood through the use of Fig. 9 which predicts the

dynamics of the first cell to the right of the singularity for the given

parameter value(s).

The spatial bifurcation phenomenon observed in the present model is due

in part to a feature of the assumed form of the restitution function f in

Eq. (7), specifically that f is non-monotonic. Many experiments have shown

that real restitution functions can be non-monotonic, and hence the spatial

bifurcation structure that we observe may play an important role in

explaining complex cardiac rhythms that are observed experimentally.
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Extensions of this work could include the relaxation of certain

simplifying assumptions to obtain a model which is more biologically

realistic. This could include the inclusion of diffusion of current along the

chain, and/or a more realistic choice for the dispersion function used in

Eq. (8). See Refs. [2,9,10] for recent approaches which include the effects

of diffusion in models.
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