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Abstract We investigate the dynamics of a delayed
nonlinear Mathieu equation:

ẍ + (δ + εα cos t)x + εγ x3 = εβx(t − T )

in the neighborhood of δ = 1/4. Three different phe-
nomena are combined in this system: 2:1 parametric
resonance, cubic nonlinearity, and delay. The method
of averaging (valid for small ε) is used to obtain a
slow flow that is analyzed for stability and bifurcations.
We show that the 2:1 instability region associated with
parametric excitation can be eliminated for sufficiently
large delay amplitudes β, and for appropriately chosen
time delays T . We also show that adding delay to an un-
damped parametrically excited system may introduce
effective damping.

Keywords Averaging . Degenerate Hopf . Delay .

Nonlinear Mathieu . Parametric excitation

1 Introduction

This paper concerns the dynamics of the follow-
ing parametrically excited, nonlinear differential delay
equation (DDE)

ẍ(t) + (δ + a cos t)x(t) + cx(t)3 = bx(t − T ) (1)

T. M. Morrison · R. H. Rand (�)
Department of Theoretical and Applied Mechanics, Cornell
University, Ithaca, NY 14853, USA
e-mail: rhr2@cornell.edu

where δ, a, b, c, and T are parameters: δ is the fre-
quency squared of the simple harmonic oscillator, a
is the amplitude of the parametric resonance, b is the
amplitude of delay, c is the amplitude of the cubic non-
linearity, and T is the time delay. Equation (1) is a
model for high-speed milling: “High-speed milling is
a kind of parametrically interrupted cutting as opposed
to the self-interrupted cutting arising in unstable turn-
ing processes.” [1]. See, e.g., [2, 3].

Various special cases of Equation (1) have been stud-
ied by others, depending on which parameters are zero.
In the case that b and c are zero, we have the linear
Mathieu equation, the stability chart for which is well
known [4], see Fig. 1. In the case that only b is zero,
we have a nonlinear Mathieu equation for which the
bifurcations associated with stability change are also
well known [4]. In the case that a and c are zero, we
have the linear autonomous DDE of Bhatt and Hsu [5],
who generated stability charts for various delay param-
eters. Figure 2 is the stability chart for Equation (1) with
a = c = 0 and T = 2π .

The undamped linear form of Equation (1) was stud-
ied by Insperger and Stépán [6], who, by utilizing the
method of exponential multipliers, generated the stabil-
ity chart for a fixed time delay of T = 2π , see Fig. 3.

In this paper, we use the method of averaging [7]
to generate stability charts and associated bifurcations
for the delayed nonlinear Mathieu Equation (1) for a
general time delay. We note that although DDE’s are
infinite dimensional [4], and hence more complicated
than ODEs, a Taylor series expansion is used to replace
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Fig. 1 Stability chart for the linear Mathieu Equation [4] without
delay, Equation (1) with b = c = 0. The solution is stable in the
shaded regions

Fig. 2 Stability chart for the Hsu–Bhatt DDE [5], Equation (1)
with a = c = 0 and T = 2π . The solution is stable in the shaded
regions

Fig. 3 Stability chart for the linear delayed Mathieu Equation [6]
with T = 2π and c = 0. The solutions in the shaded regions are
stable. The darker shaded triangles are those of Fig. 2

the DDE slow flow with an ODE slow flow, an approxi-
mation that is valid for small εT . Stability charts for the
linear delayed equation with general time delay were
numerically generated by Breda et al. [8] and Insperger
and Stépán [9].

2 Averaging

In preparation for averaging Equation (1), we introduce
a small parameter ε by scaling a = εα, b = εβ, and
c = εγ . In addition, we detune off of 2:1 resonance by
setting δ = 1/4 + εδ1

ẍ(t) +
(

1

4
+ εδ1 + εα cos t

)
x(t) + εγ x(t)3

= εβx(t − T ). (2)

When ε = 0, Equation (2) reduces to ẍ + x/4 = 0,
with the solution

x(t) = A cos

(
t
2

+ φ

)
,

(3)

ẋ(t) = − A
2

sin

(
t
2

+ φ

)
.

For ε > 0, we look for a solution in the form of
Equation (3) but treat A and φ as time dependent. Vari-
ation of parameters gives the following equations on
A(t) and φ(t)

Ȧ(t) = −2ε sin

(
t
2

+ φ

)
F

(
A cos

(
t
2

+ φ

)
,

− A
2

sin

(
t
2

+ φ

)
, t

)
(4)

φ̇(t) = −2
ε

A
cos

(
t
2

+ φ

)
F

(
A cos

(
t
2

+ φ

)
,

− A
2

sin

(
t
2

+ φ

)
, t

)
, (5)

where F(x, ẋ, t) = −(δ1 + α cos t) x(t) − γ x(t)3 +β

x(t − T ) in which x(t) is given by Equation (3). For
small ε, we use the method of averaging [10], replacing
the right-hand sides of Equations (4) and (5) by their
averages over one 2π period of the forcing function
cos t

Ȧ ≈ − ε

π

∫ 2π

0
sin

(
t
2

+ φ

)
F dt (6)

φ̇ ≈ − 1

A
ε

π

∫ 2π

0
cos

(
t
2

+ φ

)
F dt, (7)
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where

F = −(δ1 + α cos t)A cos

(
t
2

+ φ

)
− γ A3 cos3

(
t
2

+ φ

)
+ β Ad cos

(
1

2
(t − T ) + φd

)
, (8)

where Ad = A(t − T ) and φd = φ(t − T ). Evaluating
the integrals in Equations (6) and (7) gives

Ȧ = ε

(
A α sin 2 φ

2
− Ad β sin

(
T
2

− φd + φ

))
(9)

φ̇ = ε

(
3γ A2

4
− Ad β cos

( T
2 − φd + φ

)
A

+ α cos 2 φ

2
+ δ1

)
(10)

Thus, Ȧ and φ̇ are O(ε). We now Taylor expand Ad

and φd

Ad = A(t − T ) = A(t) − T Ȧ(t) + 1

2
T 2 Ä(t) + · · ·

(11)

φd = φ(t − T ) = φ(t) − T φ̇(t) + 1

2
T 2φ̈(t) − · · ·

(12)

Thus, we can replace Ad and φd by A(t) and φ(t) in
Equations (9) and (10) since Ȧ and φ̇ and Ä and φ̈ are of
O(ε) and O(ε2), respectively [11]. This approximation
reduces the infinite-dimensional problem into a finite-
dimensional problem by assuming εT is small.

After substituting the above approximation into
Equations (9) and (10), we obtain

A′ = A
(

α

2
sin 2φ − β sin

T
2

)
(13)

φ′ = 3γ

4
A2 + α

2
cos 2φ − β cos

T
2

+ δ1, (14)

where primes represent differentiation with respect to
slow time η = εt . We may obtain an alternate form of
the slow flow Equations (13) and (14) by transforming

from polar coordinates A and φ to rectangular coordi-
nates u and v via u = A cos φ, v = −A sin φ, giving

u′ = −
(

β sin
T
2

)
u +

(
δ1 − α

2
− β cos

T
2

)
v

+ 3γ

4
v(u2 + v2). (15)

v′ =
(

−δ1 − α

2
+ β cos

T
2

)
u −

(
β sin

T
2

)
v

− 3γ

4
u(u2 + v2) (16)

Note that from Equation (3), we have

x(t) = A cos

(
t
2

+ φ

)
= A cos φ cos

t
2

− A sin φ sin
t
2

= u cos
t
2

+ v sin
t
2
. (17)

3 Slow flow equilibria: Stability and bifurcation

From Equation (17), we see that in general an equi-
librium point in the slow flow (13) and (14) or (15)
and (16) corresponds to a periodic motion in the orig-
inal system (2). The origin u = v = 0 is an exception
since it is an equilibrium point in both the slow flow
equations and in the original system.

In order to find slow flow equilibrium points, we
set A′ = φ′ = 0 in Equations (13) and (14), and uti-
lize the trig identity sin2 2φ + cos2 2φ = 1 to obtain
the following condition on R, where R = A2,

9γ 2 R2 + 24γ

(
δ1 − β cos

T
2

)
R

+ 4

(
4β2 − α2 + 4δ2

1 − 8βδ1 cos
T
2

)
= 0.

(18)

Equation (18) is a quadratic on R. The two solutions
are

R = 4

3γ

[
β cos

T
2

− δ1 ± 1

2

√
α2 − 4β2 sin2 T

2

]
.

(19)
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Each value of R corresponds to two nontrivial slow flow
equilibria located 180o apart. This may be seen by not-
ing that Equations (15) and (16) are invariant under the
transformation (u, v) �→ (−u, −v), which means that
if (u, v) is a slow flow equibrium, then so is (−u, −v).

R must be nonnegative for nontrivial equilibrium
points. This condition yields two inequalities

δ1 ≤ β cos
T
2

± 1

2

√
α2 − 4β2 sin2 T

2
. (20)

And for real roots, the discriminant in the inequality in
Equation (20) must be positive. This condition yields∣∣∣∣ sin

T
2

∣∣∣∣ ≤ 1

2

∣∣∣∣ α

β

∣∣∣∣ . (21)

Hence, for a given α and β, the inequality (21) gives a
condition on the time delay T such that there will exist
nontrivial slow flow equilibrium points. In the case that
|β/α| ≤ 1/2, there will exist nontrivial fixed points for
all T .

When the inequality in Equation (21) is satisfied,
there are at least two nontrivial slow flow equilibrium
points if,

δ1 < β cos
T
2

+ 1

2

√
α2 − 4β2 sin2 T

2
. (22)

In addition, there will be two more nontrivial slow flow
equilibrium points if,

δ1 < β cos
T
2

− 1

2

√
α2 − 4β2 sin2 T

2
. (23)

Thus, it is possible to have up to four nontrivial slow
flow equilibria. When we include the origin, this makes
a possible total of up to five slow flow equilibria. Next,
we investigate which parameter combinations of δ1 and
T cause the slow flow equilibrium points to change
stability for a given α and β, and which bifurcations, if
any, accompany the change in stability.

The trace and determinant of the Jacobian ma-
trix evaluated at an equilibrium point contain the lo-
cal stability information. Recall that a saddle-node
or pitchfork bifurcation generically occurs when the
Det(J ) = 0, and a Hopf bifurcation generically occurs
when the Tr(J ) = 0 and Det(J ) > 0 [12]. From the

slow flow Equations (15) and (16), the Jacobian matrix
is

J =

⎡⎢⎢⎢⎢⎢⎢⎣

−β sin T
2 + 3γ

2 uv δ1 − α
2 − β cos T

2

+ 3γ

4 u2 + 9γ

4 v2

−δ1 − α
2 + β cos T

2

− 3γ

4 v2 − 9γ

4 u2 −β sin T
2 − 3γ

2 uv

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(24)
where u and v are to be evaluated at the slow flow
equilibria.

The trace of the Jacobian matrix is

Tr(J ) = −2β sin
T
2

. (25)

Note that Tr(J ) is a function of the delay parameters
only, and in particular does not depend on R. Therefore,
Tr(J ) = 0 at all of the slow flow equilibrium points
when β = 0, T = 0, or T = 2π . In particular, a change
of stability and a possible Hopf bifurcation (birth of a
limit cycle) will occur at T = 2π if Det(J ) > 0.

The determinant of the Jacobian matrix is

Det(J ) = 27

16
γ 2 R2 − 3γ

(
β cos

T
2

− δ1

)
R

− 2βδ1 cos
T
2

+ δ2
1 + β2 − α2

4

+ 3αγ

4
(v2 − u2), (26)

where the (u2 + v2) terms were replaced with R. The
(v2 − u2) term is simplified by multiplying the RHS
of Equation (15) by v and subtracting from it the
RHS of Equation (16) multiplied by u. This calculation
gives

(v2 − u2) = 1

2α

[
3γ R2 + 4

(
δ1 − β cos

T
2

)
R
]

.

(27)
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Substituting this expression into Equation (26) yields
the following expression for the determinant:

Det(J ) = 45

16
γ 2 R2 − 9

2
γ

(
β cos

T
2

− δ1

)
R

− 2βδ1 cos
T
2

+ δ2
1 + β2 − α2

4
. (28)

The value of R at the nontrivial slow flow equilibria
are given by Equation (19). Substituting that expression
for R into the expression for the determinant, Equa-
tion (28), yields the value of the determinant at the
slow flow equilibria

Det(J ) = −4β2 sin2 T
2

+ α2

± 2

(
β cos

T
2

− δ1

) √
α2 − 4β2 sin2 T

2
.

(29)

A change in stability occurs when the determinant van-
ishes. Thus, by setting Equation (29) equal to zero, we
may solve for a critical value of δ1, the detuning, as a
function of T for a given α and β

δ1 = β cos
T
2

± 1

2

√
α2 − 4β2 sin2 T

2
. (30)

From Equation (19), Equation(30) implies R = 0. This
means that the stability change associated with Equa-
tion (30) occurs at the origin. Accompanying this
change in stability is a bifurcation. If the inequali-
ties (21)–(23) are replaced by equal signs, then Equa-
tion (21) becomes the condition for a saddle-node bifur-
cation and Equations (22) and (23) become conditions
for pitchfork bifurcations.

We will illustrate these results by considering two
examples.

4 Example 1

We consider the case in which β = 1
4 and α = γ = 1.

Equation (30) for this example becomes

δ1 = 1

4
cos

T
2

± 1

2

√
1 − 1

4
sin2 T

2
. (31)

Fig. 4 Stability of the origin for Example 1, β = 1
4 and α =

γ = 1. The transition curves separating the stability regions are
given by Equation (31) and by T = 2π . The solution is stable in
the shaded regions and unstable in the unshaded regions

As stated in the previous section, the origin changes
stability along the curves in the T –δ1 parameter plane
given by Equation (31), corresponding to Det(J ) = 0.
In addition, there is a stability change along the line
T = 2π , corresponding to Tr(J ) = 0, when Det(J ) >

0. See Fig. 4.
Equation (31) also corresponds to the occurrence of

pitchfork bifurcations in the slow flow. These curves
are shown in the bifurcation set in Fig. 5. Along with
the curves are points labeled with letters from a to i .
Each letter corresponds to the qualitative phase portrait
of the respective slow flow system as shown in Fig. 6.
Pitchfork bifurcations occur as we move from top to
bottom in each column of Fig. 6.

As we move from left to right in each row of
Fig. 6, we cross the line T = 2π . For those slow
flow equilibria for which Det(J ) > 0 (nonsaddles),
a stability change is observed, but no limit cycle is
seen to be born. The associated Hopf bifurcation turns
out to be degenerate, as will be shown later in the paper.

5 Example 2

We consider the case in which β = 3
5 and α = γ = 1.

This example exhibits qualitatively different behavior
from the previous example. Equation (30) for this ex-
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Fig. 6 Qualitative phase
portraits for Example 1,
β = 1

4 and α = γ = 1. The
letters a–i correspond to
various parameter
combinations of δ1 and T as
shown in Fig. 5. Pitchfork
bifurcations occur from a to
g, b to h, and c to i ,
respectively. Degenerate
Hopf bifurcations occur
from a to c, d to f , and g to
i , respectively

Fig. 5 Bifurcations in slow flow equilibria for Example 1, β = 1
4

and α = γ = 1. The letters a–i correspond to the qualitative
phase portraits shown in Fig. 6. Pitchfork bifurcations occur on
the Det(J ) = 0 curves, given by Equation (31). A change of
stability occurs on the Tr(J ) = 0 curve, T = 2π , in the case that
Det(J ) > 0 (nonsaddle equilibria). No limit cycles are observed
to be born as we cross the latter curve because the associated
Hopf bifurcation is degenerate

Fig. 7 Stability of the origin for Example 2, β = 3
5 and α =

γ = 1. The transition curves separating the stability regions are
given by Equation (32) and by T = 2π . The solution is stable in
the shaded regions and unstable in the unshaded regions

ample becomes

δ1 = 3

5
cos

T
2

± 1

2

√
1 − 36

25
sin2 T

2
. (32)
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Fig. 8 Bifurcations in slow flow equilibria for Example 2, β = 3
5

and α = γ = 1. The letters a–i correspond to the qualitative
phase portraits shown in Fig. 6. The letters j–o correspond to
the qualitative phase portraits shown in Fig. 9. Pitchfork bifur-
cations occur on the Det(J ) = 0 curves, given by Equation (32).
Saddle-node bifurcations occur on the Disc = 0 curves, given by
| sin(T/2)| = 5/6. A change of stability occurs on the Tr(J ) = 0
curve, T = 2π , in the case that Det(J ) > 0 (nonsaddle equilib-
ria). No limit cycles are observed to be born as we cross the latter
curve because the associated Hopf bifurcation is degenerate

Figure 7 shows the curves (32), corresponding
to Det(J ) = 0, which bound the stability regions of
the origin. In addition, there is a stability change
along the line T = 2π , corresponding to Tr(J ) = 0,
when Det(J ) > 0. Note that for this example, when
| sin(T/2)| > 5/6 the discriminant in Equation (32) is
less than zero, resulting in a complex conjugate pair.
Therefore, it is possible to eliminate the regions of in-
stability by choosing the time delay T appropriately.

Equation (32) also corresponds to the occurrence of
pitchfork bifurcations in the slow flow. These curves are
shown in the bifurcation set in Fig. 8. The curve T = 2π

is also shown in Fig. 8, representing a degenerate Hopf
in which no limit cycle is born, as in Example 1. In
addition, saddle-node bifurcations occur in Example
2 corresponding to the vanishing of the discriminant
in Equation (32). These occur when | sin(T/2)| = 5/6,
and appear as vertical lines marked Disc = 0 in Fig. 8.

Along with these bifurcation curves are points la-
beled with letters from a to o. Each letter corresponds
to the qualitative phase portrait of the corresponding
slow flow. The points a through i are qualitatively the
same as in Fig. 6. The points j through o are shown

in Fig. 9. Saddle-node bifurcations occur as we move
from left to right in each row of Fig. 9.

6 Degenerate HOPF bifurcation

Limit cycles can be generically created or destroyed
in a Hopf bifurcation. The necessary conditions for a
generic Hopf bifurcation in a system of two first-order
ODEs such as the slow flow (15) and (16) are Tr(J ) = 0
and Det(J ) > 0, where J is the Jacobian matrix evalu-
ated at an equilibrium point. Setting the trace equal to
zero in Equation (25) for the slow flow gives T = 2π

(we ignore β = T = 0 because the corresponding sys-
tems involve no delay). The condition Det(J ) > 0 cor-
responds to a nonsaddle equilibrium point. Thus, if we
were to increase the time delay T through 2π , we would
expect to see a limit cycle created or destroyed (depend-
ing upon whether the Hopf was subcritical or supercrit-
ical) in the neighborhood of a spiral equilibrium point.
This is shown in Fig. 6 where moving from a to c, from
d to f , or from g to i corresponds to increasing the time
delay T through 2π . By inspection, no limit cycle is
observed, which is contrary to our expectations.

In order to understand this behavior, we evaluate the
slow flow (15) and (16) at T = 2π

u′ =
(
δ1 − α

2
+ β

)
v + 3γ

4
v(u2 + v2) (33)

v′ =
(
−δ1 − α

2
− β

)
u − 3γ

4
u(u2 + v2). (34)

Equations (33) and (34) possess the following first in-
tegral

3γ

4
(u2 + v2)2 + 2(δ1 + β)(u2 + v2)

+ α(u2 − v2) = constant. (35)

Note that the existence of this first integral for T = 2π

is in agreement with the phase portraits b, e, and h in
Fig. 6, which were obtained by numercial integration.

In a generic Hopf bifurcation, the limit cycle is
born with zero amplitude and grows generically like√

μ, where μ is the bifurcation parameter. This results
in a family of limit cycles, one for each value of μ.
What has happened in the slow flow (15) and (16) is
that the entire family of periodic motions has occurred
at μ = 0, which corresponds to T = 2π here. The
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Hopf bifurcation in this case is degenerate. This
phenomenon is well-known [13], and a condition has
been given that guarantees that no such degeneracy
will occur, namely that the equilibrium point should be
a “vague attractor” (or less generally, asymptotically
stable) when μ = 0. Since the slow flow (15) and (16)
has just been shown to be conservative at T = 2π , this
condition does not apply.

Having established that the Hopf bifurcation associ-
ated with the slow flow (15) and (16) is degenerate, we
are led to ask if this nongeneric behavior is really part
of the dynamics of the original Equation (1), or if it is
due to the nature of the perturbation scheme. In order
to investigate this possibility, we apply an alternative
perturbation scheme to Equation (1), based on taking
ε small in the following equation

ẍ(t) + δ0x(t) − bx(t − T )

= −ε(δ1x(t) + αx(t) cos t + γ x(t)3). (36)

We treat this equation in the Appendix, where we use
multiple time scales to obtain a slow flow, which we
show also exhibits a degenerate Hopf bifurcation.

Further evidence of the existence of the de-
generate Hopf in the original Equation (1) was
obtained by numerically integrating Equation (1) in
the neighborhood of T = 2π for a variety of other
parameters. Since a limit cycle in the slow flow
corresponds to a quasiperiodic motion in the original
equation, we searched for quasiperiodic motions in

Equation (1). No quasiperiodic motions were observed.

7 Comparison with numerical integration

In this section, we compare the foregoing analytical re-
sults based on the slow flow (13) and (14) or (15) and
(16), with direct numerical integration of the delayed
Mathieu Equation (2). The numerical integration was
completed in MATLAB, which has recently extended
the differential equation package to numerically inte-
grate systems of delay differential equations [14]. For
this task, we used the integrating function dd23. There
is a tutorial available at MATLAB Central Website [15].

The results presented are for the stability of the ori-
gin, x = ẋ = 0, and are shown in Figs. 10 and 11. We
used the same parameters that were used in Examples
1 and 2, except we took γ = 0, since the stability of
the origin does not involve the nonlinear term in Equa-
tion (2). In particular, we used β = 0.25 in Fig. 10 and
β = 0.60 in Fig. 11. A MATLAB script was written to
generate these figures numerically, utilizing the dd23
function. The T –δ1 parameter plane was divided into a
grid of 10,000 points. A point in this space was deemed
stable if, after 2000 forcing periods starting with the ini-
tial condition x = 1, the norm of the amplitude is less
than 1010, otherwise it was unstable. For each figure,
ε = 0.05.

In Fig. 10, we note the appearance of a stable region
on the right side of the numerical (lower) stability chart
that is absent from the analytical (upper) stability chart.
This may be explained by recalling that the analytical

Fig. 9 Qualitative phase
portraits for Example 2,
β = 3

5 and α = γ = 1. The
letters j–o correspond to
various parameter
combinations of δ1 and T as
shown in Fig. 8.
Saddle-node bifurcations
occur from j to l and from
m to o, respectively
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Fig. 10 Stability of the origin for β = 0.25 and α = 1. Com-
parison between analytical results based on slow flow (upper)
with numerical integration of Equation (2) for ε = 0.05 (lower).
The solution is stable in the shaded regions and unstable in the
unshaded regions

results are based on a perturbation method that assumed
that εT was small.

8 Discussion

The main difference between Examples 1 and 2 pre-
sented earlier in this paper is that Example 2 involves a
saddle-node bifurcation and Example 1 does not. The
saddle-node bifurcation occurs because the condition
for nontrivial slow flow equilibria to exist, Equa-
tion (21), is not satisfied for all values of T . Recall
that the instability region in the T –δ1 parameter plane
was bounded by curves with Equations (22) and (23).
Thus, for each time delay T , and for given values of α

Fig. 11 Stability of the origin for β = 0.60 and α = 1. Com-
parison between analytical results based on slow flow (upper)
with numerical integration of Equation (2) for ε = 0.05 (lower).
The solution is stable in the shaded regions and unstable in the
unshaded regions

and β, there are two critical values of δ1 if β < α/2.
If β > α/2, however, there are values of T for which
there are no real critical values of δ1, and therefore there
is no instability.

Recalling that δ = 1/4 + δ1ε, we may write the tran-
sition curves separating stable from unstable regions in
the form

δ = 1

4
+ ε

(
β cos

T
2

± 1

2

√
α2 − 4β2 sin2 T

2

)
(37)

Figure 12 shows the instability region (37) in the three-
dimensional δ–T –ε parameter space for the parameters
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Fig. 12 The 2:1 instability tongue, Equation (37), for β = 3
5 ,

α = γ = 1. S: stable, U: unstable. The white instability region
lying in the plane ε = 0.05 corresponds to the white instability
region on the left side of Fig. 11

Fig. 13 Bifurcation diagram for the nonlinear Mathieu equation
without delay term, Equation (1) with α = γ = 1, β = 0

of Example 2. Figure 12 can be compared with Fig. 11
by intersecting the three-dimensional instability tongue
with the plane ε = 0.05. Thus, the white region lying
inside the tongue in Fig. 12 is the same as the white
instability region on the left side of Fig. 11.

In the limiting case of β = 0 (no delay), Equation (1)
becomes a nonlinear Mathieu equation, the properties
of which are well-known [4]. Figure 13 displays a bi-
furcation diagram for Equation (1) with α = γ = 1,
β = 0. The effect of adding a small delay term may

be understood by perusing Figs. 5 and 6. These show,
first of all, that the presence of delay introduces dis-
sipation into the slow flow. Moreover, we see that if
the delay amplitude β is small enough (0 < β < α/2),
and if the time delay T is small enough (T < 2π ), then
the dynamics of the delayed equation is similar to that
of a damped nonlinear Mathieu equation without de-
lay. However, if the delay amplitude is large enough
(β > α/2), then we showed that it is possible to elim-
inate the tongue of instability by choosing the time
delay appropriately. The minimum time delay required
is T = 2 sin−1 α

2β
. See Figs. 8 and 9.

The stability change at the origin is given by
Equation (30). This equation can be rewritten so as to
give the following condition for instability at the origin

δ2
1 + β2 − 2βδ1 cos

T
2

− α2

4
< 0. (38)

This shows that the origin is unstable for all time delays
T if the delay amplitude β and the detuning δ1 are taken
to be sufficiently small. For example, in Fig. 4, where
β = 1/4, the origin is always unstable for |δ1| < 1/4.

9 Conclusions

In this paper, we investigated the dynamics of Equa-
tion (1) that involves the interaction of parametric ex-
citation with delay. Our analytical results are based on
slow flow Equations (15) and (16) that were obtained
using first-order averaging. We studied the stability of
the origin and the bifurcations that accompanied stabil-
ity changes: pitchforks, saddle-nodes, and degenerate
Hopf bifurcations.

We showed that adding delay to an undamped
parametrically excited system may introduce effective
damping. Our most important conclusion is that for suf-
ficiently large delay amplitudesβ, and for appropriately
chosen time delays T , the 2:1 instability region associ-
ated with parametric excitation can be eliminated. This
result has potential utility in engineering applications
where instabilities are undesirable. For example, Ma-
soud and Nayfeh conclude that time delay reduces the
swaying of container cranes [16].
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Appendix

The occurrence of a degenerate bifurcation in a slow
flow system derived from a perturbation method may
not be representative of the actual system. The degener-
acy may result from the approximation involved in the
perturbation method. The slow flow system (15) and
(16) in the previous section was derived by perturbing
off of a simple harmonic oscillator with O(ε) forcing,
nonlinearity, detuning, and delay (Cf. Equation (2)):

ẍ(t) + δ0x(t) = −ε(δ1x(t) + αx(t) cos t

+ γ x(t)3 − βx(t − T )). (A.1)

An alternative approach is to perturb off of the Hsu–
Bhatt Equation [5] ẍ + δ0x = b(t − T ). We consider a
simple harmonic oscillator with a delay term, which is
perturbed by O(ε) forcing, nonlinearity, and detuning

ẍ(t) + δ0x(t) − bx(t − T )

= −ε(δ1x(t) + αx(t) cos t + γ x(t)3), (A.2)

where the delay amplitude is b, the time delay is T ,
and δ0 is the frequency squared of the simple harmonic
oscillator. If the delay amplitude b and ε were zero,
then this system would be stable when δ0 > 0 and un-
stable when δ0 < 0. By changing the delay parameters
b and T , the stable system can become unstable and
the unstable system can become stable. Thus, a change
of stability would occur.

The solution to Equation (A.2) is for ε = 0 of the
form x(t) = eλt , where the characteristic equation is:

λ2 + δ0 = b e−λT. (A.3)

Note that Equation (A.3) is a transcendental equation
on λ and therefore has an infinite number of (generally
complex) roots. For a Hopf bifurcation, the real part of
the complex conjugate pair must be zero. Substituting
λ = iω into Equation (A.3) yields

ω2
crit = δ0 + b, ωcritTcrit = π (A.4)

which gives the solution to the Hsu–Bhatt
Equation (A.2) for ε = 0 right at a Hopf bifurca-
tion point. This is the starting point for the perturbation
method.

We use the multiple time scales method and begin
by perturbing off of the critical value of the time delay

T = Tcrit + εμ + · · · (A.5)

We then define two time scales ξ = t and η = εt , and
expand x in a power series of ε: x(ξ, η) = x0(ξ, η) +
εx1(ξ, η) + · · · We substitute these expansions into
Equation (A.2) and collect like terms. The solution to
the ε = 0 equation is

x0(ξ, η) = A1(η) cos ωcritξ + A2(η) sin ωcritξ, (A.6)

where A1(η) and A2(η) are functions of slow time η.
In order for the cos t term in Equation (A.2) to be 2:1
resonant, ωcrit = 1

2 . This implies from Equation (A.4)

δ0 + b = 1

4
, Tcrit = 2π + εμ. (A.7)

The O(ε) equation is

x1ξξ + δ0x1−bx1(ξ−Tcrit)

= −(
2x0ξη + (δ1+α cos ξ

)
x0

+ γ x3
0 + μx0ξ (ξ − Tcrit)), (A.8)

where the subscripts denote partial derivatives, Tcrit =
2π , and x0 is given by Equation (A.6). In deriving Equa-
tion (A.8) the product εTcrit was assumed to be small
[11]. After substituting Equation (A.6) into (A.8), the
removal of resonant terms yields the slow flow

d A1

dη
= bμ

2
A1 +

(
δ1 − α

2

)
A2 + 3γ

4
A2

(
A2

1 + A2
2

)
(A.9)

d A2

dη
= bμ

2
A2 −

(
δ1 + α

2

)
A1 − 3γ

4
A1

(
A2

1 + A2
2

)
(A.10)

As stated in Section 6 (Degenerate Hopf), the neces-
sary conditions for a generic Hopf bifurcation in a sys-
tem of two first-order ODEs, such as those shown ear-
lier in Equations (A.9) and (A.10), are Tr(J ) = 0 and
Det(J ) > 0, where J is the Jacobian matrix evaluated
at the equilibrium point. The trace and determinant for
the slow flow system stated earlier about the origin are

Tr(J ) = bμ, Det(J ) = b2μ2

4
+ δ2

1 − α

4
. (A.11)
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Setting the Tr(J ) = 0 gives b = 0 (which corresponds
to a system with no delay) or μ = 0, which is right at
the bifurcation point of Tcrit = 2π . Using μ = 0, the
condition for the Det(J ) > 0 becomes

δ2
1 >

α

4
⇒ |δ1| >

α

2
. (A.12)

Thus, for a given α > 0, and choosing |δ1| > α/2, we
would expect a limit cycle to be born as we change μ

from negative to positive or positive to negative. How-
ever, a limit cycle is not born in this slow flow system,
contrary to what we expect. In fact, the slow flow in
Equations (A.9) and (A.10) at the bifurcation point of
μ = 0 has the first integral

(
6γ A2

2 + 8δ1 + 4α
) A2

1

4
+ (8δ1 − 4α)

A2
2

4

+ 3γ

4

(
A4

1 + A4
2

) = C. (A.13)

The existence of this first integral signifies that the Hopf
bifurcation is degenerate, as explained at the end of
Section 6.

Thus, both perturbation schemes, one in which the
delay amplitude is O(1) and the other in which the
delay amplitude is O(ε), yield slow flow systems which
exhibit degenerate Hopf bifurcations.
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