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Abstract We investigate the dynamics of three-strategy (rock–paper–scissors) replicator
equations in which the fitness of each strategy is a function of the population frequencies
delayed by a time interval T . Taking T as a bifurcation parameter, we demonstrate the
existence of (non-degenerate) Hopf bifurcations in these systems and present an analysis of
the resulting limit cycles using Lindstedt’s method.
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1 Introduction

The field of evolutionary dynamics uses both game theory and differential equations to model
population shifts among competing adaptive strategies. There are two main approaches: pop-
ulation models (e.g., Lotka–Volterra) and frequency models such as the replicator equation,

ẋi = xi ( fi − φ), i = 1, . . . , n (1)

where xi is the frequency or relative abundance and fi (x1, . . . , xn) is the fitness of strategy i ,
and φ = ∑

fi xi is the average fitness. Note that since the variables xi represent population
frequencies, we have

∑
xi = 1.

Hofbauer and Sigmund [3] have shown that the Lotka–Volterra equation with n−1 species
is equivalent to the replicator equation with n strategies, but the proof requires a rescaling of
time, and the correspondence between species and strategies is clearly not one to one.
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In “Appendix 1”, we show that the replicator equation can be derived from the (continuous)
population growth model

ξ̇i = ξi gi , i = 1, . . . , n (2)

where ξi is the population and gi (ξ1, . . . , ξn) the fitness of strategy i . The equivalence simply
uses the change of variables xi = ξi/p where p is the total population, with the assumption
that the fitness functions depend only on the frequencies and not on the populations directly.

The game-theoretic component of the replicator model lies in the choice of fitness func-
tions. Take the payoff matrix A = (ai j ), where ai j is the expected reward for strategy i when
it competes with strategy j . Then, the fitness fi is the total expected payoff of strategy i
versus all strategies, weighted by their frequency:

fi = (A · x)i . (3)

where

x = (x1, . . . , xn). (4)

In this work, we generalize the replicator model to systems in which the fitness of each
strategy depends only on the expected payoffs at time t − T , as in [4,8]. If we write
x̄i ≡ xi (t − T ) and define

x̄ ≡ (x̄1, . . . , x̄n) (5)

then the total expected payoff—i.e., the fitness—for strategy i is given by

fi = (A · x̄)i . (6)

The use of delayed fitness functions makes the replicator equation into the delay differential
equation (DDE)

ẋi = xi ( fi − φ) (7)

where

φ =
∑

i

xi fi =
∑

i

xi (A · x̄)i . (8)

As a system of ODEs, the standard replicator equation is an (n −1)-dimensional problem,
since n − 1 of the xi are required to specify a point in phase space, in view of the fact that∑

xi = 1. The delayed replicator equation, by contrast, is an infinite-dimensional problem
[1] whose solution is a flow on the space of functions on the interval [−T, 0).

A concrete interpretation of this model is that it represents a social-type time delay [4].
There is a large, finite pool of players, each of whom uses a particular strategy at any given
time. The population is well mixed, and one-on-one contests between players happen contin-
uously. Each player continually decides whether to switch teams, based on the latest infor-
mation they have about the expected payoff of each strategy. This information is delayed by
an interval T .

Previous works on replicator systems with delay [4,8] have examined two-strategy systems
which have a stable interior equilibrium point (i.e., both strategies coexist) when there is no
delay. It has been shown that for such systems, there is a critical delay Tc at which the interior
equilibrium x∗ changes stability; for delay greater than Tc solutions oscillate about x∗.

In this work, we prove a similar result for RPS systems. Moreover, we use nonlinear
methods to analyze the resulting limit cycles’ amplitude and frequency.
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2 Three-Strategy Games: Rock–Paper–Scissors

2.1 Derivation

Recall the form of the replicator equation, Eq. (7) with delayed fitness functions (8),

ẋi = xi ( fi − φ) (9)

where fi = (A · x̄)i and

φ =
∑

i

xi fi =
∑

i

xi (A · x̄)i . (10)

where the bar indicates delay.
We analyze a subset of the space of three-strategy delayed evolutionary games: those

known as rock–paper–scissors (RPS) games. RPS games have three strategies, each of which
is neutral versus itself and has a positive expected payoff versus one of the other strategies
and a negative expected payoff versus the remaining strategy. The payoff matrix A thus has
the form

A =
⎛

⎜
⎝

0 −b2 a1

a2 0 −b3

−b1 a3 0

⎞

⎟
⎠ (11)

where the ai and bi are all positive. For ease of notation, write (x1, x2, x3) = (x, y, z). Then

ẋ = x(a1 z̄ − b2 ȳ − φ) (12)

ẏ = y(a2 x̄ − b3 z̄ − φ) (13)

ż = z(a3 ȳ − b1 x̄ − φ) (14)

where

φ = x(a1 z̄ − b2 ȳ) + y(a2 x̄ − b3 z̄) + z(a3 ȳ − b1 x̄). (15)

Now, since x, y, z are the relative abundances of the three strategies, the region of interest is
the three-dimensional simplex in R

3

Σ ≡ {
(x, y, z) ∈ R

3 : x + y + z = 1 and x, y, z ≥ 0
}
. (16)

Therefore, we can eliminate z using z = 1 − x − y. The region of interest is then S, the
projection of Σ into the x − y plane:

S ≡ {(x, y) ∈ R
2 : (x, y, 1 − x − y) ∈ Σ} (17)

See Fig. 1. Equations (12) and (13) become

ẋ = x(a1(1 − x̄ − ȳ) − b2 ȳ − φ) (18)

ẏ = y(a2 x̄ − b3(1 − x̄ − ȳ) − φ) (19)

where

φ = x(a1(1 − x̄ − ȳ) − b2 ȳ) + y(a2 x̄ − b3(1 − x̄ − ȳ))

+ (1 − x − y)(a3 ȳ − b1 x̄). (20)
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Fig. 1 A curve in Σ and its projection in S

2.2 Stability of Equilibria

The system (18)–(19) has seven equilibria: the corners of the triangle S,

(x, y) = (0, 0), (x, y) = (0, 1), (x, y) = (1, 0) (21)

one point in the interior of S,

(x, y) =
(

b3 (a3 + b2) + a1a3

a1 (a2 + a3 + b1) + a2 (a3 + b2) + b3 (a3 + b1 + b2) + b1b2
,

a1 (a2 + b1) + b1b3

a1 (a2 + a3 + b1) + a2 (a3 + b2) + b3 (a3 + b1 + b2) + b1b2

)

(22)

and three other points:

(x, y) =
(

0,
b3

b3 − a3

)

, (23)

(x, y) =
(

a1

a1 − b1
, 0

)

, (24)

(x, y) =
(

b2

b2 − a2
,

a2

a2 − b2

)

. (25)

Note that since the payoff coefficients a1, . . . , b3 are positive, the nonzero coordinate(s) of
the last three equilibria are either negative or greater than 1. In either case, these points lie
outside of S and we will not consider them further.

We linearize about the three corner equilibrium points to determine their stability. In all
three cases, the linearization is independent of the delayed variables x̄ and ȳ; that is, the
linearized system about each corner point is an ordinary differential equation. Therefore, the
stability of each corner point is determined by the eigenvalues of the Jacobian.
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At the point (x, y) = (0, 0), the eigenvalues and eigenvectors of the Jacobian are

λ1 = a1, v1 = [1, 0] (26)

λ2 = −b3, v2 = [0, 1]. (27)

Similarly, at the point (x, y) = (1, 0), the eigenvalues and eigenvectors of the Jacobian are

λ1 = a2, v1 = [−1, 1] (28)

λ2 = −b1, v2 = [1, 0]. (29)

Finally, at the point (x, y) = (0, 1), the eigenvalues and eigenvectors of the Jacobian are

λ1 = a3, v1 = [0, 1] (30)

λ2 = −b2, v2 = [−1, 1]. (31)

Therefore, as in the non-delayed RPS system [1], each corner of S is a saddle point, and
its eigenvectors lie along the two edges of S adjacent to it. (Since the lines containing the
edges of S are invariant, these lines are in fact the stable and unstable manifolds of the three
corner equilibria.)

Next, consider the interior equilibrium (22). Let (x∗, y∗) be the coordinates of the equi-
librium point. It is known [5] that in the case of no delay (T = 0), this point is globally stable
if

det A = a1a2a3 − b1b2b3 > 0. (32)

All trajectories starting from interior points of S converge to (x∗, y∗). Similarly, if T = 0
and det A < 0, the equilibrium point is unstable and all trajectories starting from other points
converge to the boundary of S. If T = 0 and det A = 0, then S is filled with periodic orbits.

If T > 0, however, then in contrast to the corner equilibria, the linearization about (x∗, y∗)
depends only on the delayed variables, and it is reasonable to expect that its stability will
depend on the delay T . So, we analyze the system for a Hopf bifurcation, taking T as the
bifurcation parameter.

Define the translated variables u and v via

u = x − x∗, v = y − y∗. (33)

Then, the linearization about (u, v) = (0, 0) is
(

u̇

v̇

)

=
(

α β

γ δ

) (
ū

v̄

)

≡ J

(
ū

v̄

)

(34)

where the entries (α, β, γ, δ) of the matrix J are rational functions of the payoff coefficients
a1, . . . , b3. See Eqs. (124)–(127) in “Appendix 2”.

Set u = reλt and v = seλt to obtain the characteristic equations

λr = e−λT (αr + βs) (35)

λs = e−λT (γ r + δs). (36)

Rearranging, we obtain
(

λ − αe−λT −βe−λT

−γ e−λT λ − δeλT

) (
r

s

)

=
(

0

0

)

. (37)
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For brevity, write

M ≡
(

λ − αe−λT −βe−λT

−γ e−λT λ − δeλT

)

. (38)

Then, for a non-trivial solution to Eq. (37), we require

det M = 0. (39)

This occurs when

βγ =
(
α − λeλT

) (
δ − λeλT

)
. (40)

At the critical value of delay for a Hopf bifurcation, the eigenvalues are pure imaginary. So,
we set T = T0 and λ = iω0. Substituting this into Eq. (40) and separating the real and
imaginary parts, we obtain

βγ = −αδ − ω2
0 cos(2ω0T0) + (α + δ) sin(ω0T0) (41)

0 = ω0 cos(ω0T0)(α + δ + 2ω0 sin(ω0T0)). (42)

In terms of the matrix J , these equations are

det J = ω2
0 cos(2ω0T0) − (tr J ) sin(ω0T0) (43)

0 = ω0 cos(ω0T0)(tr J + 2ω0 sin(ω0T0)). (44)

Solving these equations for det J and tr J , we get

det J = ω2
0, tr J = −2ω0 sin(ω0T0). (45)

Thus, ω0 and T0 are given by

ω0 = √
det J , T0 = −1√

det J
sin−1

(
tr J

2
√

det J

)

. (46)

We have found the critical delay and frequency associated with a Hopf bifurcation. In the
next subsection, we use Lindstedt’s method to approximate the form of the limit cycle that
is born in this bifurcation.

2.3 Approximation of Limit Cycle

Recall that we have the system

ẋ = x(a1(1 − x̄ − ȳ) − b2 ȳ − φ) (47)

ẏ = y(a2 x̄ − b3(1 − x̄ − ȳ) − φ) (48)

where

φ = x(a1(1 − x̄ − ȳ) − b2 ȳ) + y(a2 x̄ − b3(1 − x̄ − ȳ))

+ (1 − x − y)(a3 ȳ − b1 x̄) (49)

with the interior equilibrium point

(x∗, y∗) =
(

b3 (a3 + b2) + a1a3

a1 (a2 + a3 + b1) + a2 (a3 + b2) + b3 (a3 + b1 + b2) + b1b2
,

a1 (a2 + b1) + b1b3

a1 (a2 + a3 + b1) + a2 (a3 + b2) + b3 (a3 + b1 + b2) + b1b2

)

. (50)
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We have introduced the translated coordinates u and v, defined by

u = x − x∗, v = y − y∗ (51)

and we have determined in Eq. (46) the critical delay T0 and frequency ω0 associated with a
Hopf bifurcation of the point (u, v) = (0, 0).

Substituting in u and v, the system (47)–(48) can be written as

u̇ = αū + βv̄ + c1uū + c2uv̄ + c3vū + c4vv̄

+ d1u2ū + d2u2v̄ + d3uvū + d4uvv̄ (52)

v̇ = γ ū + δv̄ + h1uū + h2uv̄ + h3vū + h4vv̄

+ j1v
2ū + j2v

2v̄ + j3uvū + j4uvv̄ (53)

where α, β, γ, δ are as in the linearization Eq. (34). The other coefficients c1, . . . , j4 are also
rational functions of the payoff coefficients a1, . . . , b3; see Eqs. (129)–(144) in “Appendix 2”.

Now we use Lindstedt’s method to approximate the form of the limit cycle generated by
this bifurcation.

We are looking for periodic solutions with delay close to T0 and frequency close to ω0.
First, we rescale time via τ = ωt , so

u̇ = du

dt
= du

dτ

dτ

dt
= ω

du

dτ
≡ ωu′ (54)

v̇ = dv

dt
= dv

dτ

dτ

dt
= ω

dv

dτ
≡ ωv′ (55)

and, considering u and v to be functions of τ ,

ū = u(τ − ωT ), v̄ = v(τ − ωT ). (56)

Next, expand the delay and frequency in ε:

T = T0 + ε2μ1 + ε3μ2 (57)

ω = ω0 + ε2k1 + ε3k2 (58)

Note that there is no O(ε1) term in T or ω because of the presence of quadratic terms in Eqs.
(52) and (53). Removal of secular terms at the appropriate order of ε will require any O(ε1)

terms in Eqs. (57) and (58) to vanish.
We expand the functions u and v similarly:

u = εu0 + ε2u1 + ε3u2 (59)

v = εv0 + ε2v1 + ε3v2. (60)

Then, we substitute the expanded functions and parameters into Eqs. (52) and (53) and collect
like orders of ε. This includes expanding ū and v̄ in Taylor series:

ū = u(τ − ωT )

= εu0(τ − ω0T0) + ε2u1(τ − ω0T0)

+ ε3 (
u2(τ − ω0T0) − (T0k1 + ω0μ1)u

′
0(τ − ω0T0)

) + . . . (61)
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v̄ = v(τ − ωT )

= εv0(τ − ω0T0) + ε2v1(τ − ω0T0)

+ ε3 (
v2(τ − ω0T0) − (T0k1 + ω0μ1)v

′
0(τ − ω0T0)

) + . . . (62)

Since the only remaining delayed terms are of the form u(τ − ω0T0) or v(τ − ω0T0), we
introduce the notation

ũ ≡ u(τ − ω0T0), ṽ ≡ v(τ − ω0T0). (63)

The resulting equations are

O(ε1) : ω0u′
0 = αũ0 + βṽ0 (64)

ω0v
′
0 = γ ũ0 + δṽ0 (65)

O(ε2) : ω0u′
1 = αũ1 + βṽ1 + ũ0(c1u0 + c3v0) + ṽ0(c2u0 + c4v0) (66)

ω0v
′
1 = γ ũ1 + δṽ1 + ũ0(h1u0 + h3v0) + ṽ0(h2u0 + h4v0) (67)

O(ε3) : ω0u′
2 = αũ2 + βṽ2 + ũ1(c1u0 + c3v0) + ṽ1(c2u0 + c4v0)

+ ũ0(c1u1 + c3v1 + d1u2
0 + d3u0v0)

+ ṽ0(c2u1 + c4v1 + d2u2
0 + d4u0v0)

− k1u′
0 − α(T0k1 + ω0μ1)ũ

′
0 − β(T0k1 + ω0μ1)ṽ

′
0 (68)

ω0v
′
2 = γ ũ2 + δṽ2 + ũ1(h1u0 + h3v0) + ṽ1(h2u0 + h4v0)

+ ũ0(h1u1 + h3v1 + j1v
2
0 + j3u0v0)

+ ṽ0(h2u1 + h4v1 + j2v
2
0 + j4u0v0)

− k1v
′
0 − γ (T0k1 + ω0μ1)ũ

′
0 − δ(T0k1 + ω0μ1)ṽ

′
0. (69)

We must solve the equations for each order of ε successively, substituting in the results from
the lower-order equations as we proceed.

2.3.1 Solve for u0 and v0

As seen above, the ε1 equations are linear:

ω0u′
0 = αũ0 + βṽ0 (64)

ω0v
′
0 = γ ũ0 + δṽ0. (65)

Up to a phase shift, the solution has the form

u0 = A0 sin τ (70)

v0 = A0(r sin τ + s cos τ) (71)

for some constants r and s. We substitute these solutions into Eqs. (64) and (65) and use the
angle-sum identities to obtain

ω0 cos τ = (sβ cos(ω0T0) − (α + rβ) sin(ω0T0)) cos τ

+ (sβ sin(ω0T0) + (α + rβ) cos(ω0T0)) sin τ (72)

ω0(r cos τ − s sin τ) = (sδ cos(ω0T0) − (γ + rδ) sin(ω0T0)) cos τ

+ (sδ sin(ω0T0) + (γ + rδ) cos(ω0T0)) sin τ. (73)
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Setting the coefficients of cos τ and sin τ equal to 0 in both equations gives us

r = δ − α

2β
, s =

√−4βγ − (α − δ)2

2β
. (74)

Thus,

u0 = A0 sin τ (75)

v0 = A0
1

2β

(

(δ − α) sin τ +
√

−4βγ − (α − δ)2 cos τ

)

. (76)

(Note that the coefficient of cos τ above is real for the values of α, β, γ, δ given in
“Appendix 2”.)

2.3.2 Solve for u1 and v1

Next we solve for u1 and v1 using the solutions for u0 and v0 above. Recall that they satisfy
the equations

ω0u′
1 = αũ1 + βṽ1 + ũ0(c1u0 + c3v0) + ṽ0(c2u0 + c4v0) (66)

ω0v
′
1 = γ ũ1 + δṽ1 + ũ0(h1u0 + h3v0) + ṽ0(h2u0 + h4v0). (67)

Using Eqs. (75) and (76), and the values of the various coefficients given in “Appendix 2”,
these become

ω0u′
1 = αũ1 + βṽ1 + A2

0 (B1 sin 2τ + B2 cos 2τ) (77)

ω0v
′
1 = γ ũ1 + δṽ1 + A2

0 (B3 sin 2τ + B4 cos 2τ) . (78)

The constant coefficients B1, . . . , B4 are given in Eqs. (145)–(148) in “Appendix 2”. Note
that there are no resonant terms to eliminate, and the homogeneous solutions are unnecessary
because they will have the same form as u0 and v0. Thus, we expect solutions of the form

u1 = A2
0(r1 sin 2τ + s1 cos 2τ) (79)

v1 = A2
0(r2 sin 2τ + s2 cos 2τ). (80)

Substituting into Eqs. (77)–(78) gives

[B2 − sin(2T0ω0)(αr1 + βr2) − 2r1ω0 + cos(2T0ω0)(αs1 + βs2)] cos 2τ

+ [B1 + cos(2T0ω0)(αr1 + βr2) + sin(2T0ω0)(αs1 + βs2) + 2s1ω0] sin 2τ = 0 (81)
[
B4 − sin(2T0ω0)(γ r1 + δr2) − 2r2ω0 + cos(2T0ω0)(γ s1 + δs2)

]
cos 2τ

+ [
B3 + cos(2T0ω0)(γ r1 + δr2) + sin(2T0ω0)(γ s1 + δs2) + 2s2ω0

]
sin 2τ = 0. (82)

We set the coefficients of sin 2τ and cos 2τ equal to 0. This gives four linear equations in
r1, r2, s1, and s2, which can be solved easily:

⎛

⎜
⎜
⎝

r1

r2

s1

s2

⎞

⎟
⎟
⎠ = C−1

⎛

⎜
⎜
⎝

B1

B2

B3

B4

⎞

⎟
⎟
⎠ (83)



Dyn Games Appl

where

C =

⎛

⎜
⎜
⎜
⎝

α cos β cos 2ω0 + α sin β sin

−2ω0 − α sin −β sin α cos β cos

γ cos δ cos γ sin 2ω0 + δ sin

−γ sin −2ω0 − δ sin γ cos δ cos

⎞

⎟
⎟
⎟
⎠

(84)

where the argument of each sin and cos is 2ω0T0. However, the expressions for r1, . . . , s2

are cumbersome and are omitted here for brevity.

2.3.3 Use the u2 and v2 Equations to Find A0 and k1 in Terms of μ1

As in the previous steps, we substitute the solutions found above for u0, v0, u1 and v1 into
the equations satisfied by u2 and v2. Recall that

ω0u′
2 = αũ2 + βṽ2 + ũ1(c1u0 + c3v0) + ṽ1(c2u0 + c4v0) (68)

+ ũ0(c1u1 + c3v1 + d1u2
0 + d3u0v0)

+ ṽ0(c2u1 + c4v1 + d2u2
0 + d4u0v0)

− k1u′
0 − α(T0k1 + ω0μ1)ũ

′
0 − β(T0k1 + ω0μ1)ṽ

′
0

ω0v
′
2 = γ ũ2 + δṽ2 + ũ1(h1u0 + h3v0) + ṽ1(h2u0 + h4v0) (69)

+ ũ0(h1u1 + h3v1 + j1v
2
0 + j3u0v0)

+ ṽ0(h2u1 + h4v1 + j2v
2
0 + j4u0v0)

− k1v
′
0 − γ (T0k1 + ω0μ1)ũ

′
0 − δ(T0k1 + ω0μ1)ṽ

′
0.

Using Eqs. (75), (76), (79) and (80), these become

ω0u′
2 = αũ2 + βṽ2 + K1 cos τ + K2 sin τ + L1 cos 3τ + L2 sin 3τ (85)

ω0v
′
2 = γ ũ2 + δṽ2 + K3 cos τ + K4 sin τ + L3 cos 3τ + L4 sin 3τ. (86)

The coefficients K1, . . . , L4 are omitted for brevity.
The sin 3τ and cos 3τ terms are non-resonant, so the Li will not give any information

about A0 or k1. The sin τ and cos τ terms are resonant, so we use the method detailed in
“Appendix 3” to eliminate secular terms. The existence of a periodic solution to Eqs. (85)
and (86) requires

K3 = K1(δ − α) − K2
√−(α − δ)2 − 4βγ

2β
(87)

K4 = K1
√−(α − δ)2 − 4βγ + K2(δ − α)

2β
. (88)

We find that the Ki have the form

Ki = A0(qi1 A2
0 + qi2k1 + qi3μ1). (89)

Substituting (89) into Eqs. (87) and (88) gives two simultaneous equations on A0, k1 and μ1.
We solve these for A0 and k1 in terms of μ1.

As expected, A0 is proportional to
√

μ1. If the proportionality constant is real, the limit
cycle exists for μ1 > 0, and its stability is the same as that of the interior equilibrium (x∗, y∗)
when T = 0.
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2.4 Example

Consider the RPS system

ẋi = xi ( fi − φ) (90)

where fi = (A · x̄)i and

φ =
∑

i

xi fi =
∑

i

xi (A · x̄)i (91)

with

A =
⎛

⎜
⎝

0 −1 2

1 0 −1

−1 1 0

⎞

⎟
⎠ . (92)

Following Sect. 2.2, we see that in this case, det A = 1, so the interior equilibrium point
(x∗, y∗) = ( 1

3 , 5
12 ) is stable when T = 0. The critical delay and frequency are

ω0 = 1

2

√
5

3
≈ 0.64550, T0 = 2

√
3

5
sin−1

(
1

4
√

15

)

≈ 0.10007. (93)

Using the method of Sects. 2.3.1 and 2.3.2, we find that

u0 = A0 sin τ (94)

v0 = A0(−0.671875 sin τ − 0.72467 cos τ) (95)

and

u1 = A2
0(0.235279 sin 2τ − 0.430682 cos 2τ) (96)

v1 = A2
0(0.203199 sin 2τ − 0.0397297 cos 2τ). (97)

Then, as in Sect. 2.3.3,

ω0u′
2 = αũ2 + βṽ2 + K1 cos τ + K2 sin τ + L1 cos 3τ + L2 sin 3τ (98)

ω0v
′
2 = γ ũ2 + δṽ2 + K3 cos τ + K4 sin τ + L3 cos 3τ + L4 sin 3τ. (99)

where

α = −23

36
, β = −8

9
, γ = 125

144
, δ = 5

9
(100)

and

K1 = A2
0(−0.957018A2

0 − k1) (101)

K2 = A2
0(−0.146492A2

0 + 0.0645946k1 + 0.416667μ1) (102)

K3 = A2
0(0.573076A2

0 + 0.625065k1 − 0.301946μ1) (103)

K4 = A2
0(−0.472711A2

0 − 0.768069k1 − 0.279948μ1). (104)

Therefore, using Eqs. (87) and (88), the condition to eliminate secular terms is

A0 = 2.26293
√

μ1, k1 = −4.46834μ1. (105)

This means that the limit cycle exists when μ1 > 0, so the bifurcation is supercritical and
the limit cycle is stable (Fig. 2).
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Fig. 2 Limit cycle given by Lindstedt (dotted) and numerical integration (solid) for ε = 0.1 and varying
values of μ1. Recall that T = T0 + ε2μ1

To evaluate the results of Lindstedt’s method qualitatively, we compute the average radius
of the limit cycle (i.e., the radius of the circle with the same enclosed area). For the limit
cycle predicted by Lindstedt’s method, this is simply

rLind =
[

ω

2π

∫ 2π/ω

0

(
u(t)2 + v(t)2) dt

]1/2

(106)

where u and v are as in Eqs. (94)–(97). Recall that τ = ωt where ω = ω0 + ε2k1, where ω0

is given by Eq. (93) and k1 by Eq. (105).
We compare this to the average radius of the approximate limit cycle given by numerical

integration. To find this, we integrate the original system given in Eqs. (90)–(92), using
NDSolve in Mathematica. This is a versatile method that can handle ordinary, partial or delay
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Fig. 3 Average radius of the limit cycle given by Lindstedt (solid) and numerical integration (dotted) for
ε = 0.1 as a function of μ1

differential equations, and which adaptively chooses from among several solving routines.
For 40 values of μ1 between −0.5 and 1.5, we integrated the system up to t = 3,000, with
the assumption that the solutions were constant for t < 0. We found that for t > 2,900, the
numerical solutions were nearly periodic: in all cases tested, the peak-to-peak times of the
first cycle after t = 2,900 and the last cycle before t = 3,000 differed by less than one part
in 10−7. This gave the desired approximation to the limit cycle.

Thus, the average radius for the numerical limit cycle is

rnumer =
[

1

p(μ1)

∫ t0+p(μ1)

t0

(
(x(t) − x∗)2 + (y(t) − y∗)2) dt

]1/2

(107)

where p(μ1) is the period of the limit cycle, obtained using FindRoot in Mathematica, and
t0 is chosen large enough that the numerical solutions are close to the limit cycle.

We compare the average radius given by Lindstedt’s method to that found by numerical
integration and observe from Fig. 3 that the two methods are in relatively good agreement
for small μ1.

3 Conclusion

We have investigated the dynamics of rock–paper–scissors systems of the form

ẋi = xi ( fi − φ), (108)

where fi = (A · x̄)i is the (delayed) fitness of strategy i .
It is known that limit cycles cannot occur in non-delayed rock–paper–scissors systems;

the phase space is filled with either decreasing, increasing or neutral oscillations, depending
on the determinant of the payoff matrix A.

In this work, we have shown using nonlinear methods that, by introducing a social-type
delay in the fitnesses of the strategies, it is possible to find rock–paper-scissors systems
which exhibit non-degenerate Hopf bifurcations and limit cycles. We have analyzed the
resulting limit cycles using Lindstedt’s method, finding an approximation of their frequency
and amplitude. We have demonstrated a choice of parameters for which a rock–paper–scissors
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system undergoes a supercritical Hopf bifurcation and exhibits a stable limit cycle. For this
choice of parameters, the prediction of Lindstedt’s method is found to agree with numerical
integration for T close to T0.

This generalization of the replicator model may be useful in modeling natural or social
systems in which each player has a delayed estimate of the expected payoff of each strategy.

Appendix 1: Derivation of replicator equation

Consider an exponential model of population growth,

ξ̇i = ξi gi (i = 1, . . . , n) (109)

where ξi is a real-valued function that approximates the population of strategy i and
gi (ξ1, . . . , ξn) is the fitness of that strategy. The replicator Eq. [7] results from Eq. (109) by
changing variables from the populations ξi to the relative abundances, defined as xi ≡ ξi/p
where p is the total population:

p(t) =
∑

i

ξi (t). (110)

We see that

ṗ =
∑

i

ξ̇i =
∑

i

ξi gi (111)

= p
∑

i

ξi

p
gi = p

∑

i

xi gi (112)

= pφ (113)

where φ ≡ ∑
i xi gi is the average fitness of the whole population.

By the product rule,

ẋi = ξ̇i

p
− ξi ṗ

p2 (114)

= ξi

p
gi − ξi

p

ṗ

p
(115)

= xi (gi − φ) . (116)

Therefore,
∑

i

ẋi =
∑

i

xi gi − φ
∑

i

xi (117)

=
∑

i

xi gi −
∑

j

x j g j

∑

i

xi . (118)

So, using the fact that

∑

i

xi =
∑

i ξi

p
= p

p
≡ 1 (119)

Equation (118) reduces to the identity
∑

i

ẋi = 0. (120)
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The fitness of a strategy is assumed to depend only on the relative abundance of each strat-
egy in the overall population, since the model only seeks to capture the effect of competition
between strategies, not any environmental or other factors. Therefore, we assume that gi has
the form

gi (ξ1, . . . , ξn) = fi

(
ξ1

p
, . . . ,

ξn

p

)

= fi (x1, . . . , xn). (121)

Under this assumption, Eq. (116) is the replicator equation,

ẋi = xi ( fi − φ), (122)

where φ is now expressed entirely in terms of the xi , as

φ =
∑

i

xi fi . (123)

Mathematically, φ is a coupling term that introduces dependence on the abundance and fitness
of other strategies.

Appendix 2: Coefficients generated in the RPS problem

The entries of the matrix J from Eq. (34) are

α = x∗ (
(a1 − b1)(x∗ − 1) − (a2 + b1 + b3)y∗) (124)

β = x∗ (
(a1 + a3 + b2)(x∗ − 1) + (a3 − b3)y∗) (125)

γ = y∗ (
(a1 − b1)x∗ − (a2 + b1 + b3)(y∗ − 1)

)
(126)

δ = y∗ (
(a1 + a3 + b2)x∗ + (a3 − b3)(y∗ − 1)

)
(127)

where x∗ and y∗ are the coordinates of the interior equilibrium point,

(x∗, y∗) =
(

b3 (a3 + b2) + a1a3

a1 (a2 + a3 + b1) + a2 (a3 + b2) + b3 (a3 + b1 + b2) + b1b2
,

a1 (a2 + b1) + b1b3

a1 (a2 + a3 + b1) + a2 (a3 + b2) + b3 (a3 + b1 + b2) + b1b2

)

. (128)

The coefficients in Eqs. (52) and (53) are

c1 = (a1 − b1)(2x∗ − 1) − (a2 + b1 + b3)y∗ (129)

c2 = (a1 + a3 + b2)(2x∗ − 1) + (a3 − b3)y∗ (130)

c3 = −(a2 + b1 + b3)x∗ (131)

c4 = (a3 − b3)x∗ (132)

d1 = a1 − b1 (133)

d2 = a1 + a3 + b2 (134)

d3 = −(a2 + b1 + b3) (135)

d4 = a3 − b3 (136)

h1 = (a1 − b1)y∗ (137)

h2 = (a1 + a3 + b2)y∗ (138)

h3 = (a1 − b1)x∗ − (a2 + b1 + b3)(2y∗ − 1) (139)
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h4 = (a1 + a3 + b2)x∗ − (a3 − b3)(2y∗ − 1) (140)

j1 = −(a2 + b1 + b3) (141)

j2 = a3 − b3 (142)

j3 = a1 − b1 (143)

j4 = a1 + a3 + b2. (144)

The coefficients B1, . . . , B4 in Eqs. (77) and (78) are

B1 = 1

2
[s (2c4r + c2 + c3) cos(ω0T0)

− (c4(r − s)(r + s) + (c2 + c3) r + c1) sin(ω0T0)] (145)

B2 = 1

2
[−s (2c4r + c2 + c3) sin(ω0T0)

− (c4(r − s)(r + s) + (c2 + c3) r + c1) cos(ω0T0)] (146)

B3 = 1

2
[s (2h4r + h2 + h3) cos(ω0T0)

− (h4(r − s)(r + s) + (h2 + h3) r + h1) sin(ω0T0)] (147)

B4 = 1

2
[−s (2h4r + h2 + h3) sin(ω0T0)

− (h4(r − s)(r + s) + (h2 + h3) r + h1) cos(ω0T0)] (148)

where r and s are as in Eq. (74).

Appendix 3: Removal of secular terms in Lindstedt’s method with delay

Consider a system of differential delay equations of the form

ω
du

dt
= αū + βv̄ + K1 sin t + K2 cos t (149)

ω
dv

dt
= γ ū + δv̄ + K3 sin t + K4 cos t. (150)

where ū = u(t − ωT ) and v̄ = v(t − ωT ), and where ω and T are such that the associated
homogeneous problem,

ω
du

dt
= αū + βv̄ (151)

ω
dv

dt
= γ ū + δv̄ (152)

admits solutions of the form sin t and cos t , or equivalently ei t .
Substituting u = rei t and v = sei t into Eqs. (151) and (152), we obtain the characteristic

equations

irω = e−iωT (αr + βs) (153)

isω = e−iωT (γ r + δs). (154)
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Rearranging, these become
(

αe−iωT − iω βe−iωT

γ e−iωT δe−iωT − iω

) (
r

s

)

=
(

0

0

)

. (155)

Define

R ≡
(

αe−iωT − iω βe−iωT

γ e−iωT δe−iωT − iω

)

. (156)

A non-trivial solution for r and s requires that det R = 0. Separating the real and imaginary
parts, this means that

Re(det R) = cos(2ωT )(αδ − βγ ) − ω((α + δ) sin(ωT ) + ω) = 0 (157)

I m(det R) = − cos(ωT )(sin(ωT )(2αδ − 2βγ ) + ω(α + δ)) = 0. (158)

Equation (158) tells us that

sin(ωT ) = ω(α + δ)

2(βγ − αδ)
. (159)

(We neglect the alternate possibility that cos(ωT ) = 0.) Then, we substitute this back into
Eq. (157) to obtain

ω2 = αδ − βγ. (160)

Under the conditions (159) and (160), the solutions to Eqs. (149) and (150) will in general
have secular terms:

u = m1 cos t + m2 sin t + n1t cos t + n2t sin t (161)

v = m3 cos t + m4 sin t + n3t cos t + n4t sin t. (162)

We wish to derive conditions on the Ki in Eqs. (149) and (150) such that the ni are all equal
to 0.

We substitute the solutions (161) and (162) into Eqs. (149) and (150), and set the coeffi-
cients of sin t , cos t , t sin t and t cos t separately equal to 0 in both equations.

The coefficients of sin t and cos t give us a system of linear equations on the mi and ni ,
of the form

M · m + N · n = −k (163)

where m = (m1, . . . , m4)
T, n = (n1, . . . , n4)

T and k = (K1, . . . , K4)
T.

Similarly, the coefficients of t sin t and t cos t give us a system of linear equations on the
ni , of the form

S · n = 0. (164)

By row reducing in Mathematica, we find that both M and S have rank 2. To eliminate
the ni , we proceed as follows:

– Without loss of generality, set m3 = m4 = 0.
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– Solve any two independent rows of Eq. (164) for n3 and n4 in terms of n1 and n2. The
result is

n3 = n2ω cos(ωT ) − n1(α + ω sin(ωT ))

β
(165)

n4 = −n1ω cos(ωT ) + n2(α + ω sin(ωT ))

β
(166)

– Substitute these expressions for n3 and n4 into Eq. (163). This is now a full-rank linear
system of equations on m1, m2, n1 and n2. Solve this system to obtain expressions for
m1, m2, n1 and n2 in terms of the Ki .

– Substitute the expressions for n1 and n2 from the previous step into Eqs. (165) and (166).
Now we have all the ni in terms of the Ki .

– Set the ni expressions equal to 0. This gives a rank-2 system of equations on the Ki , so
it is possible to solve for K3 and K4 in terms of K1 and K2. The result is

K3 = γ (K1(α + ω sin(ωT )) + K2ω cos(ωT ))

α2 + 2αω sin(ωT ) + ω2 (167)

K4 = γ (K2(α + ω sin(ωT )) − K1ω cos(ωT ))

α2 + 2αω sin(ωT ) + ω2 . (168)

Using Eqs. (159) and (160), these reduce to

K3 = K1(δ − α) − K2
√−(α − δ)2 − 4βγ

2β
(169)

K4 = K1
√−(α − δ)2 − 4βγ + K2(δ − α)

2β
. (170)

If Eqs. (169) and (170) hold, then there are solutions of Eqs. (149) and (150) with no secular
terms.
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