
THE SATO-TATE LAW FOR DRINFELD MODULES
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ABSTRACT. We prove an analogue of the Sato-Tate conjecture for Drinfeld modules. Using ideas of Drinfeld,
J.-K. Yu showed that Drinfeld modules satisfy some Sato-Tate law, but did not describe the actual law.
More precisely, for a Drinfeld module φ defined over a field L, he constructs a continuous representation
ρ∞ : WL → D× of the Weil group of L into a certain division algebra, which encodes the Sato-Tate law.
When φ has generic characteristic and L is finitely generated, we shall describe the image of ρ∞ up to
commensurability. As an application, we give improved upper bounds for the Drinfeld module analogue
of the Lang-Trotter conjecture.

1. INTRODUCTION

1.1. Notation. We first set some notation that will hold throughout. Let F be a global function field.
Let k be its field of constants and denote by q the cardinality of k. Fix a place∞ of F and let A be the
subring consisting of those functions that are regular away from ∞. For each place λ of F , let Fλ be
the completion of F at λ. Let ordλ denote the corresponding discrete valuation on Fλ, Oλ the valuation
ring, and Fλ the residue field. Let d∞ be the degree of the extension F∞/k.

For a field extension L of k, let L be a fixed algebraic closure and let Lsep be the separable closure
of L in L. We will denote the algebraic closure of k in L by k. Let GalL = Gal(Lsep/L) be the absolute
Galois group of L. The Weil group WL is the subgroup of GalL consisting of those σ for which σ|k is
an integral power deg(σ) of the Frobenius automorphism x 7→ xq. The map deg: WL → Z is a group
homomorphism. Denote by Lperf the perfect closure of L in L.

Let L[τ] be the twisted polynomial ring with the commutation rule τ·a = aqτ for a ∈ L; in particular,
L[τ] is non-commutative if L 6= k. Identifying τ with X q, we find that L[τ] is the ring of k-linear
additive polynomials in L[X ]where multiplication corresponds to composition of polynomials. Suppose
further that L is perfect. Let L((τ−1)) be the skew-field consisting of twisted Laurent series in τ−1 (we
need L to be perfect so that τ−1 · a = a1/qτ holds). Define the valuation ordτ−1 : L((τ−1))→ Z∪ {+∞}
by ordτ−1(

∑

i aiτ
−i) = inf{i : ai 6= 0} and ordτ−1(0) = +∞. The valuation ring of ordτ−1 is L[[τ−1]],

i.e., the ring of twisted formal power series in τ−1.
For a ring R and a subset S, let CentR(S) be the subring of R consisting of those elements that

commute with S.

1.2. Drinfeld module background and the Sato-Tate law. A Drinfeld module over a field L is a ring
homomorphism

φ : A→ L[τ], a 7→ φa

such that φ(A) is not contained in the subring of constant polynomials. Let ∂ : L[τ] → L be the ring
homomorphism

∑

i biτ
i 7→ b0. The characteristic of φ is the kernel of ∂ ◦φ : A→ L; it is a prime ideal

of A. If the characteristic of φ is the zero ideal, then we say that φ has generic characteristic. Using
∂ ◦φ, we shall view L as an extension of k, and as an extension of F when φ has generic characteristic.
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The ring L[τ] is contained in the skew field Lperf((τ−1)). The map φ is injective, so it extends
uniquely to a homomorphism φ : F ,→ Lperf((τ−1)). The function v : F → Z∪ {+∞} defined by v(x) =
ordτ−1(φx) is a non-trivial discrete valuation that satisfies v(x) ≤ 0 for all non-zero x ∈ A. Therefore v
is equivalent to ord∞, and hence there exists a positive n ∈Q that satisfies

(1.1) ordτ−1(φx) = nd∞ ord∞(x)

for all x ∈ F×. The number n is called the rank of φ and it is always an integer. Since Lperf((τ−1)) is
complete with respect to ordτ−1 , the map φ extends uniquely to a homomorphism

φ : F∞ ,→ Lperf((τ−1))

that satisfies (1.1) for all x ∈ F×∞. This is the starting point for the constructions of Drinfeld in [Dri77].
Let F∞→ Lperf be the homomorphism obtained by composing φ|F∞ with the map that takes an element
in Lperf[[τ−1]] to its constant term. So φ induces an embedding of F∞ into Lperf, and hence into L itself.

Let Dφ be the centralizer of φ(A), equivalently of φ(F∞), in L((τ−1)). The ring Dφ is an F∞-algebra
via our extended φ. We shall see in §2 that Dφ is a central F∞-division algebra with invariant −1/n.
For each field extension L′/L, the ring EndL′(φ) of endomorphisms of φ is the centralizer of φ(A) in
L′[τ]. We have inclusions φ(A)⊆ EndL(φ)⊆ Dφ .

Following J.-K. Yu [Yu03], we shall define a continuous homomorphism

ρ∞ : WL → D×φ

that, as we will explain, should be thought of as the Sato-Tate law for φ. Let us briefly describe the
construction, see §2 for details. There exists an element u ∈ L((τ−1))× with coefficients in Lsep such
that u−1φ(A)u⊆ k((τ−1)). For σ ∈WL , we define

ρ∞(σ) := σ(u)τdeg(σ)u−1

where σ acts on the series u by acting on its coefficients. We will verify in §2 that ρ∞(σ) belongs
to D×

φ
, is independent of the initial choice of u, and that ρ∞ is indeed a continuous homomorphism.

Our construction of ρ∞ varies slightly from than that of Yu’s (cf. §2.2); his representation ρ∞ is only
defined up to an inner automorphism. When needed, we will make the dependence on the Drinfeld
module clear by using the notation ρφ,∞ instead of ρ∞.

Now consider a Drinfeld module φ : A→ L[τ] of rank n with generic characteristic and assume that
L is a finitely generated field. Choose an integral scheme X of finite type over k with function field
L. For a closed point x of X , denote its residue field by Fx . Using that A is finitely generated, we may
replace X with an open subscheme such that the coefficients of all elements of φ(A)⊆ L[τ] are integral
at each closed point x of X . By reducing the coefficients of φ, we obtain a homomorphism

φx : A→ Fx[τ].

After replacing X by an open subscheme, we may assume further that φx is a Drinfeld module of rank
n for each closed point x of X .

Let Pφ,x(T ) ∈ A[T] be the characteristic polynomial of the Frobenius endomorphism πx := τ[Fx :k] ∈
EndFx

(φx); it is the degree n polynomial that is a power of the minimal polynomial of πx over F . We
shall see that ρ∞ is unramified at x and that

Pφ,x(T ) = det(T I −ρ∞(Frobx))

where we denote by det: Dφ → F∞ the reduced norm. The representation ρ∞ can thus be used to study
the distribution of the coefficients of the polynomials Pφ,x(T ) with respect to the∞-adic topology.
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Though Yu showed that φ satisfies an analogue of Sato-Tate, he was unable to say what the Sato-Tate
law actually was. We shall address this by describing the image of ρ∞ up to commensurability. We first
consider the case where φ has no extra endomorphisms.

Theorem 1.1. Let φ : A → L[τ] be a Drinfeld module with generic characteristic where L is a finitely
generated field and assume that EndL(φ) = φ(A). The group ρ∞(WL) is an open subgroup of finite index
in D×

φ
.

We will explain the corresponding equidistribution result in §1.4 after a brief interlude on elliptic
curves in §1.3.

Now consider a general Drinfeld module φ : A→ L[τ] with generic characteristic, L finitely gener-
ated, and no restriction on the endomorphism ring of φ. The reader may safely read ahead under the
assumption that EndL(φ) = φ(A) (indeed, a key step in the proof is to reduce to the case where φ has
no extra endomorphisms).

The ring EndL(φ) is commutative and a projective module over A with rank m ≤ n, cf. [Dri74,
p.569 Corollary]. Also, E∞ := EndL(φ)⊗A F∞ is a field of degree m over F∞. Let Bφ be the centralizer
of EndL(φ), equivalently of E∞, in L((τ−1)); it is central E∞-division algebra with invariant −m/n.

There is a finite separable extension L′ of L for which EndL(φ) = EndL′(φ). We shall see that
ρ∞(WL′) commutes with EndL′(φ), and hence ρ∞(WL′) is a subgroup of B×

φ
. The following generaliza-

tion of Theorem 1.1 says that after this constraint it taken into account, the image of ρ∞ is, up to finite
index, as large as possible.

Theorem 1.2. Let φ : A → L[τ] be a Drinfeld module with generic characteristic where L is a finitely
generated field. The group ρ∞(WL)∩ B×

φ
is an open subgroup of finite index in B×

φ
. Moreover, the groups

ρ∞(WL) and B×
φ

are commensurable.

These theorems address several of the questions raised by J.K. Yu in [Yu03, §4].

1.3. Elliptic curves. We now recall the Sato-Tate conjecture for elliptic curves over a number field. We
shall present it in a manner so that the analogy with Drinfeld modules is transparent; in particular, this
strengthens the analogy presented in [Yu03].

Let H be the real quaternions; it is a central R-division algebra with invariant −1/2. We will denote
the reduced norm by det: H→ R. Let H1 be the group of quaternions of norm 1.

For a group H, we shall denote the set of conjugacy classes by H]. Now suppose that H is a compact
topological group and let µ be the Haar measure on H normalized so that µ(H) = 1. Using the natural
map f : H → H], we give H] the quotient topology. The Sato-Tate measure on H] is the measure µST
for which µST(U) = µ( f −1(U)) for all open subsets U ⊇ H].

Fix an elliptic curve E defined over a number field L, and let S be the set of non-zero prime ideals
of OL for which E has bad reduction. For each non-zero prime ideal p /∈ S of OL , let Ep be the elliptic
curve over Fp = OL/p obtained by reducing E modulo p, and let πp be the Frobenius endomorphism
of Ep/Fp. The characteristic polynomial of πp is the polynomial PE,p(T ) ∈ Q[T] of degree 2 that is a
power of the minimal polynomial of πp over Q. We have PE,p(T ) = T2 − ap(E)T + N(p) where N(p) is
the cardinality of Fp and ap(E) is an integer that satisfies |ap(E)| ≤ 2N(p)1/2.

Suppose that E/L does not have complex multiplication, that is, EndL(E) = Z. For each prime
p /∈ S, there is a unique conjugacy class θp of H× such that PE,p(T ) = det(T I − θp) (this uses that

ap(E)2 − 4N(p) ≤ 0). We can normalize these conjugacy classes by defining ϑp = θp/
p

N(p); it is the

unique conjugacy class of H1 for which det(T I − ϑp) = T2 − (ap(E)/
p

N(p))T + 1. The Sato-Tate
3



conjecture for E/L predicts that the conjugacy classes {ϑp}p/∈S are equidistributed in H]1 with respect to

the Sato-Tate measure, i.e., for any continuous function f : H]1→ C, we have

lim
x→+∞

1

|{p /∈ S : N(p)≤ x}|

∑

p/∈S, N(p)≤x

f (ϑp) =

∫

H]1

f (ξ)dµST(ξ).

Note that H1 and SU2(C) are maximal compact subgroups of (H⊗R C)× ∼= GL2(C) and are thus con-
jugate. So our quaternion formulation agrees with the more familiar version dealing with conjugacy
classes in SU2(C). [The Sato-Tate conjecture has been proved in the case where L is totally real,
cf. [CHT08,Tay08,HSBT10]]

Remark 1.3. The analogous case is a Drinfeld module φ : A → L[τ] with generic characteristic and
rank 2 where L is a global function field. The algebra Dφ is a central F∞-division algebra with invariant
−1/2. For each place p 6= ∞ of good reduction, there is a unique conjugacy class θp of D×

φ
such that

det(T I − θp) = Pφ,p(T ). This information is all encoded in our function ρ∞, since θp is the conjugacy
class containing ρ∞(Frobp). We will discuss the equidistribution law in §1.4; it will be a consequence
of the function field version of the Chebotarev density theorem.

Now suppose that E/L has complex multiplication, and assume that R := EndL(E) equals EndL(E).
The ring R is an order in the quadratic imaginary field K := R⊗Z Q. For p /∈ S, reduction of endomor-
phism rings modulo p induces an injective homomorphism K ,→ EndFp(Ep)⊗ZQ whose image contains
πp; let θp be the unique element of K that maps to πp.

From the theory of complex multiplication, there is a continuous homomorphism

ρE,∞ : WL → (K ⊗Q R)× = (EndL(E)⊗Z R)×

such that ρE,∞(Frobp) = θp for all p /∈ S, where WL is the Weil group of L; see [Gro80, Chap. 1 §8].
(Using the Weil group here is excessive; the image is abelian, so the representation factors through W ab

L
which in turn is isomorphic to the idele class group of L.) Choose an isomorphism C= K⊗QR. We can

normalize by defining ϑp = θp/
p

N(p) which belongs to the group S of complex numbers with absolute
value 1. Then the Sato-Tate law for E/L says that the elements {ϑp}p/∈S are equidistributed in S. This
closely resembles the case where φ is a Drinfeld module of rank 2 and EndL(φ) has rank 2 over A; we
then have a continuous homomorphism ρ∞ : WL → B×

φ
= (EndL(φ)⊗A F∞)×.

1.4. Equidistribution law. Let φ : A → L[τ] be a Drinfeld module of rank n. To ease notation, set
D = Dφ . Let OD be the valuation ring of D with respect to the valuation ordτ−1 : D → Z ∪ {+∞}. The
continuous homomorphism ρ∞ : WL → D× induces a continuous representation

bρ∞ : GalL →ÓD×

where ÓD× is the profinite completion of D×.
Now suppose that L is finitely generated and that EndL(φ) = φ(A) (similar remarks will hold with-

out the assumption on the endomorphism ring). Choose a scheme X as in §1.2 and let |X | be its set of
closed points. For a subset S of |X |, define FS (s) =

∑

x∈S N(x)−s where N(x) is the cardinality of the
residue field Fx . The Dirichlet density of S is the value lims→d+ FS (s)/F|X |(s), assuming the limit ex-
ists, where d is the transcendence degree of L (see [Pin97, Appendix B] for details on Dirichlet density).

Let µ be the Haar measure on H := bρ∞(GalL) normalized so that µ(H) = 1. Take an open subset U
of H that is stable under conjugation. The Chebotarev density theorem then implies that the set

{x ∈ |X | : bρ∞(Frobx)⊆ U}
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has Dirichlet density µ(U), cf. [Yu03, Corollary 3.5]. This equidistribution law can be viewed as the
analogue of Sato-Tate. The choice of X is not important since different choices will agree away from a
set of points with density 0.

Theorem 1.1 implies that the group H is an open subgroup of ÓD×. So for a “random” x ∈ |X |, the
element ρ∞(Frobx) will resemble a random conjugacy class of H, and hence a rather generic element
of ÓD×.

Fix a closed subgroup V of F×∞ that does not lie in O ×∞. That V is unbounded in the∞-adic topology
implies that the quotient group D×/V is compact. So as a quotient of bρ∞, we obtain a Galois repre-
sentation ρ̃ : GalL → D×/V. The image ρ̃(GalL) is thus an open subgroup of finite index in D×/V and
as above, the Chebotarev density theorem gives an equidistribution law in terms of Dirichlet density.
These representations can be viewed as analogues of the normalization process described in §1.3 for
non-CM elliptic curves; observe that H×/R>0 is naturally isomorphic to H1 where R>0 is the group of
positive real numbers.

Remark 1.4. We have used Dirichlet density instead of natural density because the finite extensions of
L arising from ρ∞ are not geometric, i.e., the field of constants will grow. Natural density can be used
if one keeps in mind that ρ∞(Gal(Lsep/Lk)) = ρ∞(WL)∩O ×D .

There are many possibilities for the image of ρ∞ and hence there are many possible Sato-Tate laws
for a Drinfeld module φ; this contrasts with elliptic curves where there are only two expected Sato-
Tate laws. It would be very interesting to describe the possible images of ρ∞ as we allow φ to vary
over all Drinfeld modules with a fixed rank that give rise to the same embedding F ,→ L and have
EndL(φ) = φ(A) (and in particular determine whether or not there are finitely many possibilities).

To give a concrete description of an equidistribution law, we now focus on a special case: the dis-
tribution of traces of Frobenius when ρ∞ is surjective. We shall show in §1.7 that there are rank 2
Drinfeld modules with surjective ρ∞.

For each closed point x of X , we define the degree of x to be deg(x) = [Fx : F∞]. For each integer
d ≥ 1, let |X |d be the set of degree d closed points of X . Note that |X |d is empty if d is not divisible by
[FL : F∞] where FL is the field of constants of L.

For each closed point x of X , let ax(φ) ∈ A be the trace of Frobenius of φ at x; it is (−1)n−1 times
the coefficient of T n−1 in Pφ,x(T ). We have ax(φ) = tr(ρ∞(Frobx)), where tr: D→ F∞ is the reduced
trace map. The Drinfeld module analogue of the Hasse bound says that ord∞(ax(φ)) ≥ −deg(x)/n,
and hence ax(φ)πbdeg(x)/nc belongs to O∞ where π is a uniformizer of F∞.

Theorem 1.5. Let φ : A→ L[τ] be a Drinfeld module of rank n≥ 2 with generic characteristic where L is
finitely generated. Assume that ρ∞(WL) = D×

φ
.

Let π be a uniformizer for F∞ and let µ be the Haar measure of O∞ normalized so that µ(O∞) = 1. Let
S be the set of positive integers that are divisible by [FL : F∞]. Fix a scheme X as in §1.2.

(i) For an open subset U of O∞, we have

lim
d∈S , d 6≡0 (mod n)

d→+∞

#{x ∈ |X |d : ax(φ)πbd/nc ∈ U}
#|X |d

= µ(U).

(ii) Let ν be the measure on O∞ such that if U is an open subset of one of the cosets a+πO∞ of O∞,
then

ν(U) =

¨

(qd∞(n−1)− 1)/(qd∞n− 1) ·µ(U) if U ⊆ πO∞,
qd∞(n−1)/(qd∞n− 1) ·µ(U) otherwise.
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For an open subset U of O∞, we have

lim
d∈S , d≡0 (mod n)

d→+∞

#{x ∈ |X |d : ax(φ)πbd/nc ∈ U}
#|X |d

= ν(U).

Remark 1.6. Theorem 1.5(i) proves much of a conjecture of E.-U. Gekeler [Gek08, Conjecture 8.18];
which deals with rank 2 Drinfeld modules over L = F = k(t) with π= t−1. (Gekeler’s assumptions are
weaker than EndL(φ) = φ(A) with ρ∞ surjective).

1.5. Application: Lang-Trotter bounds. Let φ : A→ L[τ] be a Drinfeld module of rank n with generic
characteristic. For simplicity, we assume that L is a global function field and that EndL(φ) = φ(A). Fix
X as in §1.2.

Fix a value a ∈ A, and let Pφ,a(d) be the number of closed points x of X of degree d such that
ax(φ) = a (see the previous section for definitions). We will prove the following bound for Pφ,a(d)
with our Sato-Tate law.

Theorem 1.7. With assumptions as above, we have

Pφ,a(d)� qd∞(1−1/n2)d

where the implicit constant depends only on φ and ord∞(a).

The most studied case is n = 2 which is analogous to the case of non-CM elliptic curves (see Re-
mark 1.8). With F = k(t), A= k[t] and L = F , A.C. Cojocaru and C. David have shown that Pφ,a(d)�
q(4/5)d/d1/5 and Pφ,0(d)� q(3/4)d where the implicit constant does not depend on a (this also can be
proved with the Sato-Tate law). For n = 2, the above theorem gives Pφ,a(d) � q(3/4)d for all a. For
arbitrary rank n ≥ 2, David [Dav01] proved that Pφ,a(d)� qθ(n)d/d where θ(n) := 1− 1/(2n2 + 4n).
These earlier bounds were proved using the λ-adic representations (λ 6=∞) associated to φ.

Remark 1.8. Let E be a non-CM elliptic curve over Q. Fix an integer a, and let PE,a(x) be the number
of primes p ≤ x for which E has good reduction and ap(E) = a. The Lang-Trotter conjecture says
that there is a constant CE,a ≥ 0 such that PE,a(x) ∼ CE,a · x1/2/ log x as x → +∞; see [LT76] for
heuristics and a description of the conjectural constant (if CE,a = 0, then the asymptotic is defined to
mean that PE,a(x) is bounded as a function of x). Under GRH, Murty, Murty and Saradha showed that
PE,a(x)� x4/5/(log x)1/5 for a 6= 0 and PE,0(x)� x3/4 [MMS88].

Assuming a very strong form of the Sato-Tate conjecture for E (i.e., the L-series attached to symmet-
ric powers of E have analytic continuation, functional equation and satisfy the Riemann hypothesis),
V. K. Murty showed that PE,a(x) � x3/4(log x)1/2, see [Mur85]. It was this result that suggested our
Sato-Tate law could give improved bounds.

Let |X |d be the set of closed points of X with degree d. We shall assume from now on that d is a
positive integer divisible by [FL : k] where FL is the field of constants in L (otherwise, |X |d = ; and
Pφ,a(d) = 0).

Let us give a crude heuristic for an upper bound of Pφ,a(d). Fix a point x ∈ |X |d . By the Drinfeld
module analogue of the Hasse bound, we have ord∞(ax(φ)) ≥ −d/n. The Riemann-Roch theorem
then implies that |{ f ∈ A : ord∞( f ) ≥ −d/n}| = qbd/ncd∞+1−g for all sufficiently large d, where g is the
genus of F . So assuming ax(φ) is a “random” element of the set { f ∈ A : ord∞( f ) ≥ −d/n}, we find
that the “probability” that ax(φ) equals a is O(1/qd∞·d/n). So we conjecture that

Pφ,a(d)�
∑

x∈|X |d

1

qd∞·d/n
= #|X |d ·

1

qd∞·d/n
�

qd∞·d

d

1

qd∞·d/n
=

qd∞(1−1/n)d

d
.
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Remark 1.9. In this paper, we are only interested in upper bounds. The most optimistic analogue of the
Lang-Trotter conjecture would be the following: there is a positive integer N and constants Cφ,a(d)≥ 0
such that

Pφ,a(d)∼ Cφ,a(d) · qd∞(1−1/n)d/d

as d → +∞ where Cφ,a(d) depends only on φ, a and d modulo N . The Sato-Tate conjecture for φ
would be an ingredient for an explicit description of the constant Cφ,a(d). (The conjecture is in general
false if we insist that N = 1. For rank 2 Drinfeld modules over k(t) and a = 0, [Dav96, Theorem 1.2]
suggests that N is usually 2.)

To prove Theorem 1.7, we will consider the image of ρ∞ in the quotient D×
φ
/(F×∞(1+π

jODφ )) where

π is a uniformizer of F∞ and j ≈ d/n2.

1.6. Compatible system of representations. Let φ : A→ L[τ] be a Drinfeld module of rank n. For
a non-zero ideal a of A, let φ[a] be the group of b ∈ L such that φa(b) = 0 for all a ∈ a (where we
identify each φa with the corresponding polynomial in L[X ]). The group φ[a] is an A/a-module via φ
and if a is not divisible by the characteristic of φ, then φ[a] is a free A/a-module of rank n. For a fixed
place λ 6=∞ of F , let pλ be the corresponding maximal ideal of Oλ. The λ-adic Tate module of φ is
defined to be

Tλ(φ) := HomAλ

�

Fλ/Oλ, lim−→
i

φ[pi
λ]
�

.

If pλ is not the characteristic of φ, then Tλ(φ) is a free Oλ-module of rank n. There is a natural Galois
action on Tλ(φ) which gives a continuous homomorphism

ρλ : GalL → AutOλ(Tλ(φ)).

Now suppose that φ has generic characteristic and that L is a finitely generated. Take a scheme X
as in §1.2. For a closed point x of X , let λx be the place of F corresponding to the characteristic of φx .
For a place λ 6= λx of F , we have

Pφ,x(T ) = det(T I −ρλ(Frobx))

(for λ 6=∞, we are using AutOλ(Tλ(φ))
∼= GLn(Oλ) and [Gos92, Theorem 3.2.3(b)]). This property is

one of the reasons it makes sense to view ρ∞ as a member of the family of compatible representations
{ρλ}.

There is a natural map EndL(φ) ,→ EndOλ(Tλ(φ)) and the image of ρλ commutes with EndL(φ).
We can now state the following important theorem of R. Pink; it follows from [Pin97, Theorem 0.2]
which is an analogue of Serre’s open image theorem for elliptic curves [Ser72]. Theorem 1.2 can thus
be viewed as the analogue of this theorem for the place∞; our proof will closely follow Pink’s.

Theorem 1.10 (Pink). Let φ : A→ L[τ] be a Drinfeld module with generic characteristic, and assume
that the field L is finitely generated. Then for any place λ 6=∞ of F, the image of

ρλ : GalL → AutOλ(Tλ(φ))

is commensurable with CentEndOλ (Tλ(φ))
(EndL(φ))

×.

Example 1.11 (Explicit class field theory for rational function fields). As an example of the utility of
viewing ρ∞ as a legitimate member of the family {ρλ}λ, we give an explicit description of the maximal
abelian extension Fab in F sep of the field F = k(t), where k is a finite field with q elements. We will
recover the description of Fab of Hayes in [Hay74]. Using the ideas arising from this paper, we have
given a description of Fab for a general global function field F , see [Zyw13].

Let ∞ be the place of F correspond to the valuation for which ord∞( f ) = −deg f (t) for each non-
zero f ∈ k[t]; the element t−1 is a uniformizer for O∞. The ring of rational functions that are regular
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away from∞ is A= k[t]. Letφ : A→ F[τ] be the homomorphism of k-algebras that satisfiesφt = t+τ;
this is a Drinfeld module of rank 1 called the Carlitz module.

If p is a monic irreducible polynomial of k[t], then ρλ(Frobp) = p for every place λ of F except
for the one corresponding to p (for λ 6= ∞, this follows from [Hay74, Cor. 2.5]). In particular, one
finds that the image of ρ∞ : WF → D×

φ
= F×∞ must lie in 〈t〉 · (1+ t−1O∞). For λ 6= ∞, we make the

identification AutOλ(Tλ(φ)) = O
×
λ

. Combining our λ-adic representations together, we obtain a single
continuous homomorphism

∏

λ

ρλ : W ab
F →

�
∏

λ 6=∞
O ×λ
�

× 〈t〉 · (1+ t−1O∞).

Let A×F be the idele group of F . The homomorphism (
∏

λ 6=∞O
×
λ
) × 〈t〉 · (1 + t−1O∞) → A×F /F

×

obtained by composing the inclusion into A×F with the quotient map is an isomorphism. Composing
∏

λρλ with this map, we obtain a continuous homomorphism

β : W ab
F → A×F /F

×.

The map β embodies explicit class field theory for F . Indeed, it is an isomorphism and the homomor-
phism W ab

F
∼−→ A×F /F

×, s 7→ β(s−1) is the inverse of the Artin map of class field theory! See Remark 3.5,
for further details. In particular, observe that the homomorphism β does not depend on our choice of
∞ and φ.

By taking profinite completions, we obtain an isomorphism

Gal(Fab/F)
∼−→
�
∏

λ 6=∞
O ×λ
�

×Ó〈t〉 · (1+ t−1O∞).

of profinite groups. This isomorphism allows us to view Fab as the compositum of three linearly disjoint
fields. The first is the union K1 of the fields F(φ[a]) where a varies over the non-zero ideals of A,
see [Hay74] for details; these extensions were first constructed by Carlitz. We have Gal(K1/F) ∼=
∏

λ 6=∞O
×
λ

. The second extension is the the field K2 = k(t); it satisfies Gal(K2/F)∼= Gal(k/k)∼= bZ.
Finally, let us describe the third field K3 ⊂ Fab, i.e., the subfield for which ρ∞ induces an isomorphism

Gal(K3/F)
∼−→ 1+ t−1O∞. We first find a series u=

∑∞
i=0 aiτ

−i ∈ F[[τ−1]]× for which u−1φtu= τ, and
hence u−1φ(A)u⊆ k((τ−1)). Expanding out φtu= uτ, this translates into the equations:

a0 ∈ k× and aq
j+1− a j+1 =−ta j for j ≥ 0.

Set a0 = 1 and recursively find a j ∈ F sep that satisfy these equations. We then have a chain of fields
F = F(a0) ⊆ F(a1) ⊆ F(a2) ⊆ . . .. Note that the field F(a j) does not depend on the choice of a j and
[F(a j) : F] ≤ q j . For each j ≥ 0, let L j be the subfield of K3 for which ρ∞ induces an isomorphism

Gal(L j/F)
∼−→ (1+ t−1O∞)/(1+ t−( j+1)O∞). The field L j depends only on u (mod τ−( j+1)F[[τ−1]]), so

we have L j ⊆ F(a j). Since q j = [L j : F]≤ [F(a j) : F]≤ q j , we deduce that

K3 =
⋃

j≥0

F(a j) and Gal(F(a j)/F)∼= (1+ t−1O∞)/(1+ t−( j+1)O∞).

In [Hay74], Hayes constructs the three fields K1, K2, K3 and then showed that their compositum is Fab.
The field K3 is constructed by consider the torsion points of another Drinfeld module but starting with
the ring k[t−1] instead. The advantage of including ρ∞ is that the proof is easier and that the fields K2
and K3 arise naturally from our canonical map β .
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1.7. Rank 2 Drinfeld modules with maximal image. Fix a finite field k of odd order q. Take A= k[t],
F = k(t) and L = k(t). Fix b1 ∈ L and b2 ∈ L×. Let φ : A→ L[τ] be the Drinfeld module that is the
homomorphism of k-algebras for which φt = t + b1τ+ b2τ

2. The Drinfeld module φ has rank 2 and
hence we have the corresponding representation

ρ∞ : WL → D×φ ,

where Dφ is a division algebra over F∞ with invariant −1/2.

Let L′ ⊆ Lsep be the compositum of L and k. Take any δ and a1 ∈ Lsep that satisfies

(1.2) δq2−1 = 1/b2 and aq2

1 − a1 =−δq−1 b1.

Note that the field extension L′(δ, a1)/L′ has degree at most (q2−1)q2. The following gives a criterion
for ρ∞ to be surjective.

Theorem 1.12. We have ρ∞(WL) = D×
φ

if and only if the extension L′(δ, a1)/L′ has degree (q2− 1)q2.

Using the Hilbert irreducibility theorem, Theorem 1.12 shows that ρ∞(WL) = D×
φ

for “most” b1 ∈ L
and b2 ∈ L×.

Example 1.13. Consider φ as above with b1 = 1 and b2 = t−1. Let v : (Lsep)×→Q be a valuation that
extends the valuation ord∞ on L = k(t). We have v(δ) = −v(b2)/(q2 − 1) = −1/(q2 − 1). We have
∏

b(a1 + b) = aq2

1 − a1 = −δq−1, where b runs over the elements of the quadratic extension of k in
Lsep. Since v(δq−1) < 0, we find that v(a1+ b) is negative for some b and hence v(a1) = v(a1+ b) for
all b. Therefore, v(a1) = v(δq−1)/q2 = −1/((q+ 1)q2). The subgroup v(L(δ, a1)×) of Q thus contains
((q2 − 1)q2)−1Z and hence L(δ, a1)/L has degree at least (q2 − 1)q2. It is clear that L(δ, a1)/L has
degree at most (q2 − 1)q2, so L(δ, a1)/L has degree (q2 − 1)q2 and the place ∞ is totally ramified in
this extension. Therefore, L′(δ, a1)/L′ must also have degree (q2− 1)q2. By Theorem 1.12, we deduce
that ρ∞(WL) = D×

φ
.

1.8. Overview. In §2, we shall define our Sato-Tate representation ρ∞ and prove its basic properties.
In §3, we prove the rank 1 case of Theorem 1.2. The proof essentially boils down to an application

of class field theory. The rank 1 case will also be a key ingredient in the general proof of Theorem 1.2.
In §4, we shall prove an∞-adic version of the Tate conjecture. The prove entails replacing φ with its

associated A-motive (though we will not use that terminology), and then using Tamagawa’s analogue
of the Tate conjecture. We have avoided the temptation to define a Sato-Tate law for general A-motives
(the corresponding openness theorem would likely be extremely difficult since the general analogue of
Theorem 1.10 remains open).

In §5, we prove Theorem 1.1. Our proof uses most of the ingredients from Pink’s proof of Theo-
rem 1.10. In §6, we deduce Theorem 1.2 from Theorem 1.1.

Finally, in sections 7, 8 and 9, we shall prove Theorems 1.5, 1.7 and 1.12, respectively.

Acknowledgements. Thanks to Bjorn Poonen and Lenny Taelman.

2. CONSTRUCTION OF ρ∞

Let φ : A→ L[τ] be a Drinfeld module. As noted in §1.2, φ extends uniquely to a homomorphism

φ : F∞ ,→ Lperf((τ−1))

that satisfies (1.1) for all non-zero x ∈ F∞.
Our first task is to prove that there exists a series u ∈ L((τ−1))× for which u−1φ(F∞)u ⊆ k((τ−1));

this is shown in [Yu03, §2], but we will reprove it in order to observe that the coefficients of u actually
lie in Lsep. Fix a non-constant y ∈ A. We have φy =

∑h
j=0 b jτ

j with b j ∈ L and bh 6= 0, where
9



h := −nd∞ ord∞(y). Choose a solution δ ∈ Lsep of δqh−1 = 1/bh. Set a0 = 1 and recursively solve for
a1, a2, a3 . . . ∈ L by the equation

(2.1) aqh

i − ai =−
∑

0≤ j≤h−1
i+ j−h≥0

δq j−1 b ja
q j

i+ j−h.

The ai belong to Lsep since (2.1) is a separable polynomial in ai and the values b j and δ belong to Lsep.

Lemma 2.1. With δ and ai as above, the series u := δ(
∑∞

i=0 aiτ
−i) ∈ L((τ−1))× has coefficients in Lsep

and satisfies u−1φ(A)u⊆ k((τ−1)).

Proof. Expanding out the series φyu and uτh and comparing, we find that φyu = uτh (use (2.1) and

δqh−1 = 1/bh). Let kh be the degree h extension of k in k. The elements of the ring L((τ−1)) that
commute with τh are kh((τ−1)). Since τh = u−1φyu belongs to the commutative ring u−1φ(F∞)u, we
find that u−1φ(F∞)u is a subset of kh((τ−1)). Thus u ∈ L((τ−1))× has coefficients in Lsep and satisfies
u−1φ(F∞)u⊆ k((τ−1)). �

Choose any series u ∈ L((τ−1))× that satisfies u−1φ(A)u ⊆ k((τ−1)) and has coefficients in Lsep.
Define the function

ρ∞ : WL → D×φ , σ 7→ σ(u)τdeg(σ)u−1.

Recall that Dφ is the centralizer of φ(A) in L((τ−1)). The following lemma gives some basic properties
of ρ∞; we will give the proof in §2.1. In particular, ρ∞ is a well-defined continuous homomorphism
that does not depend on the initial choice of u. Our construction varies slightly from Yu’s, cf. §2.2.

Lemma 2.2.

(i) There is a series u ∈ L((τ−1))× that satisfies u−1φ(F∞)u ⊆ k((τ−1)), and any such u has coeffi-
cients in Lsep.

(ii) The ring Dφ is a central F∞-division algebra with invariant −1/n.
(iii) Fix u as in (i) and take any σ ∈WL . The series σ(u)τdeg(σ)u−1 belongs to D×

φ
and does not depend

on the initial choice of u.
(iv) For σ ∈WL , we have ordτ−1 ρ∞(σ) =−deg(σ).
(v) The map ρ∞ : WL → D×

φ
is a continuous group homomorphism.

(vi) The group ρ∞(WL) commutes with EndL(φ).

Lemma 2.3. Assume that φ has generic characteristic, L is finitely generated, and let X be a scheme as in
§1.2. Then the homomorphism ρ∞ : WL → D×

φ
is unramified at each closed point of x of X and we have

Pφ,x(T ) = det(T I −ρ∞(Frobx)).

Proof. These results follow from [Yu03]; they only depend on ρ∞ up to conjugacy so we may use Yu’s
construction (see §2.2). Note that Lemma 3.2 of [Yu03] should use the arithmetic Frobenius instead of
the geometric one; the contents of that lemma have been reproved below in Example 2.4. �

Example 2.4. Let φ : A → L[τ] be a Drinfeld module of rank n and L a finite field. The group WL

is cyclic and generated by the automorphism FrobL : x 7→ x |L|. We have Lsep = k, and hence u := 1
satisfies the condition of Lemma 2.2(i). Thus ρ∞(σ) = σ(u)τdegσu−1 = τdeg(σ) for all σ ∈WL , and in
particular, ρ∞(FrobL) = τ[L:k]. Note that π := τ[L:k] belongs to EndL(φ).

Let E be the subfield of EndL(φ)⊗A F generated by F and π. Let fφ ∈ F[T] be the minimal polyno-
mial of π over F . The characteristic polynomial Pφ(T ) of π is the degree n polynomial that is a power
of fφ(T ).
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By [Dri77, Prop. 2.1], E ⊗F F∞ is a field and hence fφ is also the minimal polynomial of π over F∞.
The characteristic polynomial of the F∞-linear map Dφ → Dφ , a 7→ πa is thus a power of fφ . This
implies that the degree n polynomial det(T I−π) is a power of fφ , and hence equals Pφ(T ). Therefore,

Pφ(T ) = det(T I −ρ∞(FrobL)).

2.1. Proof of Lemma 2.2. Fix a uniformizer π of F∞. There is a unique embedding ι : F∞→ k((τ−1))
of rings that satisfies the following conditions:

• ι(x) = x for all x ∈ F∞,
• ι(π) = τ−nd∞ ,
• ordτ−1(ι(x)) = nd∞ ord∞(x) for all x ∈ F×∞.

Let kd∞ and knd∞ be the degree d∞ and nd∞ extensions of k, respectively, in k. We have ι(F∞) =
kd∞((τ

−nd∞)). Let Dι be the centralizer of ι(F∞) in L((τ−1)); it is an F∞-algebra via ι. Using that kd∞
and τnd∞ are in ι(F∞), we find that Dι = knd∞((τ

−d∞)). One can verify that Dι is a central F∞-division
algebra with invariant −1/n.

By Lemma 2.1, there is a series u ∈ L((τ−1))× with coefficients in Lsep such that u−1φ(F∞)u ⊆
k((τ−1)). Take any v ∈ L((τ−1))× that satisfies v−1φ(F∞)v ⊆ k((τ−1)). By [Yu03, Lemma 2.3], there
exist w1 and w2 ∈ k[[τ−1]]× such that

ι(x) = w−1
1 (u

−1φxu)w1 and ι(x) = w−1
2 (v

−1φx v)w2

for all x ∈ F∞. So for all x ∈ F∞, we have (uw1)ι(x)(uw1)−1 = φx = (vw2)ι(x)(vw2)−1 and hence

(w−1
2 v−1uw1)ι(x)(w

−1
2 v−1uw1)

−1 = ι(x).

Therefore w−1
2 v−1uw1 belongs to Dι ⊆ k((τ−1)), and hence v = uw for some w ∈ k((τ−1))×. The

coefficients of v lie in Lsep since the coefficients of u lie in Lsep and w has coefficients in the perfect field
k ⊆ Lsep. This completes the proof of (i).

We have shown that the series g := uw1 ∈ L((τ−1)) satisfies ι(x) = g−1φx g for all x ∈ F∞. The map
Dφ → Dι, f 7→ g−1 f g is an isomorphism of F∞-algebras. Therefore, Dφ is also a central F∞-division
algebra with invariant −1/n; this proves (ii).

Take any σ ∈WL . Since w has coefficients in k, we have σ(w) = τdeg(σ)wτ−deg(σ) and hence

σ(v)τdeg(σ)v−1 = σ(uw)τdeg(σ)(uw)−1

= σ(u)σ(w)τdeg(σ)w−1u−1

= σ(u)(τdeg(σ)wτ−deg(σ))τdeg(σ)w−1u−1

= σ(u)τdeg(σ)u−1.

This proves that ρ∞(σ) := σ(u)τdeg(σ)u−1 is independent of the initial choice of u.
To complete the proof of (iii), we need only show that ρ∞(σ) commutes with φ(A). We will now

prove (vi), which says that ρ∞(σ) commutes with the even larger ring EndL(φ). Take any non-zero
f ∈ EndL(φ). Since f commutes with φ(A), and hence with φ(F∞), we have ( f u)−1φ(F∞)( f u) ⊆
k((τ−1)). Since ρ∞(σ) does not depend on the choice of u, we have

ρ∞(σ) = σ( f u)τdeg(σ)( f u)−1 = σ( f )σ(u)τdeg(σ)u−1 f −1 = σ( f )ρ∞(σ) f
−1.

Since f has coefficients in L, we deduce that ρ∞(σ) f = f ρ∞(σ), as desired.
For part (iv), note that

ordτ−1(ρ∞(σ)) = ordτ−1(σ(u)) + ordτ−1(τdeg(σ))− ordτ−1(u)

= ordτ−1(u)− deg(σ)− ordτ−1(u) =−deg(σ).
11



It remains to prove part (v). We first show that ρ∞ is a group homomorphism. For σ1,σ2 ∈WL , we
have

ρ∞(σ1σ2) = (σ1σ2)(u)τ
deg(σ1σ2)u−1 = σ1(σ2(u))τ

deg(σ1)σ2(u)
−1 ·σ2(u)τ

deg(σ2)u−1 = ρ∞(σ1)ρ∞(σ2).

We have used part (iii) along with the observation that if u−1φ(A)u⊆ k((τ−1)), thenσ2(u)−1φ(A)σ2(u)⊆
k((τ−1)).

Finally, we prove that ρ∞ is continuous. By Lemma 2.1, we may assume that u is of the form
∑∞

i=0δaiτ
−i with a0 = 1 and δ 6= 0. Let ODφ be the valuation ring of ordτ−1 : Dφ → Z ∪ {+∞}; it

is a local ring. By part (iv), we need only show that the homomorphism Gal(Lsep/Lk)
ρ∞−→ O ×Dφ is

continuous. It thus suffices to show that for each j ≥ 1, the homomorphism

β j : Gal(Lsep/Lk)
ρ∞−→ O ×Dφ → (ODφ/π

jODφ )
×

has open kernel, where π is a fixed uniformizer of F∞. For each σ ∈ Gal(Lsep/Lk), we have ρ∞(σ) =
σ(u)u−1. One can check that β j(σ) = 1, equivalently ordτ−1(ρ∞(σ)− 1) ≥ ordτ−1(φ j

π) = nd∞ j, if and
only if ordτ−1(σ(u)u−1 − 1) = ordτ−1(σ(u)− u) is at least nd∞ j. Thus the kernel of β j is Gal(F sep/L j)
where L j is the finite extension of Lk generated by the set {δ} ∪ {ai}0≤i<nd∞ j .

2.2. Yu’s construction. Let us relate our representation ρ∞ to that given by J.K. Yu in [Yu03]. Assume
that L is perfect. Let ι : F∞ → k((τ−1)) be the embedding of §2.1. Choose a series u0 ∈ L((τ−1))× for
which ι(x) = u0φxu−1

0 for all x ∈ F∞. The representation defined in [Yu03, §2.5] is

%∞ : WL → D×ι , σ 7→ u0σ(u0)
−1τdeg(σ)

where Dι is the central F∞-division algebra with invariant −1/n described at the beginning of §2.1.
The connection with our representation is that

ρ∞(σ) = σ(u
−1
0 )τ

deg(σ)(u−1
0 )
−1 = σ(u0)

−1τdeg(σ)u0 = u−1
0 %∞(σ)u0

for all σ ∈ WL . A different choice of u0 will change %∞ by an inner automorphism of D×ι . (For
L not perfect, one can construct ρ∞ : WLperf → D×ι as above, and then use the natural isomorphism
WL =WLperf .)

2.3. Aside: Formal modules. Let us quickly express the above construction in terms of formal modules;
this will not be needed elsewhere. Let φ : A→ L[τ] be a Drinfeld module of rank n and assume that L
is perfect. Then φ extends uniquely to a homomorphism φ : F∞ ,→ L((τ−1)) that satisfies (1.1) for all
non-zero x ∈ F∞. In particular, restricting to O∞ defines a homomorphism O∞→ L[[τ−1]].

To each formal sum f =
∑

i∈Z aiτ
i with ai ∈ L, we define its adjoint by f ∗ =

∑

i∈Z a1/qi

i τ−i . For
f1, f2 ∈ L[[τ−1]], we have ( f1 f2)∗ = f ∗2 f ∗1 and ( f ∗1 )

∗ = f1. Define the map

ϕ : O∞→ L[[τ]], x 7→ φ∗x .

Using that O∞ is commutative, we find that ϕ is a homomorphism that satisfies

ordτϕ(x) = nd∞ ord∞(x)

for all x ∈ O∞. In the language of [Dri74, §1D], ϕ is a formal O∞-module of height n.
If one fixes a formal O∞-module ι : O∞ → k[[τ]], then by [Dri74, Prop. 1.7(1)] there is a v ∈

L[[τ]]× such that v−1ϕ(x)v = ι(x) for x ∈ O∞. Let Dϕ be the centralizer of ϕ(O∞) in L((τ)). By
[Dri74, Prop. 1.7(2)], Dϕ is a central F∞-division algebra with invariant 1/n and Dϕ ∩ L[[τ]] is the
ring of integer of Dϕ. One can then define a continuous homomorphism

% : WL →D×ϕ , σ 7→ σ(v)τdeg(σ)v−1.
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For σ ∈WL , we have ρ∞(σ) = (%(σ)∗)−1. Note that this construction works for any formal O∞-module
O∞→ L[[τ]] with height 1≤ n<∞.

3. DRINFELD MODULES OF RANK 1

Let φ : A→ L[τ] be a Drinfeld module of rank 1 with generic characteristic. For a place λ 6=∞ of F ,
the Tate module Tλ(φ) is a free Oλ-module of rank 1. The Galois action on Tλ(φ) commutes with the
Oλ-action, and hence our Galois representation ρλ is of the form

ρλ : GalL → AutOλ(Tλ(φ)) = O
×
λ .

For the place∞, we have defined a representation

ρ∞ : WL → D×φ = F×∞,

where Dφ equals F∞ since it is a central F∞-division algebra with invariant −1. In this section, we will
prove the following proposition, whose corollary is the rank 1 case of Theorem 1.2.

Proposition 3.1. Let φ : A→ L[τ] be a Drinfeld module of rank 1 with generic characteristic and assume
that L is a finitely generated field. Then the group

�
∏

λρλ
�

(WL) is an open subgroup with finite index in
�
∏

λ 6=∞O
×
λ

�

× F×∞.

Corollary 3.2. Let φ : A→ L[τ] be a Drinfeld module of rank 1 with generic characteristic and assume
that L is a finitely generated field. Then ρ∞(WL) is an open subgroup with finite index in D×

φ
= F×∞.

3.1. Proof of Proposition 3.1. Since φ has generic characteristic, it induces an embedding F ,→ L
that we view as an inclusion. The following lemma allows us to reduce to the case where L is a global
function field and L/F is an abelian extension.

Lemma 3.3. If Proposition 3.1 holds in the special case where L is a finite separable abelian extension of
F, then the full proposition holds.

Proof. Let HA be the maximal unramified abelian extension of F in F sep for which the place ∞ splits
completely; it is a finite abelian extension of F . Choose an embedding HA ⊆ Lsep. By [Hay92, §15] (and
our generic characteristic and rank 1 assumptions on φ), there is a Drinfeld module φ′ : A→ HA[τ]
such that φ and φ′ are isomorphic over Lsep (since L is a finitely generated extension of F , we can
choose an embedding of L into the field C of loc. cit.). Moreover, there is a finite extension L′ of LHA
such that φ and φ′ are isomorphic over L′. Therefore, (

∏

λρφ,λ)(WL′) and (
∏

λρφ′,λ)(WL′) are equal
in (
∏

λ 6=∞O
×
λ
)× F×∞.

By the hypothesis of the lemma, we may assume that (
∏

λρφ′,λ)(WHA
) is an open subgroup of

finite index in (
∏

λ 6=∞O
×
λ
) × F×∞. Replacing HA by the finitely generated extension L′, we find that

(
∏

λρφ′,λ)(WL′) is still an open subgroup of finite index in (
∏

λ 6=∞O
×
λ
)× F×∞ (though possibly of larger

index). Therefore, (
∏

λρφ,λ)(WL) contains (
∏

λρφ,λ)(WL′) = (
∏

λρφ′,λ)(WL′) which is open and of
finite index in (

∏

λ 6=∞O
×
λ
)× F×∞. �

By the above lemma, we may assume that L is a finite, separable and abelian extension of F . The
benefit of L being a global function field is that we will be able to use class field theory. Since ρλ|WL

is
continuous with commutative image, it factors through the maximal abelian quotient W ab

L of WL . Let
A×L be the group of ideles of L. For each place λ of F , we define the continuous homomorphism

eρλ : A×L →W ab
L

ρλ−→ F×λ
where the first homomorphism is the Artin map of class field theory. The homomorphism eρλ is trivial on
L×, and has image in O ×

λ
when λ 6=∞. Define Lλ := L⊗F Fλ and let Nλ : Lλ→ Fλ be the corresponding
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norm map. Define the continuous homomorphism

χλ : A×L → F×λ , α 7→ eρλ(α)Nλ(αλ)

where αλ is the component of α in L×
λ
=
∏

v|λ L×v .
Let S be the set of places of L for which φ has bad reduction or which lie over∞. For v /∈ S, let λv

be the place of F lying under v. For each place v /∈ S of L, define πv := ρ∞(Frobv). By Lemma 2.3, πv
belongs to F× and equals ρλ(Frobv) for all λ 6= λv . For each place v /∈ S of L and λ of F , we have

(3.1) ordλ(πv) =







[Fv : Fλv
] if λ= λv ,

−[Fv : F∞] if λ=∞,
0 otherwise,

cf. [Dri77, Proposition 2.1]. We now show that χλ is independent of λ.

Lemma 3.4. There is a unique character χ : A×L → F× that satisfies the following conditions:

(a) ker(χ) is an open subgroup of A×L .
(b) If α ∈ L×, then χ(α) = NL/F (α).

(c) If α= (αv) is an idele with αv = 1 for v ∈ S, then χ(α) =
∏

v 6∈S π
ordv(αv)
v .

For every place λ of F, we have χλ(α) = χ(α) for all α ∈ A×L .

Proof. Fix a place λ of F . If α ∈ L×, then χλ(α) = Nλ(α) = NL/F (α) since eρλ is trivial on L×. Let
Sλ be those places of L that belong to S or lie over λ. For an idele α ∈ A×L satisfying αv = 1 for
v ∈ Sλ, we have χλ(α) = eρλ(α) which equals

∏

v 6∈Sλ
ρλ(Frobv)ordv(αv) since ρλ is unramified outside

Sλ. Therefore, χλ(α) =
∏

v 6∈Sλ
πv

ordv(αv).
Define U =

∏

v O
×
v ; it is an open subgroup of A×L . Consider an idele β ∈ U for which there is a

b ∈ L× such that βv = b for all v ∈ Sλ. We then have

χλ(β) = χλ(b)χλ(b
−1β) = NL/F (b)

∏

v /∈Sλ

πordv(b−1βv)
v = NL/F (b)

∏

v /∈Sλ

π−ordv(b)
v ,

which is an element of F×. Take a place λ′ 6=∞ of F . By (3.1) and using that ordv(b) = 0 for v ∈ Sλ,
we have

ordλ′
�
∏

v /∈Sλ

πordv(b)
v

�

=
∑

v|λ′
ordv(b)ordλ′(πv)

=
∑

v|λ′
[Fv : Fλ′]ordv(b)

=
∑

v|λ′
ordλ′ NLv/Fλ′

(b) = ordλ′ NL/F (b).

Therefore, ordλ′(χλ(β)) = 0 for all λ′ 6=∞, and hence χλ(β) belongs to A× = k×. By weak approxi-
mation, the ideles β ∈ U for which there is a b ∈ L× such that βv = b for all v ∈ Sλ, are dense in U .
Since χλ is continuous, we deduce that χλ(U)⊆ k× and hence ker(χλ) is an open subgroup of A×L . The
group A×L /ker(χλ) is generated by L× and ideles with 1 at the places v ∈ Sλ, so χλ takes values in F×.

Define χ := χ∞. We have just seen that χ takes values in F× and satisfies conditions (a), (b) and
(c). Now suppose that χ ′ : A×L → F× is a group homomorphism that satisfies the following conditions:

• ker(χ ′) is an open subgroup of A×L .
• If α ∈ L×, then χ ′(α) = NL/F (α).
• There is a finite set S′ ⊇ S of places of L such that χ ′(α) =

∏

v 6∈S′ πv
ordv(αv) for all ideles α with

αv = 1 for v ∈ S′.
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The character χ ′ is determined by its values on the group A×L /(ker(χ ′) ∩ ker(χ)), and this group is
generated by L× and the ideles with v-components equal to 1 for v ∈ S′. Since χ and χ ′ agree on such
elements, we find that χ ′ = χ. This proves the uniqueness of a character satisfying conditions (a), (b)
and (c). With χ ′ = χλ and S′ = Sλ, we conclude that χλ = χ. �

Let CF and CL be the idele class groups of F and L, respectively. The natural quotient map
�
∏

λ 6=∞O
×
λ

�

×
F×∞→ CF has kernel k× and its image is an open subgroup of finite index in CF . Since the eρλ are trivial
on L×, we can define a homomorphism f : CL → CF that takes the idele class containing α ∈ AL to the
idele class of CF containing (eρλ(α))λ. To prove the proposition, it suffices to show that the image of f
is open with finite index in CF . By the definition of the χλ and Lemma 3.4, we have

(eρλ(α))λ = (χλ(α)Nλ(αλ)
−1)λ = χ(α)(Nλ(αλ)

−1)λ
Therefore, f (α) = NL/F (α)−1 for all α ∈ CL , where NL/F : CL → CF is the norm map. Class field theory
tells us that NL/F (CL) is an open subgroup of CF and the index [CF : NL/F (CL)] equals [L : F]; the same
thus holds for f .

Remark 3.5. Consider the special case where A = k[t], F = k(t), and φ : k[t] → F[τ] is the Carlitz
module of Example 1.11. As noted in Example 1.11, we have a continuous homomorphism

β : W ab
F →

�
∏

λ 6=∞
O ×λ
�

× 〈t〉 · (1+ t−1O∞)
∼−→ CF

where the first map is
∏

λρλ and the second is the quotient map. Composing β with the Artin map of F ,
we obtain a homomorphism f : CF → CF which from the calculation above is f (α) = NF/F (α)−1 = α−1.
Therefore, W ab

F → CF , σ 7→ β(σ−1) is the inverse of the Artin map for F as claimed in Example 1.11.

4. TATE CONJECTURE

Let φ : A→ L[τ] be a Drinfeld module of rank n and let Dφ be the centralizer of φ(A) in L((τ−1)).
Using the extended map φ : F∞→ Lperf((τ−1)), we have shown that Dφ is a central F∞-division algebra
with invariant −1/n. In §2, we constructed a continuous representation

ρ∞ : WL → D×φ .

We can view EndL(φ) ⊗A F∞ as a F∞-subalgebra of Dφ; it commutes with the image of ρ∞. The
following∞-adic analogue of the Tate conjecture, says that EndL(φ)⊗A F∞ is precisely the centralizer
of ρ∞(WL) in Dφ , at least assuming that L is finitely generated and φ has generic characteristic.

Theorem 4.1. Let φ : A→ L[τ] be a Drinfeld module with generic characteristic and L a finitely generated
field. Then the centralizer of ρ∞(WL) in Dφ is EndL(φ)⊗A F∞.

For the rest of the section, assume that L is a finitely generated field. Recall that for a place λ 6=∞,
the λ-adic version of the Tate conjecture says that the natural map

(4.1) EndL(φ)⊗A Fλ→ EndFλ[GalL](Vλ(φ))

is an isomorphism. This is a special case of theorems proved independently by Taguchi [Tag95]
and Tamagawa [Tam95]; we will make use of Tamagawa’s more general formulation. We can give
EndFλ(Vλ(φ)) a GalL-action by σ( f ) := ρλ(σ) ◦ f ◦ρλ(σ)−1. That (4.1) is an isomorphism is equiva-
lent to having EndFλ(Vλ(φ))

GalL = EndL(φ)⊗A Fλ. For the ∞-adic version, the ring Dφ has a natural

Gal(L/L)-action and the subring DGal(L/L)
φ

= CentLperf((τ−1))(φ(A)) certainly contains EndL(φ)⊗A F∞; we
will show that they are equal, and from the following lemma, deduce Theorem 4.1.

Lemma 4.2. If DGal(L/L)
φ

= EndL(φ)⊗A F∞, then the centralizer of ρ∞(WL) in Dφ is EndL(φ)⊗A F∞.
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Proof. Fix an f ∈ Dφ that commutes with ρ∞(WL). Take any σ ∈ WL . The series f and ρ∞(σ)
commute, so we have

σ(u)τdeg(σ)u−1 · f = f ·σ(u)τdeg(σ)u−1,

where u is a series as in Lemma 2.2(i). Therefore,

σ(u)−1 f σ(u) = τdeg(σ)(u−1 f u)τ−deg(σ) = σ(u−1 f u)

where the last equality uses that u−1 f u has coefficients in k. Since WL is dense in GalL , we have
σ(u)−1 f σ(u) = σ(u−1 f u) for allσ ∈ GalL and hence also for allσ ∈ Gal(L/L). Therefore, σ(u)−1 f σ(u) =
σ(u)−1σ( f )σ(u) and hence σ( f ) = f , for all σ ∈ Gal(L/L). So f belongs to DGal(L/L)

φ
and is thus an el-

ement of EndL(φ)⊗A F∞ by assumption. This proves that the centralizer of ρ∞(WL) in Dφ is contained
in EndL(φ)⊗A F∞.; we have already noted that the other inclusion holds. �

The rest of §4 is dedicated to proving Theorem 4.1. To relate our construction with the work of
Tamagawa, it will be useful to replace φ with its corresponding A-motive. We give enough background
to prove the theorem; this material will not be needed outside §4.

4.1. Étale τ-modules. Let L be an extension field of k (as usual, k is a fixed finite field with q ele-
ments). Let L((t−1)) be the (commutative) ring of Laurent series in t−1 with coefficients in L. Define
the ring homomorphism

σ : L((t−1))→ L((t−1)),
∑

i

ci t
−i 7→

∑

i

cq
i t−i .

Let R be a subring of L((t−1)) that is stable under σ; for example, L[t], L(t) and L((t−1)).

Definition 4.3. A τ-module over R is a pair (M ,τM ) consisting of an R-module M and a σ-semilinear
map τM : M → M (i.e., τM is additive and satisfies τM ( f m) = σ( f )τM (m) for all f ∈ R and m ∈ M).
A morphism of τ-modules is an R-module homomorphism that is compatible with the τ maps.

When convenient, we shall denote a τ-module (M ,τM ) simply by M . We can view R as a τ-module
over itself by setting τR = σ|R. For an R-module M , denote by σ∗(M) the scalar extension R⊗σ,R M of
M by σ : R→ R. Giving a σ-semilinear map τM : M → M is thus equivalent to giving an R-linear map

τM ,lin : σ∗(M)→ M

which we call the linearization of τM . We say that a τ-module M over R is étale if M is a free R-module
of finite rank and the linearization τM ,lin : σ∗(M)→ M is an isomorphism.

Let M1 and M2 be τ-modules over R. We define M1 ⊗R M2 to be the τ-module whose underlying R-
module is M1⊗R M2 with τmap determined by τM1⊗RM2

(m1⊗m2) = τM1
(m1)⊗τM2

(m2). Now suppose
that M1 is étale. Define the R-module H := HomR(M1, M2). Let τH : H → H be the σ-semilinear that
corresponds to the R-linear map

σ∗(H)→ H, f 7→ τM2,lin ◦ f ◦τ−1
M1,lin,

where we are using the natural isomorphism σ∗(H) ∼= HomR(σ∗(M1),σ∗(M2)). The pair (H,τH) is a
τ-module over R. If M1 and M2 are both étale over R, then so is H.

Suppose that R⊆ R′ are subrings of L((t−1)) which are stable under σ. Let M be a τ-module over R.
We can then give R′ ⊗R M the structure of a τ-module over R′. If M is étale, then R′ ⊗R M is an étale
τ-module over R′.

For a τ-module M , let Mτ be the group of m ∈ M for which τM (m) = m; it is a module over the ring
R0 := {r ∈ R : σ(r) = r} (for R = L(t) and L((t−1)), we have R0 = k(t) and k((t−1)), respectively). Let
H be the τ-module HomR(M1, M2) where M1 and M2 are τ-modules and M1 is étale; then Hτ agrees
with the set Hom(M1, M2) of endomorphisms M1→ M2 of τ-modules.
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4.2. Weights. Fix a separably closed extension K of k. We shall describe the étale τ-modules over
K((t−1)); it turns out that the category of such τ-modules is semisimple, we first define the simple ones.

Definition 4.4. Let λ = s/r be a rational number with r and s relatively prime integers and r ≥ 1.
Define the free K((t−1))-module

Nλ := K((t−1))e1⊕ · · · ⊕ K((t−1))er .

Let τλ : Nλ → Nλ be the σ-semilinear map that satisfies τλ(ei) = ei+1 for 1 ≤ i < r and τλ(er) = tse1.
The pair (Nλ,τλ) is an étale τ-module over K((t−1)).

Proposition 4.5.
(i) If M is an étale τ-module over K((t−1)), then there are unique rational numbers λ1 ≤ λ2 ≤ · · · ≤
λm such that
• M ∼= Nλ1

⊕ · · · ⊕ Nλm
.

• the t−1-adic valuations of the roots of the characteristic polynomial of τM expressed on any
K((t−1))-basis of M are {−λi}i , with each λi counted with multiplicity dim Nλ.

(ii) For λ ∈Q, the ring End(Nλ) is a central k((t−1))-division algebra with Brauer invariant λ.

Proof. This follows from [Lau96, Appendix B]; although the proposition is only proved for a particular
field K , nowhere do the proofs make use of anything stronger then K being separably closed. This
was observed by Taelman in [Tae09, §5]; his notion of a “Dieudonné t-module” corresponds with étale
τ-modules over K((t−1)) (in Definition 5.1.1 of loc. cit. one should have K((t−1))σ(V ) = V ). �

We call the rational numbers λi of Proposition 4.5(i) the weights of M . If all the weights of M equal
λ, then we say that M is pure of weight λ.

Lemma 4.6. [Tae09, Prop. 5.14] Fix a rational number λ = s/r with r and s relatively prime integers
and r ≥ 1. Let M be an étale τ-module over K((t−1)) with K an algebraically closed extension of k. The
following are equivalent:

• M is pure of weight λ.
• there exists a K[[t−1]]-lattice Λ⊆ M such that τr

M (Λ) = tsΛ.

Let L be a field extension of k (not necessarily separably closed) and let M be an étale τ-module
over L(t). The weights of M are the weights of the τ-module K((t−1))⊗L(t)M over K((t−1)) where K is
any separably closed field containing L. Again, we say that M is pure of weight λ if all the weights of
M equal λ. We now give a criterion for M to be pure of weight 0.

Lemma 4.7. Define the subring O := L[t−1](t−1) = L(t)∩ L[[t−1]] of L(t); it is a local ring with quotient
field L(t). Let M be an étale τ-module over L(t). Then the following are equivalent:

(a) M is pure of weight 0.
(b) There is an O -submodule N of M stable under τM such that (N ,τM |N ) is an étale τ-module over
O and the natural map L(t)⊗O N → M of τ-modules is an isomorphism.

Proof. First suppose that M is pure of weight 0. By Lemma 4.6, there is an L[[t−1]]-lattice Λ of
L((t−1)) ⊗L(t) M such that τM (Λ) = Λ. Fix a basis e1, . . . , ed of M over L(t); we may assume that

the ei are contained in Λ. Let N be the O -submodule of M generated by the set B = {τ j
M (ei) : 1 ≤

i ≤ d, j ≥ 1}. We can write each v ∈ B , uniquely in the form v =
∑

i aiei with ai ∈ L(t); let α be the
infimum of the values ordt−1(ai) over all i ∈ {1 . . . , d} and v ∈ B . We find that α is finite, since N is
contained in the L[[t−1]]-lattice Λ which is stable under τM . Using that α is finite, we find that N is a
free O -module of rank d which is stable under τM and that the map L(t)⊗O N → M is an isomorphism.
The τ-module (N ,τM |N) is étale since (M ,τM ) is étale. It is now clear that N satisfies all the conditions
of (b).
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Now suppose there is an O -submodule N satisfying the conditions of (b). Then Λ := L[[t−1]]⊗O N
is a L[[t−1]]-lattice in L((t−1)) ⊗L(t) M that satisfies τL((t−1))⊗L(t)M

(Λ) = Λ. Lemma 4.6 implies that

L((t−1))⊗L(t) M , and hence M also, is pure of weight 0. �

4.3. Tate conjecture. Let M be an étale τ-module over L(t). The group GalL acts on M ′ := Lsep((t−1))⊗L(t)
M via its action on the coefficients of Lsep((t−1)). The GalL-action on M ′ commutes with τM ′ , so M ′τ is
a vector space over k((t−1)) with an action of GalL .

Theorem 4.8. Let L be a finitely generated extension of k. Let M be an étale τ-module over L(t) that is
pure of weight 0. Then the natural map

Mτ⊗k(t) k((t−1))→
�

(Lsep((t−1))⊗L(t) M)τ
�GalL

is an isomorphism of finite dimensional k((t−1))-vector spaces.

Proof. For an étale τ-module M over L(t), we define

bV (M) := (Lsep((t−1))⊗L(t) M)τ;

it is a k((t−1))-vector space with a natural action of GalL . Let M ′ and M be étale τ-modules over L(t)
that are pure of weight 0. There is a natural homomorphism

(4.2) Hom(M ′, M)⊗k(t) k((t−1))→ Homk((t−1))[GalL]
�

bV (M ′), bV (M)
�

of vector spaces over k((t−1)). We claim that (4.2) is an isomorphism. In the notation of Tamagawa
in [Tam95], M ′ and M are “restricted L(t){τ}-modules that are étale at t−1 = 0”. That M is an étale
τ-module over L(t) is equivalent to it being a “restricted module over L(t){τ}”, and it further being
pure of weight 0 is equivalent to it being “étale at t−1 = 0” by Lemma 4.7. (Note that in Definition 1.1
of [Tam95], the submoduleM should also be an OL(t)-sublattice of M). Tamagawa’s analogue of the
Tate conjecture [Tam95, Theorem 2.1] then says that (4.2) is an isomorphism of (finite dimensional)
vector spaces over k((t−1)). Tamagawa theorem, whose proof is based on methods arising from p-adic
Hodge theory, are only sketched in [Tam95]; details have since been provided by N. Stalder [Sta10].

Now consider the special case where the τ-module M ′ is L(t)with τM ′ = σ|L(t). So bV (M ′) = k((t−1))
with the trivial GalL-action. We have isomorphisms

Hom(M ′, M) = HomL(t)(L(t), M)τ
∼−→ Mτ, f 7→ f (1)

and

Homk((t−1))[GalL]
�

bV (M ′), bV (M)
�

= Homk((t−1))[GalL]
�

k((t−1)), bV (M)
� ∼−→ bV (M)GalL , f 7→ f (1).

Combining with the isomorphism (4.2), we find that the natural map

Mτ⊗k(t) k((t−1))→ bV (M)GalL =
�

(Lsep((t−1))⊗L(t) M)τ
�GalL

is an isomorphism of finite dimensional vector space over k((t−1)). �

Corollary 4.9. Let L be a finitely generated extension of k. Let M be an étale τ-module over L(t) that is
pure of some weight λ. Then for any separably closed extension K of L, the natural map

End(M)⊗k(t) k((t−1))→ End(K((t−1))⊗L(t) M)Gal(K/L)

is an isomorphism.

Proof. Fix an embedding Lsep ⊆ K . We have an inclusion End(Lsep((t−1))⊗L(t) M)⊆ End(K((t−1))⊗L(t)
M) of finite dimensional vector spaces over k((t−1)); it is actually an equality since by Proposition 4.5(ii),
their dimensions depend only the weights of M . Hence,

End(K((t−1))⊗L(t) M)Gal(K/L) = End(Lsep((t−1))⊗L(t) M)Gal(K/L) = End(Lsep((t−1))⊗L(t) M)GalL .
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So without loss of generality, we may assume that K = Lsep. Define the L(t)-module H = EndL(t)(M).
Since M is an étale τ-module, we can give H the structure of étale τ-module over L(t). The natural
map Hτ⊗k(t) k((t−1))→

�

(Lsep((t−1))⊗L(t) H)τ
�GalL can be rewritten as

End(M)⊗k(t) k((t−1))→ End(Lsep((t−1))⊗L(t) M)GalL .

So the corollary will follow from Theorem 4.8 if we can show that H is pure of weight 0.
The dual M∨ := HomL(t)(M , L(t)) is an étale τ-module over L(t) that is pure of weight −λ (for the

weight, one can use the characterization in terms of eigenvalues as in Proposition 4.5). If M1 and M2
are étale τ-modules over L(t) that are pure of weight λ1 and λ2, respectively, then M1⊗L(t) M2 is pure
of weight λ1+λ2 (use Lemma 4.6). Therefore H, which is isomorphic as a τ-module to M∨⊗L(t) M , is
pure of weight −λ+λ= 0. �

4.4. Proof of Theorem 4.1. Let φ : A→ L[t] be a Drinfeld module with generic characteristic and L a
finitely generated field.

Case 1: Suppose that A= k[t] and F = k(t).
Define Mφ := L[τ] and give it the L[t] = L⊗k A-module structure for which

(c⊗ a) ·m= cmφa

for c ∈ L, a ∈ A and m ∈ Mφ . Define the map τMφ : Mφ → Mφ by m 7→ τm. The pair (Mφ ,τMφ ) is

a τ-module over L[t]. As an L[t]-module, Mφ is free of rank n with basis β = {1,τ, . . . ,τn−1}. With
respect to the basis β , the linearization τMφ ,lin is described by the n× n matrix

B :=











0 0 (t − b0)/bn
1 0 −b1/bn

. . .
...

0 1 −bn−1/bn











where φt =
∑n

i=0 biτ
i .

For f ∈ EndL(φ), the map Mφ → Mφ , m 7→ mf is a homomorphism of L[t]-modules which com-
mutes with τMφ . This gives a homomorphism EndL(φ)opp→ End(Mφ) of k[t]-algebras; it is in fact an
isomorphism [And86, Theorem 1]. Note that for a ring R, we will denote by Ropp the ring R with the
same addition and multiplication α · β = βα

Let Mφ(t) be the τ-module obtained by base extending Mφ to L(t). Since Mφ(t) is an L(t)-vector
space of dimension n with det(B) ∈ L(t)×, we find that Mφ(t) is an étale τ-module. We have an iso-
morphism EndL(φ)opp⊗k[t] k(t) = End(Mφ(t)) of k(t)-algebras. From Anderson [And86, Prop. 4.1.1],
we know that Mφ(t) is pure of weight 1/n (use Lemma 4.6 to relate his notion of purity and weight
with ours).

Define Mφ := L((τ−1)). For c =
∑

i ai t
−i ∈ L((t−1)) and m ∈ Mφ , we define

c ·m=
∑

i

aimφ
−i
t ;

this turns Mφ into a free L((t−1))-module with basis {1,τ, . . . ,τn−1}. The pair (Mφ ,τMφ
), where

τMφ
: Mφ → Mφ is the map m 7→ τm, is a τ-module. One readily verifies that Mφ agrees with the base

extension of Mφ to L((t−1)).
Take any f ∈ Dφ . Since f commutes with φt , we find that the map Mφ → Mφ , m 7→ mf is a

homomorphism of L((t−1))-modules which commutes with τMφ
. This gives a homomorphism

(4.3) Dopp
φ
,→ End(Mφ)
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of F∞-algebras. By Lemma 2.2(ii) and Proposition 4.5, Dopp
φ

and End(Mφ) are both F∞-division alge-
bras with invariant 1/n, so (4.3) is an isomorphism. Moreover, the isomorphism (4.3) is compatible
with the respective Gal(L/L)-actions. Restricting (4.3) to EndL(φ)⊗k[t] k((t−1)) gives the isomorphism

EndL(φ)
opp⊗k[t] k((t−1))

∼−→ End(Mφ)⊗k[t] k((t−1)) = End(Mφ(t))⊗k(t) k((t−1)).

By Lemma 4.2, it suffices to prove that DGal(L/L)
φ

= EndL(φ) ⊗k[t] k((t−1)), which is equivalent to
showing that the natural map

End(Mφ(t))⊗k(t) k((t−1))→ End(Mφ)
Gal(L/L) = End(L((t−1))⊗L(t) Mφ(t))

Gal(L/L)

is an isomorphism. Since Mφ(t) is an étale τ-module that is pure of weight 1/n and L is finitely gener-
ated, this follows from Corollary 4.9.

Case 2: General case.
Choose a non-constant element t ∈ A. Composing the inclusion k[t] ⊆ A with φ gives a ring

homomorphism
φ′ : k[t]→ L[τ], a 7→ φ′a.

By (1.1), we have ordτ−1(φ′t) < 0 and hence φ′ is a Drinfeld module (though possibly of a different
rank than φ). Since φ has generic characteristic, so does φ′. Let∞ also denote the place of k(t) with
uniformizer t−1.

Since φ(A)⊇ φ′(k[t]), we have inclusions

EndL(φ)⊆ EndL(φ
′) and Dφ ⊆ Dφ′ .

Therefore,

EndL(φ)⊗A F∞ ⊆ DGal(L/L)
φ

⊆ DGal(L/L)
φ′

= EndL(φ
′)⊗A F∞

where the equality follows from Case 1. By Lemma 4.2, it thus suffices to prove the inclusion EndL(φ)⊇
EndL(φ′). The ring EndL(φ′) certainly contains φ(A). Since φ′ has generic characteristic, the ring
EndL(φ′) is commutative [Dri74, §2]. So EndL(φ′) is a subring of L[τ] that commutes with φ(A); it is
thus a subset of EndL(φ).

5. PROOF OF THEOREM 1.1

Let φ : A → L[τ] be a Drinfeld module of generic characteristic and rank n. Assume that L is a
finitely generated field and that EndL(φ) = φ(A). To ease notation, we set D := Dφ which is a central
F∞-division algebra with invariant −1/n. Several times in the proof, we will replace L by a finite
extension; this is allowed since we are only interested in ρ∞(WL) up to commensurability. The n = 1
case has already been proved (Corollary 3.2), so we may assume that n≥ 2.

5.1. Zariski denseness. Let GLD be the algebraic group defined over F∞ such that GLD(R) = (D⊗F∞
R)× for a commutative F∞-algebra R. In particular, we have ρ∞(WL) ⊆ D× = GLD(F∞). The main task
of this section is to prove the following.

Proposition 5.1. With assumptions as above, ρ∞(WL) is Zariski dense in GLD.

Let G be the algebraic subgroup of GLD obtained by taking the Zariski closure of ρ∞(WL) in GLD; it
is defined over F∞. After replacing L by a finite extension, we may assume that G is connected. Choose
an algebraically closed extension K of F∞. For an algebraic group G over F∞, we will denote by GK the
algebraic group over K obtained by base extension. We need to prove that G = GLD, or equivalently
that GK = GLD,K .
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An isomorphism D⊗F∞ K ∼= Mn(K) of K-algebras induces an isomorphism GLD,K
∼= GLn,K of algebraic

groups over K (both are unique up to an inner automorphism). We fix such an isomorphism, which we
use as an identification GLD,K = GLn,K and this gives us an action of D⊗F∞ K on Kn.

We will use the following criterion of Pink to show that GK and GLD,K = GLn,K are equal.

Lemma 5.2 ([Pin97, Proposition A.3]). Let K be an algebraically closed field and let G ⊆ GLn,K be a
reductive connected linear algebraic group acting irreducibly on Kn. Suppose that G has a cocharacter
which has weight 1 with multiplicity 1 and weight 0 with multiplicity n− 1 on Kn. Then G = GLn,K .

Lemma 5.3. With our fixed isomorphism, the algebraic group GK acts irreducibly on Kn.

Proof. Let B be the F∞-subspace of D generated by ρ∞(WL). Using that ρ∞(WL) is a group and that
every element of D is algebraic over F∞, we find that B is a division algebra whose center contains F∞.
By our analogue of the Tate conjecture (Theorem 4.1) and our assumption EndL(φ) = φ(A), we have

CentD(B) = CentD(ρ∞(WL)) = F∞.

By the Double Centralizer Theorem, we have B = CentD(CentD(B)) and hence B = CentD(F∞) = D.
Let H be a non-zero K-subspace of Kn that is stable under the action of GK . Since ρ∞(WL)⊆G(F∞)

and F∞ ⊆ K , we find that H is stable under the action of B ⊗F∞ K = D ⊗F∞ K ∼= Mn(K). Therefore,
H = Kn. �

By Lemma 5.3 and the following lemma, we deduce that GK is reductive.

Lemma 5.4 ([Pin97, Fact A.1]). Let K be an algebraically closed field, and let G ⊆ GLn, K be a connected
linear algebraic group. If G acts irreducibly on the vector space Kn, then G is reductive.

Let X be a model of L as described in §1.2. For a fixed closed point x of X , choose a matrix
hx ∈ GLn(F) with characteristic polynomial Pφ,x(T ). Let Hx ⊆ GLn,F denote the Zariski closure of the
group generated by hx , and let Tx be the identity component of Hx . Since F has positive characteristic,
some positive power of hx will be semisimple. The algebraic group Tx is thus an algebraic torus which
is called the Frobenius torus at x . The following result of Pink describes what happens when φ has
ordinary reduction at x .

Recall that by reducing the coefficients of φ, we obtain a Drinfeld module φx : A→ Fx[τ] of rank n.
Let λx be the place of F corresponding to the characteristic of φx . The Tate module Tλx

(φx) is a free
Oλx

-module of rank nx , where nx is an integer strictly less than n. We say that φ has ordinary reduction
at x if nx = n− 1.

Lemma 5.5 ([Pin97, Lemma 2.5]). If φ has ordinary reduction at x ∈ X , then Tx ⊆ GLn,F possesses a
cocharacter over F which in the given representation has weight 1 with multiplicity 1, and weight 0 with
multiplicity n− 1.

Lemma 5.6 ([Pin97, Corollary 2.3]). The set of closed points of X for which φ has ordinary reduction
has positive Dirichlet density.

We can now finish the proof of Proposition 5.1. We have shown that GK is a reductive, connected,
linear algebraic group acting irreducibly on Kn. By Lemma 5.2 it suffices to show that GK has a
cocharacter which has weight 1 with multiplicity 1 and weight 0 with multiplicity n− 1 on Kn.

By Lemma 5.6, there exists a closed point x of X for which φ has ordinary reduction. Some common
power of hx and ρ∞(Frobx) are conjugate in GLn(K) because they will be semisimple with the same
characteristic polynomial. So with our fixed isomorphism GLD,K = GLn,K , we find that Tx ,K is conjugate
to an algebraic subgroup of GK . The desired cocharacter of GK is then obtained by appropriately
conjugating the cocharacter coming from Lemma 5.5.
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5.2. Open commutator subgroup. Let SLD be the kernel of the homomorphism GLD→Gm,F∞ arising
from the reduced norm. Let PGLD and PSLD be the algebraic groups obtained by quotienting GLD and
SLD, respectively, by their centers. As linear algebraic groups, SLD is simply connected and PGLD is
adjoint. The natural map PSLD → PGLD is an isomorphism of algebraic groups and hence the homo-
morphism SLD→ PGLD is a universal cover.

The commutator morphism of GLD factors through a unique morphism

[ , ]: PGLD×PGLD→ SLD .

Let Γ be the closure of the image of ρ∞(WL) in PGLD(F∞). Let Γ′ ⊆ SLD(F∞) be the closure of the
subgroup generated by [Γ,Γ]. (Both closures are with respect to the∞-adic topology.)

The group Γ is compact since it is closed and PGLD(F∞) is compact. The group Γ is Zariski dense in
PGLD by Proposition 5.1. If we were working over a local field of characteristic 0, this would be enough
to deduce that Γ is an open subgroup of PGLD(F∞). However, in the positive characteristic setting the
Lie theory is more complicated. Fortunately, what we need has already been worked out by Pink.

Theorem 0.2(c) of [Pin98] says that there is a closed subfield E of F∞, an absolutely simple adjoint
linear group H over E, and an isogeny f : H ×E F∞ → PGLD with nowhere vanishing derivative such
that Γ′ is the image under ef of an open subgroup of eH(E) where ef : eH ×E F∞ → SLD is the associated
isogeny of universal covers.

The following lemma will be needed to show that E = F∞. Let

AdPGLD
: PGLD→ GLm,F∞

be the adjoint representation of PGLD where m is the dimension of PGLD.

Lemma 5.7. Let O ⊆ F∞ be the closure of the subring generated by 1 and tr(AdPGLD
(Γ)). Then the quotient

field of O is F∞.

Proof. We will consider AdPGLD
at Frobenius elements, and then reduce to a result of Pink. Take any

element α ∈ D×. Let α1, . . . ,αn ∈ F∞ be the roots of the (reduced) characteristic polynomial det(T I −
α). We have

tr(AdPGLD
(α)) =

�
n
∑

i=1

αi

��
n
∑

j=1

α j
−1
�

− 1= tr(α) · tr(α−1)− 1

(one need only check the analogous result for PGLn,F∞
since it is isomorphic to PGLD,F∞

). For each
closed point x of X , define ax := tr(AdPGLD

(ρ∞(Frobx))). We have ax = tr(ρλ(Frobx))·tr(ρλ(Frobx)−1)−
1 for any place λ 6= λx of F , and hence ax belongs to F . By [Pin97, Proposition 2.4], the field F is
generated by the set {ax}x where x varies over the closed points of X (this requires our assumptions
that EndL(φ) = φ(A) and n≥ 2). Therefore, the quotient field of O is F∞. �

Lemma 5.7 along with [Pin98, Proposition 0.6(c)] shows that E = F∞ and that f : H → PGLD is an
isomorphism. Therefore, Γ′ is an open subgroup of SLD(F∞).

Proposition 5.8. The group ρ∞(WL) contains an open subgroup of SLD(F∞).

Proof. The group ρ∞(WLk) is a normal subgroup of ρ∞(WL) with abelian quotient; it is also compact
since WLk = Gal(Lsep/Lk) is compact and ρ∞ is continuous. Therefore, Γ′ is a subgroup of ρ∞(WLk).
The proposition follows since we just showed that Γ′ is open in SLD(F∞). �

5.3. End of the proof. We have ρ∞(WL) ⊆ D×. In Proposition 5.8, we showed that ρ∞(WL) contains
an open subgroup of SLD(F∞) = {α ∈ D× : det(α) = 1}. To complete the proof of Theorem 1.1, it
suffices to show that det(ρ∞(WL)) is an open subgroup with finite index in F×∞.

Lemma 5.9. The image of the the reduced norm map det◦ρ∞ : WL → F×∞ is an open subgroup of finite
index in F×∞
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Proof. One can construct a “determinant” Drinfeld module of φ; it is a rank 1 Drinfeld module ψ: A→
L[τ] and has the property that

∧n
Oλ

Tλ(φ) and Tλ(ψ) are isomorphic Oλ[GalL]-modules for every place
λ 6= ∞ of F . This can accomplished by following G. Anderson and working in the larger category of
A-motives where one can take tensor products. A proof of the existence of such a ψ can be found in
[vdH04, Theorem 3.3] and the isomorphism of Tate modules is then straightforward.

Let X be a model of L as described in §1.2. For each closed point x of X and place λ 6= λx ,∞ of F ,
we thus have

det(ρφ,∞(Frobx)) = det(ρφ,λ(Frobx)) = ρψ,λ(Frobx) = ρψ,∞(Frobx).

By the Chebotarev density theorem, that det(ρφ,∞(Frobx)) equals ρψ,∞(Frobx) for all closed points x
of X implies that det◦ρφ,∞ equals ρψ,∞. The lemma now follows from Corollary 3.2 since ψ has rank
1. �

6. PROOF OF THEOREM 1.2

By [Dri74, p.569 Corollary] and our generic characteristic assumption, the ring A′ := EndL(φ) is a
projective A-module and F ′∞ := A′⊗A F∞ is a field satisfying [F ′∞ : F∞]≤ n. Let F ′ be the quotient field
of A′. There is a unique place of F ′ lying over the place∞ of F , which we shall also denote by∞, and
F ′∞ is indeed the completion of F ′ at∞.

After replacing L by a finite extension, we may assume that A′ equals EndL(φ). Identifying A with its
image in L[τ], the inclusion map

φ′ : A′→ L[τ].

extends φ. The homomorphism φ′ need not be a Drinfeld module, at least according to our definition,
since A′ need not be a maximal order in F ′. Instead of extending our definition of Drinfeld module, we
follow Pink and Hayes, and adjust φ′ by an appropriate isogeny.

Let B be the normalization of A′ in F ′; it is a maximal order of F ′ consisting of functions that are
regular away from∞. By [Hay79, Prop. 3.2], there is a Drinfeld module ψ: B→ L[τ] and a non-zero
f ∈ L[τ] such that f φ′(x) = ψ(x) f for all x ∈ A′. The Drinfeld module ψ has rank n′ = n/[F ′ : F]
and EndL(ψ) =ψ(B). After replacing L by a finite extension, we may assume that ψ(B)⊆ L[τ].

It is straightforward to show that the map CentL((τ−1))(ψ(A
′)) → CentL((τ−1))(EndL(φ)) defined by

v 7→ f −1v f is a bijection, and hence we have an isomorphism

Dψ
∼−→ CentDφ (EndL(φ)) =: Bφ , v 7→ f −1v f .

The corresponding representations ρ∞ are compatible under this map.

Lemma 6.1. For all σ ∈WL , we have ρψ,∞(σ) = f −1ρφ,∞(σ) f .

Proof. Choose any u ∈ L((τ−1))× such that u−1ψ(F ′∞)u ⊆ k((τ−1)). So u−1 f φ(A) f −1u ⊆ k((τ−1)) and
hence ( f −1u)−1φ(F∞)( f −1u)⊆ k((τ−1)). Therefore,

ρψ,∞(σ) = σ( f
−1u)τdeg(σ)( f −1u)−1 = f −1σ(u)τdeg(σ)u−1 f = f −1ρφ,∞(σ) f . �

Therefore, ρφ,∞(WL) is an open subgroup of finite index in CentDφ (EndL(φ))
× if and only if ρψ,∞(WL)

is an open subgroup of finite index in D×
ψ

. However EndL(ψ) =ψ(B), so ρψ,∞(WL) is an open subgroup

of finite index in D×
ψ

by Theorem 1.1 which we proved in §5.
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7. PROOF OF THEOREM 1.5

To ease notation, set D = Dφ and define the (surjective) valuation v : D→ Z∪{+∞}, α 7→ ordτ−1(α)/d∞.
Let OD be the valuation ring of D with respect to v and let P denote it maximal ideal. We have fixed
a uniformizer π of F∞ that we can view as element of D by identifying it with φπ. Let µD× be a Haar
measure for D×. We fix an open subset U of O∞, and let C be the set of α ∈ D× for which tr(α) ∈ U .
We also fix an integer 0≤ i < n, and let Vi be the set of α ∈ D× that satisfy v(α) =−i.

Take any positive integer d ≡ i (mod n) that is divisble by [FL : F∞]. Let x be a closed point of X of
degree d. We have v(ρ∞(Frobx)) =−deg(Frobx)/d∞ =−[Fx : F∞] =−d. Therefore,

v(ρ∞(Frobx)π
bd/nc) =−d + bd/ncordτ−1(φπ)/d∞ =−d + bd/ncn=−i.

So ρ∞(Frobx)πbd/nc belongs to Vi; it belongs to C if and only if ax(φ)πbd/nc is in U .
Let

ρ : GalL −→ D×/〈π〉
be the continuous homomorphism obtained by composing ρ∞ : WL → D× with the quotient map to
D×/〈π〉, and then using the compactness of D×/〈π〉 to extend by continuity.

We can identify Vi , and hence also identify Vi ∩C , with its image in D×/〈π〉. This shows that

{x ∈ |X |d : ax(φ)π
bd/nc ∈ U}= {x ∈ |X |d : ρ(Frobx)⊆ Vi ∩C},

which we can now estimate with the Chebotarev density theorem. By assumption, we have ρ∞(WL) =
D× and hence ρ∞(WLk) = O

×
D by Lemma 2.2(iv). Therefore, ρ(GalL) = D×/〈π〉 and the cosets of

ρ(GalLk) in D×/〈π〉 are the sets V0,V1, . . . ,Vn−1. By the global function field version of the Chebotarev
density theorem, we have

lim
d≡i (mod n), d≡0 (mod [FL :F∞])

d→+∞

|{x ∈ |X |d : ρ(Frobx)⊆ Vi ∩C}|
#|X |d

=
µD×(Vi ∩C )
µD×(Vi)

.

It remains to compute the value µD×(Vi ∩C )/µD×(Vi).
We first need to recall some facts about the division algebra D, cf. [Rie70, §2] for some background

and references. The algebra D contains an unramified extension W of F∞ of degree n and an element
β such that

D =W ⊕Wβ ⊕ · · · ⊕Wβn−1

where βn is a uniformizer of F∞ and the map a 7→ βaβ−1 generates Gal(W/F∞). Define the map

f : W n ∼−→ D, (a0, . . . , an−1) 7→
∑n−1

i=0
aiβ

i;

it is an isomorphism of (left) vector spaces over W . Let OW be the ring of integers of W and denote its
maximal ideal by p. For any integers m ∈ Z and 0≤ j < n, we have

Pmn+ j = f ((pm+1) j × (pm)n− j).

For α ∈ D, the reduced trace tr(α) is the trace of the endomorphism of the W -vector space D given by
v 7→ vα. One can check that tr( f (a0, . . . , an−1)) = TrW/F∞(a0) for (a0, . . . , an−1) ∈W n.

First consider the case i ≥ 1. We have

Vi =P−i −P−(i−1) = f (O n−i
W × (p−1−OW )× (p−1)i−1)

and the measures arising from the restriction of the Haar measures of D× and W n, respectively, agree
(up to a constant factor). So

µD×(Vi ∩C )
µD×(Vi)

= µOW
({a0 ∈ OW : TrW/F∞(a0) ∈ U})
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where µOW
is the Haar measure normalized so that µOW

(OW ) = 1. Since TrW/F∞ : OW → O∞ is a
surjective homomorphism of O∞-modules, we have µOW

({a0 ∈ OW : TrW/F∞(a0) ∈ U}) = µ(U).
Now consider the case i = 0. We have

V0 = OD −P= f ((OW − p)×O n−1
W ).

and the measures arising from the restriction of the Haar measures of D× and W n, respectively, agree
(up to a constant factor). So

µD×(V0 ∩C )
µD×(V0)

=
µOW
({a0 ∈ OW − p : TrW/F∞(a0) ∈ U})

µOW
(OW − p)

.

Note that TrW/F∞ : OW → O∞ is a surjective homomorphism of O∞-modules satisfying TrW/F∞(p) =
πO∞. Fix a coset κ of πO∞ in O∞. Then Tr−1

W/F∞
(κ) ∩ (OW − p) is the union of qd∞(n−1) cosets

of p in OW when κ 6= πO∞, and qd∞(n−1) − 1 cosets when κ = πO∞. One can then check that
µOW
({a0 ∈ OW − p : TrW/F∞(a0) ∈ U})/µOW

(OW − p) = ν(U) by taking into account this weighting of
cosets.

The following lemma will be used in the next section.

Lemma 7.1. For j ≥ 1, we have µD×({α ∈ OD −πOD : tr(α)≡ 0 (mod π jO∞)})� 1/qd∞ j .

Proof. We have f (O n
W − pn) = OD −πOD. One can then show that

µD×({α ∈ OD −πOD : tr(α)≡ 0 (mod π jO∞)})

�µ′({(a0, . . . , an−1) ∈ O n
W − pn : TrW/F∞(a0)≡ 0 (mod π jO∞)})

�µOW
({a0 ∈ OW : TrW/F∞(a0)≡ 0 (mod π jO∞)})

where µ′ is a fixed Haar measure of W n. This last quantity is bounded by |O∞/π jO∞|−1 = q−d∞ j . �

8. PROOF OF THEOREM 1.7

To ease notation, set D = Dφ and define the (surjective) valuation v : D→ Z∪{+∞}, α 7→ ordτ−1(α)/d∞.
Let OD be the valuation ring of D with respect to v. Fix a uniformizer π of F∞ that we can view as
element of D by identifying it with φπ.

For each α ∈ D×, we define e(α) to be the smallest integer such that απe(α) belongs to OD (equiva-
lently, v(απe(α))≥ 0). Define the map

f : D×→O∞, α 7→ tr(απe(α))

where tr is the reduced trace. For each integer j ≥ 1, let f j : D×→ O∞/π jO∞ be the function obtained
by composing f with the reduction modulo π j homomorphism.

Lemma 8.1. If x is a closed point of X of degree d, then f j(ρ∞(Frobx)) = 0 for all integers 1 ≤ j ≤
ord∞(ax(φ)) + dd/ne. In particular,

Pφ,a(d)≤ |{x ∈ |X |d : f j(ρ∞(Frobx)) = 0}|

for all 1≤ j ≤ ord∞(a) + dd/ne.

Proof. Set α := ρ∞(Frobx). We have v(α) =−deg(x)/d∞ =−d. Since v(π) = ordτ−1(φπ)/d∞ = n, we
have e(α) = dd/ne. Hence f (α) = tr(απe(α)) = tr(α)πe(α) = ax(φ)πe(α), which is divisible by π j for
any integer 1≤ j ≤ ord∞(ax(φ)) + e(α). �

For each integer j ≥ 1, define the group

G j := D×/(F×∞(1+π
jOD)).
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If α,β ∈ D× are in the same coset of G j , then f j(α) = 0 if and only if f j(β) = 0 [observe that f (απi) =
f (α) for i ∈ Z, f (uα) = uf (α) for u ∈ O ×∞, and f j(α(1+ π jγ)) = f j(α) for γ ∈ OD]. So by abuse of
notation, it makes sense to ask whether f j(α) = 0 for a coset α ∈ G j . The subset C j := {α ∈ G j : f j(α) =
0} of G j is stable under conjugation. The group G j and the set C j do not depend on the initial choice
of uniformizer π.

Let ρ j : GalL → G j be the Galois representation obtained by composing ρ∞ with the quotient map
to G j and then extending to a representation of GalL by using that ρ∞ is continuous and G j is finite.
Lemma 8.1 gives the bound

(8.1) Pφ,a(d)≤ |{x ∈ |X |d : ρ j(Frobx)⊆ C j}|

whenever 1≤ j ≤ ord∞(a) + dd/ne.
We shall bound Pφ,a(d) by bounding the right-hand side of (8.1) with an effective version of the

Chebotarev density theorem and then choosing j to optimize the resulting bound. Let eG j be the image
of ρ j : GalL → G j and let eC j be the intersection of eG j with C j . The effective Chebotarev density theorem
of Murty and Scherk [MS94, Théorème 2] implies that

|{x ∈ |X |d : ρ j(Frobx)⊆ eC j}| � m j
|eC j|

|eG j|
·#|X |d + |eC j|1/2(1+ (% j + 1)|D|)

qd∞d/2

d
(8.2)

where the implicit constant depends only on L, and the quantities m j , |D| and % j will be described
below. (Their theorem is only given for a conjugacy class, not a subset stable under conjugation, but
one can easily extend to this case by using the techniques of [MMS88].)

We first bound the cardinality of our subset C j .

Lemma 8.2. We have |C j| � qd∞(n2−2) j and |C j|/|G j| � 1/qd∞ j .

Proof. We first prove the bound for |C j|/|G j|. For α ∈ D×, we have απe(α) ∈ OD −πOD and hence

|C j|
|G j|
� µD×({α ∈ OD −πOD : tr(α)≡ 0 (mod π jO∞)})

where µD× is a fixed Haar measure of D×. From Lemma 7.1, we deduce that |C j|/|G j| � 1/qd∞ j .
We have a short exact sequence of groups:

1→O ×D /(O
×
∞(1+π

jOD))→ G j
v−→ Z/nZ→ 0.

The group O ×D /(O
×
∞(1+π

jOD)) is isomorphic to (OD/π
jOD)×/(O∞/π jO∞)×, and hence has cardinality

(qd∞n2
− 1)qd∞n2·( j−1)

(qd∞ − 1)qd∞( j−1)
= qd∞(n2−1) j ·

1− 1/qd∞n2

1− 1/qd∞
.

This proves that there are positive constants c1 and c2, not depending on j, such that c1qd∞(n2−1) j ≤
|G j| ≤ c2qd∞(n2−1) j . The required upper bound for |C j| follows from our bounds of |C j|/|G j| and |G j|. �

By Theorem 1.1, the index [G j : eG j] can be bounded independent of j. Lemma 8.2 and the inclusion
eC j ⊆ C j shows that |eC j|/|eG j| � 1/qd∞ j and |eC j|1/2� qd∞(n2−2) j/2.

We define L j to be the fixed field in Lsep of the kernel of ρ j . Let C and C j be smooth projective
curves with function fields L and L j , respectively. We can take m j := [FL j

: FL] above, where FL j
and

FL are the field of constants of L j and L, respectively. Theorem 1.1 implies that ρ∞(Gal(Lsep/Lk)) is

an open subgroup of O ×D , and hence m j ≤ [G j : ρ j(Gal(Lsep/Lk))] can be bounded independently of j.
We define |D| :=

∑

x deg(x) where the sum is over the closed points of C for which the morphism
C j →C , corresponding to the field extension L j/L, is ramified. We may view X as an open subvariety
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of C . Since the representation ρ∞ is unramified at all closed points of X and C \ X is finite, we find
that |D| can also be bounded independent of j.

LetDL j/L be the different of the extension L j/L; it is an effective divisor ofC j of the form
∑

x

∑

y d(y/x)·
y , where the first sum is over the closed points x of C and the second sum is over the closed points
y of C j lying over x . We define % j to be the smallest non-negative integer for which the inequality
d(y/x) ≤ e(y/x)(% j + 1) always holds, where e(y/x) is the usual ramification index. We will prove
the following bound for % j in §8.1.

Lemma 8.3. With notation as above, we have % j � j + 1 where the implicit constant does not depend on
j.

Finally, we note that #|X |d � qd∞d/d. For any integer 1 ≤ j ≤ ord∞(a) + dd/ne, combining all our
bounds together with (8.2) we obtain

Pφ,a(d)�
1

qd∞ j

qd∞d

d
+ qd∞(n2−2) j/2 · j ·

qd∞d/2

d
=

qd∞(d− j)

d
+ qd∞((n2−2) j+d)/2 ·

j

d

where the implicit constant depends only on φ. We choose j := ord∞(a) + dd/n2e; for d sufficiently
large, we do indeed have 1≤ j ≤ ord∞(a) + dd/ne. With this choice of j, we obtain the desired bound
Pφ,a(d)� qd∞(1−1/n2)d .

8.1. Proof of Lemma 8.3. Fix a non-constant y ∈ A and define h = −nd∞ ord∞(y) ≥ 1. Construct
δ ∈ (Lsep)× and a0 = 1, a1, a2, . . . ∈ Lsep as in the beginning of §2. The series u = δ(

∑∞
i=0 aiτ

−i) then
satisfies u−1φ(F∞)u ⊆ k((τ−1)). We noted above that [FL j

: FL] can be bounded independently of

j. So there is a finite subfield F of k that contains all the fields FL j
and also the field with cardinal-

ity qh. Set K0 = LF(δ), and recursively define the subfields Ki+1 := Ki(ai+1) of Lsep for i ≥ 0. For
σ ∈ Gal(Lsep/Lk), we have ρ∞(σ) ∈ 1+π jOD if only if v(ρ∞(σ)−1) = v(σ(u)u−1−1) = v(σ(u)−u)
is greater than or equal to v(φ j

π) = jn. This implies that L j is a subfield of K jn.

Consider a chain of global function fields F1 ⊆ F2 ⊆ F3 with valuations v1, v2, and v3, respectively (so
v3 lies over v2 and v2 lies over v1). We then have d(v3/v1) = e(v3/v2)d(v2/v1)+ d(v3/v2), equivalently

(8.3)
d(v3/v1)
e(v3/v1)

=
d(v2/v1)
e(v2/v1)

+
d(v3/v2)
e(v3/v1)

,

where d(v j/vi) is the degree of the different DF j/Fi
at v j and e(v j/vi) is the usual ramification index.

Fix an integer j, and take any place v of L and any place w of L j lying over v. Since L ⊆ L j ⊆ K jn, we
can choose a place w′ of K jn lying over w. Using (8.3), we have

d(w/v)
e(w/v)

≤
d(w′/v)
e(w′/v)

.

It thus suffices to prove that d(w/v)/e(w/v)� j+1 holds for every place v of L, j ≥ 0, and place w
of K j lying over v. Fix a place v of L.

Lemma 8.4. There is a constant B ≥ 0 such that ordv(ai) ≥ −B holds for all i ≥ 0 and all valuations
ordv : Lsep→Q∪ {+∞} extending ordv .

Proof. From (2.1), we find that

(8.4)
1

qh
ordv(a

qh

i − ai)≥−C + min
0≤ j≤h−1
i+ j−h≥0

ordv(a j)

qh− j

holds for some constant C ≥ 0. Define B := C/(1− 1/q).
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We will proceed by induction on i. The lemma is trivial for i = 0, since ordv(a0) = 0. Now take
i ≥ 1. If ordv(ai) ≥ 0, then we definitely have ordv(ai) ≥ −B. Suppose that ordv(ai) < 0. Then the
roots of (2.1) as a polynomial in ai are ai + b with b in the subfield of k of cardinality qh; we have

ordv(ai + b) = ordv(ai) for all such b (since ordv(ai) < 0), so ordv(ai) = ordv(a
qh

i − ai)/qh. By (8.4)
and our inductive hypothesis, we deduce that

ordv(ai)≥−C − B/q =−B(1− 1/q)− B/q =−B. �

Lemma 8.5. For a fixed integer j ≥ 0, let w j and w j+1 be places of K j and K j+1, respectively, such that w j
lies over v and w j+1 lies over w j . We then have

d(w j+1/w j)≤ C · e(w j+1/v)

where C is a non-negative constant that does not depend on j.

Proof. Choose an extension ordv : Lsep→ Z∪{+∞} that corresponds to w j+1 when restricted K j+1. We

defined a j+1 to be a root of a certain polynomial X qh
− X + β j with β j ∈ K j . Let kh be the subfield (of

K0) of cardinality qh. We have X qh
− X + β j =

∏

b∈kh
(X − a j+1 + b), so for each σ ∈ GalK j

, there is
a unique γ(σ) ∈ kh such that σ(a j+1) = a j+1 + γ(σ). Since kh ⊆ K j , we find that γ: GalK j

→ kh is a
homomorphism whose image we will denote by H. Define the additive polynomial g(X ) :=

∏

b∈H(X +
b) ∈ kh[X ]. The minimal polynomial of a j+1 over K j is thus

g(X − a j+1) = g(X )− g(a j+1) ∈ K j[X ],

and the extension K j+1/K j is Galois with Galois group H.
The extension K j+1/K j is a variant of the familiar Artin-Schreier extensions. If ordv(g(a j+1)) ≥

0, then K j+1/K j is unramified at w j [Sti93, Prop. 3.7.10(c)], so d(w j+1/w j) = 0 and the lemma is
trivial. So we may suppose that m := −ordv(g(a j+1)) > 0 and that K j+1/K j is ramified at w j . We
then find that K j+1/K j is totally ramified at w j and that d(w j+1/w j) ≤ (|H| − 1)(m+ 1)e(w j/v) (see
[Sti93, Prop. 3.7.10(d)]; the factor e(w j/v) arises by how we normalized our valuation). Therefore,
d(w j+1/w j) ≤ (m + 1)e(w j+1/v). It thus suffices to prove that ordv(g(a j+1)) can be bounded from
below by some constant not depending on j; this follows immediately from Lemma 8.4. �

We finally prove that d(w/v)/e(w/v)� j + 1 holds for every place v of L, j ≥ 0, and place w of K j
lying over v. If the place v corresponds to one of the closed points of X , then we know that ρ∞, and
hence K j , is unramified at v; so d(w/v)/e(w/v) = 0. We may now fix v to be a one of the finite many
places of L for which ρ∞ is ramified.

Fix a positive constant C as in Lemma 8.5. After possibly increasing C , we may assume that
d(w0/v) ≤ Ce(w0/v) holds for every place w0 of K0 lying over v. Take any places w j of K j for j ≥ 0
such that w j+1 lies over w j and w0 lies over v. By (8.3) and Lemma 8.5, we have

d(w j+1/v)

e(w j+1/v)
=

d(w j/v)

e(w j/v)
+

d(w j+1/w j)

e(w j+1/v)
≤

d(w j/v)

e(w j/v)
+ C .

Since d(w0/v)/e(w0/v) ≤ C by our choice of C , it is now easy to show by induction on j that
d(w j/v)/e(w j/v)≤ C( j+ 1) holds for all j ≥ 0.

9. PROOF OF THEOREM 1.12

Recall that D = Dφ is the centralizer of φ(A) in L((τ−1)). Since φ has rank 2, we have ordτ−1(φa) =
2ord∞(a) for all non-zero a ∈ A. The homomorphism ordτ−1 : D×→ Z is thus a valuation. The ring of
integers of D is OD = D ∩ L[[τ−1]]. Fix an element β ∈ D× with ordτ−1(β) = 1 and a uniformizer π of
F∞.
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Set L′ := Lk and define the group G := ρ∞(GalL′). By Lemma 2.2, the group G equals O ×D ∩ρ∞(WL)
and is a closed subgroup of O ×D . Since k is algebraically closed in L, we find that ordτ−1(ρ∞(WL)) = Z.
Therefore, ρ∞(WL) = D× if and only if G = O ×D .

We now show that G has large reduced norm.

Lemma 9.1. We have det(G)⊇ 1+πO∞.

Proof. Let p be any monic irreducible polynomial of k[t] such that b1 and b2 are integral at p and
b2 6≡ 0 (mod p). We also denote by p, the corresponding place of L = k(t). Since φ has good reduction
at p, there are unique ap, bp ∈ A such that det(T I − ρλ(Frobp)) = x2 − apx + bp for every place λ of
F except for the one with uniformizer p. From Theorem 5.1 of [Gek91], we have bp = εpp for some
εp ∈ k×.

Let φ′ : A→ L[τ] be the Carlitz module, i.e., the homomorphism of k-algebras that maps t to t +τ.
Let α := ρφ′,∞ : WL → F×∞ be the ∞-adic representation attached to φ′. From Example 1.11, we find

that α(Frobp) = p for all monic irreducible polynomial p of k[t] and that the image of α isÓ〈t〉(1+πO∞).
From Lemma 2.2(iv), we deduce that α(GalL′) is equal to α(WL)∩O ×∞ = 1+πO∞.

Define the character γ: WL → F×∞ by γ(σ) = det(ρ∞(σ))α(σ)−1. For all but finitely many monic
irreducible polynomials p of k[t], we have γ(Frobp) = bpp · p−1 = bp which is an element of k×.
Therefore, γ(WL) ⊆ k×. There is thus a separable extension K/L′ of degree relative prime to q such
that γ(GalK) = 1 and hence det◦ρ∞|GalK = α|GalK . Since [K : L′] is relatively prime to q, the group
det(ρ∞(GalK)) = α(GalK) contains 1+πO∞. �

The following group theoretic result will be proved in §9.1.

Proposition 9.2. Let G be a closed subgroup of O ×D that satisfies det(G)⊇ 1+πO∞. Then G = O ×D if and
only if the reduction map G→ (OD/β

2OD)× is surjective.

Our group G = ρ∞(GalL′) is closed in O ×D and satisfies det(G) ⊇ 1 + πO∞ by Lemma 9.1. By
Proposition 9.2, we find that G = O ×D (equivalently, ρ∞(WL) = D×) if and only if the homomorphism

ϕ : GalL′
ρ∞−→ O ×D → (OD/β

2OD)
×

is surjective, where the last homomorphism is reduction modulo βnOD.
Let K be the extension of L′ that is the fixed field in Lsep of the kernel of ϕ. We thus have ρ∞(WL) =

D× if and only if the extension K/L′ has degree |(OD/β
2OD)×| = (q2− 1)q2. The theorem now follows

immediately from Lemma 9.3 below.

Lemma 9.3. We have K = L′(δ, a1).

Proof. Set a0 = 1. We chose δ and a1 ∈ Lsep satisfying (1.2). Recursively choose a2, a3, a4 . . . ∈ Lsep so

that aq2

i − ai = −tai−2 − δq−1 b1aq
i−1. Define the series u := δ(

∑∞
i=1 aiτ

−i) = δ + δa1τ
−1 + . . .. The

ai and δ are chosen as in §2 with n = 2, y = t and b0 = t. Our homomorphism ρ∞ : WL → D× was
defined so that ρ∞(σ) := σ(u)τdeg(σ)u−1.

Take any σ ∈ GalL′ . We have ρ∞(σ) = σ(u)u−1 ∈ O ×D since k ⊆ L′. We have ϕ(σ) = 1 if and only if
ρ∞(σ) ∈ 1+β2OD; equivalently, ordτ−1(ρ∞(σ)−1)≥ 2. Since ordτ−1(ρ∞(σ)−1) = ordτ−1(σ(u)−u),
we find that ϕ(σ) = 1 if and only if σ(δ) = δ and σ(δa1) = δa1. Therefore, K is the extension of L′

generated by δ and a1. �

9.1. Proof of Proposition 9.2. One direction is obvious; if G → (OD/β
2OD)× is not surjective, then

G 6= O ×D . So assume that the reduction map G → (OD/β
2OD)× is surjective. We need to prove that

G = O ×D .
There is no harm in replacing D by an isomorphic division algebra over F∞. Let k2 ⊆ k be the

quadratic extension of k. We may assume that D is of the form k2((τ−1)) where τa = aqτ for all a ∈ k2
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and that F∞ = k((π)) is the center where π := τ−2, cf. §2.1. Since q is odd, there is an element α ∈ k−k
such that α2 ∈ k. Set β := τ−1. We then have

D = F∞+ F∞α+ F∞β + F∞αβ

with α2 ∈ k× ⊆ F×∞, β2 = π ∈ F×∞ and βα=−αβ . The ring of integers OD of D is a rank 4 module over
O∞ = k[[π]] with basis {1,α,β ,αβ}.

Take any integer n≥ 1 and define the group Gn = G ∩ (1+ βnOD). Let

ψn : Gn/Gn+1 ,→OD/βOD

be the injective homomorphism which take a coset representative 1+ βn y to the image of y modulo
βOD. The field OD/βOD is a quadratic extension of k and has k-basis {1,α}; here we are identifying α
by its image in the residue field. Denote the image of ψn by gn.

Let S be the commutator subgroup of G. Define the group Sn = S ∩ (1+ βnOD). The inclusion map
Sn→ Gn induces an injective homomorphism Sn/Sn+1 ,→ Gn/Gn+1 that we view as an inclusion. Define
subgroup sn =ψn(Sn/Sn+1) of gn.

Lemma 9.4. We have S ⊆ 1+ βOD and s1 = OD/βOD.

Proof. By assumption, the map G → (OD/β
2OD)× is surjective. The image of S in (OD/β

2OD)× thus
agrees with the commutator subgroup of (OD/β

2OD)×; a quick computation shows that it is equal to
the image of 1+ βOD. The lemma follows easily. �

We now show that the other groups sn are large.

Lemma 9.5. Take any integer n≥ 1. If n is odd, then sn = OD/βOD. If n is even, then sn ⊇ kα.

Proof. We have n = 2m + e for unique integers m and e ∈ {0,1}. Take any g = 1 + β x ∈ G1 and
h= 1+ βn y ∈ Gn. The follow calculations are done in the ring OD/β

n+2OD:

ghg−1 = 1+ (1+ β x) · βn y · (1+ β x)−1

≡ 1+ (1+ β x) · βn y · (1− β x)

≡ 1+ βn y + β xβn y − βn yβ x

= 1+ βn y + βn+1�β−e xβ e · y − β−1 yβ · x
�

.

The last equality uses that β2 = π is in the center of OD. Therefore,

ghg−1h−1 ≡ 1+ βn+1�β−e xβ e · y − β−1 yβ · x
�

.

Since ghg−1h−1 ∈ S, this proves that the image of β−e xβ e · y − β−1 yβ · x in OD/βOD lies in sn+1.
Let f be the automorphism a 7→ aq of the field OD/βOD. Conjugation by β−1 on OD induces the map

f on the quotient OD/βOD. The above computations show that we have a well-defined bilinear map

bn : g1× gn→ sn+1, (x , y) 7→
¨

x y − f (y)x if n is even,
f (x)y − f (y)x if n is odd.

We can now prove the lemma; we proceed by induction on n. The case n = 1 follows from
Lemma 9.4; in particular, 1 and α belong to s1 ⊆ g1. Now suppose that sn has the desired form
and hence α ∈ sn ⊆ gn. Then bn(1,α) and bn(α,α) belong to sn+1. If n is odd, then bn(1,α) = 2α
and hence kα ⊆ sn+1. If n is even, then bn(1,α) = 2α and bn(α,α)n = 2α2 ∈ k , and thus sn+1 equals
k+ kα= OD/βOD. (We are of course using that k has odd characteristic.) �

We can now give an explicit description of S.

Lemma 9.6. The group S is equal to the subgroup of 1+βOD consisting of elements with reduced norm 1.
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Proof. Let H be the subgroup of 1+βOD consisting of elements with reduced norm 1; we need to show
that S = H. The group H contains the commutator subgroup of O ×D since the quotient O ×D /H is abelian
(the reduced norm takes values in O ×∞ and OD/βOD is a field). Since S is contained in the commutator
subgroup of O ×D , we deduce that S ⊆ H.

For each integer n ≥ 1, define Hn = H ∩ (1+ βnOD). The inclusion map S→ H induces an injective
homomorphism

(9.1) sn
∼= Sn/Sn+1 ,→ Hn/Hn+1

By Theorem 7(iii) of [Rie70], the k-vector space Hn/Hn+1 has dimension 1 or 2 when n is even or odd,
respectively. By comparing dimensions and using Lemma 9.5, we find that the homomorphism (9.1) is
an isomorphism for all n≥ 1.

The groups S and H are closed subgroups of 1+ βOD with S ⊆ H and the natural maps Sn/Sn+1 →
Hn/Hn+1 are isomorphism for all n≥ 1. This is enough to ensure that S = H. �

Lemma 9.7. The group G contains all elements of O ×D with reduced norm 1.

Proof. Consider the norm map

(9.2) (OD/βOD)
×→ (O∞/πO∞)×

of fields; it arises from reducing the norm det: O ×D →O
×
∞.

The group (OD/βOD)× is cyclic of order q2 − 1. Fix an element g0 ∈ G whose image in (OD/βOD)×

has order q − 1; this uses our assumption that G → (OD/β
2OD)× is surjective. The sequence {gqn

0 }n
converges in G to an element g1 with order q− 1 that agrees with g0 modulo βOD. We have det(g1)≡
det(g0) ≡ 1 (mod πO∞) since the kernel of 9.2 is cyclic of order q − 1. We have det(g1) = 1 since
det(g1) has order dividing q− 1 and it lies in 1+π∞O∞.

Now take any a ∈ O ×D with reduced norm 1. The image of a in OD/βOD thus lies in the kernel of
the norm map (9.2). There is thus an integer 0 ≤ i < q − 1 such that ag i

1 belongs to 1+ βOD. Since
det(ag i

1) = 1, we have ag−i
1 ∈ G by Lemma 9.6. Therefore, a belongs to G. �

To prove that G = O ×D , it suffices by Lemma 9.7 to show that det(G) = O ×∞. We have det(G)⊇ 1+πO∞
by assumption, so it suffices to prove that the homomorphism

G→ (OD/βOD)
× det−→ (O∞/πO∞)×

is surjective. This is clear since the first map is surjective by our assumption that G has maximal image
modulo β2OD, and the second map is the norm map between finite fields.
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