
ON THE SURJECTIVITY OF MOD ` REPRESENTATIONS ASSOCIATED TO ELLIPTIC CURVES

DAVID ZYWINA

ABSTRACT. Let E be an elliptic curve over the rationals that does not have complex multiplication. For
each prime `, the action of the absolute Galois group on the `-torsion points of E can be given in terms
of a Galois representation ρE,` : Gal(Q/Q) → GL2(F`). An important theorem of Serre says that ρE,` is
surjective for all sufficiently large `. In this paper, we describe an algorithm based on Serre’s proof that
can quickly determine the finite set of primes ` for which ρE,` is not surjective. We will also give some
improved bounds for Serre’s theorem.

1. INTRODUCTION

Let E be a non-CM elliptic curve defined over Q. For each prime `, let E[`] be the `-torsion subgroup
of E(Q), whereQ is a fixed algebraic closure ofQ. The group E[`] is a free F`-vector space of dimension
2 and there is a natural action of the absolute Galois group GalQ := Gal(Q/Q) on E[`] which respects
the group structure. After choosing a basis for E[`], this action can be expressed in terms of a Galois
representation

ρE,` : GalQ→ GL2(F`).

A renowned theorem of Serre shows that ρE,` is surjective for all sufficiently large primes `, cf. [Ser72].
Let c(E) be the smallest integer n≥ 1 for which ρE,` is surjective for all primes ` > n. Serre has asked

whether the constant c(E) can be bounded independent of E [Ser72, §4.3], and moreover whether
c(E) ≤ 37 always holds [Ser81, p. 399]. We pose a slightly stronger conjecture; first define the set of
pairs

S0 :=
�

(17,−172 ·1013/2), (17,−17·3733/217), (37,−7·113), (37,−7·1373 ·20833)
	

.

Denote by jE the j-invariant of E/Q. When (`, jE) ∈ S0, the curve E has an isogeny of degree ` and
hence ρE,` is not surjective, cf. [Zyw15] for a description of the image of ρE,`.

Conjecture 1.1. If E is a non-CM elliptic curve over Q and ` > 13 is a prime satisfying (`, jE) /∈ S0, then
ρE,`(GalQ) = GL2(F`).

The main goal of this paper is to give a simple and practical algorithm to compute the finite set of
primes ` for which ρE,` is not surjective. We will focus on the case ` > 11 since using [Zyw15], we can
easily compute the group ρE,`(GalQ), up to conjugacy in GL2(F`), for all the primes `≤ 11.

We will also give improved upper bounds for c(E).

Notation. For an elliptic curve E/Q, denote its j-invariant and conductor by jE and NE , respectively. For
each prime p for which E has good reduction, define the integer ap(E) = |E(Fp)|−(p+1), where E(Fp) is
the Fp-points of a good model at p. For each good prime p 6= `, the representation ρE,` is unramified at
p and satisfies tr(ρE,`(Frobp))≡ ap(E) (mod `) and det(ρE,`(Frobp))≡ p (mod `), where Frobp ∈ GalQ
is an (arithmetic) Frobenius at p. For primes p for which E has bad reduction, we set ap(E) = 0, 1 or
−1, if E has additive, split multiplicative or non-split multiplicative reduction, respectively, at p. Let
vp : Q×p �Z be the valuation for the prime p.
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1.1. An algorithm. Fix a non-CM elliptic curve E/Q. We now explain how to compute a finite set S of
primes such that ρE,` is surjective for all primes ` /∈ S.

Let q1 < · · ·< qd be the primes p that satisfy one of the following conditions:

• p = 2 and vp( jE) is 3, 6 or 9,
• p ≥ 3 and vp( jE − 1728) is positive and odd.

Take any odd prime p for which E has Kodaira symbol I0 or I∗0. Equivalently, E/Q or its quadratic
twist by p has good reduction at p; denote this curve by Ep/Q. Let p1 < p2 < p3 < p4 < . . . be the odd
primes such that E has Kodaira symbol I0 or I∗0 and such that the integer ai := |api

(Epi
)| is non-zero.

Note that the set of such primes pi has density 1, cf. [Ser81, Théorèm 20].

For integers i ≥ 1 and 1≤ j ≤ d, define the following values in F2:

αi, j =

�

0 if q j is a square modulo pi ,
1 otherwise,

and βi =

�

0 if −1 is a square modulo pi ,
1 otherwise.

It is easy to compute αi, j and βi; with respect to the isomorphism F2
∼= {±1} they are simply Legendre

symbols. For each integer m≥ 1, let Am ∈ Mm,d(F2) be the m×d matrix whose (i, j)-th entry is αi, j and
let bm ∈ Fm

2 be the column vector whose i-th entry is βi .
Let r ≥ 1 be the smallest integer for which the linear equation Ar x = br has no solution. By Dirich-

let’s theorem for primes in arithmetic progressions, there is an integer i0 ≥ 1 such that αi0, j = 0 for all
1≤ j ≤ d and βi0 = 1. So r ≤ i0 and in particular r is well-defined.

Let S be the set of primes ` such that ` ≤ 13, (`, jE) ∈ S0, or ai ≡ 0 (mod `) for some 1 ≤ i ≤ r; it is
finite since S0 is finite and each ai is non-zero. We will prove the following in §3.

Theorem 1.2. The representation ρE,` is surjective for all primes ` /∈ S.

We will explain in §6 how to test the surjectivity of ρE,` for the finitely many primes ` ∈ S.

Example 1.3. We have used Theorem 1.2 to verify Conjecture 1.1 for all elliptic curves E/Q with con-
ductor at most 350000 (Magma code is given in Appendix A). In fact, for all such curves E/Q our
computations show that pr ≤ 71. By the Hasse bound, we have ai ≤ 2

p
pi ≤ 2

p
71 < 17 for 1 ≤ i ≤ r.

Therefore, the set S −{2, 3,5, 7,11,13} is either empty or is {`} when (`, jE) ∈ S0. In particular, we did
not need to directly check the surjectivity of ρE,` for any exceptional primes ` > 13.

There are of course earlier results that produce an explicit finite set S that satisfies the conclusion of
Theorem 1.2. For example, the bounds of Kraus and Cojocaru mentioned in §1.3 will give such sets S;
however, the resulting sets S can be extremely large and testing surjectivity of ρE,` for the finite number
of ` ∈ S can be time consuming. Stein verified Conjecture 1.1 for curves of conductor at most 30000
using the bound of Cojocaru, cf. [Ste]; the resulting sets S would typically consist of thousands of primes
(this should be contrasted with Example 1.3).

Remark 1.4.

(i) The set S does not change if we replace E by a quadratic twist and hence it depends only on jE .
(ii) In practice, the most time consuming part of computing S is to determine the odd primes p

for which vp( jE − 1728) is positive and odd; note that the curve E has bad reduction at such
primes p. However, observe that we do not need to determine all the primes of bad reduction.
(Contrast this with §1.2, where we find an alternate set S when jE /∈ Z by only using the primes
that divide the denominator of jE .)
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1.2. Non-integral j-invariants. Let E/Q be a non-CM elliptic curve. The following, which will be
proved in §4, shows that if ρE,` is not surjective, then the denominator of jE must be of a special form.

Theorem 1.5. The denominator of jE is of the form pe1
1 · · · p

es
s with distinct primes pi and ei > 0. If ρE,` is

not surjective for a prime ` > 13 with (`, jE) /∈ S0, then each pi is congruent to ±1 modulo ` and each ei is
divisible by `.

Now suppose that the j-invariant of E is not an integer (the theorem is trivial otherwise). Let g be the
greatest common divisor of the integers p2

i − 1 and ei with 1 ≤ i ≤ s. Let S be the set of primes ` such
that ` ≤ 13, (`, jE) ∈ S0, or g ≡ 0 (mod `). The set S is finite. The following is a direct consequence of
Theorem 1.5.

Proposition 1.6. If jE is not an integer, then the representation ρE,` is surjective for all primes ` /∈ S.

Example 1.7. We have verified Conjecture 1.1 for all non-CM elliptic curves E/Q in the Stein-Watkins
database (it consist of 136,924,520 elliptic curves with conductor up to 108). Proposition 1.8 sufficed
for all E/Q with jE /∈ Z (i.e., there were no primes ` ∈ S that needed to be checked individually). The
integral j-invariants that needed to be considered were handled with the algorithm from §1.1.

We now give some easy bounds for c(E).

Proposition 1.8. Suppose that jE is not an integer.
(i) We have c(E)≤max{17, g}.

(ii) We have c(E)≤max{17, (p+ 1)/2} for every prime p with vp( jE)< 0.
(iii) We have c(E)≤max{17, log d}, where d ≥ 1 is the denominator of jE .

Proof. Note that if (`, jE) ∈ S0, then ` = 17. The first bound is immediate from Proposition 1.6 since
max S ≤ max{17, g}. Suppose that p is a prime satisfying vp( jE) < 0 and ρE,` is not surjective for a
prime ` > 17. By Theorem 1.5, we have p ≡ ±1 (mod `). Since p+1 and p−1 are not primes, we must
have ` ≤ (p + 1)/2. By Theorem 1.5, the denominator d is divisible by p` and is thus at least (`− 1)`.
Hence, `≤ ` log(`− 1)≤ log d. �

Remark 1.9. For any non-CM elliptic curve E/Q, Masser and Wüstholz [MW93] have shown that c(E)≤
c(max{1, h( jE)})γ, where c and γ are absolute constants (which if computed are very large) and h( jE)
is the logarithmic height of jE . Proposition 1.8(iii) gives a simple version in the case jE /∈ Z since
log d ≤ h( jE).

1.3. A bound. We now discuss some bounds for c(E) in terms of the conductor. Kraus [Kra95] proved
that

c(E)≤ 68rad(NE)(1+ log log rad(NE))
1/2

where rad(NE) =
∏

p|NE
p. Using a similar approach, Cojocaru [Coj05] showed that c(E) is at most

4
3

p
6 · NE

∏

p|NE
(1+ 1/p)1/2 + 1. We shall strengthen these bounds with the following theorem which

will be proved in §5.

Theorem 1.10. Let E/Q be a non-CM elliptic curve that has no primes of multiplicative reduction. Then

c(E)≤max
¦

37,
2
p

3
3

N1/2
E

∏

p|NE

�1
2
+

1
2p

�1/2©
.

In particular, c(E)≤max
�

37, N1/2
E

	

.

Suppose that we are in the excluded case where E/Q has multiplicative reduction at a prime p. Then
the bound c(E) ≤ max{37, (p + 1)/2} from Proposition 1.8 already gives a sizeable improvement over
the bounds of Kraus and Cojocaru.
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2. THE CHARACTER ε`

Fix a non-CM elliptic curve E/Q and a prime ` > 13 with (`, jE) /∈ S0 such that the representation
ρE,` is not surjective.

Proposition 2.1 (Serre, Mazur, Bilu-Parent-Rebolledo). With assumptions as above, the image of ρE,`
lies in the normalizer of a non-split Cartan subgroup of GL2(F`).

Before explaining the proposition, let us recall some facts about non-split Cartan subgroups. A non-
split Cartan subgroup of GL2(F`) is the image of a homomorphism F×

`2 ,→ AutF`(F`2)∼= GL2(F`), where
the first map comes from acting by multiplication and the isomorphism arises from some choice of F`-
basis of F`2 . Let C be a non-split Cartan subgroup; it is cyclic of order `2 − 1 and is uniquely defined
up to conjugacy in GL2(F`). Let N be the normalizer of C in AutF`(F`2) ∼= GL2(F`); it is the subgroup
generated by C and the automorphism a 7→ a` of F`2 . In particular, [N : C] = 2.

Fix a non-square ε ∈ F`. After replacing C by a conjugate, one can take C to be the group consisting
of matrices of the form

�

a bε
b a

�

with (a, b) ∈ F2
`
− {(0, 0)}; the group N is then generated by C and the

matrix
�

1 0
0 −1

�

. For all g ∈ N − C , g2 is scalar and tr(g) = 0.

Proof of Proposition 2.1. Suppose that ρE,` is not surjective; its image lies in a maximal subgroup H of
GL2(F`). We have det(ρE,`(GalQ)) = F×` since the character det◦ρE,` corresponds to the Galois action
on the `-th roots of unity. Therefore, det(H) = F×

`
. From [Ser72, §2], we find that, up to conjugation,

H is one of the following:

(a) a Borel subgroup of GL2(F`),
(b) the normalizer of a split Cartan subgroup of GL2(F`),
(c) the normalizer of a non-split Cartan subgroup of GL2(F`),
(d) for ` ≡ ±3 (mod 8), a subgroup of GL2(F`) that contains the scalar matrices and whose image

in PGL2(F`) is isomorphic to the symmetric group S4.

That ρE,`(GalQ) is not contained in a Borel subgroup when ` > 13 and (`, jE) /∈ S0 is a famous theorem
of Mazur, cf. [Maz78]; the modular curves X0(17) and X0(37) each have two rational points which
are not cusps or CM points and these points are explained by the pairs (`, jE) ∈ S0. Bilu, Parent and
Rebolledo have shown that ρE,`(GalQ) cannot be conjugate to a subgroup as in (b), cf. [BPR13]; they
make effective the bounds in earlier works of Bilu and Parent using improved isogeny bounds of Gaudron
and Rémond. Serre has shown that ρE,`(GalQ) cannot be conjugate to a subgroup as in (d), cf. [Ser81,
§8.4]. Therefore, the only possibility for H is to be a group as in (c). �

By Proposition 2.1 and our assumption on ρE,`, the image of ρE,` is contained in the normalizer N
of a non-split Cartan subgroup C of GL2(F`). Following Serre, we define the quadratic character

ε` : GalQ
ρE,`
−−→ N/C

∼
−→ {±1}.

For each prime p, let Ip be an inertia subgroup of GalQ at p. Recall that ε` is unramified at p if and only
if ε`(Ip) = {1}. We now state several basic lemmas concerning the character ε`. Let q1, . . . , qd be the
primes from §1.1.

Lemma 2.2.

(i) The character ε` is unramified at ` and at all primes p /∈ {q1, . . . , qd}.
(ii) If p ∈ {q1, . . . , qd} − {`}, then ρE,`(Ip) contains −I and an element of order 4.

4



Proof. Take any prime p.
• First suppose that p = `. Let I ′

`
be the maximal pro-` subgroup of I`. We have ρE,`(I ′`) = 1 since N

has cardinality relatively prime to `. The group ρE,`(I`) is cyclic since every finite quotient of the tame
inertia group I`/I

′
`

is cyclic, see [Ser72, §1.3] for the the structure of I`/I
′
`
. Fix a generator g of ρE,`(I`).

By the proof of [Ser81, p.397 Lemme 18’], the image ρE,`(I`) in PGL2(F`) contains an element of order
at least (`− 1)/4 > 2. The order of the image of g in PGL2(F`) is greater than 2, so g2 is not a scalar
matrix. However, g2 is a scalar matrix for all g ∈ N − C . So g belongs to C and thus ρE,`(I`) ⊆ C .
Therefore, ε` is unramified at `.
• Suppose that p 6= ` and that E has good reduction at p. We have ρE,`(Ip) = {I} ⊆ C since ρE,` is
unramified at such primes p. Therefore, ε` is unramified at p.
• Suppose that p 6= ` and that vp( jE)< 0. Using a Tate curve, we shall show in §4 that ε` is unramified
at p (and moreover that ε`(Frobp)≡ p (mod `)); the proof will use the definition of ε` but none of the
successive lemmas in this section.
• Finally suppose that p 6= ` is a prime for which E bad reduction at p and vp( jE)≥ 0. Choose a minimal
Weierstrass model of E/Q and let∆, c4 and c6 be the standard invariants attached to this model as given
in [Sil09, III §1].

Let Φp be the image of Ip under ρE,`. We can identify Φp with Gal(L/Qun
p ) where L is the smallest

extension of Qun
p for which E base extended to L has good reduction. Moreover, one knows that Φp is

isomorphic to a subgroup of Aut(eE) where eE/Fp is the reduction of E/L, cf. [Ser72, §5.6]. We have
Φp ⊆ SL2(F`) since det◦ρE,` is ramified only at the prime `. In particular, if there is an element in Φp
with order 2, then it is −I .

Consider p ≥ 5. The group Aut(eE) is cyclic of order 2, 4 or 6, so Φp is cyclic of order 2, 3, 4 or 6. We
have jE − 1728 = c2

6/∆, so vp( jE − 1728) ≡ vp(∆) (mod 2). From [Ser72, §5.6], we find that Φp has
order 2, 3 or 6 if and only if vp( j − 1728) is even.

Consider p = 3. The group Aut(eE) is now either cyclic of order 2, 4 or 6, or is a non-abelian group
of order 12 (it is a semi-direct product of a cyclic group of order 4 by a distinguished subgroup of order
3). Using that vp( jE − 1728) ≡ vp(∆) (mod 2) and Théorème 1 of [Kra90], we find that Φp has order
2, 3 or 6 if and only if vp( j − 1728) is even.

Consider p = 2. Then the group Aut(eE), and hence also Φp is isomorphic to a subgroup of SL2(F3).
The group Φp is either cyclic of order 2, 3, 4 or 6, isomorphic to the order 8 group of quaternions
{±1,±i,± j,±k}, or is isomorphic to SL2(F3). We have jE = c3

4/∆ and hence v2( jE) = 3v2(c4)− v2(∆).
Checking all the cases in the corollary to Théorème 3 of [Kra90], we find Φp has order 2, 3, 6 or 24 if
and only if v2( jE) /∈ {3,6, 9}. The group SL2(F3) is not isomorphic to a subgroup of N since SL2(F3) is
non-abelian and has no index 2 normal subgroups. Since Φp ⊆ N , this proves that |Φp| 6= 24.

Now suppose that p /∈ {q1, . . . , qd}. From the above computations and our choice of q j , we find that
Φp has order 2, 3 or 6. If Φp has order 2 or 6, then −I ∈ Φp. Since −I ∈ C and [N : C] = 2, we deduce
that Φp is a subgroup of C . Therefore, ε` is unramified at p. This completes the proof of (i).

Finally suppose that p ∈ {q1, . . . , qd} (and p 6= `). Then Φp is cyclic of order 4, or has order 12
(p = 3), or has order 8 (p = 2). In all these cases, Φp contains an element g of order 4. The element
g2 of order 2 in C must be −I . This completes the proof of (ii). �

Remark 2.3. If ` ≡ 1 (mod 4), then we claim that ε` is ramified at a prime p if and only if p ∈
{q1, . . . , qd} − {`}. One direction of the claim is immediate from Lemma 2.2(i). Now take any prime
p ∈ {q1, . . . , qr} − {`}. Suppose that ε` is unramified at p and hence Φp := ρE,`(Ip) is a subgroup of C .
We have Φp ⊆ C ∩ SL2(F`) since det◦ρE,` is ramified only at `. The group C ∩ SL2(F`) has no elements
of order 4 since it is cyclic of order `+ 1 and `+ 1 ≡ 2 (mod 4). This contradicts Lemma 2.2(ii), so ε`
is indeed ramified at p.
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Lemma 2.4. There are unique integers e1, . . . , ed ∈ {0,1} such that ε`(Frobp) =
�−1

p

�

·
∏d

j=1

�q j
p

�e j for all
odd primes p - q1 · · ·qd . In particular, ε` 6= 1.

Proof. There is a unique squarefree integer D such that ε`(Frobp) =
�−D

p

�

for all odd primes p - D. Let
q be any prime dividing D. The character ε` is ramified at q, so q = q j for some j by Lemma 2.2.
Therefore, D divides q1 · · ·qd .

It remains to show that D is positive. It suffices to show that ε`(c) = −1, where c ∈ GalQ corresponds
to complex conjugation under a fixed embedding Q ,→ C. Set g := ρE,`(c). We have g2 = I since c has
order 2. The matrix g has determinant −1 since the character det◦ρE,` corresponds to the Galois action
on the `-th roots of unity. The Cartan subgroup C is cyclic since it is non-split, so the only elements of
C with order 1 or 2 are I and −I . Since det(±I) = 1, we deduce that g /∈ C and hence ε`(c) = −1 as
claimed. �

Lemma 2.5. Let p be a prime for which E has good reduction. If ap(E) 6≡ 0 (mod `), then ε`(Frobp) = 1.

Proof. That ap(E) ≡ 0 (mod `) for every good prime p satisfying ε(Frobp) = −1 is [Ser72, p.317(c5)];
for p 6= `, this follows by noting that tr(g) = 0 for all g ∈ N − C . �

3. PROOF OF THEOREM 1.2

Replacing E/Q by a quadratic twist does not change the set S or the set of primes ` for which ρE,` is
not surjective. We may thus assume that E has no odd primes p with Kodaira type I∗0. So for each pi ,
we have ai = |api

(E)|.
Suppose that ` /∈ S is a prime for which ρE,` is not surjective. From our choice of `, Proposition 2.1

implies that the image of ρE,` is contained in the normalizer of a non-split Cartan subgroup of GL2(F`).
Let ε` : GalQ → {±1} be the corresponding quadratic character. By Lemma 2.4, there are unique

e1, . . . , ed ∈ {0, 1} such that ε`(Frobp) =
�−1

p

�

·
∏d

j=1

�q j
p

�e j for all primes p - 2q1 · · ·qd .
Now consider p = pi with 1 ≤ i ≤ r. We have |api

(E)| = ai 6≡ 0 (mod `) since ` /∈ S. Lemma 2.5
implies that ε`(Frobpi

) = 1 for all 1≤ i ≤ r. Therefore,

d
∏

j=1

�q j

pi

�e j

=
�

−1
pi

�

for all 1 ≤ i ≤ r. Using the isomorphism {±1} ∼= F2, this is equivalent to having
∑d

j=1αi, je j = βi for

all 1 ≤ i ≤ r. This shows that the equation Ar x = br has a solution in Fd
2 . This is a contradiction since

the equation Ar x = br has no solution by our choice of r. Therefore, the representation ρE,` must be
surjective for all ` /∈ S.

4. PROOF OF THEOREM 1.5

Take any prime p that divides the denominator of jE . Everything that follows is a local argument,
so by base extending we shall view E as an elliptic curve over Qp; we have a Galois representation
ρE,` : GalQp

→ GL2(F`). There exists an element q ∈Qp with vp(q) = −vp( jE)> 0 such that

jE = (1+ 240
∑

n≥1
n3qn/(1− qn))3/(q

∏

n≥1
(1− qn)24) = q−1 + 744+ 196884q+ · · · ;

let E/Qp be the Tate curve associated to q, cf. [Sil94, V§3]. It is an elliptic curve with j-invariant jE and

the group E (Qp) is isomorphic to Q×p /〈q〉 as a GalQp
-module. In particular, the `-torsion subgroup E[`]

is isomorphic as an F`[GalQp
]-module to the subgroup of Q×p /〈q〉 generated by an `-th root of unity ζ`

and a chosen `-th root q1/` of q. Let α: GalQp
→ F×

`
and β : GalQp

→ F` be the maps defined so that

σ(ζ`) = ζ
α(σ)
`

and σ(q1/`) = ζβ(σ)
`

q1/`
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for all σ ∈ GalQp
. So for an appropriate choice of basis for E[`], we have ρE ,`(σ) =

�

α(σ) β(σ)
0 1

�

for
σ ∈ GalQp

. The curves E and E are quadratic twists of each other over Qp since they are non-CM curves
with the same j-invariant. So there is a character χ : GalQp

→ {±1} such that, after an appropriate
choice of basis for E[`], we have

ρE,`(σ) = χ(σ)
�

α(σ) β(σ)
0 1

�

for all σ ∈ GalQp
.

Now assume that ρE,` is not surjective for a prime ` > 13 with (`, jE) /∈ S0. By Proposition 2.1,
the image of ρE,` is contained in the normalizer N of a non-split Cartan subgroup C of GL2(F`). Let
ε` : GalQ→ {±1} be the corresponding quadratic character.

Since C is non-split, the only matrices in C with eigenvalue 1 or −1 are ±I . So if ρE,`(σ) belongs
to C , then α(σ) = 1 and β(σ) = 0. If ρE,`(σ) belongs to N − C , then α(σ) = −1 since every matrix
in N − C has trace 0. This proves that α takes values in {±1} and that α(σ) ≡ ε`(σ) (mod `) for all
σ ∈ GalQp

. If `= p, then α(GalQp
) = F×

`
which is impossible since ` > 13 and α takes values in {±1}. So

` 6= p and hence α(Frobp)≡ p (mod `). Therefore, ε` is unramified at p and ε`(Frobp)≡ α(Frobp)≡ p
(mod `). In particular, we must have p ≡ ±1 (mod `).

It remains to prove that e := −vp( jE) is divisible by `. The matrices I and−I are the only elements of N
that have eigenvalue 1 or −1 with multiplicity 2. Since α(GalQp(ζ`)) = 1, we must have β(GalQp(ζ`)) = 0

and hence q1/` ∈ Qp(ζ`). Extend the valuation vp of Qp to Qp(ζ`). Since Qp(ζ`)/Qp is an unramified
extension (we saw above that p 6= `), we deduce that vp(q1/`) belongs to Z and hence e = −vp( jE) =
vp(q) = `vp(q1/`) ∈ `Z.

5. PROOF OF THEOREM 1.10

Suppose that ρE,` is not surjective for a prime ` > 13 with (`, jE) /∈ S0. We can then define a quadratic
character ε` : GalQ→ {±1} as in §2. Let E′/Q be the elliptic curve obtained by twisting E/Q by ε`.

Lemma 5.1. The elliptic curves E and E′ have the same conductors.

Proof. Take any prime p. Lemma 1 of [Kra95] says that E and E′ have the same reduction type (i.e.,
good, additive or multiplicative) at p. This proves that ordp(NE) = ordp(NE′) for p ≥ 5. To prove this
equality for p = 2 and 3, we need to check that the wild part of the conductors of E and E′ at p agree;
for a description of the wild part of the conductor at p, see [Sil94, IV§10].

For our prime p ≤ 3, it suffices to show that the groupsρE,`(Ip) andρE′,`(Ip) are conjugate in GL2(F`).
After choosing appropriate bases of E[`] and E′[`], we may assume that ρE′,` = ε` · ρE,`. If ε` is
unramified at p, then ρE′,`(Ip) = ρE,`(Ip). We always have ±ρE′,`(Ip) = ±ρE,`(Ip). So if ε` is ramified
at p, then Lemma 2.2(ii) implies that ρE′,`(Ip) = ±ρE′,`(Ip) = ±ρE,`(Ip) = ρE,`(Ip). �

By Lemma 5.1, the elliptic curves E and E′ the same conductor; denote it by N . By the modularity the-
orem (proved by Wiles, Taylor, Breuil, Conrad and Diamond), there are newforms f and g ∈ S2(Γ0(N))
corresponding to E and E′, respectively. Let an( f ) and an(g) be the n-th Fourier coefficient of f and g
at the cusp i∞. The following lemma gives a Sturm bound for a prime q that satisfies aq( f ) 6= aq(g).
Note that f and g are distinct since ε 6= 1 (by Lemma 2.4) and since E and E′ are non-CM.

Lemma 5.2. Let f and g be distinct normalized newforms in S2(Γ0(N)). Then there exists a prime q such
that

(5.1) q ≤
N
3

∏

p|N

�1
2
+

1
2p

�

− 1

and aq( f ) 6= aq(g).
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Proof. Consider the modular curve X0(N) defined over C. Its complex points form a Riemann surface
obtained by quotienting the complex upper-half plane by Γ0(N) and then compactifying by adding cusps.
For each prime power q = pe such that pe ‖ N , let Wq be a matrix of the form

�

qa b
Nc qd

�

with a, b, c, d ∈ Z
that has determinant q. The matrix Wq normalizes Γ0(N) and thus induces an automorphism of X0(N).
Let W (N) be the subgroup of Aut(X0(N)) generated by the {Wpe}pe‖N . The group W (N) is isomorphic
to (Z/2Z)r where r is the number of distinct prime factors of N [AL70, Lemma 9]. The group W (N)
permutes the cusps of X0(N) and the stabilizer of the cusp i∞ is trivial.

For the newform f , consider the holomorphic differential form η = f (z)dz on X0(N). For each
automorphism w ∈W (N), there is a λw( f ) ∈ {±1} such that η(wz) = λw( f )η(z), cf. [AL70, Theorem 3].
Similarly, we have values λw(g) ∈ {±1} for w ∈W (N).

Let H be the set of w ∈W (N) for which λw( f ) = λw(g); it is a subgroup of W (N) of cardinality 2r or
2r−1. The holomorphic differential formω := ( f (z)− g(z))dz is non-zero since f and g are distinct. Let
K = div(ω) be the corresponding (effective) divisor on X0(N); it has degree 2gX0(N)−2 where gX0(N) is
the genus of X0(N). Therefore,

∑

P
ordP(ω)≤ 2gX0(N) − 2

where the sum is over the cusps of X0(N). For a fixed automorphism w ∈ H, we have a cusp P = w · i∞.
From our choice of H, we find that ω(wz) = ±ω(z) and thus ordP(ω) = ordi∞(ω). Therefore,

2r−1 ordi∞(ω)≤ |H|ordi∞(ω)≤ 2gX0(N) − 2≤
N
6

∏

p|N

(1+ 1/p)− 2r

where the last inequality uses an explicit formula for gX0(N) [Shi94, Prop. 1.40] and that X0(N) has at
least 2r cusps. Let n be the smallest positive integer for which the Fourier coefficients an( f ) and an(g)
disagree. We have ordi∞(ω) = n− 1, and hence

n≤
1
2r

N
3

∏

p|N

(1+ 1/p)− 1.

If n is prime, then we are done. If n is composite with an( f ) 6= an(g), then aq( f ) 6= aq(g) for some
prime q dividing n (since f and g are normalized eigenforms, we know that their Fourier coefficients
are multiplicative and are defined recursively for prime powers indices). �

Remark 5.3. If f and g are distinct modular forms on Γ0(N) of weight 2, then the same proof, but only
looking at the cusp i∞, shows that there is an integer n ≤ N

6

∏

p|N (1 +
1
p ) such that an( f ) 6= an(g).

This is the bound used in [Coj05] and [Kra95]; though possibly working with a larger N .

By Lemma 5.2, there is a prime q satisfying (5.1) such that aq(E) = aq( f ) 6= aq(g) = aq(E′). Since
ap(E) = ap(E′) = 0 for primes of additive reduction, we find that E has either good or multiplicative
reduction at q. By assumption, E has no primes of multiplicative reduction, so E has good reduction at
q.

Since aq(E) 6= aq(E′) = ε`(Frobq)aq(E), we deduce that ε`(Frobq) = −1 and aq(E) 6= 0. By Lemma 2.5,
we find that aq(E)≡ 0 (mod `). The Hasse bound then implies that

`≤ |aq(E)| ≤ 2
p

q ≤ 2

√

√

√

N
3

∏

p|N

�1
2
+

1
2p

�

=
2
p

3
3

N1/2
∏

p|N

�1
2
+

1
2p

�1/2
.

Since N is divisible by some prime (there is no elliptic curve over Q with good reduction everywhere),

we have `≤ 2
p

3
3 N1/2(1

2 +
1
4

�1/2
= N1/2.
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6. REMAINING PRIMES

Fix a non-CM elliptic curve E/Q. In this section, we explain how to determine whether ρE,` is surjec-
tive for a fixed prime `. Combined with Theorem 1.2 (or possibly Proposition 1.6), this gives a method to
compute the (finite) set of primes ` for which ρE,` is not surjective. We will also mention the surjectivity
of the `-adic representations of E in §6.5.

6.1. Primes ` ≤ 11. Let E be the elliptic curve over Q defined by the Weierstrass equation y2 + y =
x3 − x2 − 7x + 10 and let O be the point at infinity. The Mordell-Weil group E (Q) is an infinite cyclic
group generated by the point (4,5). Let J : E → A1

Q ∪ {∞} be the morphism given by

J(x , y) = ( f1 f2 f3 f4)
3/( f 2

5 f 11
6 ),

where

f1 = x2 + 3x − 6, f2 = 11(x2 − 5)y + (2x4 + 23x3 − 72x2 − 28x + 127),

f3 = 6y + 11x − 19, f4 = 22(x − 2)y + (5x3 + 17x2 − 112x + 120),

f5 = 11y + (2x2 + 17x − 34), f6 = (x − 4)y − (5x − 9).

For `≤ 11, the following gives a criterion to determine whether ρE,` is surjective or not.

Proposition 6.1. Let E/Q be a non-CM elliptic curve.
(i) The representation ρE,2 is not surjective if and only if jE = 256(t + 1)3/t or jE = t2 + 1728 for

some t ∈Q.
(ii) The representation ρE,3 is not surjective if and only if jE = 27(t + 1)(t + 9)3/t3 or jE = t3 for

some t ∈Q.
(iii) The representation ρE,5 is not surjective if and only if

jE =
53(t + 1)(2t + 1)3(2t2 − 3t + 3)3

(t2 + t − 1)5
, jE =

52(t2 + 10t + 5)3

t5
or jE = t3(t2 + 5t + 40)

for some t ∈Q.
(iv) The representation ρE,7 is not surjective if and only if

jE =
t(t + 1)3(t2 − 5t + 1)3(t2 − 5t + 8)3(t4 − 5t3 + 8t2 − 7t + 7)3

(t3 − 4t2 + 3t + 1)7
,

jE =
64t3(t2 + 7)3(t2 − 7t + 14)3(5t2 − 14t − 7)3

(t3 − 7t2 + 7t + 7)7
or

jE =
(t2 + 245t + 2401)3(t2 + 13t + 49)

t7

for some t ∈Q.
(v) The representation ρE,11 is not surjective if and only if jE ∈ {−112,−11 · 1313} or jE = J(P) for

some P ∈ E (Q)− {O }.
(vi) If jE is an integer, then ρE,11 is not surjective if and only if jE ∈ {−112,−11 · 1313}.

If jE is not an integer and ρE,11 is not surjective, then the denominator of jE is of the form pe1
1 · · · p

es
s

with pi distinct primes such that pi ≡ ±1 (mod 11) and ei ≡ 0 (mod 11).

Proof. Parts (i)–(v) are consequence of the theorems from [Zyw15]; one need only consider the maximal
subgroup of GL2(F`). Note that the normalizer of a split Cartan subgroup in GL2(F3) is not a maximal
subgroup. The normalizer of a split Cartan subgroup in GL2(F5) lies in a maximal subgroup of GL2(F5)
whose image in PGL2(F5) is isomorphic to S4.

The curve E and the map J come from Halberstadt’s description of X+ns(11) in [Hal98]. In particular,
the group ρE,11(GalQ) is conjugate to a subgroup of the normalizer of a non-split Cartan subgroup of
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GL2(F11) if and only if jE = J(P) for some P ∈ E (Q) − {O }. In [ST12], it is shown that if J(P) is an
integer with P ∈ E (Q)−{O }, then J(P) is the j-invariant of a CM elliptic curve; this proves the first part
of (vi). For the second part of (vi), note that the proof of Theorem 1.5 applies verbatim. �

Remark 6.2. In [Zyw15], we give explicit polynomials A, B, C ∈ Q[X ] of degree 55 such that jE = J(P)
for some point P ∈ E (Q)−{O } if and only if the polynomial A(X ) j2E +B(X ) jE +C(X ) ∈Q[X ] has a root.
So it straightforward to determine whether jE = J(P) for some P ∈ E (Q)− {O }.

6.2. The prime `= 13.

Proposition 6.3.

(i) The representation ρE,13 is not surjective if

jE = 24 · 5 · 134 · 173/313,

jE = −212 · 53 · 11 · 134/313,

jE = 218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929/(513 · 6113), or

jE = (t
2 + 5t + 13)(t4 + 7t3 + 20t2 + 19t + 1)3/t for some t ∈Q.

(ii) The representation ρE,13 is surjective if and only if all the following conditions hold:
• there is a prime p - 13NE such that ap(E) 6≡ 0 (mod 13) and such that ap(E)2 − 4p is a

non-zero square modulo 13,
• there is a prime p - 13NE such that ap(E) 6≡ 0 (mod 13) and such that ap(E)2 − 4p is a

non-square modulo 13,
• there is prime p - 13NE such that the image of ap(E)2/p in F13 is not 0, 1, 2 and 4, and is

not a root of x2 − 3x + 1.

Proof. Part (i) is explained in [Zyw15]; the first three exceptional j-invariants come from [BC14]. Part
(ii) is a direct consequence of Proposition 19 of [Ser72] and the Chebotarev density theorem. �

Consider a non-CM elliptic curve E/Q. Suppose that jE is not one of those given in Proposition 6.3(i);
if it was then ρE,13 would not be surjective. Conjecturally, the representation ρE,13 will be surjective
and hence this should be checkable using the criterion of Proposition 6.3(ii).

If the surjectivity is unknown even after computing ap(E) for many primes p - 13NE , then one can do
a direct computation. The representation ρE,13 is surjective if and only if the image of ρE,13(GalQ) in
GL2(F13)/{±I} is the full group GL2(F13)/{±I}. For a given Weierstrass equation y2 = x3 + ax + b for
E/Q one can compute the division polynomial of E at the prime 13; it is the monic polynomial f (X ) ∈
Q[X ] whose roots are the x-coordinates of the elements of order 13 in E(Q). The Galois group of f (x)
is isomorphic to the image of ρE,`(GalQ) in GL2(F`)/{±I} and be computed directly. (For example, this
was how the author found the interesting j-invariants 24 · 5 · 134 · 173/313 and −212 · 53 · 11 · 134/313

before [BC14] was available.)
Alternatively, if ρE,13 was not surjective, then one could construct a new rational point on one of the

explicit genus 3 curves in [BC14] or [Bar14].

6.3. A surjectivity criterion for primes ` > 13. Fix a prime ` > 13.

Proposition 6.4. The representation ρE,` is surjective if and only if (`, jE) /∈ S0 and there is a prime p - NE`

such that ap(E) 6≡ 0 (mod `) and ap(E)2 − 4p is a non-zero square modulo `.

Proof. As noted in the introduction, the representationρE,` is not surjective when (`, jE) ∈ S0. So assume
that (`, jE) /∈ S0. First suppose that there is a prime p - NE` such that ap(E) 6≡ 0 (mod `) and ap(E)2−4p
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is a non-zero square modulo `. With g := ρE,`(Frobp), we have tr(g) 6= 0 and t r(g)2 − 4 det(g) a non-
zero square. Let N be the normalizer of a non-split Cartan subgroup C of GL2(F`). For all A ∈ N − C ,
we have tr(A) = 0. For all A ∈ C , the value tr(A)2 − 4 det(A) ∈ F` is either zero or a non-square. So
g /∈ N , and hence ρE,`(GalQ) is not a subgroup of the normalizer of a non-split Cartan. Therefore, ρE,`
is surjective by Proposition 2.1.

Now suppose that ρE,` is surjective. There are matrices A ∈ GL2(F`) so that tr(A) 6= 0 and tr(A)2 −
4det(A) is a non-zero square. That primes p as in the statement of the proposition occur is then a
consequence of the Chebotarev density theorem. �

Now assume that (`, jE) /∈ S0. By computing ap(E) for more and more primes p - NE`, one expects
to be able to use the criterion of Proposition 6.4 to prove that ρE,` is surjective. If not, then we would
have a counterexample to Conjecture 1.1.

6.4. Further comments for ` > 13. Suppose that after computing ap(E) for more and more primes p,
the criterion of §6.3 is inconclusive (in practice, the criterion of Proposition 6.4 works quickly).

We now explain how to determine if ρE,` is surjective; its image can be computed directly using the
division polynomial at `. Note that if Conjecture 1.1 is true, then the material in this section should
never be needed!

Lemma 6.5. Suppose that E has no primes of multiplicative reduction and that ` > 13 is a prime with
(`, jE) /∈ S0. SetB := NE/6 ·

∏

p|NE
(1+1/p). Then ρE,` is not surjective if and only if there is a non-trivial

quadratic character χ that is unramified at all primes p - NE and satisfies χ(p) = 1 or ap(E)≡ 0 (mod `)
for all primes p - NE with p ≤B .

Proof. First suppose that ρE,` is not surjective. Let ε` : GalQ → {±1} be the corresponding character
from §2. The character ε` is non-trivial and unramified at p - NE by Lemmas 2.2(i) and 2.4. Let χ be the
primitive Dirichlet quadratic character corresponding to ε`; we have χ(p) = ε`(Frobp) for each p - NE .
The character χ is non-trivial since ε` is non-trivial. By Lemma 2.5, we have χ(p) = ε(Frobp) = 1 or
ap(E)≡ 0 (mod `) for all p - NE (and in particular, this holds if p ≤B).

Now suppose that there is a non-trivial quadratic character χ that is unramified at primes p - NE and
satisfies χ(p) = 1 or ap(E) ≡ 0 (mod `) for all primes p - NE with p ≤ B . Let f =

∑

n≥1 an( f )qn ∈
S2(Γ0(NE)) be the newform corresponding to E/Q by modularity. Since E has no primes of multiplicative
reduction, we have an( f ) = 0 whenever (NE , n) 6= 1. Let g =

∑

n≥1χ(n)an( f )qn be the twist of f by
χ; it is also a cusp form of level NE . Using our assumption on χ, we have ap( f ) ≡ χ(p)ap( f ) = ap(g)
(mod `) for all primes p ≤ B . We have B = [SL2(Z) : Γ0(NE)]/6, so Theorem 1 of [Stu87] implies
that ap(E) = ap( f )≡ ap(g) = χ(p)ap(E) (mod `) for all primes p (one need only consider prime index
Fourier coefficients since they are multiplicative and defined recursively on prime powers). In particular,
ap(E)≡ 0 (mod `)whenever p - NE satisfies χ(p) = −1. Since χ is non-trivial, we deduce that the set of
primes p - NE for which ap(E) ≡ 0 (mod `) has natural density at least 1/2. By the Chebotarev density
theorem, we have |{A∈ ρE,`(GalQ) : tr(A) = 0}|/|ρE,`(GalQ)| ≥ 1/2. It easy to check that this inequality
fails if ρE,`(GalQ) = GL2(F`). Therefore, ρE,` is not surjective. �

If v2( jE) < 0, then ρE,` is surjective by Theorem 1.5; so assume that v2( j) ≥ 0. After replacing E by
its quadratic twist by

∏

p‖NE
p, we may assume that E has no primes of multiplicative reduction (if ρE,`

is not surjective, then its image lies in the normalizer of a Cartan subgroup and this does change if we
change E by a quadratic twist). Lemma 6.5 then gives a way to compute if ρE,` is surjective; there are
a bounded number of ap(E) to compute and there are only finitely many possible characters χ.

6.5. `-adic surjectivity. For each integer n ≥ 1, let E[`n] be the group of `n-torsion in E(Q). The
Tate module T`(E) of E is the inverse limit of the groups E[`n] with respect to the transition maps
E[`n+1]→ E[`n], P 7→ `P. The Tate module T`(E) is a free Z`-module of rank 2 with a natural GalQ-
action. Let ρE,`∞ : GalQ→ AutZ`(T`(E))

∼= GL2(Z`) be the representation describing this Galois action.
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Using the results of this paper, and the following lemma, it is straightforward to compute the (finite)
set of primes ` for which ρE,`∞ is not surjective.

Lemma 6.6. Let E/Q be a non-CM elliptic curve.
(i) The representation ρE,2∞ is not surjective if and only if ρE,2 is not surjective or jE is of the form

−4t3(t + 8), −t2 + 1728, 2t2 + 1728 or − 2t2 + 1728

for some t ∈Q.
(ii) The representation ρE,3∞ is not surjective if and only if ρE,3 is not surjective or

jE = −
37(t2 − 1)3(t6 + 3t5 + 6t4 + t3 − 3t2 + 12t + 16)3(2t3 + 3t2 − 3t − 5)

(t3 − 3t − 1)9

for some t ∈Q.
(iii) If `≥ 5, then ρE,`∞ is not surjective if and only if ρE,` is not surjective.

Proof. For the 2-adic and 3-adic cases, see [DD12] and [Elk06], respectively. When ` ≥ 5, the lemma
follows from Lemma 3.4 of [Ser98, IV §3.4]. �

APPENDIX A. SOME CODE

Given a non-CM elliptic curve E/Q, the following Magma function outputs a finite set of primes S
such that the representation ρE,` is surjective for all primes ` /∈ S. It uses the algorithm of §1.1 if jE is
an integer and uses §1.2 otherwise. (Note that we could then use §6 to quickly determine the set of
primes ` for which ρE,` is not surjective.)

ExceptionalSet:=function(E)
j:=jInvariant(E); den:=Denominator(j);
S:={2,3,5,7,13};
if j in {-11^2,-11*131^3} then S:=S join {11}; end if;
if j in {-297756989/2, -882216989/131072} then S:=S join {17}; end if;
if j in {-9317, -162677523113838677} then S:=S join {37}; end if;
if den ne 1 then

ispow,b,e:=IsPower(den);
if ispow then

P:={p: p in PrimeDivisors(e) | p ge 11};
if P ne {} then

g:=GCD({&*P} join {p^2-1 : p in PrimeDivisors(b)});
S:= S join {ell : ell in PrimeDivisors(g) | ell ge 11};

end if;
end if;

else
D:=Discriminant(E);
Q:=PrimeDivisors( GCD(Numerator(j-1728),Numerator(D)*Denominator(D)));
Q:=[q: q in Q | q ne 2 and IsOdd(Valuation(j-1728,q))];
if Valuation(j,2) in {3,6,9} then Q:=[2] cat Q; end if;
p:=2;
alpha:=[]; beta:=[];
repeat

a:=0;
while a eq 0 do

p:=NextPrime(p); K:=KodairaSymbol(E,p);
if K eq KodairaSymbol("I0") then

a:=TraceOfFrobenius(E,p);
12



elif K eq KodairaSymbol("I0*") then
a:=TraceOfFrobenius(QuadraticTwist(E,p),p);

end if;
end while;
S:=S join {ell : ell in PrimeDivisors(a) | ell gt 13};
alpha:= alpha cat [[(1-KroneckerSymbol(q,p)) div 2 : q in Q]];
beta:= beta cat [ [(1-KroneckerSymbol(-1,p)) div 2] ];
A:=Matrix(GF(2),alpha); b:=Matrix(GF(2),beta);

until IsConsistent(Transpose(A),Transpose(b)) eq false;
end if;
return S;

end function;

The following code verifies Conjecture 1.1 for all elliptic curves E/Q in Cremona’s database [Cre];
currently this includes all curves of conductor at most 350000.

D:=CremonaDatabase(); LargestConductor(D);
for N in [1..LargestConductor(D)] do
for E in EllipticCurves(D,N) do
if not HasComplexMultiplication(E) then

S:={p: p in ExceptionalSet(E) | p gt 13};
if S ne {} then print jInvariant(E), " ", S; end if;

end if;
end for;
end for;
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