MODULAR FORMS AND SOME CASES OF THE INVERSE GALOIS PROBLEM

DAVID ZYWINA

Abstract

We prove new cases of the inverse Galois problem by considering the residual Galois representations arising from a fixed newform. Specific choices of weight 3 newforms will show that there are Galois extensions of \mathbb{Q} with Galois group $\operatorname{PSL}_{2}\left(\mathbb{F}_{p}\right)$ for all primes p and $\operatorname{PSL}_{2}\left(\mathbb{F}_{p^{3}}\right)$ for all odd primes $p \equiv \pm 2, \pm 3, \pm 4, \pm 6(\bmod 13)$.

1. Introduction

The Inverse Galois Problem asks whether every finite group is isomorphic to the Galois group of some extension of \mathbb{Q}. There has been much work on using modular forms to realize explicit simple groups of the form $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ as Galois groups of extensions of \mathbb{Q}, cf. [Rib75],[RV95], [DV00], [Die01], [Die08]. For example, [DV00, §3.2] shows that $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{2}}\right)$ occurs as a Galois group of an extension of \mathbb{Q} for all primes ℓ in a explicit set of density $1-1 / 2^{10}$ (and for primes $\ell \leq 5000000$). Also it is shown in [DV00] that $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{4}}\right)$ occurs as a Galois group of an extension of \mathbb{Q} when $\ell \equiv 2,3(\bmod 5)$ or $\ell \equiv \pm 3, \pm 5, \pm 6, \pm 7(\bmod 17)$.

The goal of this paper is to try to realize more groups of the form $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ for odd r. We will achieve this by working with newforms of odd weight; the papers mentioned above focus on even weight modular forms (usual weight 2). We will give background and describe the general situation in $\S 1.1$. In $\S 1.2$ and $\S 1.3$, we will use specific newforms of weight 3 to realize many groups of the form $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ with r equal to 1 and 3 , respectively.

Throughout the paper, we fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and define the group $G:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. For a ring R, we let $\mathrm{PSL}_{2}(R)$ and $\mathrm{PGL}_{2}(R)$ be the quotient of $\mathrm{SL}_{2}(R)$ and $\mathrm{GL}_{2}(R)$, respectively, by its subgroup of scalar matrices (in particular, this notation may disagree with the R-points of the corresponding group scheme PSL_{2} or PGL_{2}).
1.1. General results. Fix a non-CM newform $f(\tau)=\sum_{n=1}^{\infty} a_{n} q^{n}$ of weight $k>1$ on $\Gamma_{1}(N)$, where the a_{n} are complex numbers and $q=e^{2 \pi i \tau}$ with τ a variable of the complex upper-half plane. Let $\varepsilon:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be the nebentypus of f.

Let E be the subfield of \mathbb{C} generated by the coefficients a_{n}; it is also generated by the coefficients a_{p} with primes $p \nmid N$. The field E is a number field and all the a_{n} are known to lie in its ring of integers \mathcal{O}. The image of ε lies in E^{\times}. Let K be the subfield of E generated by the algebraic integers $r_{p}:=a_{p}^{2} / \varepsilon(p)$ for primes $p \nmid N$; denote its ring of integer by R.

Take any non-zero prime ideal Λ of \mathcal{O} and denote by $\ell=\ell(\Lambda)$ the rational prime lying under Λ. Let E_{Λ} and \mathcal{O}_{Λ} be the completions of E and \mathcal{O}, respectively, at Λ. From Deligne [Del71], we know that there is a continuous representation

$$
\rho_{\Lambda}: G \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{\Lambda}\right)
$$

such that for each prime $p \nmid N \ell$, the representation ρ_{Λ} is unramified at p and satisfies

$$
\begin{equation*}
\operatorname{tr}\left(\rho_{\Lambda}\left(\operatorname{Frob}_{p}\right)\right)=a_{p} \quad \text { and } \quad \operatorname{det}\left(\rho_{\Lambda}\left(\operatorname{Frob}_{p}\right)\right)=\varepsilon(p) p^{k-1} . \tag{1.1}
\end{equation*}
$$

The representation ρ_{Λ} is uniquely determined by the conditions (1.1) up to conjugation by an element of $\mathrm{GL}_{2}\left(E_{\Lambda}\right)$. By composing ρ_{Λ} with the natural projection arising from the reduction map
$\mathcal{O}_{\Lambda} \rightarrow \mathbb{F}_{\Lambda}:=\mathcal{O} / \Lambda$, we obtain a representation

$$
\bar{\rho}_{\Lambda}: G \rightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right) .
$$

Composing $\bar{\rho}_{\Lambda}$ with the natural quotient map $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right) \rightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$, we obtain a homomorphism

$$
\bar{\rho}_{\Lambda}^{\mathrm{proj}}: G \rightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)
$$

Define the field $\mathbb{F}_{\lambda}:=R / \lambda$, where $\lambda:=\Lambda \cap R$. There are natural injective homomorphisms $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right) \hookrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right) \hookrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ and $\mathrm{PSL}_{2}\left(\mathbb{F}_{\Lambda}\right) \hookrightarrow \mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ that we shall view as inclusions.

The main task of this paper is to describe the group $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ for all Λ outside of some explicit set. The following theorem of Ribet gives two possibilities for $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ for all but finitely many Λ; we will give a proof of Theorem 1.1 in $\S 4$ that allows one to compute such a set S.
Theorem 1.1 (Ribet). There is a finite set S of non-zero prime ideals of R such that if Λ is a non-zero prime ideal of \mathcal{O} with $\lambda:=R \cap \Lambda \notin S$, then the group $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to either $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$.

Proof. As noted in $\S 3$ of [DW11], this is an easy consequence of [Rib85].
We now explain how to distinguish the two possibilities from Theorem 1.1. Let $L \subseteq \mathbb{C}$ be the extension of K generated by the square roots of the values $r_{p}=a_{p}^{2} / \varepsilon(p)$ with $p \nmid N$; it is a finite extension of K (moreover, it is contained in a finite cyclotomic extension of E).
Theorem 1.2. Let Λ be a non-zero prime ideal of \mathcal{O} such that $\bar{\rho}_{\Lambda}^{\operatorname{proj}}(G)$ is conjugate to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$, where $\lambda=\Lambda \cap R$. After conjugating $\bar{\rho}_{\Lambda}$, we may assume that $\bar{\rho}_{\Lambda}^{\operatorname{proj}}(G) \subseteq \mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$. Let ℓ be the rational prime lying under Λ.
(i) If k is odd, then $\bar{\rho}_{\Lambda}^{\text {proj }}(G)=\operatorname{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ if and only if λ splits completely in L.
(ii) If k is even and $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is even, then $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)=\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ if and only if λ splits completely in L.
(iii) If k is even, $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is odd, and $\ell \nmid N$, then $\bar{\rho}_{\Lambda}^{\operatorname{proj}}(G)=\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$.

Remark 1.3. From Theorem 1.2, we see that it is more challenging to produce Galois extensions of \mathbb{Q} with Galois group $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ with odd r if we focus solely on newforms with k even. However, it is still possible to obtain such groups in the excluded case $\ell \mid N$.
1.2. An example realizing the groups $\mathbf{P S L}_{2}\left(\mathbb{F}_{\ell}\right)$. We now give an example that realizes the simple groups $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$ as Galois groups of an extension of \mathbb{Q} for all primes $\ell \geq 7$. Let $f=$ $\sum_{n=1}^{\infty} a_{n} q^{n}$ be a non-CM newform of weight 3 , level $N=27$ and nebentypus $\varepsilon(a)=\left(\frac{-3}{a}\right)$. We can choose f so that ${ }^{1}$

$$
f=q+3 i q^{2}-5 q^{4}-3 i q^{5}+5 q^{7}-3 i q^{8}+9 q^{10}-15 i q^{11}-10 q^{13}+\cdots ;
$$

the other possibility for f is its complex conjugate $\sum_{n} \bar{a}_{n} q^{n}$.
The subfield E of \mathbb{C} generated by the coefficients a_{n} is $\mathbb{Q}(i)$. Take any prime $p \neq 3$. We will see that $\bar{a}_{p}=\varepsilon(p)^{-1} a_{p}$. Therefore, a_{p} or $i a_{p}$ belongs to \mathbb{Z} when $\varepsilon(p)$ is 1 or -1 , respectively, and hence $r_{p}=a_{p}^{2} / \varepsilon(p)$ is a square in \mathbb{Z}. Therefore, $L=K=\mathbb{Q}$.

In $\S 6.1$, we shall verify that Theorem 1.1 holds with $S=\{2,3,5\}$. Take any prime $\ell \geq 7$ and prime $\Lambda \subseteq \mathbb{Z}[i]$ dividing ℓ. Theorem 1.2 with $L=K=\mathbb{Q}$ implies that $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is isomorphic to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$. The following theorem is now an immediate consequence (it is easy to prove directly for the group $\left.\mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right) \cong A_{5}\right)$.

[^0]Theorem 1.4. For each prime $\ell \geq 5$, there is a Galois extension K / \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to the simple group $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$.
Remark 1.5.
(i) In $\S 5.5$ of [Ser87], J-P. Serre describes the image of $\bar{\rho}_{(7)}$ and proves that it gives rise to a $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$-extension of \mathbb{Q}, however, he does not consider the image modulo other primes. Note that Serre was actually giving an example of his conjecture, so he started with the $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$-extension and then found the newform f.
(ii) Theorem 1.4 was first proved by the author in [Zyw14] by considering the Galois action on the second étale cohomology of a specific surface. One can show that the Galois extensions of [Zyw14] could also be constructed by first starting with an appropriate newform of weight 3 and level 32.
1.3. Another example. We now give an example with $K \neq \mathbb{Q}$. Additional details will be provided in $\S 6.2$. Let $f=\sum_{n} a_{n} q^{n}$ be a non-CM newform of weight 3 , level $N=160$ and nebentypus $\varepsilon(a)=\left(\frac{-5}{a}\right)$.

Take E, K, L, R and \mathcal{O} as in $\S 1.1$. We will see in $\S 6.2$ that $E=K(i)$ and that K is the unique cubic field in $\mathbb{Q}\left(\zeta_{13}\right)$. We will also observe that $L=K$.

Take any odd prime ℓ congruent to $\pm 2, \pm 3, \pm 4$ or ± 6 modulo 13 . Let Λ be any prime ideal of \mathcal{O} dividing ℓ and set $\lambda=\Lambda \cap R$. The assumption on ℓ modulo 13 implies that $\lambda=\ell R$ and that $\mathbb{F}_{\lambda} \cong \mathbb{F}_{\ell^{3}}$. In $\S 6.2$, we shall compute a set S as in Theorem 1.1 which does not contain λ. Theorem 1.2 with $L=K$ implies that $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is isomorphic to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right) \cong \mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{3}}\right)$. The following is an immediate consequence.

Theorem 1.6. If ℓ is an odd prime congruent to $\pm 2, \pm 3, \pm 4$ or ± 6 modulo 13 , then the simple group $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{3}}\right)$ occurs as the Galois group of an extension of \mathbb{Q}.

Acknowledgements. Thanks to Henri Darmon for pushing the author to find the modular interpretation of the Galois representations in [Zyw14]. Thanks also to Ravi Ramakrishna. Computations were performed with Magma [BCP97].

2. The fields K and L

Take a newform f with notation and assumptions as in §1.1.
2.1. The field K. Let Γ be the set of automorphisms γ of the field E for which there is a primitive Dirichlet character χ_{γ} that satisfies

$$
\begin{equation*}
\gamma\left(a_{p}\right)=\chi_{\gamma}(p) a_{p} \tag{2.1}
\end{equation*}
$$

for all primes $p \nmid N$. The set of primes p with $a_{p} \neq 0$ has density 1 since f is non-CM, so the image of χ_{γ} lies in E^{\times}and the character χ_{γ} is uniquely determined from γ.

Define M to be N or $4 N$ if N is odd or even, respectively. The conductor of χ_{γ} divides M, cf. [Mom81, Remark 1.6]. Moreover, there is a quadratic Dirichlet character α with conductor dividing M and an integer i such that χ_{γ} is the primitive character coming from $\alpha \varepsilon^{i}$, cf. [Mom81, Lemma 1.5(i)].

For each prime $p \nmid N$, we have $\bar{a}_{p}=\varepsilon(p)^{-1} a_{p}$, cf. [Rib77, p. 21], so complex conjugation induces an automorphism γ of E and χ_{γ} is the primitive character coming from ε. In particular, $\Gamma \neq 1$ if ε is non-trivial.

Remark 2.1. More generally, we could have instead considered an embedding $\gamma: E \rightarrow \mathbb{C}$ and a Dirichlet character χ_{γ} such that (2.1) holds for all sufficiently large primes p. This gives the same twists, since $\gamma(E)=E$ and the character χ_{γ} is unramified at primes $p \nmid N$, cf. [Mom81, Remark 1.3].

The set Γ is in fact an abelian subgroup of $\operatorname{Aut}(E)$, cf. [Mom81, Lemma 1.5(ii)]. Denote by E^{Γ} the fixed field of E by Γ.

Lemma 2.2.

(i) We have $K=E^{\Gamma}$ and hence $\operatorname{Gal}(E / K)=\Gamma$.
(ii) There is a prime $p \nmid N$ such that $K=\mathbb{Q}\left(r_{p}\right)$.

Proof. Take any $p \nmid N$. For each $\gamma \in \Gamma$, we have

$$
\gamma\left(r_{p}\right)=\gamma\left(a_{p}^{2}\right) / \gamma(\varepsilon(p))=\chi_{\gamma}(p)^{2} a_{p}^{2} / \gamma(\varepsilon(p))=a_{p}^{2} / \varepsilon(p)=r_{p},
$$

where we have used that $\chi_{\gamma}(p)^{2}=\gamma(\varepsilon(p)) / \varepsilon(p)$, cf. [Mom81, proof of Lemma 1.5(ii)]. This shows that r_{p} belong in E^{Γ} and hence $K \subseteq E^{\Gamma}$ since $p \nmid N$ was arbitrary. To complete the proof of the lemma, it thus suffices to show that $E^{\Gamma}=\mathbb{Q}\left(r_{p}\right)$ for some prime $p \nmid N$.

For $\gamma \in \Gamma$, let $\tilde{\chi}_{\gamma}: G \rightarrow \mathbb{C}^{\times}$be the continuous character such that $\tilde{\chi}_{\gamma}\left(\operatorname{Frob}_{p}\right)=\chi_{\gamma}(p)$ for all $p \nmid N$. Define the group $H=\bigcap_{\gamma \in \Gamma}$ ker $\tilde{\chi}_{\gamma}$; it is an open normal subgroup of G with G / H is abelian. Let \mathcal{K} be the subfield of $\overline{\mathbb{Q}}$ fixed by H; it is a finite abelian extension of \mathbb{Q}.

Fix a prime ℓ and a prime ideal $\Lambda \mid \ell$ of \mathcal{O}. In the proof of Theorem 3.1 of [Rib85], Ribet proved that $E^{\Gamma}=\mathbb{Q}\left(a_{v}^{2}\right)$ for a positive density set of finite place $v \nmid N \ell$ of \mathcal{K}, where $a_{v}:=\operatorname{tr}\left(\rho_{\Lambda}\left(\operatorname{Frob}_{v}\right)\right)$. There is thus a finite place $v \nmid N \ell$ of \mathcal{K} of degree 1 such that $E^{\Gamma}=\mathbb{Q}\left(a_{v}^{2}\right)$. We have $a_{v}=a_{p}$, where p is the rational prime that v divides, so $E^{\Gamma}=\mathbb{Q}\left(a_{p}^{2}\right)$. Since v has degree 1 and \mathcal{K} / \mathbb{Q} is abelian, the prime p must split completely in \mathcal{K} and hence $\chi_{\gamma}(p)=1$ for all $\gamma \in \Gamma$; in particular, $\varepsilon(p)=1$. Therefore, $E^{\Gamma}=\mathbb{Q}\left(r_{p}\right)$.
2.2. The field L. Recall that we defined L to be the extension of K in \mathbb{C} obtained by adjoining the square root of $r_{p}=a_{p}^{2} / \varepsilon(p)$ for all $p \nmid N$. The following allows one to find a finite set of generators for the extension L / K and gives a way to check the criterion of Theorem 1.2.

Lemma 2.3.

(i) Choose primes $p_{1}, \ldots, p_{m} \nmid N$ that generate the group $(\mathbb{Z} / M \mathbb{Z})^{\times}$and satisfy $r_{p_{i}} \neq 0$ for all $1 \leq i \leq m$. Then $L=K\left(\sqrt{r_{p_{1}}}, \ldots, \sqrt{r_{p_{m}}}\right)$.
(ii) Take any non-zero prime ideal λ of R that does not divide 2. Let p_{1}, \ldots, p_{m} be primes as in (i). Then the following are equivalent:
(a) λ splits completely in L,
(b) for all $p \nmid N, r_{p}$ is a square in K_{λ},
(c) for all $1 \leq i \leq m, r_{p_{i}}$ is a square in K_{λ}.

Proof. Take any prime $p \nmid N$. To prove part (i), it suffices to show that $\sqrt{r_{p}}$ belongs to the field $L^{\prime}:=K\left(\sqrt{r_{p_{1}}}, \ldots, \sqrt{r_{p_{m}}}\right)$. This is obvious if $r_{p}=0$, so assume that $r_{p} \neq 0$. Since the p_{i} generate $(\mathbb{Z} / M \mathbb{Z})^{\times}$by assumption, there are integers $e_{i} \geq 0$ such that $p \equiv p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}(\bmod M)$. Take any $\gamma \in \Gamma$. Using that the conductor of χ_{γ} divides M and (2.1), we have

$$
\gamma\left(\frac{a_{p}}{\prod_{i} a_{p_{i}}^{e_{i}}}\right)=\frac{\chi_{\gamma}(p)}{\chi_{\gamma}\left(\prod_{i} p_{i}^{e_{i}}\right)} \cdot \frac{a_{p}}{\prod_{i} a_{p_{i}}^{e_{i}}}=\frac{\chi_{\gamma}(p)}{\chi_{\gamma}(p)} \cdot \frac{a_{p}}{\prod_{i} a_{p_{i}}^{e_{i}}}=\frac{a_{p}}{\prod_{i} a_{p_{i}}^{e_{i}}},
$$

Since $E^{\Gamma}=K$ by Lemma 2.2(i), the value $a_{p} / \prod_{i} a_{p_{i}}^{e_{i}}$ belongs to K; it is non-zero since $r_{p} \neq 0$ and $r_{p_{i}} \neq 0$. We have $\varepsilon(p)=\prod_{i} \varepsilon\left(p_{i}\right)^{e_{i}}$ since the conductor of ε divides M. Therefore,

$$
\frac{r_{p}}{\prod_{i} r_{p_{i}}^{e_{i}}}=\frac{a_{p}^{2}}{\prod_{i}\left(a_{p_{i}}^{2}\right)^{e_{i}}}=\left(\frac{a_{p}}{\prod_{i} a_{p_{i}}^{e_{i}}}\right)^{2} \in\left(K^{\times}\right)^{2} .
$$

This shows that $\sqrt{r_{p}}$ is contained in L^{\prime} as desired. This proves (i); part (ii) is an easy consequence of (i).

Remark 2.4. Finding primes p_{i} as in Lemma 2.3(i) is straightforward since $r_{p} \neq 0$ for all p outside a set of density 0 (and the primes representing each class $a \in(\mathbb{Z} / M \mathbb{Z})^{\times}$have positive density). Lemma 2.3(ii) gives a straightforward way to check if λ splits completely in L. Let e_{i} be the λ-adic valuation of $r_{p_{i}}$ and let π be a uniformizer of K_{λ}; then $r_{p_{i}}$ is a square in K_{λ} if and only if e is even and the image of $r_{p_{i}} / \pi^{e_{i}}$ in \mathbb{F}_{λ} is a square.

3. Proof of Theorem 1.2

We may assume that $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$. For any $n \geq 1$, the group $\mathrm{GL}_{2}\left(\mathbb{F}_{2^{n}}\right)$ is generated by $\mathrm{SL}_{2}\left(\mathbb{F}_{2^{n}}\right)$ and its scalar matrices, so $\mathrm{PSL}_{2}\left(\mathbb{F}_{2^{n}}\right)=\mathrm{PGL}_{2}\left(\mathbb{F}_{2^{n}}\right)$. The theorem is thus trivial when $\ell=2$, so we may assume that ℓ is odd.

Take any $\alpha \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right) \subseteq \mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ and choose any matrix $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ whose image in $\operatorname{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ is α. The value $\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ does not depend on the choice of A and lies in \mathbb{F}_{λ} (since we can choose A in $\mathrm{GL}_{2}\left(\mathbb{F}_{\lambda}\right)$); by abuse of notation, we denote this common value by $\operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha)$.

Lemma 3.1. Suppose that $p \nmid N \ell$ is a prime for which $r_{p} \not \equiv 0(\bmod \lambda)$. Then $\bar{\rho}_{\Lambda}^{\operatorname{proj}}\left(\operatorname{Frob}_{p}\right)$ is contained in $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ if and only if the image of $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)=r_{p} / p^{k-1}$ in $\mathbb{F}_{\lambda}^{\times}$is a square.

Proof. Define $A:=\bar{\rho}_{\Lambda}\left(\operatorname{Frob}_{p}\right)$ and $\alpha:=\bar{\rho}_{\Lambda}\left(\operatorname{Frob}_{p}\right)$; the image of A in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ is α. The value $\xi_{p}:=\operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha)=\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ agrees with the image of $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)=r_{p} / p^{k-1}$ in \mathbb{F}_{Λ}. Since $r_{p} \in R$ is non-zero modulo λ by assumption, the value ξ_{p} lies in $\mathbb{F}_{\lambda}^{\times}$. Fix a matrix $A_{0} \in$ $\mathrm{GL}_{2}\left(\mathbb{F}_{\lambda}\right)$ whose image in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is α; we have $\xi_{p}=\operatorname{tr}\left(A_{0}\right)^{2} / \operatorname{det}\left(A_{0}\right)$. Since $\xi_{p} \neq 0$, we find that ξ_{p} and $\operatorname{det}\left(A_{0}\right)$ lies in the same coset in $\mathbb{F}_{\lambda}^{\times} /\left(\mathbb{F}_{\lambda}^{\times}\right)^{2}$.

The determinant gives rise to a homomorphism $d: \operatorname{PGL}_{2}\left(\mathbb{F}_{\lambda}\right) \rightarrow \mathbb{F}_{\lambda}^{\times} /\left(\mathbb{F}_{\lambda}^{\times}\right)^{2}$ whose kernel is $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$. Define the character

$$
\xi: G \xrightarrow{\bar{\rho}_{\Lambda}^{\mathrm{proj}}} \mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right) \xrightarrow{d} \mathbb{F}_{\lambda}^{\times} /\left(\mathbb{F}_{\lambda}^{\times}\right)^{2} .
$$

We have $\xi\left(\operatorname{Frob}_{p}\right)=\operatorname{det}\left(A_{0}\right) \cdot\left(\mathbb{F}_{\lambda}^{\times}\right)^{2}=\xi_{p} \cdot\left(\mathbb{F}_{\lambda}^{\times}\right)^{2}$. So $\xi\left(\operatorname{Frob}_{p}\right)=1$, equivalently $\bar{\rho}_{\Lambda}^{\operatorname{proj}}\left(\operatorname{Frob}_{p}\right) \in$ $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$, if and only if $\xi_{p} \in \mathbb{F}_{\lambda}^{\times}$is a square.

Let M be the integer from $\S 2.1$.
Lemma 3.2. For each $a \in(\mathbb{Z} / M \ell \mathbb{Z})^{\times}$, there is a prime $p \equiv a(\bmod M \ell)$ such that $r_{p} \not \equiv 0(\bmod \lambda)$.
Proof. Set $H=\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$; it is $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$ by assumption. Let H^{\prime} be the commutator subgroup of H. We claim that for each coset κ of H^{\prime} in H, there exists an $\alpha \in \kappa$ with $\operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha) \neq 0$. If $H^{\prime}=\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$, then the claim is easy; note that for any $t \in \mathbb{F}_{\lambda}$ and $d \in \mathbb{F}_{\lambda}^{\times}$, there is a matrix in $\mathrm{GL}_{2}\left(\mathbb{F}_{\lambda}\right)$ with trace t and determinant d. When $\# \mathbb{F}_{\lambda} \neq 3$, the group $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ is non-abelian and simple, so $H^{\prime}=\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$. When $\# \mathbb{F}_{\lambda}=3$ and $H=\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$, we have $H^{\prime}=\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$. It thus suffices to prove the claim in the case where $\mathbb{F}_{\lambda}=\mathbb{F}_{3}$ and $H=\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)$. In this case, H^{\prime} is the unique subgroup of H of index 3 and the cosets of H / H^{\prime} are represented by $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ with $b \in \mathbb{F}_{3}$. The claim is now immediate in this remaining case.

Let $\chi: G \rightarrow(\mathbb{Z} / M \ell \mathbb{Z})^{\times}$be the cyclotomic character that satisfies $\chi\left(\right.$ Frob $\left._{p}\right) \equiv p(\bmod M \ell)$ for all $p \nmid M \ell$. The set $\bar{\rho}_{\Lambda}\left(\chi^{-1}(a)\right)$ is thus the union of cosets of H^{\prime} in H. By the claim above, there exists an $\alpha \in \bar{\rho}_{\Lambda}^{\text {proj }}\left(\chi^{-1}(a)\right)$ with $\operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha) \neq 0$. By the Chebotarev density theorem, there is a prime $p \nmid M \ell$ satisfying $p \equiv a(\bmod M \ell)$ and $\bar{\rho}_{\Lambda}^{\text {proj }}\left(\mathrm{Frob}_{p}\right)=\alpha$. The lemma follows since r_{p} / p^{k-1} modulo λ agrees with $\operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha) \neq 0$.
Case 1: Assume that k is odd or $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is even.
First suppose that $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)=\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$. By Lemma 3.2, there are primes $p_{1}, \ldots, p_{m} \nmid N \ell$ that generate the group $(\mathbb{Z} / M \mathbb{Z})^{\times}$and satisfy $r_{p_{i}} \not \equiv 0(\bmod \lambda)$ for all $1 \leq i \leq m$. By Lemma 3.1 and
the assumption $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)=\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$, the image of $r_{p_{i}} / p_{i}{ }^{k-1}$ in \mathbb{F}_{λ} is a non-zero square for all $1 \leq i \leq m$. For each $1 \leq i \leq m$, the assumption that k is odd or $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is even implies that p_{i}^{k-1} is a square in \mathbb{F}_{λ} and hence the image of $r_{p_{i}}$ in \mathbb{F}_{λ} is a non-zero square. Since $\lambda \nmid 2$, we deduce that each $r_{p_{i}}$ is a square in K_{λ}. By Lemma 2.3(ii), the prime λ splits completely in L.

Now suppose that $\bar{\rho}_{\Lambda}^{\text {proj }}(G)=\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$. There exists an element $\alpha \in \mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)-\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ with $\operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha) \neq 0$. By the Chebotarev density theorem, there is a prime $p \nmid N \ell$ such that $\bar{\rho}_{\Lambda}^{\text {proj }}\left(\operatorname{Frob}_{p}\right)=\alpha$. We have $r_{p} \equiv \operatorname{tr}(\alpha)^{2} / \operatorname{det}(\alpha) \not \equiv 0(\bmod \lambda)$. Since $\bar{\rho}_{\Lambda}^{\text {proj }}\left(\operatorname{Frob}_{p}\right) \notin \mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$, Lemma 3.1 implies that the image of r_{p} / p^{k-1} in \mathbb{F}_{λ} is not a square. Since k is odd or $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is even, the image of r_{p} in \mathbb{F}_{λ} is not a square. Therefore, r_{p} is not a square in K_{λ}. By Lemma 2.3(ii), we deduce that λ does not split completely in L.

Case 2: Assume that k is even, $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is odd, and $\ell \nmid N$.
Since $\ell \nmid N$, there is an integer $a \in \mathbb{Z}$ such that $a \equiv 1(\bmod M)$ and a is not a square modulo ℓ. By Lemma 3.2, there is a prime $p \equiv a(\bmod M \ell)$ such that $r_{p} \not \equiv 0(\bmod \lambda)$.

We claim that $a_{p} \in R$ and $\varepsilon(p)=1$. With notation as in $\S 2.1$, take any $\gamma \in \Gamma$. Since the conductor of χ_{γ} divides M and $p \equiv 1(\bmod M)$, we have $\gamma\left(a_{p}\right)=\chi_{\gamma}(p) a_{p}=a_{p}$. Since $\gamma \in \Gamma$ was arbitrary, we have $a_{p} \in K$ by Lemma 2.2. Therefore, $a_{p} \in R$ since it is an algebraic integer. We have $\varepsilon(p)=1$ since $p \equiv 1(\bmod N)$.

Since $a_{p} \in R$ and $r_{p} \not \equiv 0(\bmod \lambda)$, the image of a_{p}^{2} in \mathbb{F}_{λ} is a non-zero square. Since k is even, p^{k} is a square in \mathbb{F}_{λ}. Since p is not a square modulo ℓ and $\left[\mathbb{F}_{\lambda}: \mathbb{F}_{\ell}\right]$ is odd, the prime p is not a square in \mathbb{F}_{λ}. So the image of

$$
a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)=p \cdot a_{p}^{2} / p^{k}
$$

in \mathbb{F}_{λ} is not a square. Lemma 3.1 implies that $\bar{\rho}_{\Lambda}^{\operatorname{proj}}\left(\operatorname{Frob}_{p}\right) \notin \operatorname{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$. Therefore, $\bar{\rho}_{\Lambda}^{\text {proj }}(G)=$ $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$.

4. An effective version of Theorem 1.1

Take a newform f with notation and assumptions as in §1.1. Let λ be a non-zero prime ideal of R and let ℓ be the prime lying under λ. Let k_{λ} be the subfield of \mathbb{F}_{λ} generated by the image of r_{p} modulo λ with primes $p \nmid N \ell$. Take any prime ideal Λ of \mathcal{O} that divides λ.

In this section, we describe how to compute an explicit finite set S of prime ideals of R as in Theorem 1.1. First some simple definitions:

- Let \mathbb{F} be an extension of \mathbb{F}_{Λ} of degree $\operatorname{gcd}(2, \ell)$.
- Let $e_{0}=0$ if $\ell \geq k-1$ and $\ell \nmid N$, and $e_{0}=\ell-2$ otherwise.
- Let $e_{1}=0$ if N is odd, and $e_{1}=1$ otherwise.
- Let $e_{2}=0$ if $\ell \geq 2 k$, and $e_{2}=1$ otherwise.
- Define $\mathcal{M}=4^{e_{1}} \ell^{e_{2}} \prod_{p \mid N} p$.

We will prove the following in $\S 5$.
Theorem 4.1. Suppose that all the following conditions hold:
(a) For every integer $0 \leq j \leq e_{0}$ and character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}^{\times}$, there is a prime $p \nmid N \ell$ such that $\chi(p) p^{j} \in \mathbb{F}$ is not a root of the polynomial $x^{2}-a_{p} x+\varepsilon(p) p^{k-1} \in \mathbb{F}_{\Lambda}[x]$.
(b) For every non-trivial character $\chi:(\mathbb{Z} / \mathcal{M} \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$, there is a prime $p \nmid N \ell$ such that $\chi(p)=-1$ and $r_{p} \not \equiv 0(\bmod \lambda)$.
(c) If $\# k_{\lambda} \notin\{4,5\}$, then at least one of the following hold:

- $\ell>5 k-4$ and $\ell \nmid N$,
- $\ell \equiv 0, \pm 1(\bmod 5)$ and $\# k_{\lambda} \neq \ell$,
- $\ell \equiv \pm 2(\bmod 5)$ and $\# k_{\lambda} \neq \ell^{2}$,
- there is a prime $p \nmid N \ell$ such that the image of $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)$ in \mathbb{F}_{λ} is not equal to 0 , 1 and 4 , and is not a root of $x^{2}-3 x+1$.
(d) If $\# k_{\lambda} \notin\{3,5,7\}$, then at least one of the following hold:
- $\ell>4 k-3$ and $\ell \nmid N$,
- $\# k_{\lambda} \neq \ell$,
- there is a prime $p \nmid N \ell$ such that the image of $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)$ in \mathbb{F}_{λ} is not equal to 0,1 , 2 and 4.
(e) If $\# k_{\lambda} \in\{5,7\}$, then for every non-trivial character $\chi:\left(\mathbb{Z} / 4^{e_{1}} \ell N \mathbb{Z}\right)^{\times} \rightarrow\{ \pm 1\}$ there is a prime $p \nmid N \ell$ such that $\chi(p)=1$ and $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right) \equiv 2(\bmod \lambda)$.
Then the group $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(k_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(k_{\lambda}\right)$.
Remark 4.2. Note that the above conditions simplify greatly if one also assumes that $\ell \nmid N$ and $\ell>5 k-4$.

Though we will not prove it, Theorem 4.1 has been stated so that all the conditions (a)-(e) hold if and only if $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is conjugate to $\mathrm{PSL}_{2}\left(k_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(k_{\lambda}\right)$. In particular, after considering enough primes p, one will obtain the minimal set S of Theorem 1.1 (one could use an effective version of Chebotarev density to make this a legitimate algorithm).

Let us now describe how to compute a set of exceptional primes as in Theorem 1.1. Define $M=N$ if N is odd and $M=4 N$ otherwise. Set $\mathcal{M}^{\prime}:=4^{e_{1}} \prod_{p \mid N} p$. We first choose some primes:

- Let q_{1}, \ldots, q_{n} be primes congruent to 1 modulo N.
- Let $p_{1}, \ldots, p_{m} \nmid N$ be primes with $r_{p_{i}} \neq 0$ such that for every non-trivial character $\chi:\left(\mathbb{Z} / \mathcal{M}^{\prime} \mathbb{Z}\right)^{\times} \rightarrow\{ \pm 1\}$, we have $\chi\left(p_{i}\right)=-1$ for some $1 \leq i \leq m$.
- Let $p_{0} \nmid N$ be a prime such that $\mathbb{Q}\left(r_{p_{0}}\right)=K$.

That such primes p_{1}, \ldots, p_{m} exist is clear since the set of primes p with $r_{p} \neq 0$ has density 1 . That such a prime q exists follows from Lemma 2.2 (the set of such q actually has positive density). Define the ring $R^{\prime}:=\mathbb{Z}\left[a_{q}^{2} / \varepsilon(q)\right]$; it is an order in R.

Define S to be the set of non-zero primes λ of R, dividing a rational prime ℓ, that satisfy one of the following conditions:

- $\ell \leq 5 k-4$ or $\ell \leq 7$,
- $\ell \mid N$,
- for all $1 \leq i \leq n$, we have $\ell=q_{i}$ or $r_{q_{i}} \equiv\left(1+q_{i}^{k-1}\right)^{2}(\bmod \lambda)$,
- for some $1 \leq i \leq m$, we have $\ell=p_{i}$ or $r_{p_{i}} \equiv 0(\bmod \lambda)$,
- $\ell=q$ or ℓ divides $\left[R: R^{\prime}\right]$.

Note that the set S is finite (the only part that is not immediate is that $r_{q_{i}}-\left(1+q_{i}^{k-1}\right)^{2} \neq 0$; this follows from Deligne's bound $\left|r_{q_{i}}\right|=\left|a_{q_{i}}\right| \leq 2 q_{i}^{(k-1) / 2}$ and $k>1$). The following is our effective version of Theorem 1.1.

Theorem 4.3. Take any non-zero prime ideal $\lambda \notin S$ of R and let Λ be any prime of \mathcal{O} dividing λ. Then the group $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to either $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$.
Proof. Let ℓ be the rational prime lying under λ. We shall verify the conditions of Theorem 4.1.
We first show that condition (a) of Theorem 4.1 holds. Take any integer $0 \leq j \leq e_{0}$ and character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}^{\times}=\mathbb{F}_{\Lambda}^{\times}$. We have $\ell>5 k-4>k-1$ and $\ell \nmid N$ since $\lambda \notin S$, so $e_{0}=0$ and hence $j=0$. Take any $1 \leq i \leq n$. Since $q_{i} \equiv 1(\bmod N)$ and $j=0$, we have $\chi\left(q_{i}\right) q_{i}^{j}=1$ and $\varepsilon\left(q_{i}\right)=1$. Since $\lambda \notin S$, we also have $q_{i} \nmid N \ell\left(q_{i} \nmid N\right.$ is immediate from the congruence imposed on $\left.q_{i}\right)$. If $\chi\left(q_{i}\right) q_{i}^{j}=1$ was a root of $x^{2}-a_{q_{i}} x+\varepsilon\left(q_{i}\right) q_{i}^{k-1}$ in $\mathbb{F}_{\Lambda}[x]$, then we would have $a_{q_{i}} \equiv 1+q_{i}^{k-1}$ $(\bmod \Lambda)$; squaring and using that $\varepsilon\left(q_{i}\right)=1$, we deduce that $r_{q_{i}} \equiv\left(1+q_{i}^{k-1}\right)^{2}(\bmod \lambda)$. Since
$\lambda \notin S$, we have $r_{q_{i}} \not \equiv\left(1+q_{i}^{k-1}\right)^{2}(\bmod \lambda)$ for some $1 \leq i \leq n$ and hence $\chi\left(q_{i}\right) q_{i}^{j}$ is not a root of $x^{2}-a_{q_{i}} x+\varepsilon\left(q_{i}\right) q_{i}^{k-1}$.

We now show that condition (b) of Theorem 4.1 holds. We have $e_{2}=0$ since $\lambda \notin S$, and hence $\mathcal{M}^{\prime}=\mathcal{M}$. Take any non-trivial character $\chi:(\mathbb{Z} / \mathcal{M} \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$. By our choice of primes p_{1}, \ldots, p_{m}, we have $\chi\left(p_{i}\right)=-1$ for some $1 \leq i \leq m$. The prime p_{i} does not divide $N \ell$ (that $p_{i} \neq \ell$ follows since $\lambda \notin S)$. Since $\lambda \notin S$, we have $r_{p_{i}} \not \equiv 0(\bmod \lambda)$.

Since $\lambda \notin S$, the prime $\ell \nmid N$ is greater that $7,4 k-3$ and $5 k-4$. Conditions (c), (d) and (e) of Theorem 4.1 all hold.

Theorem 4.1 now implies that $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to either $\mathrm{PSL}_{2}\left(k_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(k_{\lambda}\right)$. It remains to prove that $k_{\lambda}=\mathbb{F}_{\lambda}$. We have $q \neq \ell$ since $\lambda \notin S$. The image of the reduction map $R^{\prime} \rightarrow \mathbb{F}_{\lambda}$ thus lies in k_{λ}. We have $\ell \nmid\left[R: R^{\prime}\right]$ since $\lambda \notin S$, so the map $R^{\prime} \rightarrow \mathbb{F}_{\lambda}$ is surjective. Therefore, $k_{\lambda}=\mathbb{F}_{\lambda}$.

5. Proof of Theorem 4.1

5.1. Some group theory. Fix a prime ℓ and an integer $r \geq 1$.

A Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ is a subgroup conjugate to the subgroup of upper triangular matrices.

A split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ is a subgroup conjugate to the subgroup of diagonal matrices. A non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ is a subgroup that is cyclic of order $\left(\ell^{r}\right)^{2}-1$. Fix a Cartan subgroup \mathcal{C} of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$. Let \mathcal{N} be the normalizer of \mathcal{C} in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$. One can show that $[\mathcal{N}: \mathcal{C}]=2$ and that $\operatorname{tr}(g)=0$ and g^{2} is scalar for all $g \in \mathcal{N}-\mathcal{C}$.
Lemma 5.1. Fix a prime ℓ and an integer $r \geq 1$. Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ and let \bar{G} be its image in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$. Then at least one of the following hold:
(1) G is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$,
(2) G is contained in the normalizer of a Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$,
(3) \bar{G} is isomorphic to \mathfrak{A}_{4},
(4) \bar{G} is isomorphic to \mathfrak{S}_{4},
(5) \bar{G} is isomorphic to \mathfrak{A}_{5},
(6) \bar{G} is conjugate to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{s}}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell^{s}}\right)$ for some integer s dividing r.

Proof. This can be deduced directly from a theorem of Dickson, cf. [Hup67, Satz 8.27], which will give the finite subgroups of $\mathrm{PSL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)=\mathrm{PGL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)$. The finite subgroups of $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ have been worked out in [Fab12].
Lemma 5.2. Fix a prime ℓ and an integer $r \geq 1$. Take a matrix $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$ and let m be its order in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell^{r}}\right)$.
(i) Suppose that $\ell \nmid m$. If m is $1,2,3$ or 4 , then $\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ is $4,0,1$ or 2 , respectively. If $m=5$, then $\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ is a root of $x^{2}-3 x+1$.
(ii) If $\ell \mid m$, then $\operatorname{tr}(A)^{2} / \operatorname{det}(A)=4$.

Proof. The quantity $\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ does not change if we replace A by a scalar multiple or by a conjugate in $\mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)$. If $\ell \nmid m$, then we may thus assume that $A=\left(\begin{array}{cc}\zeta & 0 \\ 0 & 1\end{array}\right)$ where $\zeta \in \overline{\mathbb{F}}_{\ell}$ has order m. We have $\operatorname{tr}(A)^{2} / \operatorname{det}(A)=\zeta+\zeta^{-1}+2$, which is $4,0,1$ or 2 when m is $1,2,3$ or 4 , respectively. If $m=5$, then $\zeta+\zeta^{-1}+2$ is a root of $x^{2}-3 x+1$. If $\ell \mid m$, then after conjugating and scaling, we may assume that $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and hence $\operatorname{tr}(A)^{2} / \operatorname{det}(A)=4$.
5.2. Image of inertia at ℓ. Fix an inertia subgroup \mathcal{I}_{ℓ} of $G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ for the prime ℓ; it is uniquely defined up to conjugacy. The following gives important information concerning the representation $\bar{\rho}_{\Lambda} \mid \mathcal{I}_{\ell}$ for large ℓ. Let $\chi_{\ell}: G \rightarrow \mathbb{F}_{\ell}^{\times}$be the character such that for each prime $p \nmid \ell$, χ_{ℓ} is unramified at p and $\chi_{\ell}\left(\operatorname{Frob}_{p}\right) \equiv p(\bmod \ell)$.

Lemma 5.3. Fix a prime $\ell \geq k-1$ for which $\ell \nmid 2 N$. Let Λ be a prime ideal of \mathcal{O} dividing ℓ and set $\lambda=\Lambda \cap R$.
(i) Suppose that $r_{\ell} \not \equiv 0(\bmod \lambda)$. After conjugating $\bar{\rho}_{\Lambda}$ by a matrix in $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$, we have

$$
\bar{\rho}_{\Lambda} \left\lvert\, \mathcal{I}_{\ell}=\left(\begin{array}{cc}
\chi_{\ell}^{k-1} \mid I_{\ell} & * \\
0 & 1
\end{array}\right)\right.
$$

In particular, $\bar{\rho}_{\Lambda}^{\text {proj }}\left(\mathcal{I}_{\ell}\right)$ contains a cyclic group of order $(\ell-1) / \operatorname{gcd}(\ell-1, k-1)$.
(ii) Suppose that $r_{\ell} \equiv 0(\bmod \lambda)$. Then $\bar{\rho}_{\Lambda} \mid \mathcal{I}_{\ell}$ is absolutely irreducible and $\bar{\rho}_{\Lambda}\left(\mathcal{I}_{\ell}\right)$ is cyclic. Furthermore, the group $\bar{\rho}_{\Lambda}^{\mathrm{proj}}\left(\mathcal{I}_{\ell}\right)$ is cyclic of order $(\ell+1) / \operatorname{gcd}(\ell+1, k-1)$.
Proof. Parts (i) and (ii) follow from Theorems 2.5 and Theorem 2.6, respectively, of [Edi92]; they are theorems of Deligne and Fontaine, respectively. We have used that $r_{\ell}=a_{\ell}^{2} / \varepsilon(\ell) \in R$ is congruent to 0 modulo λ if and only if $a_{\ell} \in \mathcal{O}$ is congruent to 0 modulo Λ.
5.3. Borel case. Suppose that $\bar{\rho}_{\Lambda}(G)$ is a reducible subgroup of $\mathrm{GL}_{2}(\mathbb{F})$. There are thus characters $\psi_{1}, \psi_{2}: G \rightarrow \mathbb{F}^{\times}$such that after conjugating the \mathbb{F}-representation $G \xrightarrow{\bar{\rho}_{\Lambda}} \mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right) \subseteq \mathrm{GL}_{2}(\mathbb{F})$, we have

$$
\bar{\rho}_{\Lambda}=\left(\begin{array}{cc}
\psi_{1} & * \\
0 & \psi_{2}
\end{array}\right) .
$$

The characters ψ_{1} and ψ_{2} are unramified at each prime $p \nmid N \ell$ since $\bar{\rho}_{\Lambda}$ is unramified at such primes.
Lemma 5.4. For each $i \in\{1,2\}$, there is a unique integer $0 \leq m_{i}<\ell-1$ such that $\psi_{i} \chi_{\ell}^{-m_{i}}: G \rightarrow$ \mathbb{F}^{\times}is unramified at all primes $p \nmid N$. If $\ell \geq k-1$ and $\ell \nmid N$, then m_{1} or m_{2} is 0 .
Proof. The existence and uniqueness of m_{i} is an easy consequence of class field theory for \mathbb{Q}_{ℓ}. A choice of embedding $\overline{\mathbb{Q}} \subseteq \overline{\mathbb{Q}}_{\ell}$ induces an injective homomorphism $G_{\mathbb{Q}_{\ell}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{\ell} / \mathbb{Q}_{\ell}\right) \hookrightarrow G$. Let $\mathbb{Q}_{\ell}^{\text {ab }}$ be the maximal abelian extension of \mathbb{Q}_{ℓ} in $\overline{\mathbb{Q}}_{\ell}$. Restricting ψ_{i} to $G_{\mathbb{Q}_{\ell}}$, we obtain a representation $\psi_{i}: G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}}:=\operatorname{Gal}\left(\mathbb{Q}_{\ell}^{\mathrm{ab}} / \mathbb{Q}_{\ell}\right) \rightarrow \mathbb{F}^{\times}$. By local class field, the inertia subgroup \mathcal{I} of $G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}}$ is isomorphic to $\mathbb{Z}_{\ell}^{\times}$. Since ℓ does not divide the cardinality of \mathbb{F}^{\times}, we find that $\left.\psi_{i}\right|_{\mathcal{I}}$ factors through a group isomorphic to $\mathbb{F}_{\ell}^{\times}$. The character $\left.\psi_{i}\right|_{\mathcal{I}}$ must agree with a power of $\left.\chi_{\ell}\right|_{\mathcal{I}}$ since $\chi_{\ell}: G_{\mathbb{Q}_{\ell}} \rightarrow \mathbb{F}_{\ell}^{\times}$satisfies $\chi_{\ell}(\mathcal{I})=\mathbb{F}_{\ell}^{\times}$and $\mathbb{F}_{\ell}^{\times}$is cyclic.

The second part of the lemma follows immediately from Lemma 5.3.
Take any $i \in\{1,2\}$. By Lemma 5.4, there is a unique $0 \leq m_{i}<\ell-1$ such that the character

$$
\tilde{\psi}_{i}:=\psi_{i} \chi_{\ell}^{-m_{i}}: G \rightarrow \mathbb{F}^{\times}
$$

is unramified at ℓ and at all primes $p \nmid N$. There is a character $\chi_{i}:\left(\mathbb{Z} / N_{i} \mathbb{Z}\right)^{\times} \rightarrow \mathbb{F}^{\times}$with $N_{i} \geq 1$ dividing some power of N and $\ell \nmid N_{i}$ such that $\tilde{\psi}_{i}\left(\operatorname{Frob}_{p}\right)=\chi_{i}(p)$ for all $p \nmid N \ell$. We may assume that χ_{i} is taken so that N_{i} is minimal.
Lemma 5.5. The integer N_{i} divides N.
Proof. We first recall the notion of an Artin conductor. Consider a representation $\rho: G \rightarrow \operatorname{Aut}_{\mathbb{F}}(V)$, where V is a finite dimensional \mathbb{F}-vector space. Take any prime $p \neq \ell$. A choice of embedding $\overline{\mathbb{Q}} \subseteq \overline{\mathbb{Q}}_{p}$ induces an injective homomorphism $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \hookrightarrow G$. Choose any finite Galois extension L / \mathbb{Q}_{p} for which $\rho\left(\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / L\right)\right)=\{I\}$. For each $i \geq 0$, let H_{i} be the i-th ramification subgroup of $\operatorname{Gal}\left(L / \mathbb{Q}_{p}\right)$ with respect to the lower numbering. Define the integer

$$
f_{p}(\rho)=\sum_{i \geq 0}\left[H_{0}: H_{i}\right]^{-1} \cdot \operatorname{dim}_{\mathbb{F}} V / V^{H_{i}} .
$$

The Artin conductor of ρ is the integer $N(\rho):=\prod_{9} \neq \ell p^{f_{p}(\rho)}$.

Using that the character $\tilde{\psi}_{i}: G \rightarrow \mathbb{F}^{\times}$is unramified at ℓ, one can verify that $N\left(\tilde{\psi}_{i}\right)=N_{i}$. Consider our representation $\bar{\rho}_{\Lambda}: G \rightarrow \mathrm{GL}_{2}(\mathbb{F})$. For a fixed prime $p \neq \ell$, take L and H_{i} as above. The semisimplification of $\bar{\rho}_{\Lambda}$ is $V_{1} \oplus V_{2}$, where V_{i} is the one dimensional representation given by ψ_{i}. We have $f_{p}\left(\psi_{1}\right)+f_{p}\left(\psi_{2}\right) \leq f_{p}\left(\bar{\rho}_{\Lambda}\right)$ since $\operatorname{dim}_{\mathbb{F}} V^{H_{i}} \leq \operatorname{dim}_{\mathbb{F}} V_{1}^{H_{i}}+\operatorname{dim}_{\mathbb{F}} V_{2}^{H_{i}}$. By using this for all $p \neq \ell$, we deduce that $N\left(\psi_{1}\right) N\left(\psi_{2}\right)=N_{1} N_{2}$ divides $N\left(\bar{\rho}_{\Lambda}\right)$. The lemma follows since $N\left(\bar{\rho}_{\Lambda}\right)$ divides N, cf. [Liv89, Prop. 0.1].

Fix an $i \in\{1,2\}$; if $\ell \geq k-1$ and $\ell \nmid N$, then we may suppose that $m_{i}=0$ by Lemma 5.4. Since the conductor of χ_{i} divides N by Lemma 5.5, assumption (a) implies that there is a prime $p \nmid N \ell$ for which $\chi_{i}(p) p^{m_{i}} \in \mathbb{F}$ is not a root of $x^{2}-a_{p} x+\varepsilon(p) p^{k-1} \in \mathbb{F}[x]$. However, this is a contradiction since

$$
\chi_{i}(p) p^{m_{i}}=\tilde{\psi}_{i}\left(\operatorname{Frob}_{p}\right) \chi_{\ell}\left(\operatorname{Frob}_{p}\right)^{m_{i}}=\psi_{i}\left(\operatorname{Frob}_{p}\right)
$$

is a root of $x^{2}-a_{p} x+\varepsilon(p) p^{k-1}$.
Therefore, the \mathbb{F}-representation $\bar{\rho}_{\Lambda}$ is irreducible. In particular, $\bar{\rho}_{\Lambda}(G)$ is not contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$.

5.4. Cartan case.

Lemma 5.6. The group $\bar{\rho}_{\Lambda}(G)$ is not contained in a Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$.
Proof. Suppose that $\bar{\rho}_{\Lambda}(G)$ is contained in a Cartan subgroup \mathcal{C} of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$. If $\ell=2$, then \mathcal{C} is reducible as a subgroup of $\mathrm{GL}_{2}(\mathbb{F})$ since $\mathbb{F} / \mathbb{F}_{\Lambda}$ is a quadratic extension. However, we saw in $\S 5.3$ that $\bar{\rho}_{\Lambda}(G) \subseteq \mathcal{C}$ is an irreducible subgroup of $\mathrm{GL}_{2}(\mathbb{F})$. Therefore, ℓ is odd. If \mathcal{C} is split, then $\bar{\rho}_{\Lambda}(G)$ is a reducible subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$. This was ruled out in $\S 5.3$, so \mathcal{C} must be a non-split Cartan subgroup with ℓ odd.

Recall that the representation $\bar{\rho}_{\Lambda}$ is odd, i.e., if $c \in G$ is an element corresponding to complex conjugation under some embedding $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$, then $\operatorname{det}\left(\bar{\rho}_{\Lambda}(c)\right)=-1$. Therefore, $\bar{\rho}_{\Lambda}(c)$ has order 2 and determinant $-1 \neq 1$ (this last inequality uses that ℓ is odd). A non-split Cartan subgroup \mathcal{C} of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ is cyclic and hence $-I$ is the unique element of \mathcal{C} of order 2 . Since $\operatorname{det}(-I)=1$, we find that $\bar{\rho}_{\Lambda}(c)$ does not belong to \mathcal{C}; this gives the desired contradiction.
5.5. Normalizer of a Cartan case. Suppose that $\bar{\rho}_{\Lambda}(G)$ is contained in the normalizer \mathcal{N} of a Cartan subgroup \mathcal{C} of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$. The group \mathcal{C} has index 2 in \mathcal{N}, so we obtain a character

$$
\beta_{\Lambda}: G \xrightarrow{\bar{\rho}_{\Lambda}} \mathcal{N} \rightarrow \mathcal{N} / \mathcal{C} \cong\{ \pm 1\} .
$$

The character β_{Λ} is non-trivial since $\bar{\rho}_{\Lambda}(G) \nsubseteq \mathcal{C}$ by Lemma 5.6.
Lemma 5.7. The character β_{Λ} is unramified at all primes $p \nmid N \ell$. If $\ell \geq 2 k$ and $\ell \nmid N$, then the character β_{Λ} is also unramified at ℓ.

Proof. The character β_{Λ} is unramified at each prime $p \nmid N \ell$ since $\bar{\rho}_{\Lambda}$ is unramified at such primes. Now suppose that $\ell \geq 2 k$ and $\ell \nmid N$. We have $\ell>2$, so $\ell \nmid|\mathcal{N}|$ and hence Lemma 5.3 implies that $\bar{\rho}_{\Lambda}\left(\mathcal{I}_{\ell}\right)$ is cyclic. Moreover, Lemma 5.3 implies that $\bar{\rho}_{\Lambda}^{\text {proj }}\left(\mathcal{I}_{\ell}\right)$ is cyclic of order $d \geq(\ell-1) /(k-1)$. Our assumption $\ell \geq 2 k$ ensures that $d>2$.

Now take a generator g of $\bar{\rho}_{\Lambda}\left(\mathcal{I}_{\ell}\right)$. Suppose that β_{Λ} is ramified at ℓ and hence g belongs to $\mathcal{N}-\mathcal{C}$. The condition $g \in \mathcal{N}-\mathcal{C}$ implies that g^{2} is a scalar matrix and hence $\bar{\rho}_{\Lambda}^{\text {proj }}\left(\mathcal{I}_{\ell}\right)$ is a group of order 1 or 2 . This contradicts $d>2$, so β_{Λ} is unramified at ℓ.

Let χ be the primitive Dirichlet character that satisfies $\beta_{\Lambda}\left(\operatorname{Frob}_{p}\right)=\chi(p)$ for all primes $p \nmid N \ell$. Since β_{Λ} is a quadratic character, Lemma 5.7 implies that the conductor of χ divides \mathcal{M}. The character χ is non-trivial since β_{Λ} is non-trivial. Assumption (b) implies that there is a prime $p \nmid N \ell$ satisfying $\chi(p)=-1$ and $r_{p} \not \equiv 0(\bmod \lambda)$. We thus have $g \in \mathcal{N}-\mathcal{C}$ and $\operatorname{tr}(g) \neq 0$, where $g:=\bar{\rho}_{\Lambda}\left(\operatorname{Frob}_{p}\right) \in \mathcal{N}$. However, this contradicts that $\operatorname{tr}(A)=0$ for all $A \in \mathcal{N}-\mathcal{C}$.

Therefore, the image of $\bar{\rho}_{\Lambda}$ does not lie in the normalizer of a Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$.
5.6. \mathfrak{A}_{5} case. Assume that $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is isomorphic to \mathfrak{A}_{5} with $\# k_{\lambda} \notin\{4,5\}$.

The image of $r_{p} / p^{k-1}=a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)$ in \mathbb{F}_{λ} is equal to $\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ with $A=\bar{\rho}_{\Lambda}\left(\operatorname{Frob}_{p}\right)$. Every element of \mathfrak{A}_{5} has order $1,2,3$ or 5 , so Lemma 5.2 implies that the image of r_{p} / p^{k-1} in \mathbb{F}_{λ} is $0,1,4$ or is a root of $x^{2}-3 x+1$ for all $p \nmid N \ell$. If $\lambda \mid 5$, then Lemma 5.2 implies that $k_{\lambda}=\mathbb{F}_{5}$ which is excluded by our assumption on k_{λ}. So $\lambda \nmid 5$ and Lemma 5.2 ensures that k_{λ} is the splitting field of $x^{2}-3 x+1$ over \mathbb{F}_{ℓ}. So k_{λ} is \mathbb{F}_{ℓ} if $\ell \equiv \pm 1(\bmod 5)$ and $\mathbb{F}_{\ell^{2}}$ if $\ell \equiv \pm 2(\bmod 5)$.

From assumption (c), we find that $\ell>5 k-4$ and $\ell \nmid N$. By Lemma 5.3, the group $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ contains an element of order at least $(\ell-1) /(k-1)>((5 k-4)-1) /(k-1)=5$. This is a contradiction since \mathfrak{A}_{5} has no elements with order greater than 5 .
5.7. \mathfrak{A}_{4} and \mathfrak{S}_{4} cases. Suppose that $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is isomorphic to \mathfrak{A}_{4} or \mathfrak{S}_{4} with $\# k_{\lambda} \neq 3$.

First suppose that $\# k_{\lambda} \notin\{5,7\}$. The image of $r_{p} / p^{k-1}=a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)$ in \mathbb{F}_{λ} is equal to $\operatorname{tr}(A)^{2} / \operatorname{det}(A)$ with $A=\bar{\rho}_{\Lambda}\left(\operatorname{Frob}_{p}\right)$. Since every element of \mathfrak{S}_{4} has order at most 4 , Lemma 5.2 implies that r_{p} / p^{k-1} is congruent to $0,1,2$ or 4 modulo λ for all primes $p \nmid N \ell$. In particular, $k_{\lambda}=\mathbb{F}_{\ell}$. By assumption (d), we must have $\ell>4 k-3$ and $\ell \nmid N$. By Lemma 5.3, the group $\bar{\rho}_{\Lambda}(G)$ contains an element of order at least $(\ell-1) /(k-1)>((4 k-3)-1) /(k-1)=4$. This is a contradiction since \mathfrak{S}_{4} has no elements with order greater than 4 .

Now suppose that $\# k_{\lambda} \in\{5,7\}$. By assumption (e), with any χ, there is a prime $p \nmid N \ell$ such that $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right) \equiv 2(\bmod \lambda)$. The element $g:=\bar{\rho}_{\Lambda}^{\mathrm{proj}}\left(\operatorname{Frob}_{p}\right)$ has order 1, 2, 3 or 4. By Lemma 5.2, we deduce that g has order 4 . Since \mathfrak{A}_{4} has no elements of order 4 , we deduce that $H:=\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is isomorphic to \mathfrak{S}_{4}. Let H^{\prime} be the unique index 2 subgroup of H; it is isomorphic to \mathfrak{A}_{4}. Define the character

$$
\beta: G \xrightarrow{\bar{p}_{\Lambda}^{\text {proj }}} H \rightarrow H / H^{\prime} \cong\{ \pm 1\} .
$$

The quadratic character β corresponds to a Dirichlet character χ whose conductor divides $4^{e} \ell N$. By assumption (e), there is a prime $p \nmid N \ell$ such that $\chi(p)=1$ and $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right) \equiv 2(\bmod \lambda)$. Since $\beta\left(\operatorname{Frob}_{p}\right)=\chi(p)=1$, we have $\bar{\rho}_{\Lambda}^{\operatorname{proj}}\left(\operatorname{Frob}_{p}\right) \in H^{\prime}$. Since $H^{\prime} \cong \mathfrak{A}_{4}$, Lemma 5.2 implies that the image of $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)$ in \mathbb{F}_{λ} is 0,1 or 4 . This contradicts $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right) \equiv 2(\bmod \lambda)$.

Therefore, the image of $\bar{\rho}_{\Lambda}^{\text {proj }}$ is not isomorphic to either of the groups \mathfrak{A}_{4} or \mathfrak{S}_{4}.
5.8. End of proof. In $\S 5.3$, we saw that $\bar{\rho}_{\Lambda}(G)$ is not contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$. In $\S 5.5$, we saw that $\bar{\rho}_{\Lambda}(G)$ is not contained in the normalizer of a Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\Lambda}\right)$.

In $\S 5.6$, we showed that if $\# k_{\lambda} \notin\{4,5\}$, then $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is not isomorphic to \mathfrak{A}_{5}. We want to exclude the cases $\# k_{\lambda} \in\{4,5\}$ since $\mathrm{PSL}_{2}\left(\mathbb{F}_{4}\right)$ and $\mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right)$ are both isomorphic to \mathfrak{A}_{5}.

In $\S 5.7$, we showed that if $\# k_{\lambda} \neq 3$, then $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is not isomorphic to \mathfrak{A}_{4} and not isomorphic to \mathfrak{S}_{4}. We want to exclude the case $\# k_{\lambda}=3$ since $\mathrm{PSL}_{2}\left(\mathbb{F}_{3}\right)$ and $\mathrm{PGL}_{2}\left(\mathbb{F}_{3}\right)$ are isomorphic to \mathfrak{A}_{4} and \mathfrak{S}_{4}, respectively.

By Lemma 5.1, the group $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ must be conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(\mathbb{F}^{\prime}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}^{\prime}\right)$, where \mathbb{F}^{\prime} is a subfield of \mathbb{F}_{Λ}. One can then show that \mathbb{F}^{\prime} is the subfield of \mathbb{F}_{Λ} generated by the set $\left\{\operatorname{tr}(A)^{2} / \operatorname{det}(A): A \in \bar{\rho}_{\Lambda}(G)\right\}$. By the Chebotarev density theorem, the field \mathbb{F}^{\prime} is the subfield of \mathbb{F}_{Λ} generated by the images of $a_{p}^{2} /\left(\varepsilon(p) p^{k-1}\right)=r_{p} / p^{k-1}$ with $p \nmid N \ell$. Therefore, $\mathbb{F}^{\prime}=k_{\lambda}$ and hence $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(k_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(k_{\lambda}\right)$.

6. Examples

6.1. Example from §1.2. Let f be the newform from $\S 1.2$. We have $E=\mathbb{Q}(i)$. We know that $\Gamma \neq 1$ since ε is non-trivial. Therefore, $\Gamma=\operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q})$ and $K=E^{\Gamma}$ equals \mathbb{Q}. So Γ is generated
by complex conjugation and we have $\bar{a}_{p}=\varepsilon(p)^{-1} a_{p}$ for $p \nmid N$. As noted in $\S 1.2$, this implies that r_{p} is a square in \mathbb{Z} for all $p \nmid N$ and hence L equals $K=\mathbb{Q}$. Fix a prime $\ell=\lambda$ and a prime ideal $\Lambda \mid \ell$ of $\mathcal{O}=\mathbb{Z}[i]$.

Set $q_{1}=109$ and $q_{2}=379$; they are primes that are congruent to 1 modulo 27 . Set $p_{1}=5$, we have $\chi\left(p_{1}\right)=-1$, where χ is the unique non-trivial character $(\mathbb{Z} / 3 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$. Set $q=5$; the field $\mathbb{Q}\left(r_{q}\right)$ equals $K=\mathbb{Q}$ and hence $\mathbb{Z}\left[r_{q}\right]=\mathbb{Z}$.

One can verify that $a_{109}=164, a_{379}=704$ and $a_{5}=-3 i$, so $r_{109}=164^{2}, r_{379}=704^{2}$ and $r_{5}=3^{2}$. We have
(6.1) $r_{109}-\left(1+109^{2}\right)^{2}=-2^{2} \cdot 3^{3} \cdot 7 \cdot 19 \cdot 31 \cdot 317 \quad$ and $\quad r_{379}-\left(1+379^{2}\right)^{2}=-2^{2} \cdot 3^{3} \cdot 2647 \cdot 72173$.

So if $\ell \geq 11$, then there is an $i \in\{1,2\}$ such that $\ell \neq q_{i}$ and $r_{q_{i}} \not \equiv\left(1+q_{i}^{2}\right)^{2}(\bmod \ell)$.
Let S be the set from $\S 4$ with the above choice of q_{1}, q_{2}, p_{1} and q. We find that $S=\{2,3,5,7,11\}$. Theorem 4.3 implies that $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$ when $\ell>11$.

Now take $\ell \in\{7,11\}$. Choose a prime ideal Λ of \mathcal{O} dividing ℓ. We have $e_{0}=e_{1}=e_{2}=0$ and $\mathcal{M}=3$. The subfield k_{ℓ} generated over \mathbb{F}_{ℓ} by the images of r_{p} modulo ℓ with $p \nmid N \ell$ is of course \mathbb{F}_{ℓ} (since the r_{p} are rational integers). We now verify the conditions of Theorem 4.1.

We first check condition (a). Suppose there is a character $\chi:(\mathbb{Z} / 27 \mathbb{Z})^{\times} \rightarrow \mathbb{F}_{\ell}^{\times}$such that $\chi\left(q_{2}\right)$ is a root of $x^{2}-a_{q_{2}} x+\varepsilon\left(q_{2}\right) q_{2}^{2}$ modulo ℓ. Since $q_{2} \equiv 1(\bmod 27)$ and $a_{q_{2}}=704$, we find that 1 is a root of $x^{2}-a_{q_{2}} x+q_{2}^{2} \in \mathbb{F}_{\ell}[x]$. Therefore, $a_{q_{2}} \equiv 1+q_{2}^{2}(\bmod \ell)$ and hence $r_{q_{2}}^{2}=a_{q_{2}}^{2} \equiv\left(1+q_{2}^{2}\right)^{2}$ $(\bmod \ell)$. Since $\ell \in\{7,11\}$, this contradicts (6.1). This proves that condition (a) holds.

We now check condition (b). Let $\chi:(\mathbb{Z} / 3 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ be the non-trivial character. We have $\chi(5)=-1$ and $r_{5}=9 \not \equiv 0(\bmod \ell)$. Therefore, (b) holds.

We now check condition (c). If $\ell=7$, we have $\ell \equiv 2(\bmod 5)$ and $\# k_{\ell}=\ell \neq \ell^{2}$, so condition (c) holds. Take $\ell=11$. We have $a_{5}^{2} /\left(\varepsilon(5) 5^{2}\right)=9 / 5^{2} \equiv 3(\bmod 11)$, which verifies (c).

Condition (d) holds since $\# k_{\ell}=5$ if $\ell=7$, and $\ell>4 k-3=9$ and $\ell \nmid N$ if $\ell=11$.
Finally we explain why condition (e) holds when $\ell=7$. Let $\chi:(\mathbb{Z} / 7 \cdot 27 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ be any non-trivial character. A quick computation shows that there is a prime $p \in\{13,37,41\}$ such that $\chi(p)=1$ and that $a_{p}^{2} /\left(\varepsilon(p) p^{2}\right) \equiv 2(\bmod 7)$.

Theorem 4.1 implies that $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. Since $L=K$, the group $\bar{\rho}_{\Lambda}^{\text {proj }}(G)$ isomorphic to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\ell}\right)$ by Theorem 1.2(i).
6.2. Example from §1.3. Let f be a newform as in $\S 1.3$; we have $k=3$ and $N=160$. The Magma code below verifies that f is uniquely determined up to replacing by a quadratic twist and then a Galois conjugate. So the group $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$, up to isomorphism, does not depend on the choice of f.

```
eps:=[c: c in Elements(DirichletGroup(160)) | Order(c) eq 2 and Conductor(c) eq 20][1];
M:=ModularSymbols(eps,3);
F:=NewformDecomposition(NewSubspace(CuspidalSubspace(M)));
#F eq 2; _,chi:=IsTwist(F[1],F[2],5); Order(chi) eq 2;
```

Define $b=\zeta_{13}^{1}+\zeta_{13}^{5}+\zeta_{13}^{8}+\zeta_{13}^{12}$, where ζ_{13} is a primitive 13 -th root of unity in $\overline{\mathbb{Q}}$ (note that $\{1,5,8,12\}$ is the unique index 3 subgroup of \mathbb{F}_{13}^{\times}). The characteristic polynomial of b is $x^{3}+x^{2}-$ $4 x+1$ and hence $\mathbb{Q}(b)$ is the unique cubic extension of \mathbb{Q} in $\mathbb{Q}\left(\zeta_{13}\right)$. The code below shows that the coefficient field E is equal to $\mathbb{Q}(b, i)$ (it is a degree 6 extension of \mathbb{Q} that contains roots of $x^{3}+x^{2}-4 x+1$ and $x^{2}+1$).
$\mathrm{f}:=\mathrm{qEigenform}(\mathrm{F}[1], 2001)$;
$\mathrm{a}:=$ [Coefficient (f,n): n in [1..2000]];
E:=AbsoluteField(Parent(a[1]));
Pol〈x>:=PolynomialRing(E);
Degree(E) eq 6 and HasRoot ($x^{\wedge} 3+x^{\wedge} 2-4 * x+1$) and HasRoot $\left(x^{\wedge} 2+1\right)$;

Fix notation as in $\S 2.1$. We have $\Gamma \neq 1$ since ε is non-trivial. The character χ_{γ}^{2} is trivial for $\gamma \in \Gamma$ (since χ_{γ} is always a quadratic character times some power of ε). Therefore, Γ is a 2 -group. The field $K=E^{\Gamma}$ is thus $\mathbb{Q}(b)$ which is the unique cubic extension of \mathbb{Q} in E. Therefore, $r_{p}=a_{p}^{2} / \varepsilon(p)$ lies in $K=\mathbb{Q}(b)$ for all $p \nmid N$.

The code below verifies that r_{3}, r_{7} and r_{11} are squares in K that do not lie in \mathbb{Q} (and in particular, are non-zero). Since 3,7 and 11 generate the group $(\mathbb{Z} / 40 \mathbb{Z})^{\times}$, we deduce from Lemma 2.3 that the field $L=K\left(\left\{\sqrt{r_{p}}: p \nmid N\right\}\right)$ is equal to K.

```
_,b:=HasRoot(x^3+x^2-4*x+1); K:=sub<E|b>;
r3:=K!(a[3]^2/eps(3)); r7:=K!(a[7]^2/eps(7)); r11:=K!(a[11]^2/eps(11));
IsSquare(r3) and IsSquare(r7) and IsSquare(r11);
r3 notin Rationals() and r7 notin Rationals() and r11 notin Rationals();
```

Let $N_{K / \mathbb{Q}}: K \rightarrow \mathbb{Q}$ be the norm map. The following code verifies that $N_{K / \mathbb{Q}}\left(r_{3}\right)=2^{6}, N_{K / \mathbb{Q}}\left(r_{7}\right)=$ $2^{6}, N_{K / \mathbb{Q}}\left(r_{11}\right)=2^{12} 5^{4}, N_{K / \mathbb{Q}}\left(r_{13}\right)=2^{12} 13^{2}, N_{K / \mathbb{Q}}\left(r_{17}\right)=2^{18} 5^{2}$, and that

```
gcd (641 · N NK/\mathbb{Q}
r13:=K!(a[13]^2/eps(13)); r17:=K!(a[17]^2/eps(17));
Norm(r3) eq 2^6; Norm(r7) eq 2^6; Norm(r11) eq 2^12*5^4;
Norm(r13) eq 2^12*13^2; Norm(r17) eq 2^18*5^2;
r641:=K!(a[641]^2/eps(641)); r1061:=K!(a[1061]^2/eps(1061));
n1:=Integers()!Norm(r641-(1+641^2)^2); n2:=Integers()!Norm(r1061-(1+1061^2)^2);
GCD (641*n1,1061*n2) eq 2^12;
```

Set $q_{1}=641$ and $q_{2}=1061$; they are primes congruent to 1 modulo 160 . Let λ be a prime ideal of R dividing a rational prime $\ell>3$. From (6.2), we find that $\ell \neq q_{i}$ and $r_{q_{i}} \not \equiv\left(1+q_{i}^{2}\right)^{2}(\bmod \lambda)$ for some $i \in\{1,2\}$ (otherwise λ would divide 2).

Set $p_{1}=3, p_{2}=7$ and $p_{3}=11$. For each non-trivial quadratic characters $\chi:(\mathbb{Z} / 40 \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$, we have $\chi\left(p_{i}\right)=-1$ for some prime $i \in\{1,2,3\}$ (since 3,7 and 11 generate the group $(\mathbb{Z} / 40 \mathbb{Z})^{\times}$). From the computed values of $N_{K / \mathbb{Q}}\left(r_{p}\right)$, we find that $r_{p_{i}} \not \equiv 0(\bmod \lambda)$ for all $i \in\{1,2,3\}$ and all non-zero prime ideals $\lambda \nmid N$ of R.

Set $q=3$. We have noted that $r_{q} \in K-\mathbb{Q}$, so $K=\mathbb{Q}\left(r_{q}\right)$. The index of the order $\mathbb{Z}\left[r_{q}\right]$ in R is a power of 2 since $N_{K / \mathbb{Q}}(q)$ is a power of 2 .

Let S be the set from $\S 4$ with the above choice of $q_{1}, q_{2}, p_{1}, p_{2}, p_{3}$ and q. The above computations show that S consists of the prime ideals λ of R that divide a prime $\ell \leq 11$.

Now let ℓ be an odd prime congruent to $\pm 2, \pm 3, \pm 4$ or ± 6 modulo 13 . Since K is the unique cubic extension in $\mathbb{Q}\left(\zeta_{13}\right)$, we find that the ideal $\lambda:=\ell R$ is prime in R and that $\mathbb{F}_{\lambda} \cong \mathbb{F}_{\ell^{3}}$. The above computations show that $\lambda \notin S$ when $\ell \notin\{3,7,11\}$. Theorem 4.3 implies that if $\ell \notin\{3,7,11\}$, then $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$, where Λ is a prime ideal of \mathcal{O} dividing λ. So if $\ell \notin\{3,7,11\}$, the group $\bar{\rho}_{\Lambda}^{\operatorname{proj}}(G)$ isomorphic to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right) \cong \mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{3}}\right)$ by Theorem 1.2(i) and the equality $L=K$.

Now take $\lambda=\ell R$ with $\ell \in\{3,7,11\}$; it is a prime ideal. Choose a prime ideal Λ of \mathcal{O} dividing λ. We noted above that $\mathbb{Z}\left[r_{3}\right]$ is an order in R with index a power of 2 ; the same argument shows that this also holds for the order $\mathbb{Z}\left[r_{7}\right]$. Therefore, the field k_{λ} generated over \mathbb{F}_{ℓ} by the images of r_{p} modulo λ with $p \nmid N \ell$ is equal to \mathbb{F}_{λ}. Since $\# \mathbb{F}_{\lambda}=\ell^{3}$, we find that conditions (c), (d) and (e) of Theorem 4.1 hold.

We now show that condition (a) of Theorem 4.1 holds for our fixed Λ. We have $e_{0}=0$, so take any character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{F}_{\Lambda}^{\times}$. We claim that $\chi\left(q_{i}\right) \in \mathbb{F}_{\Lambda}$ is not a root of $x^{2}-a_{q_{i}} x+\varepsilon\left(q_{i}\right) q_{i}^{2}$ for some $i \in\{1,2\}$. Since $q_{i} \equiv 1(\bmod N)$, the claim is equivalent to showing that $a_{q_{i}} \not \equiv 1+q_{i}^{2}$
$(\bmod \Lambda)$ for some $i \in\{1,2\}$. So we need to prove that $r_{q_{i}} \equiv\left(1+q_{i}^{2}\right)^{2}(\bmod \lambda)$ for some $i \in\{1,2\}$; this is clear since otherwise ℓ divides the quantity (6.2). This completes our verification of (a).

We now show that condition (b) of Theorem 4.1 holds. We have $r_{p} \not \equiv 0(\bmod \lambda)$ for all primes $p \in\{3,7,11,13,17\}$; this is a consequence of $N_{K / \mathbb{Q}}\left(r_{p}\right) \not \equiv 0(\bmod \ell)$. We have $\mathcal{M}=120$ if $\ell=3$ and $\mathcal{M}=40$ otherwise. Condition (b) holds since $(\mathbb{Z} / \mathcal{M} \mathbb{Z})^{\times}$is generated by the primes $p \in\{3,7,11,13,17\}$ for which $p \nmid \mathcal{M} \ell$.

Theorem 4.1 implies that $\bar{\rho}_{\Lambda}^{\operatorname{proj}}(G)$ is conjugate in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\Lambda}\right)$ to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right)$ or $\mathrm{PGL}_{2}\left(\mathbb{F}_{\lambda}\right)$. Since $L=K$, the group $\bar{\rho}_{\Lambda}^{\mathrm{proj}}(G)$ isomorphic to $\mathrm{PSL}_{2}\left(\mathbb{F}_{\lambda}\right) \cong \mathrm{PSL}_{2}\left(\mathbb{F}_{\ell^{3}}\right)$ by Theorem 1.2(i).

References

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). $\uparrow 1.3$
[Del71] Pierre Deligne, Formes modulaires et représentations ℓ-adiques, Lecture Notes in Mathematics, 1971, pp. 139-172. $\uparrow 1.1$
[Die01] Luis V. Dieulefait, Newforms, inner twists, and the inverse Galois problem for projective linear groups, J. Théor. Nombres Bordeaux 13 (2001), no. 2, 395-411. MR1879665 (2003c:11053) $\uparrow 1$
[Die08] Luis Dieulefait, Galois realizations of families of projective linear groups via cusp forms, Modular forms on Schiermonnikoog, 2008, pp. 85-92. MR2512358 (2010k:11086) $\uparrow 1$
[DV00] Luis Dieulefait and Núria Vila, Projective linear groups as Galois groups over \mathbf{Q} via modular representations, J. Symbolic Comput. 30 (2000), no. 6, 799-810. Algorithmic methods in Galois theory. MR1800679 (2001k:11093) $\uparrow 1$
[DW11] Luis Dieulefait and Gabor Wiese, On modular forms and the inverse Galois problem, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4569-4584. MR2806684 (2012k:11069) $\uparrow 1.1$
[Edi92] Bas Edixhoven, The weight in Serre's conjectures on modular forms, Invent. Math. 109 (1992), no. 3, 563-594. MR1176206 (93h:11124) $\uparrow 5.2$
[Fab12] Xander Faber, Finite p-irregular subgroups of $\mathrm{PGL}_{2}(k)$, arXiv:1112.1999 [math.NT] (2012). $\uparrow 5.1$
[Hup67] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967. MR0224703 (37 \#302) $\uparrow 5.1$
[Liv89] Ron Livné, On the conductors of mod l Galois representations coming from modular forms, J. Number Theory 31 (1989), no. 2, 133-141. MR987567 (90f:11029) $\uparrow 5.3$
[Mom81] Fumiyuki Momose, On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 1, 89-109. MR617867 (84a:10025) 个2.1, 2.1, 2.1
[Rib75] Kenneth A. Ribet, On l-adic representations attached to modular forms, Invent. Math. 28 (1975), 245-275. MR0419358 (54 \#7379) $\uparrow 1$
[Rib77] , Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), 1977, pp. 17-51. Lecture Notes in Math., Vol. 601. MR0453647 (56 \#11907) $\uparrow 2.1$
[Rib85] _, On l-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185-194. MR819838 (88a:11041) $\uparrow 1.1,2.1$
[RV95] Amadeu Reverter and Núria Vila, Some projective linear groups over finite fields as Galois groups over Q, Recent developments in the inverse Galois problem (Seattle, WA, 1993), 1995, pp. 51-63. MR1352266 (96g:12006) $\uparrow 1$
[Ser87] Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, Duke Math. J. 54 (1987), no. 1, 179-230. MR885783 (88g:11022) $\uparrow 1$, i
[Zyw14] David Zywina, The inverse Galois problem for $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$, Duke Math. J. (2014). to appear. \uparrow ii, 1.3
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
E-mail address: zywina@math.cornell.edu
URL: http://www.math.cornell.edu/~zywina

[^0]: ${ }^{1}$ More explicitly, take $f=\frac{i}{2} g \theta_{0}-\frac{1+i}{2} g \theta_{1}+\frac{3}{2} g \theta_{2}$, where $g:=q \prod_{n \geq 1}\left(1-q^{3 n}\right)^{2}\left(1-q^{9 n}\right)^{2}$ and $\theta_{j}:=$ $\sum_{x, y \in \mathbb{Z}} q^{3^{j}\left(x^{2}+x y+y^{2}\right)}$, cf. [Ser87, p. 228].

