A Fatou-Bieberbach domain avoiding a neighborhood of a variety of codimension 2

Gregery T. Buzzard ${ }^{\star}$ • John H. Hubbard

Received: 28 April 1999

Mathematics Subject Classification (1991): 32H02, 32C25

1 Introduction

In response to a question of Y.-T. Siu, we show that for any algebraic variety V of codimension 2 in \mathbb{C}^{n}, there is a neighborhood U of V and an injective holomorphic map $\Phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \backslash U$. That is, there is a Fatou-Bieberbach domain (a proper subdomain in \mathbb{C}^{n} biholomorphic to \mathbb{C}^{n}) in the complement of some neighborhood of V. In particular, Φ is a dominating map. In case $n=1$, V is empty, so the result is trivial, while if $n=2, V$ is a finite set, and it is well-known that there is a Fatou-Bieberbach domain omitting an open set, thus by scaling there is such a domain avoiding a neighborhood of V. Hence for the remainder of the paper we assume $n \geq 3$.

It should be noted that in general there is no corresponding result for nonalgebraic varieties: using techniques similar to those in [BF], Forstneric showed in $[\mathrm{F}]$ that there is a proper holomorphic embedding of \mathbb{C}^{n-2} into \mathbb{C}^{n} such that the image of any holomorphic map $\Phi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{n}$ with generic rank 2 must intersect the embedding of \mathbb{C}^{n-2} infinitely often. This implies that there is no Fatou-Bieberbach domain in the complement of this embedding, let alone in the complement of a neighborhood.

There are two key ingredients in the present proof. The first is that after a suitable change of coordinates, the variety V is contained in some nice neighborhood of a linear subspace of dimension $n-2$. The second is that there is a Fatou-Bieberbach domain which is contained in a relatively small neighborhood of a 1-dimensional subspace. A simple analysis of this situation allows us to translate these two neighborhoods to be disjoint, thus giving the result.

For notation, $z=\left(z_{1}, \ldots, z_{n}\right)$ is a point in \mathbb{C}^{n}, and $\|z\|_{\infty}$ is the max over all $\left|z_{j}\right|$.

[^0][^1]

Fig. 1. On the left is the union of A_{ϵ} and B_{ϵ}; here the tube has radius ϵ. On the right is the union of D_{1} and D_{2}; here the tube has radius R

2 Preparing the variety

In this section we choose coordinates to construct a nice neighborhood of a biholomorphic image of V. To state this more precisely, for $z \in \mathbb{C}^{n}$, let $z^{\prime}=$ $\left(z_{1}, z_{2}\right)$ and let $z^{\prime \prime}=\left(z_{3}, \ldots, z_{n}\right)$. For $\epsilon>0$, let

$$
A_{\epsilon}=\left\{z \in \mathbb{C}^{n}:\left\|z^{\prime}\right\|_{\infty}<\epsilon\right\}
$$

and let

$$
B_{\epsilon}=\left\{z \in \mathbb{C}^{n}:\left\|z^{\prime}\right\|_{\infty}<\epsilon\left\|z^{\prime \prime}\right\|_{\infty}\right\}
$$

See Fig. 1 for a depiction of the union of these sets.
Lemma 2.1 Let $V \subseteq \mathbb{C}^{n}$ be an algebraic variety of codimension 2. Then there exist coordinates $\left(z_{1}, \ldots, z_{n}\right)$ such that for all $\epsilon>0$, there exists an invertible, complex linear map L_{ϵ} such that $L_{\epsilon}(V) \subseteq A_{\epsilon} \cup B_{\epsilon}$.
Proof. Since V is algebraic, it extends to a variety \bar{V} of codimension 2 in $\mathbb{P}^{n}=$ $\mathbb{C}^{n} \cup \mathbb{P}_{\infty}^{n-1}$, which we may assume to have no component of dimension $n-2$ contained in $\mathbb{P}_{\infty}^{n-1}$. Let $V^{\prime}=\bar{V} \cap \mathbb{P}_{\infty}^{n-1}$, in which case $\operatorname{dim}\left(V^{\prime}\right)=n-3$. A generic \mathbb{P}^{2} in \mathbb{P}^{n} intersects $\mathbb{P}_{\infty}^{n-1}$ in a \mathbb{P}^{1}, so we may choose some such \mathbb{P}^{2}, denoted \mathbb{P}_{0}^{2}, to avoid V^{\prime}. Since $\frac{\mathbb{P}_{0}^{2}}{\underline{V}}$ and \bar{V} are closed, there exists a neighborhood U of $\mathbb{P}_{0}^{2} \cap \mathbb{P}_{\infty}^{n-1}$ such that \bar{U} and \bar{V} are disjoint.

Changing coordinates, we may assume that

$$
\mathbb{P}_{0}^{2} \cap \mathbb{C}^{n}=\left\{\left(z_{1}, z_{2}, 0, \ldots, 0\right): z_{j} \in \mathbb{C}\right\}
$$

and shrinking U if necessary, we may assume that

$$
U \cap \mathbb{C}^{n}=\left\{z:\left\|z^{\prime}\right\|_{\infty}>r,\left\|z^{\prime}\right\|_{\infty}>r\left\|z^{\prime \prime}\right\|_{\infty}\right\}
$$

for some large r.
Let $L_{\epsilon}\left(z^{\prime}, z^{\prime \prime}\right)=\left(\epsilon z^{\prime} / r, z^{\prime \prime}\right)$. Then $L_{\epsilon}\left(\mathbb{C}^{n} \backslash \bar{U}\right)=A_{\epsilon} \cup B_{\epsilon}$, and since V is contained in $\mathbb{C}^{n} \backslash \bar{U}$, the lemma follows.

3 A thin Fatou-Bieberbach domain

In this section, we construct a Fatou-Bieberbach domain contained in a relatively small neighborhood of the z_{1}-axis. This result can be strengthened considerably in several ways, some of which are discussed after the proof of this lemma.

For notation, let $\Delta(\zeta ; r)$ denote the circle in \mathbb{C} with center ζ and radius r, and let $\Delta^{k}(0 ; r)$ be the k-fold product of $\Delta(0 ; r)$.

Lemma 3.1 There exists a Fatou-Bieberbach domain D in \mathbb{C}^{n} such that for some $R>4, D$ is contained in the union of $D_{1}=\Delta\left(0 ; R^{2}\right) \times \Delta^{n-1}(0 ; R)$ and $D_{2}=\left\{z:\left|z_{1}\right| \geq R^{2}-3 R+\left\|\left(z_{2}, \ldots, z_{n}\right)\right\|_{\infty}\right\}$.

Proof. Let

$$
f(z)=\left(z_{2}, \ldots, z_{n},\left(z_{2}^{2}-z_{1}\right) / 2\right),
$$

and let

$$
g(w)=f^{-1}(w)=\left(w_{1}^{2}-2 w_{n}, w_{1}, \ldots, w_{n-1}\right) .
$$

The origin is a fixed point for f (and g). Calculating the derivative gives

$$
\left(D_{0} f\right)\left(v_{1}, \ldots, v_{n}\right)^{T}=\left(v_{2}, \ldots, v_{n},-v_{1} / 2\right)^{T} .
$$

Hence an eigenvalue λ must satisfy $v_{2}=\lambda v_{1}, \ldots, v_{n}=\lambda v_{n-1}$, and $-v_{1} / 2=$ λv_{n}. Hence $-v_{1} / 2=\lambda^{n} v_{1}$, so the eigenvalues are the nth roots of $-1 / 2$. In particular, the origin is an attracting fixed point for f, so by e.g. [RR], the basin of attraction $D=\left\{z: f^{m}(z) \rightarrow 0\right.$ as $\left.m \rightarrow \infty\right\}$ is a Fatou-Bieberbach domain.

Since $g=f^{-1}$, it follows that for any $R>0, D \subseteq \cup_{m \geq 0} g^{m}\left(\Delta^{n}(0 ; R)\right)$. By [BP], if R is sufficiently large, then D is contained in $\Delta^{n}(0 ; R) \cup\left\{z:\left|z_{1}\right| \geq\right.$ $\left.R,\|z\|_{\infty}=\left|z_{1}\right|\right\}$.

To prove the lemma, note that the form of g shows that

$$
g\left(\Delta^{n}(0 ; R)\right) \subseteq \Delta\left(0 ; R^{2}+2 R\right) \times \Delta^{n-1}(0 ; R) .
$$

Moreover, if w is contained in this latter set but not in $\Delta^{n}(0 ; R)$, then $z=g(w)$ satisfies $\left|z_{1}\right|-\left\|\left(z_{2}, \ldots, z_{n}\right)\right\|_{\infty} \geq\left|w_{1}\right|^{2}-2 R-\left|w_{1}\right|$. Since $\left|w_{1}\right|\left(\left|w_{1}\right|-1\right) \geq$ $R(R-1)$, we have $z \in D_{2}$. Hence $g\left(D_{1}\right) \subseteq D_{1} \cup D_{2}$. A similar argument shows that $g\left(D_{2}\right) \subseteq D_{2}$, so $g\left(D_{1} \cup D_{2}\right) \subseteq D_{1} \cup D_{2}$ and hence $D \subseteq D_{1} \cup D_{2}$.

Remark. In some sense, the Fatou-Bieberbach domain constructed above is contained in a relatively small neighborhood of the complex curve $\zeta \mapsto\left(\zeta^{2^{n-1}}, \zeta^{2^{n-2}}\right.$, $\ldots, \zeta)$. To make this more precise, note that if w is contained in the set D_{2} with $R>4$, then

$$
g^{\circ(n-1)}(w)=\left(w_{1}^{2^{n-1}}+O\left(\left|w_{1}\right|^{2^{n-1}-1}\right), w_{1}^{2^{n-2}}+O\left(\left|w_{1}\right|^{2^{n-2}-1}\right), \ldots, w_{1}\right),
$$

where the constants implicit in O are independent of the $R>4$ used to define D_{2}. In particular, for some $C>0$, the Fatou-Bieberbach domain D is contained in the union of $g^{n-1}\left(D_{1}\right)$ and the set

$$
\begin{aligned}
& \left\{\left(\zeta^{2^{n-1}}, \zeta^{2^{n-2}}, \ldots, \zeta\right)+\Delta\left(0 ; C|\zeta|^{2^{n-1}-1}\right)\right. \\
& \left.\quad \times \Delta\left(0 ; C|\zeta|^{2^{n-2}-1}\right) \times \cdots \times \Delta(0 ; C|\zeta|) \times\{0\}:|\zeta|>R\right\}
\end{aligned}
$$

4 Main Theorem

Theorem 4.1 Let V be an algebraic variety of codimension 2 in \mathbb{C}^{n}. Then there exists a neighborhood U of V and an injective holomorphic map $\Phi: \mathbb{C}^{n} \rightarrow$ $\mathbb{C}^{n} \backslash U$.

Proof. Change coordinates as in lemma 2.1 and let $U, L_{\epsilon}, A_{\epsilon}$, and B_{ϵ} be as in that lemma. Let D and R be as in lemma 3.1.

Translating $D_{1} \cup D_{2}$ by $(0,2 R, 0, \ldots, 0)$, the image is the union of

$$
\hat{D}_{1}=\Delta\left(0 ; R^{2}\right) \times \Delta(2 R ; R) \times \Delta^{n-1}(0 ; R)
$$

and

$$
\hat{D}_{2}=\left\{z:\left|z_{1}\right| \geq R^{2}-3 R+\left\|\left(z_{2}-2 R, z_{3}, \ldots, z_{n}\right)\right\|_{\infty}\right\}
$$

For $\epsilon<1$, if $z \in A_{\epsilon} \cup B_{\epsilon}$, then $\left\|\left(z_{1}, z_{2}\right)\right\|_{\infty}<1$, so $z \notin \hat{D}_{1} \cup \hat{D}_{2}$. Hence translating D by $(0,2 R, 0, \ldots, 0)$ and applying L_{ϵ}^{-1} gives a Fatou-Bieberbach domain in the complement of U, hence in the complement of a neighborhood of V, as desired.

References

[BP] E. Bedford and V. Pambuccian, Dynamics of shift-like polynomial diffeomorphisms of \mathbb{C}^{N}, Conform. Geom. Dyn. 2 (1998), 45-55 (electronic)
[BF] G. Buzzard and J.E. Fornæss, An embedding of \mathbb{C} in \mathbb{C}^{2} with hyperbolic complement, Math. Ann. 306(3) (1996), 539-546
[F] F. Forstneric, Interpolation by holomorphic automorphisms and embeddings in \mathbb{C}^{n}, to appear in J. Geom. Anal.
[RR] J.-P. Rosay and W. Rudin, Holomorphic maps from \mathbb{C}^{n} to \mathbb{C}^{n}, Trans. Amer. Math. Soc. 310(1) (1988), 47-86

[^0]: G.T. Buzzard • J.H. Hubbard

 Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

[^1]: * Partially supported by an NSF postdoctoral research fellowship.

