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The criterion proved in this paper was stated by Thurston in November 1982. Thurston 
lectured on its proof on several occasions, notably at the NSF summer conference in 
Duluth, 1983, where one of the authors (JHH) was present. Using the notes of various 
attendants at these lectures, we have reconstructed a proof that we have made as precise 
as we could. Since this required a certain amount of work on our part, we thought it 
might be of some use to present this proof to the reader. 

We thank Dennis Sullivan for useful conversations, and Fritz yon Haesseler and 
especially Ben Wittner for help with the writing and valuable suggestions. 

After the first version was written, Clifford Earle pointed out that better estimates 
than what we had were to be found in [B]. 

Notations. #P= cardinality of P; N={0, 1, 2, ...}; N* ={1, 2, ...}; pl= the Riemann 
sphere CU{c~), i.e., the complex projective line. 

1. S t a t e m e n t  and def init ions 

Let f:  S 2--*S 2 be an orientation-preserving branched covering map. We denote by deg x f 
the local degree of f at x. We will call 

the critical set of f ,  and 

~I  = { x l d e g ~ f >  1} 

Pf= U fn(~f) 
n>O 

(1) We thank the NSF for support under grant DMS 83-01564, and the Mittag-Leffler Institute for 
hospitality during the preparation of this paper 
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the post-critical set. 
The mapping f will be called critically finite if Pf  is a finite set. We will give in the 

appendix some examples of critically finite branched mappings, which bring out some of 
the difficulties in the proof of Thurston's Theorem. 

We will assume throughout this paper that f is a critically finite branched mapping, 
of degree d> l ,  and we set p=#Pf. 

Remark. The critical set of f'~ is usually larger than f~f for n > l .  This is not true 
of Pf: we have Pf = P$~ for any n >~ 1. 

Clearly there exists a smallest function uf among functions u: S2-+N*U{oo} such 
that 

(1) u(x)--1 when z~Pf, and 
(2) u(x) is a multiple of u(y)degy f for each yef- l (x) .  
We will say that the orbifold Of=(S 2, uf) of f is hyperbolic if its Euler characteristic 

satisfies x(Of) <0.  

Remark. We will see in Section 9 that x(Of)<~O for any critically finite branched 
mapping. Such orbifolds are usually hyperbolic: for instance, if p>/5, Of will clearly be 
hyperbolic. We will completely classify branched mappings with non-hyperbolic orbifold 
orbifold in Section 9. 

The theory of orbifolds is covered in IT1] and [T2]: we will not require any of this 
theory until Section 9. There is a natural definition of the universal covering space of 
an orbifold, and with this definition Of is hyperbolic if for any complex structure on Of 
(i.e., on $2), the universal covering space (gf is isomorphic to the disc. 

Two branched mappings f, g: $2-~ S 2 are equivalent iff there exist homeomorphisms 
0, 0': (S 2, Pf)--+(S 2, Pg) such that the diagram 

( Ps) o ' ,  (s 

1 
(S 2, Pf) ~ ( $2, Pg) 

commutes, and 0 is isotopic to 0' rel P$. 
If ~ is a simple closed curve on S2-pf ,  then the set f - l ( ~ )  is a union of disjoint 

simple closed curves. If ~ moves continuously, then so does each component of f-l(.y).  
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We will need to consider systems 

r = {"fl ,  ..., "fn} 

of simple, closed, disjoint, non-homotopic, non-peripheral curves on S 2 - P f  (~/is non- 
peripheral if each component of S 2-~/contains  at least 2 points of Pf).  Such a system 
will be called a multicurve on S ~-  Pf. 

A multicurve F will be called f-stable if for any "yEr, all the non-peripheral compo- 
nents of f- l(~/)  are homotopic in S 2 - P j  to elements of r .  

To each f-stable multi-curve r we can associate the Thurston linear transformation 

fr: R r -~ R r 

as follows: Let ~i,j,a be the components of f- l (~/ j )  homotopic to ~i in S 2 - P f .  Define 

1 
 9 d i , j , o ~  

where 

L E M M A  1 .1 .  

di, j,~ = deg f l~, j , ,  : 7i, j , a  ~ ~/j" 

The Thurston transformation commutes with iteration: 

( f~ ) r=( f r )  ~. 

The proof is left to the reader. 
The following lemma, even though it is but a trivial remark, will be essential to the 

analysis in Section 8. 

LEMMA 1.2. There are only finitely many possible matrices of Thurston transfor- 
mations for a given degree d of f and a given cardinal p of Pf. 

Proof. A multicurve F has at most p - 3  elements, so the matrix has at most (p -3 )  2 
entries. Each entry is of the form 

1 
~ di,j,~ ' 

where a runs through the components of f-l(~/j) homotopic to ~/i- So there are at most 
d terms in the sum, each of which is of the form 1~do with d~4d. [] 

Since f r  has a matrix with non-negative entries, there exists a largest eigenvalue 
A(F, f ) E R + ;  the corresponding eigenvector has non-negative entries. 

Thurston's criterion is the following: 
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THEOREM 1. A critically finite branched map f: $2--*S 2 with hyperbolic orbifold is 
equivalent to a rational function if and only if for any f-stable multicurve F we have 
A(r,f)<l. 

In that case the rational function is unique up to conjugation by an automorphism 
of the Riemann sphere p1. 

Remarks. (a) In principle, this reduces the problem of classifying critically finite 
rational functions to a purely topological problem. 

In practice, it is not clear how to label branched mappings, or how to verify that  
the criterion is satisfied. 

(b) It is not clear how to introduce parameters in the statement. Rational maps, 
even critically finite ones, can be "close". We know of no notion of "close" critically finite 
branched maps which would lead to close rational functions. 

(c) One may hope that  the theorem can be extended to branched mappings which are 
not critically finite by considering infinite dimensional Teichmiiller spaces, laminations, 
etc. 

Conventions. (a) The Poincarg metric on the unit disc D is given by 

Idzl 
IdzlD= l_lz12. 

For any Riemann surface X which admits a map 7r: D---*X as a universal covering, define 
the Poincar~ metric on X so that  r is a local isometry. 

For any closed curve 7 on X,  we denote lx(7)  the length of the geodesic homotopic 
to 7- 

(b) Modulus of an annulus. Let 

Bh= { Z = x + i y l O < y < h  }. 

The modulus of the cylinder Bh/Zl  is h/l. In particular, 

mod {z I1 < Izl < R} = logR 
21r 

(c) The measure induced by a quadratic form. If q(z)=u(z) dz 2 then Iql is the measure 
lu(x +iy)] dx dy. 

2. The  mapping cry 

To prove the theorem, the basic construction is a mapping a f  from an appropriate 
Teichmfiller space to itself. 
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Definition. The Teichmiiller space Tf is the Teichmiiller space modelled on (S 2, Pf). 

Remarks. (a) Of course, Tf could be identified with To,p, but we will need functorial 
properties of T/, and To,p is only defined up to non-unique isomorphism. 

(b) The space Tf can be constructed either as: 
(i) The space of smooth almost-complex structures on S 2, two such structures/~1 

and #2 being identified if #l=h*/z2 for some diffeomorphism h: $2--*S 2 with hIpf=id 
and h isotopic to the identity rel Pf, 
o r  a s :  

(ii) The space of diffeomorphisms r (S 2, pf)_~p1, with 41 and 42 identified if and 
only if there exists an analytic isomorphism h: p1 __~p1 such that the diagram 

p1 

($2, Pf) |h 

p1 

commutes on Pf, and commutes up to isotopy rood Pf. 
The correspondence between these points of view is as follows: 
(i) To 4 one can associate 4"#0, where #0 is the standard complex structure o n p l ;  
(ii) Since any smooth almost-complex structure # induces a complex structure, the 

sphere S 2 with the structure # is a Riemann surface homeomorphic to S 2, hence isomor- 
phic to p1; take 4 to be such an isomorphism. 

PROPOSITION 2.1 AND DEFINITION. (a) The mapping #~--*f*# on almost complex 
structures induces an analytic mapping a l : T I--* T I. 

(b) If  f and g are equivalent and O, 0': ( S 2 , P! )-~ ( S 2, Pg) realize an equivalence, then 

0* = 0'*: 

is an isomorphism such that O*oao=afoO*. 

The proof is routine and left to the reader. 
In terms of the second description of T/, this gives the following description of a s. 

PROPOSITION 2.2. I f  rETy is represented by 4:(S2,Pf)--*P 1, then T '=O' I (T)  can 

be represented by 4': (S 2, pf)__~p1 such that 

f r  = 4 o f o ( 4 ' ) - 1 :  p s  

is analytic. 

Proof. The point T ~ is represented by #'=f*4*#0, so take 4' to be an isomorphism 
of ($2,# ') with p1. 

1 8 -  935204 Acta Mathematica 171. Imprim6 le 2 f~vrier 1994 
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PROPOSITION 2.3. 
if  Cr I has a fixed point. 

Proof .  (=~) If f is equivalent to a rational function g, 
(S 2, pl). .~(p1, pg) isotopic rel PI and such that the diagram 

commutes. 
point represented by r 

(r Consider the diagram 

The mapping f is equivalent to a rational function if and only 

then there exist r162 

(S 2, pf )  r  9 (p1, pg) 

( S~, PS) ~ (p1, pg) 

This means that if TETI is the point represented by r then af(T) is the 

( $2, PI) > pl 

( Ps) 

of Proposition 2.2. If r represents the same point of T /as  r there exists an isomorphism 
h: p1 ~ p ,  such that the diagram 

p1 

( s , ,  Ps) h 

p1 

commutes on Pf,  and commutes up to isotopy rel PI. Then f~oh is a rational map 
equivalent to f ,  as we see by considering the following diagram: 

( s2, Ps) h-l~ > p1 

fl lf~ oh 
($2, pi)  +  9 p1 

[] 

Remark. The above proof produces a map of the set of fixed points of af  onto the 
set of conjugacy classes of rational functions equivalent to f under Aut p1. 
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COROLLARY 2.4. If Pf has at most 3 elements, then f is equivalent to a rational 
mapping, unique up to conjugacy by Aut p1.  

Proof. In that  case T: has one point. 

Remark. According to Royden [R], all analytic mappings T: - - ,T/  are weakly con- 
tracting for the Teichmiiller metric. We will not need this result, since we will compute 
the derivative of a :  and verify it directly. Still, it does justify the feeling that  something 
has been accomplished when a question has been reduced to whether a map T:---*T: has 
a fixed point. 

3. The  derivat ive o f  ~r! 

In addition to T: we will need the moduli space j~4:. 

Definition. The space M y  is the space of injections i: pf__.p1, quotiented by the 
equivalence relation identifying il and i2 if il=hoi2 for some automorphism h of ps .  

Especially using the second description of Tf, there is an obvious forgetful map 
~r: T:---*A4f, which is in fact a universal covering space. So the tangent TrT/ i s  the same 
as T,~(r)A/I f . 

Let i: p:__~p1 represent a point of A4:, and set P=i(P/ ) .  
Define Q(P) to be the space of holomorphic quadratic forms on p1 _ p  with at most 

simple poles on P.  

PROPOSITION 3.1. The cotangent space T*.M I is canonically isomorphic to Q(P). 

Proof. This result is standard, using Kodaira-Spencer deformation theory and Serre 
duality. The precise statement we require is in [H], [A], so we will just sketch the proof. 

An infinitesimal variation of the complex structure on p1 is a Beltrami form 
/zEA 1'-1, i.e., an object which in a local coordinate z can be written #(z)dS/dz.  In 
fact, the space of complex structures is the unit ball in A t,-1 for the sup norm. 

We will use smooth Beltrami forms, which are sufficient for our purposes. The tradi- 
tional t reatment as in [A] uses L ~ Beltrami forms, and Gunning [G] uses an appropriate 
Sobolev space. All these methods lead to the same results when the Teichmiiller spaces 
involved are finite dimensional. 

An infinitesimal diffeomorphism which is the identity on P is a vector-field which 
vanishes on P;  we will denote the space of such vector-fields A ~  If ~ is such a 
vector-field, the Lie derivative L~(/lo) of the standard complex structure is 0~. Thus, the 
tangent space to TeichmiiUer space is 

A1,-1/O(A~ 
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Now the dual of the space of C ~ Beltrami forms is the space / ) (Q)  of distribution 
quadratic forms, since the product  

d2 #(z) -~z q(z) dz 2 = #(z)q(z) d2 dz 

is naturally a measure. 
The cotangent space is the subspace of :D(Q) orthogonal to 0(A ~ l ( _ p ) ) .  At points 

not in P it is easy to show by a bump function argument and Weyl's lemma that  in order 
for q to satisfy 

J q S ~ = 0  

for all ~EA~ it is necessary that  q be holomorphic on p l _ p .  
For pEP, consider a coordinate z defined on a domain U with z(p)=O. We must 

have fzqO~=fqO(z~)=O for ~ with support in U, so that  zq is holomorphic, and q can 
have at worst a simple pole at p. [] 

If U and V are Riemann surfaces, g: U--~V is a proper analytic mapping and q is a 
quadratic form on U, then let g.q be the quadratic form on V defined by 

(g*q)v(~)= Z q((dt'g)-l~) 
t~eg-l(v) 

for all vEV and ~ETvV. 
Note that  this definition does not require that  q be analytic; in fact, even if q is 

analytic on U, g.q may acquire poles on V at the critical values of g. However, if q is 
integrable on U then g.q is integrable on V. 

To see exactly how this may occur, let U=V=D and suppose w=g(z)=z k. Then 
we have the formula 

with 
1 be = ~akr  

In particular, if ~ aizidz 2 has at worst a simple pole at 0 then so does ~ bjwJdw 2. 
Let TETf,  T ' = a f ( r ) ,  and let r162  and f~ be as in Proposition 2.2. Set P = r  

P ' = r  Then (f, .).Q(P')cQ(P). 

PROPOSITION 3.2. The transpose ( d~a l )* : Q( P')--*Q( P) is (f~ ).. 

Pvoo]. Recall that  a f  was induced by # -* f*# ,  for # a complex structure on S ~. 
Clearly then if #EA 1,-1 is an infinitesimal deformation of a complex structure at T, then 
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]* is the corresponding deformation of r ' .  The proposition follows from the observation 
that 

(fr) *: AL-1 --r --+ AI ' - I  --r 

is the transpose of 
(fT).: ~(Q)-~ ~(Q). [] 

The space Q(P) carries the natural norm 

Ilqll = 2/p1 IqJ. 
The metric on Teichmiiller space induced by the dual norm on each tangent space is 
called the Teichmtiller metric, [A], [HI; it has the following two properties which we will 
use in an essential way: 

(i) The space T] equipped with the Teichmiiller metric is a complete metric space. 
(ii) /f d(T,r')=8, then there e~ists a K-quasi-conformal mapping h such that the 

diagram 

(S 2, PI) I h 

p1 

commutes on Pf , and commutes up to isotopy mod Py, if and only i/ K ~ e  26. 

PROPOSITION 3.3. (a) II(f~).ll~<l. 
(b) If Of is hyperbolic, then l l(f2).ll<l.  

Comment. Part (b) is concerned with f2=frO]~, in a diagram 

($2, pf)  ~ (p1, p,,) 

II 1 I ' '  
(s~;e~) ~ (e 1, P,) 

(sL Pf) - - ~  (pl, P) 

where the pairs (r r and (4/, 4/') are as in Proposition 2.2. The map considered is 

(f~). = (fr) .  ~ Q(P") --* Q(P). 

Part (a) of the proposition is obvious. The proof of part (b) uses the following two 
lemmas. 
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LEMMA 1. Let F:p1--*P 1 be a rational map of degree d and q a meromorphic 
quadratic form with simple poles on p1. Let Z be the set of poles of q. Suppose ]]F.ql]= 
Itqll#0. Then 

(a) q=(1/d)F*F.q, 
(b) F - I ( F ( Z ) ) c Z U ~ F .  

Proof. At the neighborhood of a non-critical value, the terms in F.q coming from 
the different sheets of the covering must have the same argument. F*F.q is a multiple of 
q by a function which is meromorphic and real, hence constant, and its value must be d. 

This proves part (a). Part (b) follows. [] 

LEMMA 2. Let f: $2---~S 2 be a critically finite branched mapping, and suppose that 
Z c P  I satisfies f - I ( Z ) C P I U I 2  I. 

(a) We have that # Z  <~4. 
(b) If  # Z = 4 ,  then all critical points are ordinary, Z contains the set of critical 

values, and ZM~S=O. 
(c) Case (b) above can occur in two ways: either f ( Z ) c Z  in which case Z = P  I and 

01 is not hyperbolic, or Z~ = f - I ( Z ) - ~ I  does not satisfy f - I ( Z ~ ) C P I U ~ I .  

Proof. Write f - I ( Z ) = X i U X 2 ,  where 

X1 = {x E f - i ( z )  13k >10 and w E ~I  with f~ = x and f~ not in Z for m <~ k} 

and X 2 = f - I ( Z ) - X 1 .  In words, X1 is the set of points in f - x ( z )  which can be reached 
from ~f  without passing through Z, and X2 is the set where you must pass through Z. 

Associate to each xEX1 the subset ~ C l 2 1  defined by 

~ = (w E ~I  I Sk ~> 0 with f~ = x and f~ not in Z for m ~< k}. 

Clearly the ~ are disjoint or identical. 
Similarly, associate to each xEX2 the subset Z~ c Z defined by 

Z~ = {z E Z ik >>. 0 such that f~ = x and k is minimal for this property}. 

Again the Z~ are disjoint or identical. 
Putting these decompositions together, we find 

# f - l ( z )  = # X I  + #X 2  <~ # ~ f +  # Z  <~ ( 2 d - 2 ) + # Z .  (1) 

On the other hand, Z has d # Z  elements in its inverse, counted with multiplicity, 
where the multiplicity at an inverse image is the local degree there. Since there are 
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precisely 2d -2  critical points, counting each with multiplicity the local degree minus 1, 
we see that 

d ( # Z ) =  Z deg* f=#f - l (Z )+  ~ (deg, f - 1 )  
~s-~(z) ~I-l(z)  (2) 

<~ # f - l ( z )+2d-2 .  

Putting (1) and (2) together, we find 

( # Z ) ( d -  1) < 4 (d -  1) 

and since d > l  this proves (a). 
If ~ Z = 4 ,  then all the inequalities above must be equalities. In particular, ~ i =  

2d-2 ,  so that sU the critical points are ordinary. If a point of Z is critical, the first 
inequality in (1) cannot be an equality. Moreover, in order for the inequality in (2) to 
be aa equality, all the critical points must be in f - l (Z) ,  so that Z contains the critical 
values. This proves (b). 

In this case, moreover, we have, by (2), 4d=#f - l (Z)§247  hence 
#Z~=4=#Z. Set YI=Z-Z ' ,  Y2=Z'-Z  and Y~=F-I(Y2). We have #YI=#Y~, and 
since Y2 contains no critical value ~Y~-d#Y2. 

Suppose now that f-I(Z~)cPIU~I. Then Y~CP I. For each yEY~, one can choose 
an x in f(12f) and a k>/0 such that fk(x)=y. Take the last j in (0, ..., k} such that 
fJ(x)EZ, set y'=ff(x) and i=k - j .  Then y'EY1, fi(Y')EY~, and fr for i'<i. 
It follows that the assignment y~--+y' is injective, and #YI>~#Y~=d#Y2. This implies 
#YI=#Y2=0 ,  Z=Z'=PI, r =4 and thus f is not hyperbolic. [] 

Proof of Proposition 3.3, part (b). Let q"eQ(P") satisfy [[(f~)2,q"[l=[[q"][~O, and 
denote by Z", Z' and Z the set of poles of q", q' and q where q'--(f~.), q" and q = (f2), q,,= 
(f~,).q'. 

Then by Lemma 1 the subsets r  and (r of Pf  satisfy the hypothesis 
of Lemma 2. 

By part (c) of Lemma 2, this is impossible if Of is hyperbolic. [] 

Remark. The above proof can be simplified when d~2, 4. Indeed, in this case, if Of 
is hyperbolic, f(12f) has at least 4 elements. 

COROLLARY 3.4. Suppose the orbi]old Of is hyperbolic, then: 
(a) a~ is strictly contracting, i.e., for all r , r ' e T f ,  we have 

) < 

(b) If f and g are equivalent rational functions, then they are conjugate by an auto- 
morphism of p1. 
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Remarks. (a) Even though the Teichmiiller space is complete, part (a) does not 
imply the existence of a fixed point. 

(b) The case # P f = 4 ,  v f (x)=2 if x E P f  does in fact occur; we will examine it in 
detail in Section 9. 

4. The  necess i ty  of  the  criterion 

THEOREM 4.1. Let f be a critically finite rational function, P its post-critical set, and 
F=(71, . . . ,Tn } an f-stable multicurve. Then A(F,f)~<I, and if  Of is hyperbolic then 
~(r,f)<l. 

The proof will require a theorem of Jenkins and Strebel [J], [S], [H-M], and an 
inequality analogous to one due to Grotzsch [A]; this precise form can be found in [S], 
[H-M]. These results are stated as Propositions 4.2 and 4.3 below. 

PROPOSITION 4.2. For any vector v E R  r with positive entries, there exists a unique 
qEQ( P) with fP1 Iq[=l '  having closed trajectories, with annuli A1, ...,An homotopic to 
V1,..., Vn and with vector of moduli 

(mod(A1) .... , rood(An)) 

a multiple of v. 

PROPOSITION 4.3. Let qEQ(P) be a quadratic form with closed horizontal trajec- 
tories, A an annulus of q with equator V, with height h and circumference c. Let A' be 
a straight cylinder with height h' and circumference c', and g: A'---*P 1 - P  an analytic 
injection with g(A') homotopic to 7. Then 

fg h' C 2 . 

Equality is realized only if g is the inclusion of a straight subcylinder. 

Proof of Theorem 4.1. Without loss of generality we may assume that  F is minimal, 
so that  every 7EF is homotopic to some component of f- l(3, i) ,  for some "yiEF. 

Let q be the quadratic form given by Proposition 4.2, with the vector of moduli 

(Tr/,1, . . . ,  mn) 

an eigenvector for f r  with eigenvalue A(P, f) .  Denote by hi, ci the height and the cir- 
cumference of Ai, so that  mi=hi/ci ,  and let q'=f*q. 
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Since F is f-stable,  we may label A~,j,~ the cylinders of q' which axe inverse images 
of Aj, homotopic in p l  _ p  to A~; set d~=deg  flA~,j.,. The the height of Ai,j,~ is hi, and 
its circumference is d~cj. 

Now apply Proposition 4.3. We find 

/P /A  h i 2  
1 i , j , a  i,j,Q i j a 

So we see that ,x(r,])<.l, and that equality is realized only if the cylinders of q' 
are straight subcylinders of those of q. This can happen only if q, is a real multiple of 
q, so f .q=+q.  Then f2.q=q and IIf?qll---Ilqll- In Proposition 3.3 we see that this cannot 
happen if Of is hyperbolic. [] 

5. C o n v e r g e n c e  in  "T! and A 4 !  

Generally speaking, given a sequence (Ti) in TeichmiiUer space, it is much easier for the 
images lr(Ti) to converge in .h41 than for the original sequence to converge in Tf. 

Pick ToETf and define ~i+l=af(T~). In this section we will see that it is equivalent 
for (Ti) and for ~r(~-i) to converge and even for the set {r(T~)} to have compact closure in 
A41 . 

PROPOSITION 5.1. If the orbifold 01 is hyperbolic, then (~'~) converges if and only 
if the closure of the sequence {g(Ti)} in A41 is compact. 

In that case, ~'=lim~_~ Ti is the unique fixed point of a I. 

Proof. We will show that the amount by which a I contracts at T depends only on 
7r(~-) and a finite amount of extra information. 

LEMMA 5.2. There exists a tower ~f'--~J~ f"-~J~ f of covering spaces urith ~ finite 
and a map ~ I : Ad f --* A4 f such that the diagram 

commutes. 

Proof of Lemma 5.2. Given a point in .Mr represented by an inclusion i: P f ~ P 1 ,  
there exist only finitely many isomorphism classes of covering maps g: X'--*P1 of degree d, 
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ramified only over i(Pf). Indeed, pick x E P  1 - i ( P f ) ;  such a class is determined by the 
action of the generators of ~rl ( p 1 - i ( P f ) ,  x) on the fiber g- l (x) .  For each such covering, 
there are finitely many injections i': Pf-+g-l(i(Pf)). 

The pairs (g, i') for which there exists homeomorphisms r and r such that  the 
diagram 

S 2 r ~ X' 

S 2 - - - ~  p1 

commutes and r =i, r =i' form a finite set. This is the fiber of # over i and we 
can define a l  by 

~f  ((g, i')) = i'. [] 

Proof of Proposition 5.1. By Proposition 3.2, the norm of d~af or d~a~ depends 
only on #(T). 

Let 5o be a Cl-curve from TO to T1, with length/o; let 5i=a}(50), and set 5=Ui~o 6i. 
If the zr(~-i) have compact closure in A~f, then #(5) has compact closure in Adf. 

By Proposition 3.3, we see that  K=sup~e6 [d~a~[ < 1, and since 

length(5i) ~ K-length(~i_2), 

the Ti form a Cauchy sequence, and converge since Teichmiiller space is complete. 
Clearly T=lJmi--.oo Ti is a fixed point of af .  [] 

6. A n n u l i  in R i e m a n n  surfaces  

Let X be a Reimann surface with its Poincar4 metric. If some curves on X are very 
short, then in some sense the geometry of X breaks up into "thin parts" which are annuli 
isomorphic to a standard model, and "thick parts" whose geometry remains bounded. 

Theorem 6.3 makes this idea precise; Proposition 6.1 is a study of the standard 
model. Our proof of Theorem 6.3 is borrowed from Beardon [B, Theorem 11.7.1]. 

Let A~ be an annulus of modu|us zc/21, so that  in its Poincar4 metric the length of 
the unique simple closed geodesic 7 is I. For ~?>0, set 

= {z e IdA, (z, < 7}. 
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bl i ~ / 4 b~ ~ r 

l 

r: Euclidean length 
l: hyperbolic length 

277 

- i ~ / 4  
Fig. 1 

PROPOSITION 6.1. (a) There is a largest number ~?(l)>0 such that no geodesic 7 ~ 
on Al with 7 ' N 7 = O  and d(7 ,7 ' )<~( l )  is simple. 

(b) The ]unction y(1) is strictly decreasing. 
(c) Set Az=A~(y(l)), and m(l )=mod.4 t .  Then 

7r 7r 

27-1 < m(1) < 27" 

Proof. Let B = { z  ] ] I m z ] < ~ / 4 ) .  Since 

1 l + z  
z ~-* t anh- l (z )  = ~ log 1 - z  

is an isomorphism of D onto B, the Poincax6 metric of B is Idzl/cos2y and so if we 
choose an isomorphism Al--~B sending ~ to R,  we find 

Al = B /IZ.  

Let 6 be a geodesic in Al perpendicular to 7, and 61,62 be two successive lifts of 6 
in B intersecting the line I m ( z ) = r / 4  in bl and b2. Consider the geodesic a joining bl to 
b2; o d T R : O  since geodesics can intersect at most in one point, and the image of a in Al 
is simple. 

To prove (a), we claim y(1) =d(a,  ~). Indeed, if ]3 is a geodesic of B coming closer 
to R than y and disjoint from R,  then its endpoints are a Euclidean distance > l  apart, 
so it cannot be disjoint from its translate by l, and its image in Al is not simple. 

Clearly as 1 increases, y(l) decreases. 
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Let r be the Euclidean length indicated on Figure 1. 

LEMMA 6.2. We have r< 89 

Proof of Lemma 6.2. Consider the bounded harmonic functions ho on 

U = {z I Im z < Ir/4} 

with boundary value 

and h on B with boundary value 

0 on [bl,b2] 

1 on O U -  [bl, b2], 

0 on [bl,b2] 

1 on OB-[bl,b2]. 

We have h ~> h0 on 0B,  thus h > h0 in B. Now c~= h -1 ( 89 and ho 1 ( 89 is the geodesic 
of U joining bl to b2, i.e., the semi-circle of radius  89 centered at  89 + b2). So a is within 
this circle. [] 

End of proof of Proposition 6.1. (c) We have 

~r 2r ~ ' - 1  [] 
m o d ( A l ( y ( l ) ) ) -  21 l > 21 " 

THEOREM 6.3. Let X be a Riemann surface with its Poincard metric, and 'h ,  ...,%~ 
disjoint simple closed geodesics of length 11, ..., In. Then there exist in X disjoint annuli 
C1, ..., Cn, isometric to Al, O?( li ) ) with equators the 7i. 

Proof. The annulus A h is isomorphic to the covering space )~'r~ in which a lift ~i of 
~/i is the only closed curve. The restrictions of the projections 

~r.y,: At, = X'v, --+ X 

to the Al, (y(li)) give a map ~r: IIi A h (y(li))--*X; we need to show that  ~r is injective. 
By contradiction, let x E X  be a point which has two distinct inverse images y ,y '  

in IIiAl, O?(li)), say yEA(71(1)) and y'EA'(~I(I')). The case A = A '  corresponds to that  
annulus injecting into X and the case A ~ A  j corresponds to the two annuli being disjoint. 

Let 6 and 6' be the geodesics joining y and y' to their respective equators; then 
lA(6)<~l(l) and lA,(6')<~l(l'). 
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Choose an isomorphism of the universal covering surface )~ with the unit disc and 
let & be an inverse image of x. The lifts of ~r(5) and ~r(~') starting at & lead to lifts 
and ~' of the equators 7 and V' of A and A'. The distance between ~ and ~' is less than 
y(l)+y(l'). Lemma 6.4 below says that  this is impossible. 

Since ~ and ~' are lifts of disjoint curves or 2 lifts of 1 simple curve, they are disjoint. 
Let a be their common perpendicular. Let/~1,/~2 be the perpendicular to ~ at distance 
 89 from a, and ' ' ~l, ~ the perpendicular to ~' at distance  89 from a,  labelled so that/~1 
and ~ are on the same side of a. In view of the symmetry with respect to a,  there are 
a priori 4 possible configurations as shown in Figure 2. 

LEMMA 6.4. Only Configuration I can occur. 

Proof. For any geodesic O, call •0 the reflexion with respect to 8. The automorphisms 
g - - ~ l  ~ and g'=Q~i ~ of D are replaced by elements of ~h(X), and so is h=g'og-l= 
Q~oQ~I. In Case II, h has a fixed point, which is impossible. In Case III, g(~') is a 
geodesic which intersects ~' transversally, which is impossible since ~' is a lift of a simple 
geodesic. Case IV is excluded similarly. [] 

Theorem 6.3 follows. [] 

COROLLARY 6.5. Let X be a hyperbolic Riemann surface and V1,~/2 simple closed 
geodesics of lengths ll and 12. Ifl2<2r}(ll), then either ~/1=V2 or ~,1A~/2=0. 

Proof. If V1r and VIA~/2r then in )(-~1 a lift V2 of 72 intersects the equator. 
Since the projection X~I--*X is injective on the part of ~2 which is within ~?(11) of the 
equator, we see that  12>~2~(ll). [] 

Remark. This bound is sharp, in the sense that  for any l>0,  there exists a Riemann 
surface X and two geodesics 71 and V2 on X which intersect, with lengths I and 2~(l). 
In fact, take X to be the once punctured torus quotient of D by hyperbolic translations 
by 1 and 2y(l) with perpendicular axes. A fundamental domain is the ideal quadrilateral 
in Figure 3. 

In higher genera, you probably cannot realize the bound exactly, but you can ap- 
proximate it as closely as you like by squeezing off a handle. 

COROLLARY 6.6. Let X be a Riemann surface and 71,V2 be two geodesics of length 
<log(vf2+l) .  Then either V1=72 or 71AV2=O. Moreover, l o g ( v ~ + l )  is the largest 
constant for which this is true. 

Proof. First we need to solve l=2~?(l). Clearly, the length of the common perpen- 
diculars in the regular ideal quadrilateral solves this equation (see Figure 4). 

An easy integral shows that  this length is log(vf2+ 1). 



I: ~1FI31 = 0 II: ~x n Z~ # o 

A. DOUADY AND J. H. HUBBARD 280 

I I I : /31N/~=g  but B1N~'#O IV: Bln~5~=g but ~ n ~ # o  
Fig. 2 

If 71 is not longer than 02, then since 7; is decreasing, we have 

/X (")'1) < IX (")'2) < 2~(~("~2)), 

so by Corollary 6.5, 3'1 and 72 are equal or disjoint. 
The same example as in the remark above, in the case /=2~/(/) shows that  on 

the appropriate punctured torus, there exist intersecting geodesics b o t k  with length 
log (v~+l ) .  D 

We will need one more result from hyperbolic geometry. 
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Fig. 3 

Fig. 4 

PROPOSITION 6.7. Let X be a hyperbolic Riemann surface and 7 be a geodesic on 
X which intersects itself tranversally at least once. Then lx  (7) >~ 2 log(V~+ 1). 

Again the bound is sharp. 

Proof. We can suppose without loss of generality that  7 has a unique point of self- 
intersection x and thus consists of two loops 71 and 72 of lengths la and 12 respectively. 
Since 71 and "72 axe simple closed curves, their lifts to the universal covering space D 
through a lift ~ of x look like Figure 5. 

Let 7 be the indicated bisector of the angle at ~, and let /31,f~2 be the indicated 
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12 

/71 
 89 / 

7"7 I \ . ~  

 89 

Fig. 5 

perpendiculars. Then as in Theorem 6.3, the products of reflections 

~/3~ o Q.~ and co~2 o Q~ 

are both in ~rl(X), and so/71 and/72 do not intersect. 

We see the following configuration in D: three disjoint geodesics 7,/71 and/72 with 
/71 and/72 on the same side of 7, a point 2 on 7 and geodesics from & to/71 and/72 of 
lengths  89 and  89 respectively. It is easy to show that  the minimum of 11+12 in this 
situation is realized when 7,/71 and/32 bound an ideal triangle, and ~ is the projection 
of the point at infinity where/71 and/72 meet onto 7- 

This minimum is realized on the sphere with three points removed, say -1 ,  1 and 
co, by the figure eight curve as in Figure 6(a), whose length can be computed to be 
2 l o g ( v ~ + l )  from Figure 6(b). 
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(b) 
Fig. 6 

7. Asymptotic geometry of  R i e m a n n  surfaces 

If X ' c X  and 7 is a curve on X', then 

>. 

since the injection X'--*X is analytic, hence length decreasing for the Poincard metric. 
If ~ is a short curve on X, and X r is obtained from X by deleting a finite number 

of points, then this inequality can be sharpened. 

THEOREM 7.1. Let X be a Riemann surface, P c X  a finite set, with #P=p>O. 
Set X ~ = X - P ,  and choose L<log(x/~+l) .  Let ~ be a simple closed curved geodesic on 
X ,  and {'y~, ..-,3'~} be the closed geodesics of X i homotopic to ~/ in X and of length < L. 
Set l= lx(7) ,  l~=lx,(7~). Then 

(a) s~<p+l; 
(b) for all i, l~>l; 
(c) 1 / l - 2 / r - ( p +  l ) /L  < E;=:l / l :  < 1/l+2(p+ l ) / r .  

Proof. (a) By Corollary 6.6, the 7~ are disjoint since L< log (v~+ l ) .  Then s - 1  of 
the components of x - { U ; =  1 7~} are annuli, and at least one point of P must belong to 
each, so p>/s- 1. 

(b) The inclusion X'--*X is analytic hence length decreasing. 

19- 935204 Acta Mathematica 171. Imprim~ [e 2 f~vrier 1994 
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(c) First let us verify the right-hand inequality. According to Theorem 6.3 and 
Proposition 6.1, there exist disjoint cylinders C~ c X' with equators ~/~ and moduli 

7f 
mod(C~) ~ ~ - 1 .  

These cylinders lift to disjoint cylinders in )(~ homotopic to the equator ~. When- 
ever an annulus A contains disjoint annuli Ai homotopic to the equator of A, we have, 
[O, Theorem 2.44], rood(A) > /~  mod(Ai). Therefore 

~r21 = mod( .~)  ~> Z mod(C~'.) > ~ ~ ~ - s  > li, . 

Now for the left-hand inequality. According to Theorem 6.3 and Proposition 6.1, 
there is a cylinder C C X with equator 7 and 

7f m o d C >  ~ - 1 .  

The parallels (curves at constant distance from the equator) of C passing through 
the points of CAP cut C into s' annuli Cj, j = l ,  ..., s' with s'<~p+l. 

For each j let 73. be the geodesic of X'  homotopic to Cj and lj=lx,(Vj). Then 

S t 8 t 

- < mod C = mod Cj < ~-~j, 
3"=1 "_~ 

SO 
8 r 12<Z  

l ~r j=z 

Let g _ = { j l l j < L )  and J-~--{j]lj>~n). The ~/j for j E J -  are among the ~/~ so 

j e J -  li 

On the other hand, ~]ieJ+ 1/li <- (p-{-1)/L. So 

1 
l ~r l~ 

p + l  [] 
L " 

Let P c S  2 be a finite set. For any closed curve q, c S  2 - P ,  and a n y  "l-E~(s2,p ) =T(P),  
represented by 

7r: (S 2, P) ~ pZ, 

we can define l~(~/) to be the length of the geodesic homotopic to r on p1 _r  
define w(% T ) = -  log l~ (~/). 
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PROPOSITION 7.2. The function T ( P ) - + R  given by r~w(%v) is Lipshitz, with 
Lipshitz constant 2. 

Proof. Let T and ~" be represented respectively by r r (S 2, p)_+p1, and set Pr 
r P~-, =r  

If d(r, r') =8, then there exists a K-quasiconformal map r p1 __,p1 with ~b(P~) =P~, 
and K=e 2~. 

The mapping r lifts to the covering spaces: 

which are annuli of moduli m=Tr/21~(7) and m'=zr/21~, (V) respectively, and this is pos- 
sible only if 

l _ < m  
K ~ - ~ < . K ,  i.e., 

Iw(7, < log K = [] 

For vET(P)  set W(T)=SUp 7 W(7, T); this sup is finite since there is only a finite 
number of curves of length <log(v/2+l).  

PROPOSITION 7.3. (a) The function T~-*W(T) has Lipshitz constant 2. 
(b) For any MeR,  

(T e T(P) Iw(T ) <~ M} 

is the inverse image of a compact subset of .M(P). 

Proof. (a) Comes from Proposition 7.2. 
(b) Let (rn) be a sequence in T(P), and suppose that the images ~r(rn) in ~ t ( P )  

are represented by injections in: p.__,p1, normalized so that for some 3 points Xl, x2, x3 
o fp  we have in(xl)=O, in(x2)=l  and in(x3)=co for all n. Since p1 is compact, we can 
extract a subsequence, say jn such that j =limn--.or Jn exists. 

If j is injective, the subsequence converges in Ad(P). 
If j is not injective, there exists ylCy2 in P with j(yl)=j(y~)=Y; we may assume 

Yr  Let 
R =  inf [j(x)-Y I<co. 

j(~)r 

Then for any e, there exists N such that for n>N, there are no points of jn(P) in 

{zle< [z -Y  I<R-e} ,  

but at least two points inside and outside. 
Then the curve Iz-Y[-- 89 has length less than ~r2/(logR-loge), which goes to 0 

with e. [] 
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8. Sufficiency of  the criterion 

For any T E Tf, let 

L~ = {w(7, T) 17 a closed curve on S 2 - P f } ,  

so that W(T)=sup(L,-). Also, if F is a multicurve, let 

~ ( r ,  ~) = sup ~(% ~). 
~EF 

For any J > 0 ,  let ]a, b[ be the lowest interval in R - L ~  of length J ,  with 

a >~ - log l o g ( V ~ +  1) = A, 

and 
rj,~ = {~ I ~(% ~) >/b}. 

Let T'----af(T), and r r and f~ be as in Proposition 2.2. Let P=r P'-=r 
and p,,=f~-l(p). 

PROPOSITION 8.1. (a) If J~log d+ 2d(r, r ' )  and ifF j , ~ O ,  then F j,~ is an f-stable 
multicurve. 

(b) The simple closed geodesics on p1 _p,,  of length less than de -b are the compo- 
nents of f~-l(7) for 7EF j,~. 

Proof. Since e - b < l o g ( v ~ + l ) ,  all the curves of Fj,~ axe disjoint by Corollary 6.6. 
If 7eF j ,~  and 7'  is a component of f - ' ( 7 )  then 

lp1-p,,(7')-dc, l~-(7), 

where d~=deg  f~l~,:7'--.  7 and so d,~<<d, so 

W(T', 7 ') > W(T, 7)--log d/> b - l o g  d. 

On the other hand, if 7"EFj ,~ ,  then w(7",r)<<.a and so w(7",r)<<.a+2d('r,T'), by 
Proposit ion 7.2. 

Since b-a=J>logd+2d(r, r'), we see that 7 ' # 7 " ,  so 7 'EF j ,  r. This proves (a) and 
half of (b). 

For the other half of (b), let 7' be any simple closed geodesic on p l = p ,  of length 
<de -b. Then f~(3~') is a geodesic on p l _ p  of the same length, which may fail to 
be simple. It cannot have any transverse self-intersections by Proposition 6.7, since 
de-b<21og(v~+l). So it must cover some simple closed geodesic 7 on p i  p with 
degree ~<d, so l~(7)<<.lpl_p,,(7'), i,e., w(T,7)>~b-logd. 

Since there is a gap of length J in L~-, this shows that 7EPj,~.  [] 

The theorem will now follow easily from the following proposition. 
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PROPOSITION 8.2. There exists an integer m>ll depending only on the degree d of f 
and the cardinality p of Pf , and a constant C depending only on p, d, and D=d('r, af(~-)), 
such that if J=m(logd+2D) and F=Fj,~ then whenever w(r)>C,  F /s non-empty and 

Proof. It is here that we use Lemma 1.2 in an essential way. Let F be a multicurve 
with )~(F, f ) <  1. Give R r the sup norm, and Hom(R r, R r) the corresponding norm. 

Since there are only finitely many possible matrices for f r ,  we can choose m such 
that 

llf ll <  89 

independent of the multicurve F. 
Now let ]a, b[ be the lowest gap in L~ of length J with a>~A as before. Since there 

are at most p - 3  elements of L~- greater than A, we see that if w( 'r )>(p-3)J+A=B 
then b<B. Let Lo=dme-B; note that L0 depends only on p, d and D. 

Clearly if w(r) > B then F = F j :  ~s ~, and P is an f-stable multicurve by Proposition 
8.1(a). 

Let T'=a~(T), and let ~b, ~b' and f m be as in Proposition 2.2 applied to fro, so that 
f r  m is analytic and the diagram 

(5 '2, Pf )  '~' > p~ 

( $2, PI) ~ p1 

commutes. 
Let P=r P '= r  and p, ,=( fm)- l (p) .  Define v , v ' e R  r by 

, V p 

Consider a curve 3'iEF, and the components ~/ij,~ of (f~)-l(~/j) homotopic to 3'i in 
p1 _p , .  We wish to apply the left-hand inequality of Theorem 7.1(c) to the geodesic on 
p1 _p~ (the X of Proposition 7.1) in the homotopy class of ~h, and the geodesics in the 
classes of 3'ij,a on X " = P  1 - P "  (the X'  of Theorem 7.1). Using Proposition 8.1(b), we 
see that the hypothesis of Theorem 7.1 is satisfied with L=dme-b>dme-B=Lo. 

Moreover, since f~[pl_p,,  is a covering map, we have 

1 

Ot~3 
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SO 

Define r by v'=(fr)mv+r; by Theorem 7.1 we have 

2 . pd m 2 pd '~ 
r~ < ~+- -E-  < - + - - '  ~r Lo 

1 2 pd ra 
Lo 

Now if x and y are any two numbers such that  

we have x < y. 
So if 

we have 

We see that  if we choose 

x<<. 89 and y > 2 K ,  

ivl>~2( 2 . pdm~ *W)' 

Iv't < Ivl. 

2 pd m 

the proposition is proved. [] 

Proof of the theorem. Suppose that  f is not equivalent to a rational function. Choose 
TOETI, set ~'i=af (Ti_l) and let C and m be as in Proposition 8.2 with D=d(r0 ,  T1). Raise 
C if necessary so that  w(T0)<C. 

By Propositions 2.3, 5.1 and 7.3, the sequence w(ri) is unbounded. Consider the 
first i for which W(Ti) is unbounded. Consider the first i for which W(Ti)>C+2mD, and 
let F=Fj ,~ i as in Proposition 8.2. 

By Proposition 7.2, w(F,~-~-m)>C, so that  if A ( f , F ) < I ,  we find that  

w(F, T1) < w(F, vi-m) < C+2mD, 

a contradiction. So A(f, F) ~> 1. [] 

9. T h e  n o n - h y p e r b o l i c  case  

PROPOSITION 9.1. (a) If  f:S2--*S 2 is a critically finite branched mapping, 
x(os)< o. 

(b) If  x(Of)=O , then f: 0i--*01 is a covering map of orbifolds. 

then 
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Proof. Let O~=(S 2, v~) where 

~ ( x ) =  "s(f(~)) 
deg~ f 

Then u ~ v i  everywhere (recall that v f (x )= l  if x~Pf), so 

x(o'~) < x(o~). 

However, f:  Oty--*Ol is a covering map of orbifolds of degree d, so 

x(O~) = dx(Oy). 

Thus (d-1)x(Oy)<<.O and (a) follows since d> l .  
Moreover, to get equality we must have &l=Oy. [] 

There are precisely six orbifolds homeomorphic to S 2 with Euler characteristic 0. 
They are given by the following weights at the weighted points: 

(i) (oo, c~), 
(2) (2, 2, ~), 
(3) (2,4,4), 
(4) (2,3, 6), 
(5) (3,3,3), 
(6) (2, 2, 2, 2). 
In cases (1)-(5), the orbifolds have a unique complex structure, since there are at 

most 3 marked points, and any three distinct points can be moved to any other by an 
automorphism of p 1  They can be realized as C/F  where F is a discrete subgroup of 
Aut(C), as follows. 

(1) F-=Z, acting by translations; 
(2) F generated by Z as above, and z~-*-z; 
(3) F generated by z~-~z+a, aeZ[i]; z~-.iz; 
(4) F generated by zHz+a, aeZ[w], r z~-*wz; 
(5) F generated by z~-*z+a, aeZ[w]; z~-*w2z. 
By Corollary 2.4, any branched map f with PI=3 is equivalent to one which pre- 

serves the unique complex structure of Of, so using the identifications (1) through (5) 
above, we see that f:  Oy--+Oy can be taken to be an automorphism z~-*az+b of (3 with 
deg f = [a[ 2. 

It is now routine (rather tedious) to write down the maps ] which induce a map on 
c/r. 
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PROPOSITION 9.2. The critically finite branched maps with x(OI)=O and #PI<~3 
are all equivalent to one of the maps f induced on C / F  by: 

(1) z ~ n z ,  neZ,  Inl>l; 
(2) z~-*nz, n as above; z~-~nz+ 89 n as above; 
(3) z az, aeZ[i], lal >2; z az+ 89 a as above; 
(4) zF-~az, aeZ[w], lal/>3; 
(5) z~-*az, a as above; z~-*az+ 89 a as above; z~-~az+ 89 a as above. 

Proof. The verification is left to the assiduous reader. 

Remarks. (i) The maps above are not all inequivalent. 
(ii) In case (1) above, the associated rational functions are 

z~-*z "~, In l>l ,  

since z~---~e 2~riz is the universal covering map of 0 I. 
In case (2), they are (up to sign) the Tchebycheff polynomials Pn(z), i.e., the poly- 

nomials such that 
P~ (cos z) = cos nz, 

since z~-*cos 2~rz is the universal covering map of Of. 
Note that in both of these cases, the rational functions are related to the addition 

formula for the exponential function. In cases (3)-(5) (and (6) below), the rational 
functions are related to the addition formulae for elliptic functions. 

(iii) Cases (1) and (2) axe precisely the rational functions we know for which the 
Julia set is not p1 and is not "fractal". Is this indeed the complete list? 

Finally we come to (6), the most interesting case. In this case, the possible complex 
structures on 01 are given by C/F~, where ~- is in the upper half plane H and FT is the 
subgroup of Aut(C) generated by z~-*z+l, Z~-*Z+T and z~-~-z. 

PROPOSITION 9.3. The rational maps f: $2 --~ S 2 with orbifold (2, 2, 2, 2) are induced 
on p1 by an isomorphism P1--~C/F~ and a map f: C--~C, z~-~za+~, where 

(a) a is an integer in an imaginary quadratic field K; 
(b) 2zero; 
(c) i f  a is not real, then Fr is a module over the subring of K generated by 1 and 

a, two such modules giving the same mapping if  they are isomorphic. 

Proof. Let ~-: C--*P 1 be the universal covering of Of. Such a rational mapping must 
lift to an automorphism f:  C--*C of the form z~-*az+~. 

Since 7r(O)ePi, we must have Ir(f(O))ePl so 

=/ (o )   9  89 
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Moreover, ( ] - ] ( 0 ) ) r T c r T ,  so  rTcFT. 
such that  

which gives 

a = a+bT-, 

Therefore there exist integers a, b, c, d, 

aT = c + dT, 

a 2 - ( a + d ) a + a d - b c = O .  

So a is a quadratic integer, necessarily either a rational integer or an integer in an 
imaginary quadratic field. 

Part (2) was done above, and (3) is obvious. [] 

Remark. This proposition implies that  there are only finitely many rational functions 
of given degree (up to conjugation by automorphisms of p1) with orbifold (2, 2, 2, 2) and 
induced by multiplication by a non-real quadratic integer a. Indeed, there are only 
finitely many such a with given [a[2=deg f ,  and the class group of a is finite. 

On the other hand, in degrees which are squares, there are one-parameter families 
of critically finite rational functions all of which are equivalent as branched mappings, 
but which are not conjugate by automorphisms of p1. 

Proposition 9.3 does not solve our problem; we still need a topological criterion to 
decide if a branched map f :  $ 2 ~ S  ~ with orbifold (2,2,2,2) is equivalent to a rational 
function. We will do this by finding an isomorphism of T I with the upper half plane H,  
and identify a j  as a fractional linear transformation. 

The (differentiable) orbifold Oy can be identified with R2/F, where F is the group 
of isometries of R 2 generated by 

x ~ x + a ,  a e Z  2, and x ~ - x .  

Let Tf=R2/Z2;  T I is a torus and the canonical map l r :T f -~S  2 is a double cover ramified 
above Pf .  

LEMMA 9.4. The map f lifts to a covering map ]:TI-- )T$.  

Proof. This is a straightforward application of the lifting criterion for covering 
spaces. Since folr is a covering map, it induces an injection on fundamental groups, 
so the image is a subgroup of ~h(Ol) isomorphic to Z 2. 

However, an element of F is either a translation or of order 2. So 

c [] 

Let 71,72 be the curves on Tf images of the segments joining (0, 0) to (1, 0) and 
(0,1) in R 2. 

20 - 935204 Acta Mathematica 171. Imprim~ le 2 f6vrier 1994 
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Any complex structure # on (S 2, Pf) induces a complex structure vr*# on Tf. 
space of 1-forms r holomorphic for ~r*# is 1-dimensional, so the number 

f~r 
L,r 

does not depend on the choice of r 

LEMMA 9.5. The map ~ induces an isomorphism 

The 

Q: Tf--* H. 

Proof. Clearly t~ is well-defined. To show that it is an isomorphism, we will construct 
an inverse mapping. 

For any TEH, let Cr:R2--~C be given by 

r y)  = x + r y .  

If #0 is the standard complex structure on C and #7--r then the complex structure 
p~ on R2/F=Of satisfies Q(p~)=r. [] 

Let A: be the matrix of f,:HI(Tf)--~HI(T/) in the basis ~/1,9'2; clearly detA:= 
degf>~2, and A is determined by f up to sign. Conversely, any matrix A with integer 
entries and det A~>2 arises as A:, namely for the map f induced on R2/F by A: R2--*R 2. 

LEMMA 9.6. If 

then ~oa: o Q-1 is the fractional linear transformation 

Proof. By Stokes' theorem, 

dz+b 
z b . , - + - -  cz+a 

b+d:,,<>/:,,O L,s'o_ :.,,f*o bL, O+df. ,O SO 

- a + c g : / g , O "  
[] 
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PROPOSITION 9.7. A branched mapping f: $2 --~ S 2 with orbifold (2, 2, 2, 2) is equiv- 
alent to a rational function if and only if the eigenvalues of A t are not real, or if A t is 
a multiple of the identity. 

Proof. This follows immediately from Lemma 9.6 and Proposition 2.3. Indeed, the 
fractional linear transformation z~-* (dz+b)/(cz+a) has a unique fixed point in H if and 
only if the eigenvalues of Af are not real, and otherwise has no fixed point in H unless 
it is the identity. [] 

Remarks. (i) The eigenvalues of A t are not real when the number a of Proposition 
9.3 is not real, and A t is a multiple of the identity if a is a rational integer. 

(ii) Lemma 9.6 gives examples of branched mappings f where a t is the identity, or 
an elliptic, parabolic or hyperbolic automorphism of Tf =H. These examples are however 
misleading; in general, a t is neither infective, surjective or proper. 

Appendix: Examples of Thurston mappings 

Following Milnor's suggestion, we will call a critically finite branched mapping a Thurston 
mapping. 

Example 1. The easiest examples of Thurston mappings are simply postcritically 
finite rational functions, such as 

f ( z ) = z  k, I k l > l ,  
f(z)=z2-2, 
f ( z ) = z 2 + i ,  
f(z)  = l i ( z + l / z ) ,  

n l  = {0, o~}, 
o t  = {0, o~}, 
o t  = (0, ~r 
n t  = {1, -1},  

Ps = {0, o~}, 
pj ={~,-2,2}, 
Pf --{oc, i,-1+i,-i}, 
pt  = {i, - i ,  0, ~} .  

These examples are a bit misleading; one should not think of a Thurston mapping 
as a rigid, analytic object, but as something topological, "defined up to homotopy". It 
is not hard to construct such things: for instance, take the third example above, and 
compose it with the Dehn twist around a curve on P - P I "  Such examples are quite 
mysterious; we do not know if they admit Thurston obstructions, nor if they do not, 
what polynomial they are equivalent to (even though there is not much choice). 

The next family of examples is a slight modification of the spiders considered in 
[BFH]; the reader is invited to read the general treatment there. We will need the 
construction for Example 3 below, which brings out some of the difficulties in the proof 
of Thurston's theorem, and justifies the repetition. 

Example 2. Choose an angle 

P 
0=01 = 2k(2t_l)  
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5 

2/3 5/6 
17/24 

Fig. 7. The spiders for 8 = 1 / 6  and 8 = 5 / 1 2  

with k>0,  and set 0,~=20,~-1 = 2 n - 1 0 1 ,  SO that  Ok+t+l=Ok+a. In the unit disc, draw the 
segments 7n joining the points 

~gl _2~riOn and e 2'~i~ 

and the diagonal 7o joining 
e r i o 1  a n d  - e 'riOl . 

Then there exists a branched mapping fo which: 
(1) Outside of the unit disc is z~-+z2; 
(2) Folds 3"0 at the origin and maps it to 3'1; 
(3) Maps each 7n homeomorphically to 3"n+l; 
(4) And except for the folding of 3'0 is a homeomorphism mapping each half of the 

unit disc cut along 3'0 to the whole disc. 
Here are two examples of this construction, one for 0= 1/6 and one for 0=5/12. (See 

Figure 7.) 
The branched mapping fl/6 is equivalent to a rational function, in fact to the poly- 

nomial z~---~zZ+i, and therefore has no Thurston obstruction. On the other hand, for 
fsDz, the curve surrounding zz and x4 is a Thurston obstruction by itself. Its inverse 
image consists of a curve homotopic to itself, and another which surrounds only x2 and 
hence is peripheral. Clearly the Thurston matrix is in this case simply the number 1. 
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~4 

~1 \ } ,~ \  ~ . . . - - . - - - - . ~ 5 / 2 4  

61 

63 
17/24 62 

Y~ 

Y2 

Fig. 8. The mating of f5/12 with its conjugate 
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Example 3. Now for a really complicated example (see Figure 8): let us keep the 
mapping above inside the unit disc, and put its symmetric on the outside of the unit disc. 
We still have a Thurston mapping, with f ly={0,  oc}, and P l = { X l ,  ..., x4, Yl, ..., y4}. 

In this case, there are four Thurston obstructions: 
(1) The curve F1--{a},  with matrix 1; 
(2) The curve F2={;3}, with matr ix 1; 
(3) The multicurve F3={51, ..., 54}, with matrix 

2 0 1 
0 0 and A~F3j=v~;t  ~ . f5  /S3= 

0 1 

(4) The multicurve F4={51,52}, with matrix 

The first two are fairly obvious, but  the third and fourth require a bit of checking: the 
inverse image of 51 consists of two curves, one on each side of the diameter. But  recall 
that  the homotopies are relative to the post-critical set, and that  the critical points axe 
not in the post-critical set in this case. Therefore these curves are both homotopic to 52. 

The surprizing thing about this mapping is that  as the Thurston transformation a i  
is iterated, starting from some TO, the lengths of a, ;3, and the supremum of the lengths 
of 53 and 54 all have to strictly decrease. But this prevents any of these from tending 
to 0, because they intersect, and two short geodesics can never intersect. By Thurston's  
theorem some curves must have lengths shrinking to 0, and it is not too hard to see that  
it is the curves of F4. This also follows from the proof of Thurston's  theorem, since F4 
is a minimal invaxiant multicurve, with leading eigenvalue v ~  > 1. 
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