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I. Introduction

Let H : C2 → C2 be a Hénon mapping:

H
([x

y

])
=

[
p(x)− ay

x

]
, a #= 0

where p is a polynomial of degree d ≥ 2, which without loss of generality we may take to
be monic.

In [HO1], it was shown that there is a topology on C2 % S3 homeomorphic to a 4-ball
such that the Hénon mapping extends continuously. That paper used a delicate analysis of
some asymptotic expansions, for instance, to understand the structure of forward images
of lines near infinity. The computations were quite difficult, and it is not clear how to
generalize them to other rational maps.

In this paper we will present an alternative approach, involving blow-ups rather than
asymptotics. We apply it here only to Hénon mappings and their compositions, but the
method should work quite generally, and help to understand the dynamics of rational maps
f : P2 ∼∼> P2 with points of indeterminacy. The application to compositions of Hénon
maps proves a result suggested by Milnor, involving embeddings of solenoids in S3 which
are topologically different from those obtained from Hénon mappings. In the papers [Ves],
[HHV], the method is applied to some other families of rational maps.

The approach consists of three steps, which we describe below.

–Resolving points of indeterminacy The general theory asserts that a “rational
map” f : P2 ∼∼> P2 is defined except at finitely many points, and that after a finite
number of blow-ups at these points, the map becomes well-defined [S2, IV.3, Thm. 3].
Let us denote by X̃f the space obtained after these blow-ups, and f̃ : X̃f → P2 the lifted
morphism. For Hénon mappings, this is done in Section III. Section II is an introduction
to blow-ups. Every book on algebraic geometry ([Har] for instance) has a treatment of this
subject, but we are aiming the paper at people who work in Dynamical Systems, and who
will often find this literature inpenetrable; in any case the theory is usually stated in terms
of the functor Proj and we find that computations are quite difficult in that language.
So we have included the definitions and basic properties, as well as some fundamental
examples.

–The complex sequence space The mapping f̃ cannot be considered a dynamical
system, since the domain and range are different. One way to obtain a dynamical system
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is to blow up the inverse images of the points you just blew up to construct X̃f , then their
inverse images, etc. On the the projective limit, we finally obtain a dynamical system
f∞ : X∞ → X∞.

The notation to keep track of successive blow-ups grows exponentially and soon be-
comes intractable. There is an alternative description of the projective limit in terms of
sequence spaces, which is much easier to describe. We learned of this construction from
[F1]; something analogous was constructed by Hirzebruch [Hirz] when resolving the cusps
of Hilbert modular surfaces, and also considered by Inoue, Dloussky and Oeljeklaus [Dl],
[DO].

The space X∞ will usually have a big subset X∗
∞ which is an algebraic variety, but

some points which are extremely singular, in the sense that every neighborhood has infinite
dimensional homology.

We will construct X∞ for Hénon mappings in Section IV, and its topology (homology,
etc.) is studied in Section V. There is a natural way to complete the homology H2(X∗

∞, C)
to a Hilbert space, so that f∞ induces an operator, and we hope in a future publication
to show that the spectral invariants of this operator interacts with the dynamics.

–The real oriented blow-up In order to “resolve” the terrible singularities of X∞,
we will use a further real blow-up, in which we consider complex surfaces as 4-dimensional
real algebraic spaces, and divisors as real surfaces in them. One way of thinking of this
blow-up of a surface X along a divisor D is to take an open tubular neighborhood W of
D in X , together with a projection π : W → D. Excise W , to form X ′ = X −W . If W
is chosen properly, X ′ will be a real 4-dimensional manifold with boundary ∂X ′ = ∂W .
The interior of X ′ will be homeomorphic to X −D. Then X ′ is some sort of blow-up of
X along D, with π : ∂X ′ → D the exceptional divisor. This construction is topologically
correct, but non-canonical; the real oriented blow-up is a way of making it canonical.

We can pass to the projective limit with these real oriented blow-ups, constructing a
space B+

R
(X∞), which is topologically much simpler and better behaved than the original

compactification, being a 4-dimensional manifold with boundary. The real interest is in
the inner structures of the boundary 3-manifold, where we find solenoids (in this paper
and in [Ves]), tori with irrational foliations (in [HHV]), etc.

The definition and first properties of these blow-ups are given in Section VI, and the
methods needed to construct them are given in Section VII. Theorems VII.5 and VII.9 are
the principal tools for understanding real oriented blow-ups, and we expect that they will
be useful for many examples besides the ones explored in this paper.

In Section VIII, we show that the classical Hopf fibration is an example of a real oriented
blow-up, in two different ways. In Section IX, we construct the real oriented blow-up for
Hénon maps. This turns out to be quite an exciting space, and we further explore its
structure in Section X, using toroidal decompositions. These results allow us to prove
(Theorem X.8) that extensions of the Hénon maps to their sphere at infinity are not all
conjugate, even when they have the same degree; the conjugacy class of the extension
remembers the argument of the Jacobian of the Hénon mapping.
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In Section XI, we construct the real-oriented blow-up for compositions of Hénon maps,
obtaining a 3- sphere with two embedded solenoids Σ+ and Σ−, but such that the incom-
pressible tori in S3 − (Σ+ ∪Σ−) are different from the incompressible tori we obtain from
just one Hénon mapping. This difference was first conjectured by Milnor [Mi2].

We wish to thank A. Douady for essential help in the conception of this paper, J. Milnor
for his conjecture, Profs. Soublin (Marseille), A. Sausse (Sophia-Antipolis), Mark Gross
(Cornell) and Mike Stillman (Cornell) for help with the algebra, Alan Hatcher for help
with the topology of Seifert fibrations, and Sa’ar Hersonsky for suggestions to improve the
introduction.

Moreover, P. Papadopol thanks President Bill Williams for his support over many years,
and Cornell University for many years of hospitality.

Outline of the paper.

Section I: Introduction.
Section II: Blowing up a closed subspace of an analytic space.
Section III: Making Hénon mappings well-defined.
Section IV: Closures of graphs and sequence spaces.
Section V: The homology of X∗

∞.
Section VI: Real blow-ups of complex divisors in surfaces.
Section VII: The effect of complex blow-ups on real oriented blow-ups.
SectionVIII: Real oriented blow-ups and the Hopf fibration.
Section IX: Real blow-ups for Hénon mappings.
Section X: The topology of B+

R
(X∞, D∞).

Section XI: The compactification of compositions of Hénon mappings.

II. Blowing up a closed subspace of an analytic space

Hypersurfaces and divisors.

Much of this paper will be about making appropriate blow-ups. In Section III we will
simply be blowing up surfaces at points, but in Section VI we will need to make much
more elaborate blow-ups, of singular surfaces in 4-dimensional manifolds. Everything in
this section is presumably standard, but we found it difficult to carry out our computations
in the too elegant language of Proj, and we find the present treatment, in terms of affine
equations, better adapted to our needs. The reader who feels comfortable with the simplest
blow-ups, of surfaces at points, should go directly to the next section, and refer back when
needed (which may well occur in Section VI). It seems that in the generality in which we
will be describing the construction, the results of this section are due to Hironaka [Hir].

Let X be an analytic space with structure sheaf OX , and Y ⊂ X a closed subspace.
The definition of the blow-up X̃Y of X along Y requires carefully distinguishing between
hypersurfaces and divisors.
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Definition II.1. A hypersurface in X is a subspace defined by an ideal which locally
requires only one generator; i.e., it is the locus locally defined by a single equation.

Definition II.2. A divisor is a hypersurface locally defined by a single equation which
is not a zero divisor. More precisely, a subspace Z ⊂ X is a divisor if every point x ∈ X
has a neighborhood U such that Z ∩U is defined by the principal ideal generated by some
section f ∈ OX(U) which is not a zero-divisor in the ring OX(U).

Consider for instance X = C× {0} ∪ {0}× C ⊂ C2, or alternately, the subspace of C2

defined by the equation xy = 0. The x-axis alone is a hypersurface in X , defined by the
equation y = 0, but it is not a divisor, since y is a zero divisor in OX(X) = C[x, y]/(xy).
This example is typical: geometrically, saying that a function on a space is a zero divisor
is saying that the space has several components, and that the function vanishes identically
on some of them.

Definition of the blow-up.

Now we can define X̃Y as the “universal way” of replacing Y by a divisor.

Definition II.3. The blow-up X̃Y of an analytic space X along a closed subspace Y is
an analytic space X̃Y , which comes with a morphism π : X̃Y → X (called the canonical
projection), such that π−1(Y ) is a divisor (called the exceptional divisor) in X̃Y , and
if g : Z → X is a morphism such that g−1(Y ) is a divisor in Z, there exists a unique
morphism g̃ : Z → X̃Y such that π ◦ g̃ = g.

We will prove that the blow-up exists (and is then obviously unique up to unique
isomorphism). If we can construct the blow-up locally, and prove that it has the right
universal property, then the existence of a global blow-up will follow, since the local blow-
ups will patch uniquely.

Local construction of a blow-up.

So we may assume that Y ⊂ X is defined by the equation Y = f−1(0), where f : X →
Cn+1 is an analytic mapping (i.e., a section of On+1

X ).

We define the blow-up X̃Y as follows. Recall that Pn is the space of lines l ⊂ Cn+1

through the origin, and that it carries the tautological line bundle

E ↪→ Cn+1 × Pn

↘ ↙
Pn

where E =
{
(x, l) ∈ Cn+1 × Pn |x ∈ l

}
.

First consider the locus X ′
Y ⊂ X × Pn defined as

X ′
Y = {(x, l) ∈ X × Pn |f(x) ∈ l} .
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This sounds set-theoretic rather than ideal theoretic, but we can easily define X ′
Y by

equations. Let [U0 : · · · : Un] be homogeneous coordinates on Pn. Then X ′
Y is defined by

the ideal (a mixed ideal, homogeneous with respect to the Ui, affine with respect to the
fj), generated by all

Uifj − Ujfi (2.1)

for i #= j.

Let π : X ′
Y → X be induced by the projection onto the first factor. We now will see

that locally π−1(Y ) is locally defined by a single equation.

Let E → Pn be the tautological line bundle, and F → X ′
Y be the pull-back of E by the

composition
X ′

Y → X × Pn → Pn.

This leads to the following commutative diagram:

X ×Cn+1 × Pn Cn+1 × Pn

∪ ∪
F ↪→ X × E → E
↓ ↓ ↓

X ′
Y ↪→ X × Pn → Pn

where both squares are fiber products.

Therefore the line bundle F is a subbundle of the trivial bundle X ′
Y ×Cn+1 → X ′

Y , and
the map X ′

Y → Cn+1 induced by f is a section f ′ of F , so that locally on X ′
Y the set Y ′

defined by f ′ = 0 is a hypersurface.

More precisely, let us denote by f ′′ : X ′
Y → Cn+1 the composition

X ′
Y → X × Pn → X → Cn+1.

In the chart Ui #= 0 on Pn, with affine coordinates uj = Uj/Ui, j #= i, a non-vanishing
section of the tautological bundle is given by

σi :





u0
...

ui−1

ui+1
...

un





0→





u0
...

ui−1

1
ui+1

...
un





with the 1 in the ith position. This section lifts and restricts to a section τi of F above
X ′

Y ∩ {Ui #= 0}. Evidently, f ′ = τif ′′
i in this chart, where f ′′

i is the ith coordinate of f ′′,
so Y ′ is given by the single equation f ′′

i = 0 in this chart.
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However, in even moderately complicated cases, the space X ′
Y has parasitic components

on which f ′ vanishes identically, so that f ′ is a zero divisor, and we must get rid of these
components.

Let Af ′ ⊂ OX′
Y

be the sheaf of ideals generated by functions which are annihilated by

some power of f ′, and let X̃Y ⊂ X ′
Y be the subspace defined by Af ′ . This annihilator

is the ideal of functions which vanish identically on the components of X ′
Y on which no

power of f ′ vanishes identically, so X̃Y is obtained from X ′
Y by removing the “parasitic

components” on which some power of f ′ vanishes identically. In the best cases, Af ′ will be
the zero sheaf of ideals, so X̃Y = X ′

Y , but in other cases, X̃Y will be exactly the union of
the components of X ′

Y on which no power of f ′ vanishes identically. Thus the restriction
f̃ of f ′ to X̃Y is not a zero divisor, and the subspace Ỹ ⊂ X̃Y defined by f̃ is a divisor.

We will prove in II.7 that the space X̃Y is the blow-up of X along Y , and that Ỹ is the
exceptional divisor. First we will give some examples.

Blowing up a point in a surface.

The easiest example of a blow-up, and also the only one we will use until Section VI,
is the blow-up of a surface at a point. Because of the universal property, it is enough to
understand the blow-up in one chart, i.e., to understand the blow-up of C2 at the origin.

Example II.4. Let x, y be the coordinates of C2; the origin is of course defined by the

equations x = y = 0, so the blow-up is contained in C2 × P1. If we use

[
U0

U1

]
as ho-

mogeneous coordinates in P1, then the equation expressing that the point

[
x
y

]
is on the

line corresponding to

[
U0

U1

]
is xU1 = yU0. This equation is not a zero-divisor, so we have

computed the blow-up.

This is covered by two affine coordinate charts:

–One in which U1 #= 0 and u0 = U0/U1; in this chart the blow-up is given by the
equation x = yu0; clearly it is a non-singular surface parametrized by y and u0. The
exceptional divisor is given in this chart by the single equation y = 0.

–One in which U0 #= 0 and u1 = U1/U0; in this chart the blow-up is given by the
equation y = xu1; clearly it is a non-singular surface parametrized by x and u1. The
exceptional divisor is given in this chart by the single equation x = 0.

So in this case the effect of blowing up is to replace the origin by the projective line P1
C
.

More generally, a similar computation will show that if you blow up a smooth manifold X
along a smooth submanifold Y ⊂ X , then the fibers π−1(x) of the projection π : X̃Y → X
are points if x /∈ Y , and the projective space P(TxX/TxY ) associated to the “normal space”
TxX/TxY if x ∈ Y .
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Two more complicated examples.

Example II.5. Let X = C2, and Y be the subset defined by the equations {x2 = 0, y = 0}.
Clearly in this case n = 1, and the space X ′

Y is the subspace of X×P1, given by the equation

x2U1 = yU0,

where [U0 : U1] are homogeneous coordinates on P1.

In the chart where U0 #= 0, if you set u1 = U1/U0, the space X ′
Y is defined by the

equation x2u1 = y, and Y ′ is defined by the single equation x2 = 0. In the chart where
U1 #= 0 and u0 = U0/U1 is an affine coordinate, X ′

Y is the space defined by the equation
yu0 = x2, and Y ′ is defined by the single equation y = 0. Since neither equation is a
zero-divisor, we see that X̃Y = X ′

Y , and Ỹ = Y ′. In particular, the blow-up is a cone,
with a singular point at the vertex x = y = u0 = 0, and Ỹ is a “double line” on that cone.

Our next example is a special case of the following general fact. Let X be an analytic
space, Y ⊂ X be a closed analytic subspace defined by an ideal IY , and denote by pY the
subspace defined by Ip. Then X̃pY = X̃Y , and the exceptional divisor in X̃pY is pỸ , i.e.,
if Ỹ is locally defined by the single equation f = 0, then the exceptional divisor of X̃pY

is locally defined by fp = 0. This fact is easy to check from the universal property, but
considerably harder to see from the explicit computation, even in the case when X = C2

and Y is the origin.

Example II.6. Let X = C2, J ⊂ OX be the ideal generated by {x, y}, consider the subset
Y defined by the ideal J 2, or alternately Y = f−1(0), where

f : C2 → C3 is given by f

([
x
y

])
=




x2

xy
y2



 .

This time we required three equations, so that X ′
Y ⊂ X × P2 is given (in homogeneous

coordinates [U0 : U1 : U2] on P2) by the equations x2U1 = xyU0, x2U2 = y2U0 and
xyU2 = y2U1.

In the chart U0 #= 0, using the coordinates u1, u2 as above, X ′
Y is defined by the equations

x2u1 = xy , x2u2 = y2 , xyu2 = y2u1,

and it is easy to see that the third equation is a consequence of the first two.

Further, Y ′ is defined in this chart by the single equation x2 = 0. In this case, x2 is a
zero-divisor in OX′

Y
, since x2(u1y − u2x) = 0.

Further computations, in which we were helped by J.-P. Soublin (by hand) and A.
Sausse (using REDUCE), shows that X ′

Y has two primary components, one corresponding
to the ideal Q generated by the seven polynomials

x2U1 − xyU0 , x2U2 − y2U0 , xyU2 − y2U1 , x3 , x2y , xy2 , y3
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with radical (x, y), and the other to the ideal P generated by

U2
1 − U0U2 , U0y − U1x , U2x− U1y,

which is its own radical. The annihilator of f ′ is exactly P . So X̃Y is the locus in C2×P2

defined by the mixed ideal P . This is isomorphic to the blow-up of C2 at the origin defined
by J . Indeed, consider the mapping X × P1 → X × P2 given in homogeneous coordinates
by

(x, y, V0, V1) 0→ (x, y, V 2
0 , V0V1, V

2
1 ).

The equation U0U2 = U2
1 defines the image of this embedding, and is one of the equations

of X̃Y , so the inverse image of X̃Y is defined by the mixed ideal generated by

V 2
0 y − V0V1x , V 2

1 x− V0V1y,

which is the same as the principal ideal generated by V0y−V1x. But this ideal also defines
the blow-up of C2 at the origin defined by the ideal J . The proper transform of Y , i.e.,
the locus defined by f̃ , is the exceptional divisor x = y = 0 as a double line.

Proof of the universal property.

We must now prove that our blow-up X̃Y has the right universal property.

Theorem II.7. If g : Z → X is a mapping such that g−1(Y ) is a divisor in Z, then there
exists a unique morphism g̃ : Z → X̃Y such that π ◦ g̃ = g.

Proof. By definition, g−1(Y ) is the locus defined by the equation f ◦ g = 0. On the other
hand, locally on Z, g−1(Y ) is defined by a single equation h = 0. More precisely, any point
z0 ∈ Z has a neighborhood V ⊂ Z in which g−1(Y )∩V is defined by the ideal hOV , where
h is a function, not a zero-divisor. Since each g ◦ fi is in the ideal generated by h, we can
find functions φi such that g ◦ fi = φih. Moreover, the φi do not all vanish at any point
of V since they generate the unit ideal. So we can find a morphism g̃V : V → X × Pn by
the formula

g̃V (z) = (g(z), [φ0(z) : · · · : φn(z)]).

First, observe that this morphism does not depend on the choice of V and h. If (V ′, h′)
and (V ′′, h′′) are two open sets in which g−1(Y ) are defined by a single function, then on
V ′ ∩ V ′′, we have that h′ = h′′u, where u is invertible (i.e., a unit in O(V ′ ∩ V ′′)). With
the obvious notation,

(φ′
0, . . . ,φ

′
n) = u(φ′′

0 , . . . ,φ′′
n),

so the corresponding homogeneous coordinates define the same mapping into X × Pn.

Thus we have a morphism g̃ : Z → X × Pn; we must show that the image is contained
in X̃Y .
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First, it is clear that the image lies in X ′
Y , or more precisely, that

g̃∗(aifj − ajfi) = φi(fj ◦ g)− φj(fi ◦ g) = h((fi ◦ g)(fj ◦ g)− (fj ◦ g)(fi ◦ g)) = 0.

Next, if α ∈ Af ′ , we need to know that g̃∗α = 0. Since α(f ′)m = 0 for some m, we have

(α ◦ g̃)(f ′ ◦ g̃)m = 0,

which certainly implies that f ′ ◦ g̃ is a zero-divisor if α ◦ g̃ #= 0. But f ′ ◦ g̃ defines f−1(Y ),
which was assumed to be a divisor, so defined by a single equation, not a zero-divisor. !

Corollary II.8. If f : X1 → X2 is a morphism of analytic spaces, Y2 ⊂ X2 is an analytic
subspace, and Y1 = f−1Y2, then there exists a unique morphism f̃ : ˜(X2)Y2

→ ˜(X1)Y1

which makes the diagram

˜(X2)Y2

f̃−−−−→ ˜(X1)Y10
0

X2 −−−−→ X1

commute.

Proof. Clearly under the composition ˜(X2)Y2
→ X2 → X1, the inverse image of Y1 is the

exceptional divisor, hence we can apply Theorem II.7. !

We only defined X̃Y when Y is defined by global equations. However, the universal
mapping properties guarantees that if we perform blow-ups locally, they will glue together
in a unique fashion, so that this actually constructs a global blow-up of an arbitrary
analytic space along a closed subspace.

An example in C4.

Let us denote by x1, x2, y1, y2 the coordinates of C4. In Section 6, we will need to
understand the blow-up C4 along the union

Y = C2 × {0} ∪ {0}× C2

of the (x1, x2) and the (y1, y2) coordinate planes. This also provides an example where
many of the complications of the previous sections occur and thus illustrates what all these
zero-divisors and annihilators really mean.

Although Y is of codimension 2, it requires four equations for its definition:

x1y1 = 0, x2y1 = 0, x1y2 = 0 and x2y2 = 0,
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i.e., Y = f−1(0) where f : C4 → C4 is given by

f









x1

x2

y1

y2







 =





x1y1

x2y1

x1y2

x2y2



 .

The fact that it is not defined by two equations will follow from the fact that the blow-up
cannot be embedded in X × P1, and the fact that four equations are really required will
follow when we see that the blow-up cannot be embedded in X × P2 either.

Since the ideal defining the union of the coordinate planes is generated by

x1y1, x2y1, x1y2, x2y2,

the variety X ′
Y ⊂ C4×P3, is defined by the equation f(x) ∈ (, and if we use homogeneous

coordinates U1, U2, U3, U4 on the second factor, this means that the vectors





x1y1

x2y1

x1y2

x2y2



 and





U1

U2

U3

U4





are linearly dependent. Although locally this locus is defined by three equations, globally
it requires 6 equations:

x1y1U4 = x2y2U1

x2y1U4 = x2y2U2

x1y2U4 = x2y2U3

x1y1U3 = x1y2U1

x2y1U3 = x1y2U2

x1y1U2 = x2y1U1.

(2.2)

Let us denote by π : X ′
Y → C4 the projection induced by the projection X × P3 → X

onto the first factor. Locally, the locus Y ′ = π−1(Y ) is defined by a single equation, as
it should. For instance, in the chart U4 = 1, the space X ′

Y is defined in X × P3 by the 3
equations

x1y1 = x2y2u1

x2y1 = x2y2u2

x1y2 = x2y2u3

,

where ui = Ui/U4, i = 1, 2, 3, and Y ′ is defined by the single equation x2y2 = 0. However,
the functions

x2y2, x2y1, x1y1, x1y2
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are zero-divisors in O(X ′
Y ): for instance,

x2y2(U4y1 − U2y2) = 0

in the ring of functions on X ′
Y .

A careful analysis of equations (2.2) shows that X ′
Y is the union of five irreducible

components, the four 4-dimensional linear spaces Z1, · · · , Z4 with equations

x1 = x2 = y1 = 0

x1 = y1 = y2 = 0

x1 = x2 = y2 = 0

x2 = y1 = y2 = 0

and the 4-dimensional space Z5 with equation

U1U4 = U2U3

y1U4 = y2U2

x1U4 = x2U3

y1U3 = y2U1

x1U2 = x2U1

(2.3)

We can now see that X̃Y is in fact Z5. If we embed P1 × P1 into P3 by the Veronese
mapping

([
X1

X2

]
,

[
Y1

Y2

])
0→





X1Y1

X2Y1

X1Y2

X2Y2



 ,

where

[
X1

X2

]
,

[
Y1

Y2

]
are homogeneous coordinates in P1 × P1, we observe that the image

has equation U1U4 = U2U3, which is satisfied identically on X̃Y . Thus the blow-up is

actually contained in X ×
(
P1
)2

, and it is defined by the equations

y1X2Y2 = y2X2Y1

x1X2Y2 = x2X1Y2

y1X1Y2 = y2X1Y1

x1X2Y1 = x2X1Y1.

(2.4)

From the first equation we can see that either X2 = 0 or Y2y1 = Y1y2. But if X2 = 0,
then X1 #= 0, so we can cancel X1 in the third equation and get the same equation Y2y1 =
Y1y2. Therefore the first and third equation are equivalent to the equation Y2y1 = Y1y2.
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We can apply the same procedure to the second and fourth equations and see that they
are equivalent to X2x1 = X1x2. Thus equations (2.4) are equivalent to equations

y1Y2 = y2Y1

x1X2 = x2X1

(2.5)

The last two equations show that X̃Y is a manifold. For instance, in the chart X2 =
Y2 = 1, X̃Y is given by the equations x1 = X1x2 and y1 = Y1y2, clearly parametrized by
x2, y2, X1, Y1, and Ỹ = π−1(Y ) in this chart is given by the single equation x2y2 = 0. We
see in particular that the exceptional divisor Ỹ is not smooth, above (0, 0, 0, 0), it has the
local structure of W ×C2, where W ⊂ C2 is the singular curve with equation xy = 0, i.e.,
the union of the axes.

III. Making Hénon Mappings well-defined

Consider the Hénon mapping

H

(
x
y

)
=

(
p(x)− ay

x

)
(3.1)

with a #= 0, which we will consider as a birational mapping P2 ∼∼> P2 given in homoge-
neous coordinates as

H




x
y
z



 =




p̃(x, z)− ayzd−1

xzd−1

zd



 , (3.2)

where p̃(x, z) = zdp(x/z) = xd + . . . is a homogeneous polynomial of degree d in the two
variables x and z.

Lemma III.1. a) The mapping H has a unique point of indeterminacy at p =




0
1
0



, and

collapses the line at infinity l∞ to the point q =




1
0
0



.

b) The mapping H−1 has a unique point of indeterminacy at q, and collapses l∞ to the
point p.

Proof. A point of indeterminacy of a mapping written in homogeneous coordinates
without common factors is a point where all coordinate functions vanish. In order for
this to happen, we must have z = 0 of course, and the only remaining term is then xd,
so that at a point of indeterminacy, we also have x = 0. Thus p is the unique point of
indeterminacy of H. Clearly any other point of l∞ is mapped to q. Part (b) is similar. !
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Self-intersections. It is often necessary to know the self-intersection numbers of lines
obtained when you make successive blow-ups. The rules for computing these numbers are
simple, in this case where we are blowing up a surface at a smooth point x [S2, IV.3, Thm.
2 and its Corollaries]:

• The exceptional divisor has self-intersection −1;

• The proper transform C′ of any smooth curve C passing through x has its self-
intersection decreased by 1.

We will now go through a sequence of 2d − 1 blow-ups, required to make the Hénon
mapping (3.2) well-defined. The results are summarized at the end in Theorem III.3, which
we cannot state without the terminology which we create during the construction. We will
denote H1, . . . , H2d−1 the extension of the Hénon mapping to the successive blow-ups.

To focus on the point of indeterminacy, we will begin work in the coordinates u =
x/y, v = 1/y so that the point of indeterminacy p is the point u = v = 0. The Hénon
mapping, written in the affine coordinates u, v in the domain and homogeneous coordinates
in the range, is written

H :

(
u
v

)
0→




p̃(u, v)− avd−1

uvd−1

vd



 .

At a point of indeterminacy all three homogeneous coordinates vanish; we already knew
that this happens only at p, but it is clear again from this formula that it happens only
at u = v = 0.

The first blow-up. Blow up P2 at the point u = v = 0, look in the chart v = X1u; i.e.,
use u and X1 as coordinates and discard v.

The extension of the Hénon mapping, written in the affine coordinates u, X1 in the
domain and homogeneous coordinates in the range, is written

H1 :

(
u

X1

)
0→




p̃(u, X1u)− a(X1u)d−1

udXd−1
1

udXd
1



 =




uq(X1)− aX1

d−1

uXd−1
1

uX1
d



 , (3.3)

where we have set p̃(1, X) = q(X), so that q is a polynomial of degree d whose constant
term is 1.

Again, the only point where all three homogeneous coordinates vanish is where u =
X1 = 0. We invite the reader to check that the one point of the blow-up not covered
by the chart u, X1 is not a point of indeterminacy. The self-intersection numbers are
as indicated in Figure 1: originally l∞ has self-intersection number 1, after one blow-up
its proper transform acquires self-intersection number 0, and the exceptional divisor has
self-intersection number -1.
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l∞
1

1

1 0 0

1

-1

p

q x-axis

y-axisy-axis

x-axis

Figure 1. The original configuration of the axes (dotted) and the line at infinity in P2, and the

configuration after the first blow-up. The last exceptional divisor is denoted by a thick line; the

heavy dots are the points of indeterminacy of H and H1. The numbers labeling components are

self-intersection numbers.

Several more blow-ups. We will now make a sequence of d−1 further blow-ups, setting

successively

u = X1X2, X2 = X1X3, . . . , Xd−1 = X1Xd.

The Hénon mapping in these coordinates is given by the formula

Hk :

(
X1

Xk

)
0→




X1Xkq(X1)− aXd−k+1

1

Xd
1Xk

Xd+1
1 Xk



 =




Xkq(X1)− aXd−k

1

Xd−1
1 Xk

Xd
1Xk



 (3.4)

and we see that when k < d, the unique point of indeterminacy is the point X1 = Xk = 0,

but when k = d, the unique point of indeterminacy is the point X1 = 0, Xd = a. At each

step, there is one point Xk = ∞ which is not in the domain of our chart; we leave it to

the reader to check that this is never a point of indeterminacy.

Again the self-intersection numbers are as indicated in Figure 2. At each step we are

blowing up the intersection of the last exceptional divisor with the proper transform of the

first exceptional divisor. Therefore after this sequence of blow-ups, the last exceptional

divisor (now next-to last) acquires self-intersection -2, and the first exceptional divisor has

its self-intersection number decreased by 1, going from −1 to −d.
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...

0

1

-1

-2-1

-1 0

1

-d

d-2 lines with
self-intersection
numbers -2

-1

Figure 2. The configuration after the second and after the d-th of the blow-up. The heavy

dots are the points of indeterminacy of H2 and Hd; note that the dot on the right is an ordinary

point; all the earlier ones except the very first were double points. Again, the numbers labeling

components are the self-intersection numbers.

The blow-ups which depend on the coefficients of p.

The next d− 1 blow-ups, although not really more difficult than the earlier ones, have
rather more unpleasant formulas, because each occurs at a smooth point of the last excep-
tional divisor, and we need to specify this point. To lighten the notation, we will define
by induction the polynomials

q0(X) = q(X) and qk+1(X) =
qk(X)− qk(0)

X
, k = 1, . . .

and the numbers Qk (they are really coordinates of points on exceptional divisors)

Q0 = 1 and Qk+1 = −
k∑

j=0

Qjqk−j+1(0).

Set Y0 = Xd, and make the successive blow-ups

Yk − aQk = X1Yk+1, k = 0, . . . , d− 2. (3.5)

Remark. This means that Yk+1 is the slope of a line through the point X1 = 0, Yk =
aQk. In that sense the number Qk (or rather aQk), is really the coordinate on the line
parametrized by Yk of the next point at which to blow up.
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Lemma III.2. a) In the coordinates X1, Yk, the Hénon mapping is given by the formula

Hd+k :

(
X1

Yk

)
0→




X1Ykq1(X1) + a

∑k−1
j=0 Qjqk−j(X1) + Yk

Xd−k−1
1 (Xk

1 Yk + a
∑k−1

j=0 QjX
j
1)

Xd−k
1 (Xk

1 Yk + a
∑k−1

j=0 QjX
j
1)



 , k = 1, . . . , d− 1. (3.6)

b) The mapping Hk+d has the unique point of indeterminacy X1 = 0, Yk = aQk, for
k = 1, . . . , d− 2.

c) The mapping H2d−1 has no point of indeterminacy, and maps the last exceptional
divisor to l∞ ⊂ P2 by an isomorphism.

Proof. This is an easy induction: all the work was in finding the formula. To start the
induction, compute the extension of the Hénon mapping in the chart Xd−a = X1Y1 (using
formula (3.4):

Hd+1 :

(
X1

Y1

)
0→




(a + X1Y1)(q(X1)− 1)−X1Y1

Xd−1
1 (a + X1Y1)
Xd

1 (a + X1Y1)



 =




X1Y1q1(X1) + aq1(X1) + Y1

Xd−2
1 (X1Y1 + a)

Xd−1
1 (X1Y1 + a)



 ,

(3.7)
where we have used q(X1) − 1 = X1q1(X1), and factored out X1. Observe that formula
(3.7) is exactly the case k = 1 of formula (3.6).

Now suppose Lemma III.2 is true for k, and substitute Yk = X1Yk+1 + aQk from
Equation (3.6). For the first coordinate of Hk+1 we find

X1(X1Yk+1 + aQk)q1(X1) + a
k−1∑

j=0

Qjqk−j(X1) + X1Yk+1 + aQk

= X2
1Yk+1q1(X1) + aX1Qkq1(X1) + a

k−1∑

j=0

Qj(qk−j(X1)− qk−j(0)) + X1Yk+1

= X2
1Yk+1q1(X1) + aX1Qkq1(X1) + aX1

k−1∑

j=0

Qjqk−j+1(X1) + X1Yk+1

= X1



X1Yk+1q1(X1) + a
k∑

j=0

Qjqk−j+1(X1) + Yk+1



 .

The second and third coordinates are similar. In particular, we see that we can factor out
X1, until k = d− 1. This proves part (a).

At each step, any points of indeterminacy must be on the last exceptional divisor, of
equation X1 = 0. But if we substitute X1 = 0 in the first coordinate, we find Yk = aQk,
so that indeed there is only one point of indeterminacy, proving (b).
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The restriction to the last exceptional divisor of the mapping H2d−1 is given by

Yd−1 0→




Yd−1 − aQd−1

a
0





and since a #= 0, the map is well-defined. Moreover, since Yd−1 appears in the first
coordinate with degree 1, this last exceptional divisor maps by an isomorphism to the line
at infinity. !

... ...

...
-1 -1

-1 -1

2d-3 lines with
self-intersection
numbers -2

-d -d

Figure 3. The configuration after the (d + 1)-st blow-up, and after all 2d− 1 blow-ups.

The self-intersection numbers are marked in Figure 3. We are now always blowing up
an ordinary point of the last exceptional divisor, so this last exceptional divisor (now next-
to-last) acquires self-intersection -2. At the end, the very last exceptional divisor keeps
self-intersection -1.

To summarize, we have proved the following result. Denote by X̃H the space obtained
from P2 be the sequence of 2d− 1 blow-ups described above.

Theorem III.3. The Hénon map H : C2 → C2 extends to a morphism H2d−1 = H̃ :
X̃H → P2, and maps the divisor at infinity D̃ = X̃H − C2 to l∞, mapping all of D̃ to the
point q except the last exceptional divisor which is mapped to l∞ by an isomorphism.

Terminology.

To state the next result and later on, we need to give names to the irreducible compo-
nents of D̃. Let us label A′ the proper transform of the line at infinity, then B′ the proper
transform of the first exceptional divisor, then in order of creation L1, L2, . . . , L2d−3, and
finally Ã the components of the divisor D̃. The line Ã, i.e. the last exceptional divisor,
will play a special role.
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Since A′ is the proper transform of l∞, the projection A′ → l∞ is an isomorphism, and
we can define p′,q′ the points of A′ which correspond to p,q. Note that {p′} = L1 ∩ A′.

The points p̃ = H̃−1(p), q̃ = H̃−1(q) will play a parallel role; note that {q̃} = L2d−3 ∩
Ã. This terminology is illustrated in Figure 4, which represents D̃, i.e., Figure 3(right),
redrawn in a more symmetrical way.

... ...q' p' p~q~

A' A~

B'

L1 LdLd-1 L2d-3Ld-2

-1
-2 -2 -2 -2 -2

-1
-d

Figure 4. The divisor D̃. The numbers labeling the components are the self-intersection num-

bers.

The rational mapping H!.

In the next section, we will want to consider H̃ as a birational map H! : X̃H ∼∼> X̃H .

Theorem III.4. The rational map H! : X̃H ∼∼> X̃H is defined at all points except p̃. It
collapses D̃ − Ã to q̃, maps Ã− p̃ to A′ − p′ by an isomorphism.

The rational map (H!)−1 is defined at all points except q′. It collapses D̃−A′ to p̃ and
maps A′ − q′ to Ã− q̃ by an isomorphism.

... ...q' p' q~
A' A~B'

L1 LdLd-1 L2d-3Ld-2

... ...q' p' p~q~A' A~
B'

L1 LdLd-1 L2d-3Ld-2

p~

Figure 5. The “mapping” H! acting on the divisor D̃.
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Proof. This is really a corollary of Theorem III.3. Clearly, H! is well defined on X̃H −
H̃−1(p), i.e., on X̃H − {p̃}, and coincides with H̃ there.

Further H̃ is an isomorphism from a neighborhood of p̃ to a neighborhood of p. So
if you perform any sequence of blow-ups at p, H̃ will become undetermined at p̃. The
statements about the inverse map are similar. !

IV. Closures of graphs and sequence spaces

We now have a well-defined map H̃ : X̃H → P2, but that does not solve our problem of
compactifying H : C2 → C2 as a dynamical system. We cannot consider H̃ as a dynamical
system, since the domain and the range are different. Neither does H! solve our problem,
since it still has a point of indeterminacy. In this section we will show how to perform
infinitely many blow-ups so that in the projective limit we do get a dynamical system. We
will construct this infinite blow-up as a sequence space, as this simplifies the presentation
and proof (this description was inspired by Friedland [Fr1], who considered the analog in(
P2
)Z

). To make this construction, we need to analyze the graph of H!.

Let X, Y be compact smooth algebraic surfaces, and f : X ∼∼> Y be a birational
transformation. Let us suppose that it is undefined at p1, . . . ,pn, and that f−1 is undefined
at q1, . . . ,qm. Let

Γf ⊂ (X − {p1, . . . ,pn})× Y

be the graph of f , and Γf ⊂ X × Y its closure.

Lemma IV.1. The space Γf is a smooth manifold, except perhaps at points (x,y) ∈ Γf

such that
x ∈ {p1, . . . ,pn} and y ∈ {q1, . . . ,qm}.

Proof. Clearly pr1 : Γf → X is locally an isomorphism near (x,y) if x /∈ {p1, . . . ,pn},
and pr2 : Γf → Y is locally an isomorphism near (x,y) unless y ∈ {q1, . . . ,qm}. !

Example IV.2. If you have points (pi,qj) ∈ Γf , they can genuinely be quite singular.
For instance, if X = Y = P2 and f = H is a Hénon mapping, then f (resp. f−1) has a
unique point of indeterminacy p (resp. q) (see III.1). The pair (p,q) is in ΓH , and near
(p,q) we can find equations of ΓH as follows.

In local coordinates

u =
x

y
, v =

1

y
near p, s =

y

x
, t =

1

x
near q,

the space ΓH is given by the two equations

vd = t
(
p̃(u, v)− avd−1

)

ut = sv
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which is quite singular at the origin indeed; one way to understand Section III is as a
resolution of this singularity, as Proposition IV.3 shows.

Let H be a Hénon mapping, X̃H be the blow-up on which H̃ : X̃H → P2 is well-defined,
and H! : X̃H ∼∼> X̃H be H̃ viewed as a rational mapping from X̃H to itself.

Proposition IV.3. The closure ΓH! ⊂ X̃H × X̃H is a smooth submanifold.

Proof. The mapping H! : X̃H ∼∼> X̃H is birational, and as we saw in Theorem III.4, it
has a unique point of indeterminacy at p̃ = H̃−1(p), and the inverse birational mapping
(H!)−1 also has a unique point of indeterminacy q′. But the point (p̃,q′) is not in ΓH! ,
so ΓH! is a smooth (compact) manifold by Lemma IV.1. !

There is another description of ΓH! , which we will need in a moment.

Proposition IV.4. The space ΓH! , together with the projections pr1 and pr2 onto the
first and second factor respectively, make the diagram

ΓH!
pr2−−−−→ X̃H

pr1

0 π

0

X̃H
H̃−−−−→ P2

a fibered product in the category of analytic spaces [Dou].

Proof. The diagram
X̃H × X̃H

pr2−−−−→ X̃H

pr1

0 π

0

X̃H
H̃−−−−→ P2

evidently commutes on the graph ΓH , and also evidently commutes on a closed set, hence
it commutes on ΓH! .

Since all the spaces involved are manifolds, it is enough to prove that the diagram
is a fibered product in the category of analytic manifolds, i.e., set-theoretically. Since
π(y) = H̃(x) on ΓH this is still true on the closure ΓH! . !

It is time to construct one of our main actors. The space X∞, constructed below, is a
compact space, which contains C2 as a dense open subset, and such that H : C2 → C2

extends to H∞ : X∞ → X∞.

The locus D∞ = X∞−C2 is an infinite divisor at infinity, the geometry of which encodes
the behavior of H at infinity.

Definition IV.5. Let X∞ ⊂ (X̃H)Z be the set of sequences x = (. . . ,x−1,x0,x1, . . . ) such
that successive pairs belong to ΓH! ⊂ X̃H × X̃H above.
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Let H∞ : X∞ → X∞ be the shift map

(H∞(x))k = xk+1,

where x = (. . . ,x1,x0,x1, . . . ) is a point of X∞.

Clearly X∞ a compact space, since it is a closed subset of a product of compact sets,
and H∞ is a homeomorphism X∞ → X∞. We will see below why H∞ can be understood
as an extension of H.

Proposition IV.6. a) The points of X∞ are of one of three types:

(1) Sequences with all entries in C2;
(2) Sequences of the form (. . . , p̃, p̃, a,b,q′,q′, . . . ) with a ∈ D̃, a #= p̃;
(3) The two sequences p∞ = (. . . , p̃, p̃, . . . ) and q∞ = (. . . ,q′,q′, . . . ).

b) The sequences of type (1) are dense in X∞.

Proof. If a sequence has any entry in C2, then it is the full orbit of that point, forwards
and backwards. Otherwise, all entries are in the divisor D̃ = X̃H −C2. If these entries are
not all p̃, or all q′, then there is a first entry a which is not p̃; it must be preceded by all
p̃’s. What follows it is the orbit of a, which is well-defined. Note that b = H̃(a) may be
q′ (this will happen unless a ∈ Ã), and all the successive terms must be q′. This proves
(a).

For part (b), we must show that a sequence x of type 2 or 3 can be approximated by
an orbit, i.e., that for any ε > 0 and any integer N , there is a point y ∈ C2 such that
d(Hn(x) − yn) < ε when |n| < N . If x is of type 2, we may assume that x(0) #= p̃,q′.
Then all iterates of H̃ and of H̃−1 are defined and continuous in a neighborhood of x(0),
so any point in this neighborhood and close to x(0) will have a long stretch of forward and
backwards orbits close to x; but every neighborhood of x(0) contains points of C2, which
is dense in X̃ .

Similarly, the orbit of a point with |x| very large and y = 0 will approximate q∞, and
a point with |y| large and x = 0 will approximate q∞. !

Example IV.7. The fact that C2 is dense in X∞ is not quite so obvious as one might
think, and there are examples of birational maps where it doesn’t happen. For instance,
consider the mapping

f :

[
x
y

]
0→
[

xy
x

]
,

a priori well defined on (C∗)2. Denote p and q the points at infinity on the x-axis and
y-axis respectively. Then the pairs (r,q) belong to ΓF ⊂ P2 × P2 when r is in the line at
infinity, as do the pairs (q, r). Thus the sequence space contains points like

(. . . ,q, r,q,q, r,q, r,q,q, . . .)
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with symbols q and r in any order. Such sequences cannot be approximated by orbits in
(C∗)2; they will also form subsets which have dimension equal to the number of appearances
of r #= q, which may be infinite. Such sequence spaces are a little scary, as well as
pathological, and irrelevant to the original dynamical system.

In our case, if we had not blown up P2, C2 would still have been dense in the sequence
space, but it would have had bad singularities.

Proposition IV.8. The space X∗
∞ = X∞ − {p∞,q∞} is an algebraic manifold.

More precisely,

(1) The projection π0 onto the 0-th coordinate induces an isomorphism of the space of
orbits of the first type to C2;

(2) If x = (. . . , p̃, p̃, a,b,q′,q′, . . . ) is a point of the second type, and a appears in the
k-th position, then the projection πk onto the k-th position induces a homeomor-
phism of a neighborhood of x onto X̃H − {p̃,q′}.

Proof. The first part is clear. For the second, if a point y satisfies yk #= p̃,q′, then the
entire forward and backwards orbit of yk is defined: forwards it will never land on p̃, and
backwards it will never land on q′.

Let us call φk : X̃H − {p̃,q′) → X∞ the map which maps x to the unique sequence
x ∈ X∞ with xk = x. The change of coordinate map φ−1

l ◦ φk is then simply H l−k on C2.

This shows that the coordinate changes are algebraic on the intersections of coordinate
neighborhoods, except for one detail. The set C2 ⊂ X∞ is exactly the intersection of the
images of φk and φl when |l − k| ≥ 2, but when l = k + 1, the intersection then contains
the sequences with entries (. . . , p̃, p̃, a,b,q′,q′, . . . ) with a ∈ Ã− {p̃} and b ∈ A′ − {q′},
in this case also the change of coordinates is given by H! and is still algebraic. !

We can now see why H∞ is an extension of H. On the subset isomorphic to C2 formed
of sequences in C2, with π0 the isomorphism, we have

π0

(
H∞(x)

)
= H

(
π0(x)

)
;

i.e., π0 conjugates H∞ to H on that subset.

Notation.

We will systematically identify C2 with φ0(C2) ⊂ X∞. With this identification, H∞ does
extend H continuously, and algebraically in X∗

∞. Moreover, we will set D∞ = X∞ − C2;
a picture of D∞ is given in Figure 6.

The lines denoted by Ai, i ∈ Z are formed of those sequences whose i-th entry is in
A′; each such line connects the sequences whose i-th entry is in L1 (denoted by Li,1) with



A Compactification of Hénon Mappings in C2 as Dynamical Systems 23

those whose (i − 1)-st entry is in L2d−3. In particular, the points q0,p0,q1,p1 ∈ X∞

correspond to the sequences

q0 =( . . . p̃, q̃, q′, q′, q′, . . . )

. . . −2,−1, 0, 1, 2, . . .

p0 =( . . . p̃, p̃, p′, q′, q′, . . . )

. . . −2,−1, 0, 1, 2, . . .

q1 =( . . . p̃, p̃, q̃, q′, q′, . . . )

. . . −2,−1, 0, 1, 2, . . .

p1 =( . . . p̃, p̃, p̃, p′, q′, . . . )

. . . −2,−1, 0, 1, 2, . . .

... ...... ... ... ... ... ...

L0,1 L0,d-1 L0,2d-3

A0A-1 A1 A2

p1q1p0q0

B0 B1B-1

L-1,1 L-1,d-1 L-1,2d-3 L1,1 L1,d-1 L1,2d-3

Figure 6. The divisor D∞.

V. The homology of X∗
∞

In this section we will study the homology groups Hi(X∗
∞), and more particularly

H2(X∗
∞) and the quadratic form on it coming from the intersection product.

Although nasty spaces (solenoids, etc.) are lurking around every corner, here we will
compute only the homology groups of manifolds, being careful to exclude the nasty parts.
All homology theories coincide for such spaces, and we may use singular homology, for
instance. Unless stated otherwise, we use integer coefficients; at the end we will use
complex coefficients. Using d-torsion coefficients would give quite different results, which
can easily be derived using the universal coefficient theorem.

Inductive limits.

It is fairly easy to represent X∗
∞ as an increasing union of subsets whose homology can

be fairly easily computed. Since inductive limits and homology commute, it is enough to
understand these subsets.

First some terminology. If G is an Abelian group, then GN is the product of infinitely
many copies of G, indexed by N, i.e., the set of all sequences (g1, g2, . . . ) with gi ∈ G. The
group G(N) ⊂ GN is the set of sequences with only finitely many non-zero terms; in the
category of Abelian groups, this is the sum of copies of G indexed by N; it is also easy to
show that it is the inductive limit of the diagram

G→ G2 → G3 → . . .

where the map
Gk → Gk+1 is (g1, . . . , gk) 0→ (g1, . . . , gk, 0).
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The particular inductive limit we will encounter is not quite elementary, and we will start
with an example, which has many features in common with our direct limit of homology
groups.

Example V.1. Consider the inductive system

Z
f1→ Z2 f2→ Z3 f3→ . . . ,

where fn : Zn → Zn+1 is defined by

fn(en,i) =

{
en+1,i if i < n

en+1,n + en+1,n+1 if i = n,

using the standard basis en,1, . . .en,n of Zn.

It certainly seems as if the inductive limit of this system should be Z(N) of sequences of
integers which are eventually 0. But this is not true, and the inductive limit is bigger.

Proposition V.2. a) If (vm, vm+1, . . . ) represents an element of lim
→
n

(Zn, fn), with vm ∈

Zm, then for any j, the coordinate (vm)j is constant as soon as m > j. This defines a map

lim
→
n

(Zn, fn)→ ZN

which is easily seen to be injective.

b) The image of lim
→
n

(Zn, fn) in ZN consists of the sequences (aj)j∈N which are eventually

constant.

Proof. Any element of the inductive limit has a representative vm ∈ Zm for some m.
The m-th entry of vm will be replicated as both the m-th and (m + 1)-st entry of vm+1,
and then as the last three entries of vm+2, etc. Clearly the image in ZN will be constant
from the m-th term on. !

Thus there is an exact sequence

0→ Z(N) → lim
→
n

(Zn, fn)→ Z→ 0

where the third arrow associates to an eventually constant sequence the value of that
constant.

We see that there is an extra generator to the inductive limit, which one may take to
be the constant sequence of 1’s in ZN.
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Example V.3. Now let us elaborate our example a little. Modify fn : Zn → Zn+1 so
that fn(en,n) = en+1,n + den+1,n+1 for some integer d ≥ 1.

Most of the computation above still holds, except that a sequence

v = (v1, v2, . . . ) ∈ ZN

belongs to the inductive limit if and only if it is eventually geometric with ratio d. We
will denote Z[1/d] the rational numbers with only powers of d in the denominator, i.e., the
sub-ring of Q generated by Z and 1/d. If we set v+ = (1, d, d2, . . . ), then v belongs to the
inductive limit if and only if there exists a ∈ Z[1/d] such that v − av+ has only finitely
many non-zero entries. In other word, there is an exact sequence

0→ Z(N) → lim
→
N

(Zn, fn)→ Z[1/d]→ 0.

Note that our inductive limit is still a free Abelian group, for there is a theorem [Gri,
Thm. 138] which asserts that a countable subgroup of ZN is free Abelian. In our case, the
elements

(1, d, d2, d3, . . . ), (0, 1, d, d2, . . . ), (0, 0, 1, d, . . .), . . .

form a basis. On the other hand Z[1/d] is not free (it is divisible by d).

The homology of blow-ups.

Before attacking the homology of X∗
∞, we will remind the reader of some well-known

facts about the homology of algebraic surfaces.

Proposition V.4. If X is a smooth algebraic surface (or more generally a four-dimensional
topological manifold), and Z ⊂ X is a finite subset, then the inclusion X−Z ↪→ X induces
an isomorphism on 1- and 2-dimensional homology.

Proof. Consider the long exact sequence of the pair (X, X − Z), which gives in part

· · ·→ H3(X, X − Z)→ H2(X − Z)→ H2(X)→ H2(X, X − Z)→ . . . ;

it is enough to show that the first and last term vanish. Let (Uz)z∈Z be a set of neigh-
borhoods of the points of Z homeomorphic to 4-balls; by excision, we have

Hk

(
X, X − {z}

)
=
⊕

z∈P

Hk

(
Uz, Uz − {z}

)
.

The long exact sequence of such a pair (Uz, Uz − {z}) gives in part

· · ·→H3(Uz)→ H3

(
Uz, Uz − {z}

)
→ H2(Uz − {z})→

H2(Uz)→H2

(
Uz, Uz − {z}

)
→ H1

(
Uz − {z}

)
→ . . .
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The first, third, fourth and sixth terms vanish, since Uz is contractible and Uz − {z} has
the homotopy type of a 3-sphere. The result for 2-dimensional homology follows; the proof
for one-dimensional homology is similar. !

Proposition V.5. If X is a smooth algebraic surface (or more generally an orientable
4-dimensional topological manifold), and Z ⊂ X is a finite subset, then the inclusion
X − Z ↪→ X induces an exact sequence

0→ H4(X)→ ZZ → H3(X − Z)→ H3(X)→ 0.

In particular, if X is compact and Z is a single point, then the inclusion induces an
isomorphism H3(X − Z)→ H3(X).

The proof comes from considering the same exact sequences as above; we omit it.

We will now see that if you blow up a point of a surface, you increase the 2-dimensional
homology by the class of the exceptional divisor.

Let X be a surface, and z a smooth point. Let π : X̃z → X be the canonical projection,
and E = π−1(z) be the exceptional divisor.

Consider the homomorphism

i : H2(X)→ H2(X̃z) (5.1)

given by the composition

H2(X)→ H2

(
X − {z}

)
→ H2(X̃z);

first the inverse of the isomorphism H2

(
X − {z}

)
→ H2(X) in Proposition V.4, followed

by the map induced by inclusion.

Proposition V.6. The map
H2(X)⊕ Z→ H2(X̃z)

given by (α, m) 0→ i(α) + m[E] is an isomorphism.

Proof. This is an application of the Mayer-Vietoris exact sequence. Let U be an open
neighborhood of z in X homeomorphic to a 4-ball. Clearly, π is a homeomorphism X̃z −
E → X − {z}. So applying Mayer-Vietoris to the open cover X̃z − E and Ũz of X̃z gives
in part

· · ·→ H2

(
U − {z}

)
→ H2

(
X − {z}

)
⊕H2(Ũz)→ H2(X̃z)→ H1

(
U − {z}

)
→ . . . .

The first and last terms are zero, because U − {z} has the topology of a 3-sphere, so the
middle mapping is an isomorphism

H2

(
X − {z}

)
⊕H2(Ũz)→ H2(X̃z).
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The result follows by applying Proposition V.4, since Ũz deforms onto the exceptional
divisor, which is a projective line. !

The same Mayer-Vietoris exact sequence, together with Proposition V.5, will also show
the following result.

Proposition V.7. If X is compact, the canonical projection induces isomorphisms
H1(X̃z)→ H1(X) and H3(X̃z)→ H3(X).

The next proposition will be the key to most of our computations.

Proposition V.8. Consider the composition

H2(X)→ H2

(
X − {z}

)
→ H2(X̃z).

Let C be a curve in X which has m smooth branches through z. Then the image of [C] in
H2(X̃z) is [C′] + m[E], where C′ is the proper transform of C in X̃z.

Proof. Let Ĉ be the normalization of C, which is in particular a smooth 2-dimensional
differentiable manifold, and f : Ĉ → C the normalizing map. The mapping f can be
deformed (differentiably, but perhaps not analytically) to a map f ′ : Ĉ → X which avoids
z; so f ′ lifts to a map f̃ ′ : Ĉ → X̃z.

z z

Figure 7. A curve with 3 smooth branches through z, and a deformation which avoids z.

Then [f̃ ′(Ĉ)] is the image of [C] in H2(X̃z). The homology class [f̃ ′(Ĉ)] is of the form
[C̃′] + n[E] for some n: indeed, f ′ can be chosen so that [f̃ ′(Ĉ)] is contained in a small
neighborhood of C′ ∪ E, which will retract onto C′ ∪ E, and hence whose 2-dimensional
homology is generated by [C′] and [E]. We discover what n is by observing that the
intersection number [f̃ ′(Ĉ)] · [E] vanishes, since the corresponding cycles are disjoint. So

0 = [f̃ ′(Ĉ)] · [E] =
(
[C′] + n[E]

)
· [E] = m− n,

since each branch of C through z contributes 1 to [C′] · [E]. !



28 Hubbard, Papadopol and Veselov

The finite approximations to X∞.

Now let us consider the set

X[N,M ] ⊂
M∏

i=N

X̃H , N ≤M,

of finite sequences (xN ,xN+1, . . . ,xM ) with pairs of successive points in ΓH! , and D[N,M ] ⊂
X[N,M ] the subset with all coordinates in D̃.

The set D[N,M ] contains the point p[N,M ] all of whose coordinates are p̃, and the point

q[N,M ] all of whose coordinates are q′. Let us set

X∗
[N,M ] = X[N,M ] −

{
p[N,M ],q[N,M ]

}
and D∗

[N,M ] = X∗
[N,M ] ∩D[N,M ].

Proposition V.9. If −∞ ≤ N ′ ≤ N ≤M ≤M ′ ≤ ∞, the natural projection

X[N ′,M ′] → X[N,M ]

has an inverse
X∗

[N,M ] → X[N ′,M ′]

defined on X∗
[N,M ].

Proof. For any point of X∗
[N,M ], the N -th coordinate is not q′, so has a well-defined

backwards orbit, and the M -th coordinate is not p̃, so it has a well-defined forwards orbit.
These orbits define an inclusion of X∗

[N,M ] into X∞. !

The point of this proposition is that we can compute the homology of X∗
[N,M ]. If V is

an algebraic variety, let Irr(V ) denote the set of irreducible components of V .

Proposition V.10. a) The space X[N,M ] is a smooth algebraic surface, and D[N,M ] is a
divisor in X[N,M ].

b) The divisor D[N,M ] consists of M + 1 − N ordered blocks, each consisting of 2d
projective lines, with the last line of one block coinciding with the first of the next, as in
Figure 8.

... ... ... ... ... ...

LN+1,1 LM-1,2d-3

AN+1AN AM AM+1

p[N,M]q[N,M]

BMBN

LN,1 LN,d-1 LN,2d-3 LM,1 LM,d-1 LM,2d-3

...

Figure 8. The divisor D[N,M ].
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Proof. Part (a) is more or less obvious, except perhaps for the points p[N,M ],q[N,M ]. The
projection onto the M -th coordinate gives an isomorphism of a neighborhood of p[N,M ]

onto a neighborhood of p̃, and the projection onto the N -th coordinate works for q[N,M ].

A point of D[N,M ] will be a sequence of points at infinity in X̃H . Such a sequence will
consist of either

• all p̃ or all q′, or

• a certain number of p̃’s (perhaps none), then a first element different from p̃, then
something (perhaps q′), then all q′s.

Let us denote by Dk the k-th block

Dk =
{
x ∈ D[N,M ]

∣∣∣xk ∈ (D̃ − Ã) ∪ {q̃} and xk−1 #= q′
}

,

for N ≤ k ≤M (if k = N , then condition xk−1 #= q′ is void). This set is parametrized by
xkxk ∈ (D̃ − Ã) ∪ {q̃}, and every point of D[N,M ] belongs to precisely one Dk, except as
follows.

• The points whose M -th coordinate belong to Ã − {q̃}; these form a projective line
denoted AM+1.

• The points qk, k = N + 1, . . . , M whose k-th coordinate is q′ and whose k − 1-st
coordinate is q̃. The point qk is simultaneously the left-most point of Dk and the right-
most point of Dk−1;

• The point qM+1 = AM+1 ∩DM . !

All lines have the same self-intersection numbers as the corresponding lines have in D̃,
except for the connecting lines, i.e., the lines Ak, k = N + 1, . . . , M where xk ∈ A′ and
xk−1 #= q′, which have self-intersection −3, as indicated in the Figure 9. This is proved as
part of the proof of V.11.

......
-1 -d -3 -3 -d -1

  2d-3 lines with
self-intersection -2

  2d-3 lines with
self-intersection -2

...

Figure 9. The self-intersections of the components of D[N,M ].

Proposition V.11. a) The map which associates to each irreducible component of D[N,M ]

the 2-dimensional homology class which it carries induces an isomorphism

ZIrr(D[N,M]) → H2

(
X[N,M ]

)
,

when −∞ < N ≤M <∞.
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b) The inclusion X∗
[N,M ] → X[N,M ] induces an isomorphism on 2-dimensional homology.

Before we prove this proposition, note that it represents the second homology group of
X∗

∞ as
lim
→
N

ZIrr(D[−N,N]), (5.2)

since an increasing union of open sets is a inductive limit in the category of topological
spaces, and homology commutes with inductive limits ([Spa], Chap. IV, 1.7). This is very
similar to example V.3 above, and we will need to look carefully at the inclusions.

Proof. (a) With a slightly different definition of X[N,M ], this follows from Proposition
V.6.

We need to know that X[N,M ] is obtained from the projective plane P2 by a sequence
of blow-ups, corresponding naturally to the irreducible components of D[N,M ]. First no-
tice that we may assume that N = 0: clearly shifting the indices gives an isomorphism
X[N,M ] → X[0,M−N ].

Next observe that X[0,0] = X̃H , which as we saw is obtained from P2 by a sequence of

blow-ups, each of which creates one component of D̃ = D[0,0] other than A′ = A0. The
component A′ is the proper transform of l∞ which was there to begin with and generated
the homology H2(P2). So the theorem is true when M = 0.

If M = 1, notice that X[0,1] = ΓH! , so the diagram

X[0,1]
pr2−−−−→ X[0,0]

pr1

0 π

0

X[0,0]
H̃−−−−→ P2

is a fibered product by Proposition IV.4. But the bottom mapping H̃ is an isomorphism
on a neighborhood of p̃, mapping p̃ to p = [0 : 1 : 0]. Thus the inverse image by pr1 of this
neighborhood maps under pr1 to its image just as the inverse image of the neighborhood
of p maps under π.

This same argument shows that the component A1 of D[0,1] has self-intersection 3.
Indeed, the line A1 ⊂ D[0,0] has self-intersection −1, and the first two blow-ups required
to build X[0,1] are blow-ups of points of A1.

Apply the same argument, using the diagram

X[0,2] −−−−→ X[1,2]
0

0

X[0,1] −−−−→ X̃H

to show that X[0,2] is constructed from X[0,1] by a sequence of blow-ups, etc.
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As above, we see that A2, which has self-intersection −1 in X[0,1], has twice a point
blown up, and has self-intersection −3 in X[0,2]; by induction Ak will have self-intersection
−1 in X[0,k+1] and self-intersection −3 in X[0,k+2].

(b) This follows immediately from Propositions V.4 and V.10. !

Next, we need to compute the homomorphism H2

(
X[−N,N ]

)
→ H2

(
X[−(N+1),N+1]

)

induced by the composition of the isomorphism

H2

(
X[−N,N ]

)
→ H2

(
X∗

[−N,N ]

)

and the mapping

H2

(
X∗

[−N,N ]

)
→ H2

(
X[−(N+1),(N+1)]

)

induced by the inclusion.

Proposition V.12. The homomorphism

iN : H2

(
X[N,M ]

)
→ H2

(
X[(N−1),M+1]

)

described above is given by the following formula:

iN [C] = [C] if C #= AM+1, AN

iN [AM+1] = [AM+1] + [BM+1] + 2[L2d−3,M+1] + 3[L2d−4,M+1] + · · ·+

d
(
[Ld−1,M+1] + [Ld−2,M+1] + · · · + [L1,M+1] + [AM+2]

)
,

iN [AN ] = [AN ] + [BN−1] + 2[L1,N−1] + 3[L2,N−1] · · ·+

d
(
[Ld−1,N−1] + [Ld,N−1] + . . . · · · + [L2d−3,N−1] + [AN−1]

)
.

Proof. This is a straightforward verification, using Proposition V.8. The following se-
quence of figures should explain exactly the sequence of blow-ups.

...... pM+1qM+1 ... pM+1

[AM+1] [AM+1]+[BM+1] [AM+1]+[BM+1]+2[L1,M+1]

AM+1 BM+1L2d-3,M L1,M+1

Figure 10. The first two blow-ups performed on AM+1 ⊂ X[N,M ]. Note that each of AM+1

and BM+1 contribute 1 to the coefficient of the exceptional divisor L1,M+1.
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...
[AM+1]+[BM+1]+2[L1,M+1]+3[L2,M+1]

... ...

[AM+1]+[BM+1]+2[L1,M+1]
  +3[L2,M+1]+ ... + d[Ld-1,M+1]

Ld-1,M+1
L2,M+1

Figure 11. The next blow-up and the configuration after d blow-ups. For the figure on the

right, BM+1 contributes 1 and 2L1,M+1 contributes 2 to the coefficient of the exceptional divisor

L2,M+1.

... ...

[AM+1]+[BM+1]+2[L1,M+1] +3[L2,M+1]
   + ... + d[Ld-1,M+1]+d[Ld-1,M+1]

Ld,M+1

Figure 12. The configuration after d +1 blow-ups. dLd−1,M+1 contributes d to the coefficient

of the exceptional divisor Ld,M+1, and it is the only contribution since this time we are blowing

up an ordinary point.

... ...

[AM+1]+[BM+1]+2[L1,M+1] +3[L2,M+1]
   + ... + d[Ld-1,M+1]+...+d[L2d-3,M+1]+d[AM+2]

L2d-3,M+1

...

AM+2

pM+2

Figure 13. The configuration after all the blow-ups required to pass from X[N,M ] to X[N,M+1]

have been made. We have blown up ordinary points on lines with weight d, so the new exceptional

divisor always has weight d.

!

Theorem V.13. a) The inductive limit

lim
→
N

H2(X[−N,N ]) = H2(X
∗
∞)

embeds naturally in ZIrr(D∗
∞).

b) If v ∈ ZIrr(D∗
∞) is an element of H2(X∗

∞), then the limits

ν+(v) = limn→∞
a(An)

dn
and ν−(v) = limn→∞

a(A−n)

dn
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both exist, since the sequences are eventually constant.

c) The sequence

0→ Z(Irr(D∗
∞)) → H2(X

∗
∞)

(ν+,ν−)→ Z[1/d]⊕ Z[1/d]→ 0 (5.3)

is exact.

Proof. a) Any element v of the inductive limit is the image of some vN ∈ H2(X[−N,N ]) =

ZIrr(D[−N,N]) for all sufficiently large N , and the coefficient vN (L) of any irreducible com-
ponent L ∈ Irr(D[−N,N ]) is then the same as the coefficient vN ′(L) for all N ′ ≥ N by
Proposition V.12. This proves (a).

The element v of the limit is entirely determined by the corresponding element of vN ∈
H2(X[−N,N ]). In particular, vN assigns some integer weights α to [A−N ] and β to [AN+1].
Then, again by Proposition V.12, we see that

v(A−N−1) = dα, v(A−N−2) = d2α, . . .

v(AN+2) = dβ, v(AN+3) = d2β, . . . .

In particular, the sequences defining ν− and ν+ are constant after N , so the limits exist.
This proves (b).

For any element v ∈ Z(Irr(D∗
∞)), there exists N such that v has coefficient 0 for all

irreducible components L ∈ Irr(D∗
∞ which do not belong to D[−N,N ]. Then v is in the

image of H2(X[−(N+1),N+1], and we see that Z(Irr(D∗
∞)) is included in H2(X∗

∞). Clearly it
is the kernel of the mapping (ν−, ν+), which is surjective. !

The exact sequence (5.3) is naturally split: call v−, v+ ∈ H2 (X∗
∞) the images of [A′]

and [Ã] in H2(X[0,0]) = H2(X̃H) under the inclusions

H2(X[0,0])→ H2(X[−1,1])→ H2(X[−2,2])→ . . . .

Then ν+(v+) = ν−(v−) = 1, and another way of stating part (c) is that for any element v
of the inductive limit lim

→
N

H2(X[−N,N ]) there exists a unique pair (a, b) = (ν−(v), ν+(v)) ∈

Z[1/d]⊕ Z[1/d] such that v − av− − bv+ belongs to Z(Irr(D∞)).

Theorem V.14. The Hénon mapping H∞ : X∗
∞ → X∗

∞ induces a commutative diagram

0 −−−−→ Z(Irr(D∗
∞)) −−−−→ H2(X∗

∞)
(ν−,ν+)−−−−−→ Z[1/d]⊕ Z[1/d] −−−−→ 0

0 α

0 H2(H∞)

0
0β

0

0 −−−−→ Z(Irr(D∗
∞)) −−−−→ H2(X∗

∞) −−−−→ Z[1/d]⊕ Z[1/d] −−−−→ 0,
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where α is the shift

α([Ak]) = [Ak−1] , α([Bk]) = [Bk−1] , α([Li,k]) = [Li,k−1]

and β is the mapping β(a, b) = (a/d, bd).

Proof. The action of H on the homology is induced by shifting (to the left) by one block
in ZIrr(D∗

∞). Clearly, this induces the same shift on Z(Irr(D∗
∞)), and the statement about α

is true. The see that β is correct, consider a homology class x ∈ ZIrr(D∗
∞) in the image of

H2

(
X[−N,N ]

)
. It will satisfy

xAN+1 = b, xAN+2 = db, xAN+3 = d2b, . . . ,

for some b ∈ Z, and ν+(x) = b/dN . The sequence (H2(H∞))(x) is the same sequence
shifted, so that

(
H2(H∞)

)
(x)AN+1 = db,

(
H2(H∞)

)
(x)AN+2 = d2b,

(
H2(H∞)

)
(x)AN+3 = d3b, . . . ,

and

ν−
(
H2(H∞)

)
(x) =

db

dN
= dν−(x).

The computation for ν+ is similar. !

One way of understanding the exact sequence (5.3) is as part of the homology exact
sequence of the pair D∗

∞ ⊂ X∗
∞.

Proposition V.15. a) There exists a unique isomorphism

Z[1/d]⊕ Z[1/d]→ H2(X
∗
∞, D∗

∞)

which makes the diagram

H2(X∗
∞) −−−−→ Z[1/d]⊕ Z[1/d]

Id

0
0

H2(X∗
∞) −−−−→ H2(X∗

∞, D∗
∞)

commute.

b) Both H3(X∗
∞) and H3(X∗

∞, D∗
∞) are isomorphic to Z, and the canonical map

H3(X
∗
∞)→ H3(X

∗
∞, D∗

∞)

is an isomorphism.

c) Both H1(X∗
∞) and H1(X∗

∞, D∗
∞) are zero.
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Remark. We will see in Section IX that the homology group H2(X∗
∞, D∗

∞) can also be
understood as H1(S3−(Σ+∪Σ−)), where Σ+ and Σ− are solenoids embedded in a 3-sphere
obtained by an appropriate real oriented blow-up. A classical result of algebraic topology
asserts that for the standard d-adic solenoid Σd embedded in the 3-sphere in the standard
way, H1(S3 − Σd) = Z[ 1d ]. This explains why these bizarre groups are appearing in this
complex-analytic setting, by making precise sense of the sentence “at infinity, D∗ has two
solenoids”.

Proof. The exact sequence of the pair D∗
∞ ⊂ X∗

∞ reads in part

H2(D
∗
∞)→ H2(X

∗
∞)→ H2(X

∗
∞,D∗

∞)→ H1(D
∗
∞),

Clearly the first term is precisely Z(Irr(D∗
∞)), and the last terms vanishes, since D∗

∞ is a
union of 2-spheres identified at points, with the quotient topology from the disjoint union.
This proves (a).

Another part of the long exact sequence reads

H3(D
∗
∞)→ H3(X

∗
∞)→ H3(X

∗
∞, D∗

∞)→ H2(D
∗
∞)→ H2(X

∗
∞)

and the fact that the last map is injective and that H3(D∗
∞) = 0 says that the canonical

map
H3(X

∗
∞)→ H3(X

∗
∞, D∗

∞)

is an isomorphism.

To see what it is an isomorphism between, notice first that H3(P2) = 0, and it then
follows from V.7 that H3(X[N,M ]) = 0 for all N, M . Next, the inclusion

X∗
[N,M ] ∈ X[N,M ]

induces (still by V.7 for the final 0) an exact sequence

0→ H4(X[N,M ])
‖

Z

→H4(X[N,M ], X
∗
[N,M ])

‖

Z2

→ H3(X
∗
[N,M ])→ H3(X[N,M ])

‖

0

.

Thus H3(X∗
[N,M ]) is canonically the quotient of Z2 by the image of Z under the diagonal

map, i.e., it is isomorphic to Z.

The argument for (c) is similar but easier. !

The intersection form on the homology.

The homology space H2 (X∗
∞) carries a quadratic form coming from intersection. We

can make it explicit as follows.

Proposition V.16. On ZIrr(D∗
∞), the quadratic form is determined by the self-intersections

and mutual intersections of the irreducible components of D∗
∞.
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The classes v+ and v− satisfy the following rules:

v+ · v+ = v− · v− = −1 , v+ · v− = 0

v+ · [L2d−3,0] = v− · [L1,0] = 1, v+ · [A1] = v− · [A0] = −1
(5.4)

with all other intersections 0.

Proof. The statement about ZIrr(D∗
∞) should be clear.

For the other classes, one way to do it is to construct a differentiable surface C+ ⊂ X̃H

(not an algebraic curve), which represents Ã, and which avoids q̃ and q′. Note that C+

cannot be algebraic (or analytic): the self-intersection of Ã is−1 so it is rigid as an algebraic
curve. The curve C+ is then contained in X∗

∞ and represents v+. But a neighborhood
of the curve C+ is also contained in X∗

∞, so v+ only intersects curves of D∞ which C+

intersects. Thus v+ ·v+ = C+ ·[A0] = C+ ·C+ = −1, and v+ ·[L2d−3,0] = C+ ·[L2d−3,0] = 1.

Similarly, construct a differentiable surface C− ⊂ X̃H which is a deformation of A′;
clearly we can take C+ ∩ C− = /©. !

Of course the quadratic form is invariant under the action of H∞, since this is a home-
omorphism of X∗

∞. It certainly isn’t obvious from the formulas. Let us check one case,
just for consistency’s sake. Take d = 2. Since H∞ induces the shift, we see that

(H∞)∗(v
+) = 2v+ + [A0] + [B0] + 2[L1,0];

The intersection product gives

(
(H∞)∗(v

+)
)2

= 4(v+)2 + (A0)
2 + (B0)

2 + 4(L1,0)
2+

4B0 · L1,0 + 4A0 · L1,0 + 8v+ · L1,0

= −4− 3− 2− 8 + 4 + 4 + 8 = −1

as it should.

This quadratic form on H2(X∗
∞) is of course neither positive nor negative definite. For

instance ∆, the closure of the diagonal of C2 in X∗
∞, has self-intersection +1, whereas all the

irreducible components of D∗
∞ have negative self-intersection. The following proposition

says that the form is mainly negative.

Theorem V.17. The intersection form is negative definite on Z(Irr(D∗
∞)).

Proof. We will give two proofs, one conceptual and one computational. Each proves a
stronger (but not the same stronger) result.

First proof. An element v ∈ Z(Irr(D∗
∞)) comes from the homology of some X[N,M ] which

assigns coefficient 0 to the first and the last exceptional divisor. Its self-intersection in
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X[N,M ] and in X∗
∞ coincide. We will in fact prove that if v has coefficient 0 with respect

to one of these, then (v · v) < 0 unless v = 0.

Indeed, the complement of the last exceptional divisor in D[N,M ], can be blown down to
a point, so by a theorem of Grauert [G], the intersection matrix of this divisor is negative
definite, hence v · v is negative if v #= 0.

Second proof. Let us call an, bn, xi,j the coefficients of An, Bn, Li,j respectively. Thus
we are considering the quadratic form

. . .− 3a2
n + 2anxn,1 − 2x2

n,1 + 2xn,1xn,2 + · · ·− 2x2
n,d−2 + 2xn,d−2xn,d−1

− db2
n + 2bnxn,d−1 − 2x2

n,d−1 + 2xn,d−1xn,d + · · · + 2xn,2d−3an+1 − 3a2
n+1 + . . . .

It is clearly enough to show that the quadratic form obtained by allocating half the coef-
ficient an to the next term and half to the previous term is negative definite, i.e., that the
quadratic term in 2d variables

−
3

2
a2
0 + 2a0x1 − 2x2

1 + 2x1x2 + · · ·− 2x2
d−2 + 2xd−2xd−1

− db2 + 2bxd−1 − 2x2
d−1 + 2xd−1xd + · · · + 2x2d−3a1 −

3

2
a2
1

is negative definite. This is something like working in one block at a time.

If we isolate the terms containing b, and complete squares, we find that this quadratic
form can be written

−
(
db2 − 2bxd−1 +

1

d
x2

d−1

)

−
3

2
a2
0 + 2a0x1 − 2x2

1 + 2x1x2 + · · ·− 2x2
d−2 + 2xd−2xd−1

−
(
2−

1

d

)
x2

d−1 + 2xd−1xd − 2x2
d · · ·+ 2x2d−3a1 −

3

2
a2
1.

If we complete squares from both ends, we can write this as

−
(
db2 − 2bxd−1 +

1

d
x2

d−1

)

−
(3

2
a2
0 − 2a0x1 +

2

3
x2

1

)
−
(3

2
a2
1 − 2a1x2d−3 +

2

3
x2

2d−3

)

−
(4

3
x2

1 − 2x1x2 +
3

4
x2

2

)
−
(4

3
x2

2d−3 − 2x2d−3x2d−2 +
3

4
x2

2d−2

)

− · · ·− . . .

−
(d + 1

d
x2

d−2 − 2xd−2xd−1 +
d

d + 1
x2

d−1

)
−
(d + 1

d
x2

d − 2xdxd−1 +
d

d + 1
x2

d−1

)

−
d− 1

d(d + 1)
x2

d−1.

!
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It works, with a tiny bit to spare, so we actually get a slightly stronger result:

Proposition V.18. There exists K depending only on d such that for any v ∈ Z(Irr(D∗
∞)),

we have
1

K

∑
v2

i ≤ −v · v ≤ K
∑

v2
i .

Thus we can complete C(Irr(D∗
∞)) with respect to the intersection inner product, to get

a Hilbert space, which we denote Ĥ−
2 (X∞ − {p∞,q∞}; C). By Proposition V.18, this

intersection product norm is equivalent to the l2 norm on the space of sequences.

The exact sequence

0→ Z(Irr(D∗
∞)) → H2(X

∗
∞)→ Z[1/d]⊕ Z[1/d]→ 0

gives, tensoring with C,

0→ C(Irr(D∗
∞)) → H2(X

∗
∞; C)→ C⊕C→ 0

so it is natural to complete the entire homology, i.e., to set

Ĥ2(X
∗
∞; C) = Ĥ−

2 (X∗
∞; C)⊕ Cv+ ⊕Cv−.

On this completed homology space (unlike homology with infinite chains, dual of cohomol-
ogy with compact supports), the inner product is still defined (for instance by the formulas
(5.4)).

Clearly the subspace C(Irr(D∗
∞)) ⊂ H2(X∗

∞; C) is invariant under the Hénon mapping
H, which is simply a shift in D∞, so it induces a unitary operator on the Hilbert space
Ĥ : Ĥ−

2 (X∞ − {p∞, q∞}; C). This unitary operator has only continuous spectrum, on the
unit circle, and with spectral density 2d− 1. There are in addition two eigenvectors of

(H∞)∗ : Ĥ2(X
∗
∞; C)→ Ĥ2(X

∗
∞; C),

one with eigenvalue d and one with eigenvalue 1/d. One way of defining them is as

w+ = lim
n→∞

1

dn
(H∞)n

∗ (v+) and w− = lim
n→∞

1

dn
(H∞)−n

∗ (v−).

These do belong to the completed homology (but not to the homology), since w+ is v+ on
the positive part of &L∗

∞, and decreases like a geometric series on the negative part.

These homology classes are already well known in the theory: they are the homology
classes of the currents µ− and µ+, as defined by [BS1].
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VI. Real oriented blow-ups of complex divisors in surfaces

In this section we will describe a technique which will allow us, among other things, to
understand the structure of X∞ at the bad points p∞,q∞. Given a divisor D ⊂ X in a
surface, the idea is to take an open tubular neighborhood W of D in X , together with a
projection π : W̄ → D. Excise W , to form X ′ = X −W . If W was chosen properly, X ′

will be a real 4-dimensional manifold with boundary ∂X ′ = ∂W̄ . The interior of X ′ will
be homeomorphic to X −D. We will think of X ′ as some sort of blow-up of X along D,
with π : ∂X ′ → D the exceptional divisor.

This picture is the right one to keep in mind, but it is non-canonical. Further, the
spaces ∂X ′, X ′ have no natural algebraic structure (or even analytic). In this section
we will formalize the construction above when W is the “first-order infinitesimal tubular
neighborhood” of D. This will involve considering X and D as real algebraic objects, a
4-dimensional smooth variety XR and a singular surface DR ⊂ XR.

In our definition II.3 of blow-ups, and in the associated construction, we never used
that we were working over an algebraically closed field; section II applies just as well if
the underlying field is R (or any field). Let Y ⊂ X be a complex algebraic manifold and a
subspace. We will call XR the manifold X seen as a real algebraic manifold, YR ⊂ XR the
subspace defined by the ideal IR(Y ) of real-algebraic functions on XR which vanish on the
real-algebraic subset Y .

Remark. This construction of YR does not coincide with the more obvious idea of taking
a chart U ⊂ X with U ⊂ Cn, and complex equations fj : U → C such that Y ∩ U
corresponds to the ideal generated by f1, . . . , fk. Then consider the subset of U ⊂ R2n

with coordinates x1+iy1 = z1, . . . , xn +iyn = zn and the locus defined by the 2k equations
Ref1 = 0, Im(f1) = 0, . . . , Re(fk) = 0, Im(fk) = 0, or equivalently by the ideal generated
by the {Re(fj), Im(fj)}. Even in simple cases, these two ideals are different.

Example VI.1. Consider X = C2, with Y given by the equation xy = 0. Then the
construction above yields the locus in R4 defined by the equations

x1x2 − y1y2 = 0 and x1y2 + x2y1 = 0. (6.1)

But the algebraic set Y ⊂ R4 is the union of the x1, y1-plane and the x2, y2-plane; the
ideal IR(Y ) is generated by the four elements

x1x2, x1y2, y1x2, y1x2. (6.2)

In Section II we saw that this ideal cannot be generated by fewer elements, since the blow-
up of C4 along the subspace it defines is not a subset of P1 or P2. Thus the ideals are
different, and in fact the subset defined by the elements (6.1) consists in C4 of four planes,
two of which are our real planes, and the others intersect the real locus only at the origin.
Our space YR is the one given by the ideal generated by the elements (6.2).
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The ideal YR appears to be quite difficult to compute in general. For instance, if X = C2

and Y is the curve of equation x2 + y3 = 0, we do not know how to write generators for
the corresponding ideal IR(Y ). 4

We will study the blow-up of XR along YR. The objects we obtain this way are very
different from the blow-up of X along Y . In particular, when Y is a divisor in X , the
complex blow-up doesn’t change it at all, whereas as a real variety it is of codimension
2, and the real blow-up is quite different from the original space, as we will see. We will
denote this blow-up by BR(X, Y ), rather than (X̃R)YR

, both to lighten notation, and to
emphasize the different, more topological way we think of real blow-ups.

Remark. In section II, we were working with analytic spaces, with structure sheaves
which might contain nilpotents, etc. This is if anything even more important here: the
origin in R2 defined by the two equations x = 0, y = 0 and the origin defined by the single
equation x2 + y2 = 0 are completely different objects, and their blow-ups have no obvious
relation. 4

The space BR(X, Y ) is a real-algebraic space, but it is not the boundary of a tubular
neighborhood we are after; we will need to modify it a bit. To avoid interrupting the
formal definition, we isolate a purely topological construction we will need: prime ends.

Prime Ends.

Definition VI.2. Let Z ⊂ U be a topological space and a closed subset. Define the set of
prime ends Pz(U, Z) of U − Z at z ∈ Z to be the projective limit

Pz(U, Z) = lim
←

π0(V − Z)

where the projective limit is over all neighborhoods V of z in U with respect to inclu-
sions, and π0 is the functor which associates to a topological space its set of connected
components.

Now consider the prime end modification of U along Z, which is the disjoint union

P(U, Z) = (U − Z) %
∐

z∈Z

Pz(U, Z),

where the topology on U − Z in unchanged, and a basis of neighborhoods of a point
z̃ ∈ Pz(U, Z) is obtained by choosing a basis of neighborhoods of z in U , and taking the
closure in U of the component of U − Z corresponding to z̃. This space comes with an
obvious projection P(U, Z) → U , which is continuous. With slight abuse of notation, we
will denote P(Z) ⊂ P(U, Z) the inverse image of Z in P(U, Z).

The following properties of the prime end modification are left to the reader:

• The prime end modification of a Hausdorff space is Hausdorff.
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• When U is a locally finite simplicial complex, and Z ⊂ U is a simplicial subset,
Pz(U, Z) is finite, and the projective limit is achieved by taking V the star of z, i.e., the
union of the open simplices with z in their closure.

• The prime end modification of a simplicial complex along a subcomplex is a simplicial
complex.

• If F : U1 → U2 is continuous, Z2 is closed in U2 and Z1 = F−1(Z2), then there exists
a unique mapping

P(F ) : P(U1, Z1)→ P(U2, Z2) (6.3)

making the diagram

P(U1, Z1)
P(F )−−−−→ P(U2, Z2)

0
0

U1 −−−−→ U2

commute.

Definition of the real oriented blow-up.

For real algebraic varieties, it makes sense to speak of the oriented blow-up. This takes
two steps:

Step 1. Let X be an analytic space, and Y a closed subspace. If Y = f−1(0), where
f : X → Cn+1 is analytic, recall from Section II that the real blow-up is a subspace
BR(X, Y ) ⊂ XR×P2n+1

R
, locally defined by a section f̃ of the tautological line bundle over

XR×P2n+1
R

which is not a zero-divisor. We will be mainly concerned with the case n = 0,
so Y is a divisor in X , but YR is of codimension 2 in XR.

The sphere S2n+1 is naturally a double cover of P2n+1
R

: to every s ∈ S2n+1 we can
consider the line ls = sR ∈ P2n+1, and the double cover is simply s 0→ ls. Consider the
inverse image B∗

R
(X, Y ) of BR(X, Y ) in XR × S2n+1, now defined by a section f∗ of the

tautological bundle on X × S2n+1 (note that the tautological line bundle over S2n+1 is
simply the normal bundle, so that f∗ is a normal vector field on S2n+1). Since this bundle
is oriented (in fact trivial), it makes sense to consider the subset

B∗∗
R (X, Y ) ⊂ B∗

R(X, Y )

defined by f∗ ≥ 0, with B∗∗
R

(Y ) ⊂ B∗∗
R

(X, Y ) defined by f∗ = 0 as the exceptional divisor.

Remark. The object of passing to the double cover is to make the tautological bundle
oriented, so as to be able to speak of f∗ ≥ 0. 4

Step 2. The pair

B∗∗
R (Y ) ⊂ B∗∗

R (X, Y )
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is almost the oriented real blow-up, but sometimes it has singularities which we want to
eliminate, using prime ends. Define the oriented real blow-up B+

R
(X, Y ) and the exceptional

divisor B+
R

(Y ) ⊂ B+
R

(X, Y ) to be the prime end modification

B+
R

(Y ) = P(B∗∗
R (Y )) ⊂ P

(
B∗∗

R (X, Y ),B∗∗
R (Y )

)
= B+

R
(X, Y ).

of B∗∗
R (X, Y ) along B∗∗

R (Y ).

We will denote by p(X,Y ) : B+
R

(X, Y ) → X the canonical projection, and we will omit
the subscript when there is no ambiguity.

Example VI.3. Let us construct the real oriented blow-up of the origin Y in C. Set
z = x + iy, so that as a real algebraic subspace the origin YR is defined by the equations
x = y = 0, and BR(C, Y ) ⊂ C× P1

R
is the space

{(
x
y

)
,

[
u
v

]
∈ R2 × P1

R | xv = uy

}
.

The set B∗
R
(C, Y ) comes from replacing P1

R
by S1, i.e., it is the set

B∗
R(C, Y ) =

{(
x
y

)
,

(
u
v

)
∈ R2 × R2

∣∣ u2 + v2 = 1 and xv = uy

}
.

The set B∗∗
R

(C, Y ) ⊂ B∗
R
(C, Y ) is the subset where

(
x
y

)
is a non-negative multiple of

(
u
v

)
, in other words, it is the set

B∗∗
R (C, Y ) =

{(
x
y

)
,

(
u
v

)
∈ R2 × R2

∣∣ u2 + v2 = 1, xv = uy and ux ≥ 0

}
.

The mapping (R/2πZ)× [0,∞)→ B∗∗
R

(C, Y ) given by

(θ, r) 0→
(

r

(
cos θ
sin θ

)
,

(
cos θ
sin θ

))

is a homeomorphism; so every point of the exceptional divisor (R/2πZ)× {0} corresponds
to a unique prime end, and B+

R
(C, Y ) = B∗∗

R
(C, Y ). You might prefer to think of the real

oriented blow-up as passing to polar coordinates, without identifying the different angles
when the radius is 0.

We will refer to points of the exceptional divisor R/2πZ as points “infinitesimally near
the origin”, whose modulus is zero, but which still have a polar angle.

In this case, the exceptional divisor is the circle R/2πZ, but the identification with the
circle depends on the chart. In general, if you take the real oriented blow-up of a Riemann
surface at a point, the circle R/2πZ will act freely and transitively on the exceptional
divisor, but there will be no distinguished point on this divisor. More generally yet, the
real oriented blow-up of a surface along a smooth curve will be a principle circle-bundle,
but not naturally trivial (and usually topologically non-trivial: see Section VIII).
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Naturality of the real oriented blow-up.

This definition seems (and perhaps it is) a little ad-hoc. Still: it has some nice prop-
erties. For instance, the real oriented blow-up is always homeomorphic to a simplicial
complex. Indeed, the space B∗∗

R
(X, Y ) is obviously subalgebraic, hence triangulable by a

theorem of Hironaka [Hi2]. Since the prime-end modification of a simplicial complex along
a subcomplex is still a simplicial complex, the result follows.

Next, notice that it does have a certain weak naturality.

Proposition VI.4. Let F : X1 → X2 be an algebraic isomorphism of complex algebraic
spaces, Y2 ⊂ X2 an algebraic subspace, and Y1 = F−1(Y2). Then there exists a unique
homeomorphism B+

R
(F ) : B+

R
(X1, Y1)→ B+

R
(X2, Y2) such that the diagram

B+
R

(X1, Y1)
B+

R
(F )

−−−−→ B+
R

(X2, Y2)

p1

0 p2

0

X1
F−−−−→ X2

commutes, where the pi are the canonical projections.

Remark. The mapping B+
R

(F ) is actually an algebraic isomorphism, after an appropriate
definition has been given.

Proof. It is enough to prove the statement locally on X1, so we may suppose that (Y2)R is
given by equations. But clearly if p ∈ IR(Y2), then p◦F ∈ IR(Y1), and since F is invertible,
this means that F ∗(IR(Y2)) = IR(Y1). Then Corollary II.8 gives a mapping

BR(F ) : BR(X1, Y1)→ BR(X2, Y2)

which lifts uniquely to the double cover

B∗
R(F ) : B∗

R(X1, Y1)→ B∗
R(X2, Y2)

so that oriented lines are mapped to oriented lines. Thus the region where f∗ ≥ 0 is
preserved and the map lifts to

B∗∗
R (F ) : B∗∗

R (X1, Y1)→ B∗∗
R (X2, Y2).

Finally, we find our lift B+
R

(F ) from the naturality of the prime end modification (see
6.3). !

The authors do not know in what generality it is true that the real oriented blow-
up of a complex manifold along a closed subspace yields a PL manifold with boundary:
is this perhaps always true? In any case, we will require the result only when X is a
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complex surface and Y = D = ∪Di is a divisor consisting of a locally finite union of curves
intersecting transversally, i.e., a divisor with normal crossings. In that case it is true: the
real blow-ups admit the following detailed description.

Theorem VI.5. a) The real blow-up BR(X, D) is a 4-dimensional manifold, and B∗∗
R

(D)
is a singular 3-dimensional subvariety.

b) The real oriented blow-up B+
R

(X, D) is a 4-dimensional manifold with boundary, and
the boundary is a manifold with corners.

Before we give the proof, note the following corollary.

Corollary VI.6. There is a tubular neighborhood W of D in X , together with a projection
p̄ : W → D extending the identity on D, and a homeomorphism h : B+

R
(D)→ ∂W making

the diagram

B+
R

(D)
h−−−−→ ∂W

p

0 p̄

0

D −−−−→ D

commute.

Proof of VI.6. Since B+
R

(X, D) is a manifold with boundary, there exists a continuous
mapping φ : B+

R
(D)× [0, 1]→ B+

R
(X, D) which is a homeomorphism onto its image, which

forms a tubular neighborhood of the boundary. Let W be the image of the projection
of φ(B+

R
(D) × [0, 1]) into X ; it is a neighborhood of X which retracts onto D, i.e., a

tubular neighborhood of D, and clearly its boundary is B+
R

(D) × {1}, hence naturally
homeomorphic to B+

R
(D). !

Remark VI.7. It follows from VI.5 that B+
R

(D) is an orientable manifold, being the
boundary of an oriented 4-manifold. However, because we tend to think of B+

R
(D) rather

as the boundary of a tubular neighborhood of D than as the boundary of its complement,
we will give B+

R
(D) the opposite of the boundary orientation of ∂B+

R
(X, D).

Proof of VI.5. The theorem only needs to be proved locally, so it is enough to prove it
when X = C2 and D is the union of the coordinate axes. However, remember that we are
considering these as real algebraic varieties, so X = R4, and D = R2× {0}∪ {0}×R2. We
have already computed equations for this blow-up, in equations 2.3:

U1U4 = U2U3

U4y1 = U2y2

U4x1 = U3x2

U3y1 = U1y2

U2x1 = U1x2.

(6.4)
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When we computed these equations, we were working in the complex, but they are just as
true in the real.

In particular, since C̃4
C2×0∪0×C2 is smooth, so is BR(X, D), and BR(D) is singular,

having locally the structure of two 3-dimensional submanifolds intersecting transversally
along a (real) surface in R4 (see 2.5).

Now, to understand B∗
R
(X, D), we simply have to consider the locus with the same

equation, but think of (U1, U2, U3, U4) as the coordinates of a point in S3 rather than

homogeneous coordinates of a point in P3
R
. Note that





U1

U2

U3

U4



 is a positive section of the

tautological (i.e., normal) bundle to S3, and B∗
R
(X, D) is the locus where





x1y1

x2y1

x1y2

x2y2



 is a multiple of





U1

U2

U3

U4





whereas B∗∗
R

(X, D) is the locus where this multiple is ≥ 0.

Lemma VI.8. The mapping Φ : [0,∞)2 × (R/2πZ)2 → R4 × S3 which sends

(
r1, r2 ∈ [0,∞), θ1, θ2 ∈ R/2πZ

)
to






x1 = r1 cos θ1 x2 = r1 sin θ1

y1 = r2 cos θ2 y2 = r2 sin θ2

U1 = cos θ1 cos θ2 U2 = sin θ1 cos θ2

U3 = cos θ1 sin θ2 U4 = sin θ1 sin θ2






maps surjectively to B∗∗
R

(X, D), and only the points

(0, 0, θ1, θ2) and (0, 0, θ1 + π, θ2 + π)

are identified.

Proof of VI.8. Clearly the equations 6.4 are satisfied on the image of Φ. Moreover, on
the image of Φ, we have 



x1y1

x2y1

x1y2

x2y2



 = r1r2





U1

U2

U3

U4





and since r1r2 ≥ 0, the image of Φ is contained in B∗∗
R

(X, D).

We will try to define an inverse Φ−1 : B∗∗
R

(X, D) → [0,∞)2 × (R/2πZ)2; our attempt
will show the remainder of the lemma.
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Clearly if (x1, x2) #= (0, 0) and (y1, y2) #= (0, 0), it is easy to reconstruct r1, r2, θ1, θ2 by
representing these points in polar coordinates.

You can still compute the polar coordinates if one of (x1, x2) or (y1, y2) is the origin
of R2. Suppose for instance it is the first. The difficulty is then to compute θ1, but this
can be found from the second lot of equations, for instance cos θ1 = U1/ cos θ2. But when
both points are the origin, then the second set of equations only determine (θ1, θ2) up to
the given ambiguity, since the real “Veronese” mapping

V : R/2πZ×R/2πZ→ S3 , (θ1, θ2) 0→





cos θ1 cos θ2
sin θ1 cos θ2
cos θ1 sin θ2
sin θ1 sin θ2





is a double cover of its image. ! VI.8

This shows that the local structure of B∗∗
R (X, D) is the union of two opposite quadrants,

multiplied by a smooth surface, since the domain of Φ is the first quadrant times a torus,
and (corner × torus) is a double cover of its image. The open quadrants correspond to
the locus r1r2 > 0, and the prime end closure consists exactly of doubling the singular
locus, to make the oriented blow-up a manifold with boundary, the boundary of which is a
manifold with corners. In particular, the map Φ lifts to a homeomorphism of the oriented
blow-up. !

We saw that we could understand the real oriented blow-up of C at 0 in terms of polar
coordinates. We will now show that this is still true for the real oriented blow-up of C2

along D = C× {0} ∪ {0}× C. We will denote C∗ = C− {0}.

Corollary VI.9. The real oriented blow-up B+
R

(C2, D) is the closure of the set

{
(w1, w2, θ1, θ2) ∈ (C∗)2 × (R/2πZ)2

∣∣∣∣
w1

|w1|
= eiθ1 ,

w2

|w2|
= eiθ2

}

in C2 × (R/2πZ)2.

Proof. We saw in Lemma VI.8 that the real oriented blow-up is parametrized by [0,∞)2×
(R/2πZ)2. !

From this description, we see that in the real oriented blow-up, when one of the variables
is 0, its polar angle remains. More precisely, let p : B+

R
(D) → D be the projection of the

exceptional divisor.

Corollary VI.10. Let D ⊂ of X be a divisor with normal crossings in a surface, and
p : B+

R
(X, D) → X be the canonical projection. The inverse images of points by p admit

the following canonical description:
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a) If z ∈ D is an ordinary point, p−1(z) is canonically homeomorphic to S(TzX/TzD),
where S(E), the sphere of E, is the space of oriented lines in E (i.e., the double cover of
PR(E)). In particular, it is homeomorphic to a circle, and is principal under the circle
R/2πZ acting by rotations.

b) Let z ∈ D be a double point, say locally z = D1 ∩D2. Then p−1(z) is canonically
homeomorphic to

S
(
TzX/TzD1

)
× S

(
TzX/TzD2

)
.

In particular, it is homeomorphic to a torus, and principal under (R/2πZ)×(R/2πZ) acting
coordinatewise on the two factors.

Corollary VI.11. If X is a complex surface, and D ⊂ X is a smooth curve, then the
canonical mapping p : B+

R
(D)→ D is a principal circle-bundle.

Remarks VI.12. 1) We are using the fact that TzX/TzD is a complex vector space of
dimension 1 and not just a real vector space of dimension 2 to make the rotations above
well-defined.

2) In part (b), we could also say that p−1(z) is canonically homeomorphic to S(TzD2)×
S(TzD1), since there is a canonical homeomorphism TzD2 → TzX/TzD1. This seems
simpler, but it doesn’t help when we want to think of a double point as a limit of ordinary
points.

3) Let D′ denote D with the double points removed. It follows from this theorem that
p−1(D′) is a principal circle-bundle over D′.

VII. The effect of complex blow-ups on real oriented blow-ups

Let z ∈ D ⊂ X be a point of a divisor in a surface. We now want to show exactly how a
complex blow-up of X at z affects the real oriented blow-up of the divisor. This will relate
B+

R
(X, D) and B+

R
(X̃z, D̃), where D̃ = π−1(D) and π : X̃z → X is the canonical projection.

Clearly B+
R

(X, D) and B+
R

(X̃z, D̃) have the same overall topology: the boundary of a
tubular neighborhood of the divisor D is still the boundary of a tubular neighborhood of
D̃. What is changed is the way the circle acts.

The description will be given in Theorems VII.5 and VII.9, which deal with blowing
up a smooth point and a double point of the divisor respectively. Before we state these
results, we will isolate a result in differential topology, which is somehow almost obvious,
but which we found surprisingly hard to prove. It will be essential to the proof of Theorem
VII.11.

Opening Manifolds. In this section, we will show that you can “open a manifold along
a submanifold”, squeezing the outside arbitrarily little. The difficulty of the results comes
from the fact that the opening is constrained to respect certain coordinates, whereas the
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metric with respect to which we are measuring the squeezing is unrelated to those coordi-
nates.

Let M be a compact smooth k-dimensional manifold, E a vector space with a Euclidean
norm, and let µ be a continuous Riemannian metric on M × E; we will denote |ξ|µ the
length of tangent vectors with respect to this metric, and dµ(u, v) the distance between
u ∈M×E and v ∈M×E. Note that we are not assuming any particular relation between
the norm | | on E and the Riemannian metric µ.

Let us denote by Nr the closed subset

Nr = {(m, x) ∈M ×E | |x| ≤ r }

of M × E, so that N0 = M × {0}, and Nr is a closed tubular neighborhood of N0 when
r > 0.

Lemma VII.1. For any α < 1 and any R > 0, there exist r > 0 and a C∞ diffeomorphism

F : (M × E)−N0 → (M ×E)−Nr

such that

(1) F maps the fiber {m}× E to itself for every m ∈M ;

(2) F is the identity outside NR;

(3) dµ(F (u), F (v)) ≥ αdµ(u, v) for all pairs of points u, v in M × E −N0.

We will refer to such a mapping F as “opening” M × E along M × {0}.

Proof. Fix α, 0 < r0 < R. Choose a family of increasing diffeomorphisms τρ : (0,∞)→
(ρ,∞) for 0 < ρ sufficiently small, such that

(i) All τρ(t) = t when t > R;

(ii) τρ converges to the identity in the C1 topology on compact subsets of (0,∞) as
ρ→ 0.

(iii) τ ′ρ(t) > 1 for t ≤ r0.

ρ1
ρ2

r0 R

Figure 14. The graphs of τρ1 and τρ2 .
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Consider

Fρ : M × E −N0 →M × E −Nρ, (m, x) 0→
(

m, τρ(|x|)
x

|x|

)
.

We claim that Fρ will do the trick for ρ sufficiently small. Only the third condition
poses any problem.

Sublemma VII.2. Recall that α < 1 and R > 0 are fixed. There exists ρ0 > 0 such that

dµ

(
Fρ(u), Fρ(v)

)
≥
√
αdµ(u, v)

when u, v ∈ Nρ0 −N0 and for all ρ < ρ0.

Proof of VII.2. Choose a number β < 1 such that β2 >
√
α. For each point (m, 0) ∈

M × {0}, find U ⊂ Rk, V ⊂ E and a local coordinate φ : U × V → M × E at (m, 0) such
that the diagram

U × V −−−−→ M × E

pr1

0
0pr1

U −−−−→ M

commutes.

By making our coordinate neighborhood small enough, we can assume that the ratio of
the constant (Euclidian) Riemannian metric µ0 on U×V , given by the Riemannian metric
on T(m,0)M ×E, and the given Riemannian metric µ (viewed as a metric on U × V via φ)
satisfy

β <
|ξ|µ0

|ξ|µ
<

1

β
,

for all vectors ξ tangent to M ×E at a point in φ(U × V ).

By taking ρ sufficiently small, we can assume that there exists V ′ ⊂ V , such that the
mapping

φ−1 ◦ Fρ ◦ φ : U × V ′ → U × V

is defined and non-decreasing on tangent vectors, for the metric µ0, so it will decrease the
length of tangent vectors at most by a factor of β2 for the metric µ. Since M is compact,
such coordinate neighborhoods will cover Nρ0 for ρ0 > 0 sufficiently small. ! VII.2

Now take u, v ∈M ×E, and let δ be a length-minimizing geodesic joining F (u) to F (v)
(which we will temporarily assume exists). Let γ = F−1(δ); of course, there is no reason
to think that γ is length-minimizing.

Consider γ1 the part of γ in Nρ0 and γ2 the remainder. Then the µ-length of Fρ(γ1)
is contracted at most by

√
α when ρ < ρ0, whereas the µ-length of Fτ (γ2) is contracted

arbitrarily little when ρ is sufficiently small, since on M × E − Mρ0 the mappings Fρ
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converge to the identity in the C1 topology. Thus for any ε, we may assume that γ is
contracted by

√
α− ε, which we may take to be > α by taking ε sufficiently small. Then

we have
dµ

(
F (u), F (v)

)
= lµ(δ) ≥ αlµ(γ) ≥ αdµ(u, v).

u

v

F(u)

F(v)

δ
γ2

γ1

γ M M

Nρ0
Nρ0

Figure 15. A picture of γ = γ1 ∪ γ2, together with the true shorter geodesic joining u to v,

and the image δ = F (γ).

If geodesics do not exist, it is easy to modify the argument above, using curves which
almost minimize distances. !

Blowing up smooth points of divisors. Let D ⊂ X be a divisor with normal crossings
in a surface, and B+

R
(D) ⊂ B+

R
(X, D) be the real oriented blow-up, so that the diagram

B+
R

(D) −−−−→ B+
R

(X, D)

p

0 p

0

D −−−−→ X

commutes. Let z ∈ D be a point, X̃z be the complex blow-up of X at z, π : X̃z → X the
canonical projection, and set D̃ = π−1(D). The divisor D̃ is the union of the exceptional
divisor E and the proper transform D′ of D; we will call their point of intersection z̃ =
E ∩D′.

Let w1, w2 be local coordinates on X at z, mapping a neighborhood W of z isomor-
phically onto the region VR × VR of C2, where VR is the open disc of radius R in C. To
lighten notation, we set V ∗

R = VR− {0}. Within W , we will assume that D is given by the
equation w2 = 0, so that D has no double points in W . Note that W̃z = π−1(W ) can be
understood either as the inverse image of W in X̃z, or as W blown-up at z.

Recall (see Example II.4) that W̃z ⊂W × P1
C

is defined by the equation w1U2 = w2U1,

where (w1, w2) ∈ W and

[
U1

U2

]
are homogeneous coordinates in P1

C
. We will also use the

affine coordinates u1 = U1/U2 and u2 = U2/U1 on appropriate parts of W̃z; note that w1

and u2 are local coordinates near z̃.



A Compactification of Hénon Mappings in C2 as Dynamical Systems 51

Denote by p̃ : B+
R

(X̃z, D̃)→ X̃z the canonical projection from the real oriented blow-up,
and use the same name for the restriction to B+

R
(D̃) to the boundary.

We will need to parametrize B+
R

(W, D) and B+
R

(W̃z, D̃). By Corollary VI.9 the choice
of w1, w2 induces a homeomorphism of p−1(W ) with the closure of the set

{
(w1, w2, θ2) ∈ VR × V ∗

R ×R/2πZ

∣∣∣∣
w2

|w2|
= eiθ2

}
(7.1)

in VR×VR×R/2πZ. In this closure, when w2 = 0, its polar angle remains, so (w1, |w2|, θ2)
parametrize B+

R
(W, D).

By VI.9 again, a neighborhood of p̃−1(z̃) is homeomorphic to the closure of the set of

{
(w1, u2, θ1,φ2) ∈ V ∗

R × C∗ × (R/2πZ)2
∣∣∣∣θ1 =

w1

|w1|
, φ2 =

u2

|u2|

}

in VR×C×(R/2πZ)2. So (|w1|, |u2|, θ1,φ2) parametrize a neighborhood of z̃ in B+
R

(W̃z, D̃);
in particular, by Corollary VI.10, the torus p̃−1(z̃) is parametrized by θ1 and φ2.

Proposition VII.3. The mapping π : X̃z → X lifts to a unique mapping π̃ : B+
R

(X̃z, D̃)→
B+

R
(X, D) such that the diagram

B+
R

(X̃z, D̃)
π̃−−−−→ B+

R
(X, D)

p̃

0 p

0

X̃z
π−−−−→ X

commutes.

Proof. It is enough to extend π above W . Let us compute π̃ near z̃. The space W̃z is
parametrized by w1 and u2, and π(w1, u2) = (w1, w1u2).

Thus if we set w1 = r1eiθ1 , u2 = ρ2eiφ2 , then the map π is

π :

(
r1eiθ1

ρ2eiφ2

)
0→
(

r1eiθ1

r1ρ2eiφ2+θ1

)
.

As a map of real oriented blow-ups, the domain is parametrized by (r1, θ1, ρ2,φ2) and the
range by (w1, |w2| ∈ [0,∞), argw2 ∈ R/2πZ), and the map is written

(r1, θ1, ρ2,φ2) 0→ (r1e
iθ1 , r1ρ2, θ1 + φ2) (7.2)

and is obviously continuous. The proof near the one omitted point u2 =∞ is easier. !
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Proposition VII.4. The mapping π̃ maps the torus p̃−1(z̃)( parametrized by (θ1,φ2)) to
the circle p−1(z) (parametrized by θ2), by the mapping

(θ1,φ2) 0→ θ1 + φ2.

Proof. Since the projection π is simply (w1, u2) 0→ (w1, w1u2), and our variable θ2
corresponds to the argument of the second entry, the result follows. !

We will now show how the real oriented blow-up B+
R

(X̃z, D̃) can be constructed from
B+

R
(X, D). Recall that B+

R
(X, D) is a 4-dimensional manifold with boundary, and that

the boundary is a 3-manifold containing tori, corresponding to the double points of D,
and with a circle action on the complement of these tori. We need to understand the
corresponding structure on B+

R
(X̃z, D̃).

Roughly speaking, it can be understood as follows. If z ∈ D is a smooth point of D,
then the fiber p−1(z) is a circle. Thicken this circle to make a solid torus, invariant under
the existing circle action. Keep the old circle action on the outside of the solid torus, and
modify it inside, so that the oriented circle orbits on the boundary of the solid torus are the
“sums” of the old ones and of boundaries of discs ∆ in the solid torus, which are oriented
so that p : ∆→ D is orientation preserving.

This description is too imprecise to be proved in this form: Theorem VII.5 makes it
precise.

Call Z the space B+
R

(X, D), but with a modified circle action on part of the boundary
B+

R
(D). Choose r < R, set ∆r ⊂ D the region |w1| < r, and in p−1(∆r) use the circle

action
Θ ∗ (w1, 0, θ2) = (w1e

iΘ, 0, θ2 + Θ), (7.3)

where we are using the coordinates (7.1) in B+
R

(X, D).

Theorem VII.5. There exists a homeomorphism h : B+
R

(X̃z, D̃) → Z, which coincides
with π̃ outside of p̃−1(W̃z), and which respects the circle actions.

Proof. We only need to construct h in p̃−1(W̃z) ⊂ B+
R

(X̃z, D̃), so long as h coincides with
π̃ outside a compact subset of p̃−1(W̃z). We will begin by defining our homeomorphism
on ∂B+

R
(X̃z, D̃) = B+

R
(D̃), and then extend it to the interior.

A neighborhood of p̃−1(E − {z̃}) can be described as the closure of the set of

{
(u1, w2, θ2) ∈ C× V ∗

R ×R/2πZ

∣∣∣∣ eiθ2 =
w2

|w2|

}

in C× VR × R/2πZ, and p̃−1(E) is the subset of equation w2 = 0. Again the polar angle
of w2 remains when w2 = 0; we will write u1 = |u1|eiφ1 , but when u1 = 0 it does not have
an argument.
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Choose a homeomorphism η1 : [0,∞) → [r,∞), such that η1(t) = t for t > R; it will
need to satisfy further properties in order for Theorem VII.6 to be true, which we will spell
out when we come to it. Let us set (see Figure 16)

η2(t) =
tr

t + r
.

r
tt

Figure 16. The graph of η1 (left) and the graph of η2 (right).

Define h : p̃−1(D′ − {z̃})→ B+
R

(D) by the formula

h : (w1, 0, θ1, θ2) 0→
(
η1(|w1|)eiθ1 , 0, θ2

)
. (7.4)

As a set, ∂Z = B+
R

(D). Using parametrization (7.1) in the range, we define h : p̃−1(E−
{z̃})→ ∂Z by the formula

h : (u1, 0,φ1, θ2) 0→
(
η2(|u1|)ei(φ1+θ2), 0, θ2

)
. (7.5)

To check the continuity of these two definitions on p̃−1(z̃), we choose local coordinates
(u, v) on B+

R
(X̃z, D̃) near z̃, related to the previous coordinates by






u = w1

v =
w2

w1

on a neighborhood of p̃−1(D′ − {z̃})






u = w2u1

v =
1

u1

on a neighborhood of p̃−1(E − {z̃})

By Corollary VI.9, in the coordinates u, v, the space B+
R

(X̃z, D̃) is canonically homeo-
morphic to the closure of the set

{
(u, v, β, γ) ∈ V ∗

R × C∗ × (R/2πZ)2
∣∣∣∣e

iβ =
u

|u|
, eiγ =

v

|v|

}
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in VR × C× (R/2πZ)2; when the variables u or v or both vanish, their polar angles both
remain. The locus p̃−1(D̃) ∩ W̃z is given by the equation uv = 0.

The expression (7.4) of h on p−1(D′ − {z̃}) becomes, in these coordinates,

h : (u, 0, β, γ) 0→ (η1(|u|)eiβ , 0, β + γ).

Similarly, the expression (7.5) of h on p̃−1(E − {z̃}) becomes

h : (0, v, β, γ) 0→
(
η2

( 1

|v|

)
e−iγei(β+γ), 0, β + γ

)
=

(
η2

( 1

|v|

)
eiβ , 0, β + γ

)
.

We have used the computation

θ2 = arg w2 = arg uv = β + γ

of θ2 in the coordinates u, v.

Now to check the continuity:

lim
ρ→0

h(ρeiβ , 0, β, γ) = (reiβ , 0, β + γ)

lim
ρ→0

h(0, ρeiγ , β, γ) = (reiβ, 0, β + γ).

It works; our homeomorphism is well-defined on B+
R

(D̃) = ∂B+
R

(X̃z, D̃).

We need to check that h transforms the circle action of B+
R

(D̃) into the circle action of
Z. The only place that needs checking is in p̃−1(E). Using the notation of Equation (7.5),
we see that in the domain the circle action is

Θ ∗ (u1, 0,φ1, θ2) = (u1, 0,φ1, θ2 + Θ);

by (7.3), the circle action in the range is

Θ ∗
(
η2(|u1|)ei(φ1+θ2), 0, θ2

)
=
(
η2(|u1|)ei(φ1+θ2+Θ), 0, θ2 + Θ

)
.

Clearly h transforms one into the other.

Now we extend h to the interior. Let us consider the subset W ′ ⊂ W̃z given by the
inequality

W ′ =
{
(w1, w2)

∣∣|w1|2 + (|w2|− r)2 < r2
}

, 2r < R,

as shown in Figure 17.
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|w1|

|w2|

W'r

2r

Figure 17. The region in the |w1|, |w2|-plane defining W ′.

The set W ′ can be considered as a subset of W , or of W̃z, or of B+
R

(W, D), or of
B+

R
(W̃z, D̃), since the canonical projections are all isomorphisms on the inverse image of

W ′. As a subset of W̃z, it is a neighborhood of E − {z̃}, and we can use w1/w2, w2 as
parameters in W ′, which extend the parameters u1, w2 above. As a subset of B+

R
(W̃z, D̃),

it is a neighborhood of p̃−1(E − {z̃}).

We can now extend h by the formulas

h :

{
(w1, w2) 0→ (η1,|w2|(|w1|) w1

|w1|
, w2) if (w1, w2) /∈ W ′

(u1, w2) 0→ (η2(|u1|) u1
|u1|

w2
|w2|

, w2) if (u1, w2) ∈W ′,
(7.6)

where we are using the coordinates (w1, w2) in the range in both cases. The second line

above could also be written

(w1, w2) 0→ (η2

(
|w1|
|w2|

)
w1

|w1|
, w2).

We opted to write it in terms of u1 instead because that variable extends to the boundary.

Note that since W ′ does not intersect the boundary, we do not need the polar angles as

variables in either domain or range; of course, they will return when we check continuity.

The functions η1,ρ and η2 are illustrated in Figure 18.

We need to check the continuity of the mapping, both on the part of ∂W ′ where w2 #= 0,

and on ∂Z.
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r r

r r

Figure 18. On the left, the graphs of functions η1,ρ for various values of ρ ∈ [0, 2r]. They are

defined for t ≥
√

r2 − (ρ− r)2, and the domain is mapped homeomorphically to

[
η2(
√

r2 − (ρ− r)2/ρ),∞
)
;

thus all the graphs start on the curve given parametrically by

ρ 0→
(√

r2 − (ρ− r)2, η2(
√

r2 − (ρ− r)2/ρ)
)

which is also represented on the right, where the horizontal scale and the vertical scale are different.

The second will be true if η1,0(t) = η1(t), as is clear from Equations (7.6) and (7.5),
since the argument of w2 remains as a variable when w2 = 0. For the first, we have
|w1|2 = r2 − (|w2|− r)2, and we see that we must have

(
η1,|w2|(|w1|)

w1

|w1|
, w2

)
=

(
η2

(∣∣∣∣
w1

w2

∣∣∣∣

)
w1

|w1|
, w2

)

when |w1|2 = r2 − (|w2|− r)2. Setting ρ = |w2| to clarify the notation, we need

η1,ρ(
√

r2 − (ρ− r)2) = η2

(√
r2 − (ρ− r)2

ρ

)

. (7.7)

It is now easy to choose η1,ρ(t), defined for t ≥
√

r2 − (ρ− r)2, so that

(1) Equation (7.7) is satisfied;
(2) for each ρ, the function η1,ρ(t) is monotone increasing;
(3) η1,0(t) = η1;
(4) η1,2r(t) = t.

These conditions will guarantee that the mapping h defined by (7.6) is a homeomorphism
as required. !
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To prove Theorem VII.11, we will need some control on how the homeomorphism h :
B+

R
(X̃z, D̃) → Z, constructed above, distorts distances. Note that h is not canonical: it

depends on the local coordinates w1, w2, and on the choice of r, η1 and η2.

Theorem VII.6. If µ is any Riemannian metric on B+
R

(D) which is continuous in the
(w1, θ2) coordinates, then for any ε > 0, α < 1 and any neighborhood W of z in X , the

homeomorphism h can be chosen to coincide with π̃ except on B+
R

(
W̃z, D̃ ∩ W̃z

)
, and such

that for any x, y ∈ B+
R

(D̃),
dµ(h(x), π̃(x)) < ε

and
dµ

(
h(x), h(y)

)
≥ αdµ

(
π̃(x), π̃(y)

)
.

Note that all the distances are being measured in B+
R

(D) = ∂Z with respect to the
Riemannian metric µ.

Proof. This is a matter of carefully choosing the number r and the function η1. Clearly
dµ(h(x), π̃(x)) will be arbitrarily small if r is chosen sufficiently small. The second inequal-
ity follows from Lemma VII.1, on the outside of π̃−1(E), we have precisely a map of the
form specified there, and we have proved the needed result.

With our choice of coordinates, the region p−1(∆R) is canonically VR×S1, parametrized
by w1 and θ2, with |w1| ≤ R. We can modify the Riemannian metric µ on this region by
setting µ1(w1, θ2) = µ(0, θ2). With respect to µ1, the projection π̄ : (w1, θ2) 0→ (0, θ2) is
obviously length-decreasing. But since µ and µ1 coincide on p−1(z), we have

α ≤
∣∣∣∣

µ

µ1

∣∣∣∣ ≤
1

α

on p−1(∆r) for r sufficiently small (we only need the inequality on the right). So the
projection π̄ satisfies αdµ(π̄(u), π̄(v)) ≤ dµ(u, v) for u, v ∈ p−1(∆r).

Now take the value of r in the definition of h to be the r above. Since h conjugates
π̃ with π̄, we see that the second requirement is satisfied when x, y ∈ p̃−1(E), so that
h(x), h(y) ∈ p−1(∆r).

If x ∈ p−1(E) and y /∈ p−1(E), it suffices to put the two arguments above together. Join
h(x) to h(y) by a length-minimizing geodesic γ, and consider the parts γ1 = γ ∩ p−1(∆r)
and γ2 = γ − γ1. Then we have the string of inequalities

dµ

(
h(x), h(y)

)
= lµ(γ1) + lµ(γ1) ≥ α

(
lµ
(
π̃ ◦ h−1(γ1)

))
+ α

(
lµ
(
π̃ ◦ h−1(γ2)

))

≥ αµ

(
π̃(x), π̃(y)

)
.

!
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Blowing up double points of divisors. We now will give the corresponding description
for double points of divisors. Let

D ⊂ X, B+
R

(D) ⊂ B+
R

(X, D), p : B+
R

(X, D)→ X

be as above. Let z ∈ D be a double point, and denote by

π : X̃z → X, p̃ : B+
R

(X̃z, D̃)→ X̃z

the canonical projections (complex and real respectively).

Let w1 and w2 be local coordinates centered at z, giving an isomorphism of a neighbor-
hood W of z with the bidisc VR × VR so that D ∩W is given by the equation w1w2 = 0;
in particular, in W there is no other double point of D. Let D1 = W ∩ {w2 = 0}, D2 =
W ∩ {w1 = 0} be the two irreducible components of D in W .

The space W̃z is the locus in W ×P1 given by the equation w1U2 = w2U1, where

[
U1

U2

]

are homogeneous coordinates; again we will use the affine coordinates u1 = U1/U2 and
u2 = U2/U1 where they are defined. The divisor D̃ = π−1(D) is the union of the proper
transforms D′

1 of D1 and D′
2 of D2, and the exceptional divisor E, as shown in Figure 19.

E

D1'

D2'

z1
~

z2
~

Figure 19. The configuration in W̃z .

By Corollary VI.9, we can identify B+
R

(W, D∩W ) = p−1(W ) with the closure of the set

{
(w1, w2, θ1, θ2) ∈ (V ∗

R)2 × (R/2πZ)2
∣∣∣∣e

iθ1 =
w1

|w1|
, eiθ2 =

w2

|w2|

}

in
V 2

R × (R/2πZ)2

so that when each coordinate function vanishes, its polar angle remains. This is a manifold
with boundary, where the boundary is defined by w1w2 = 0.

The fiber p−1(z) is a torus, which is canonically principal under the group R/2πZ ×
R/2πZ, and which is parametrized by θ1, θ2.
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Similarly, a neighborhood of z̃1 ∈ B+
R

(W̃z, D̃ ∩ W̃z) is parametrized by

|u2| ∈ [0,∞), φ2 = arg u2, |w1| and θ1 = arg w1,

with the torus p̃−1(z̃1) parametrized by φ2 and θ1. The torus p̃−1(z̃2) can be parametrized
in a similar way.

Proposition VII.7 is very similar to Proposition VII.3.

Proposition VII.7. There exists a unique lift π̃ : B+
R

(X̃z, D̃) → B+
R

(X, D) such that the
diagram

B+
R

(X̃z, D̃)
π̃−−−−→ B+

R
(X, D)

p̃

0 p

0

X̃z
π−−−−→ X

commutes.

Proof. Begin by working near z̃1. The computation starts as in Proposition VII.3, but in
the range of equation (7.2), we must use (r1, θ1, r2, θ2) as coordinates, since the arguments
of w1 and w2 both remain when r1 or r2 tend to 0. So the mapping π̃ in these coordinates
becomes (see Equation (7.2))

(r1, θ1, ρ2,φ2) 0→ (r1, θ1, r1ρ2, θ1 + φ2);

again this is obviously continuous. The computation near z̃2 is similar. !

Proposition VII.8. The mapping p̃, mapping the torus p̃−1(z1), parametrized by θ1,φ2,
to the torus p−1(z), parametrized by θ1 and θ2, is given by the formula

[
θ1
φ2

]
0→
[

θ1
θ1 + φ2

]
.

Proof. Near z̃1, we can use the local coordinates w1 and u2; again the mapping π is given
by the formula

(w1, u2) 0→ (w1, u2w1).

Thus the argument of the first coordinate is θ1, and the argument of the second is θ1 +
φ2. !

As in the case of simple points, we will need a much more precise description of the real
oriented blow-up B+

R
(X̃z, D̃): it can be constructed from B+

R
(X, D) as follows. Thicken

the torus p−1(z), so that the thickened torus is invariant under the circle actions. Keep
the old circle actions on the outside of the thickened torus, and modify it inside, so that
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the oriented circle orbits on the boundary torus are the “sums” of an orbit of R/2πZ×{0}
and an orbit of {0}× R/2πZ.

Again, this description is too imprecise to be proved; Theorem VII.9 should make
everything precise.

Let Z be B+
R

(X, D), with a new circle action the boundary ∂Z = B+
R

(D) defined as
follows. Let P be the region

P = {|w1| ≤ r, w2 = 0} ∪ {w1 = 0, |w2| ≤ r}

and on this region, define the circle action

Θ ∗ (w1, 0, θ1, θ2) = (w1, 0, θ1 + Θ, θ2 + Θ)

Θ ∗ (0, w2, θ1, θ2) = (0, w2, θ1 + Θ, θ2 + Θ).

Keep the previous circle action outside P ; this gives as it should two circle actions on
the two tori |w1| = r and |w2| = r.

Theorem VII.9. There exists a homeomorphism of h : B+
R

(X̃z, D̃) → Z which respects
the circle actions on the boundaries.

Proof. The proof is quite similar to that of VII.5, and we will be a bit sketchier. As before,
we will begin by defining the map h on the boundary, and then extend it to the interior.
The divisor D̃∩W̃z consists of three components: the proper transforms D′

1, D
′
2 of D1 and

D2, and the exceptional divisor E. Correspondingly, the boundary of B+
R

(W̃z, D̃ ∩ W̃z)
consists of p̃−1(D′

1), p̃−1(D′
2) and p̃−1(E). Let z̃1 = E ∩D′

1 and z̃2 = E ∩D′
2, as shown in

Figure 19.

Define h on p̃−1(D′
1) ∪ p̃−1(D′

2) by the formulas

h(w1, 0, θ1, θ2)=
(
η1(|w1|) w1

|w1|
, 0 , θ1, θ2

)
in p̃−1(D′

1) (7.8)

h(0, w2, θ1, θ2)=
(

0 , η1(|w2|) w2
|w2|

, θ1, θ2
)

in p̃−1(D′
2), (7.9)

where η1 is the same function which we used in the proof of Theorem VII.5 (see Figure
20). This leaves p̃−1(E). Recall that W̃z is the locus in W × P1 given by the equation

w1U2 = w2U1, where

[
U1

U2

]
are homogeneous coordinates. We will break it into two pieces:

• E1 where |U2| ≤ |U1|, which we will parametrize by (u2, w1), setting u2 = U2/U1, and

• E2 where |U1| ≤ |U2|, which we will parametrize by (u1, w2), setting u1 = U1/U2.

The space p̃−1(E1) thus has coordinates (u2,φ2, θ1) and the space p̃−1(E2) thus has
coordinates (u1,φ1, θ2). Using these coordinates, we will define h on p̃−1(E) as follows :

h(u2,φ2, θ1)=
(
η2(|u2|)eiθ1 , 0 , θ1 , θ1 + φ2

)
in p̃−1(E1) (7.10)

h(u1,φ1, θ2)=
(

0 , η2(|u1|)eiθ2 , φ1 + θ2, θ2
)

in p̃−1(E2), (7.11)
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where η2(t) = r − tr (see Figure 20).

r

R

r

1

Figure 20. The graphs of η1 (left) and of η2 (right).

There are three places where we must check the compatibility of these formulas: above
z̃1, above z̃2 and above the circle |u1| = |u2| = 1.

Above z̃1, the functions u2 and w1 are local coordinates, and since w2 = u2w1, we
have θ2 = φ2 + θ1. This means that under the mapping (7.8), the point (0, 0, θ1, θ2) in
p̃−1(D′

1) maps to (reiθ1 , 0, θ1, θ2), whereas the same point viewed in p̃−1(E1) has coordi-
nates (0,φ2, θ1) and maps under (7.10) to (reiθ1 , 0, θ1, θ1 + φ2), which is the same point.

The analogous check above z̃2 is left to the reader.

Above the circle u1 = u2 = 1, we must pass from the coordinates (u2, w1) to the
coordinates (u1, w2). Under (7.10), the point (eiφ2 ,φ2, θ1) in p̃−1(E1) maps to (0, 0, θ1, θ1+
φ2), whereas under (7.11), the same point, viewed as an element of p̃−1(E2), has coordinates
(eiφ1 ,φ1, θ2) = (e−iφ2 ,−φ2, θ1 + φ2), and also maps to (0, 0, θ1, θ1 + φ2).

Finally, observe that the map h as constructed does transform the circle action on
B+

R
(D̃) into the circle action on Z. In p̃−1(E1), the circle action is

Θ ∗ (u2,φ2, θ2) = (u2,φ2, θ2 + Θ),

which under (7.10) becomes

Θ ∗ (w1, 0, θ1, θ2) = (w1, 0, θ1 + Θ, θ2 + Θ).

The computation for p̃−1(E2) is identical.

This ends the construction of h on ∂Z; now to extend it to the interior.

We will call B the subset of W in which

(
|w1|2 + |w2|2

)2
< 4r2|w1w2|.

Again, we can think of B as a subset of W , or of W̃z, or of B+
R

(W, D∩W ), or of B+
R

(W̃z, D̃∩
W̃z), since all the canonical projections are isomorphisms on the inverse images of B.
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|w1|

|w2|

B

B2

B1

Ca

r

r

Figure 21. The region in |w1|, |w2| defining B.

This region contains E in its closure, since every line through the origin has a neigh-
borhood of the origin in B, except for the axes themselves. This is illustrated in Figure
21.

Let W1, W2 ⊂ W be the regions where |w1| ≥ |w2| and |w1| ≤ |w2| respecively. Then
the space B is the union of the two subsets B1 = W1 ∩ B and B2 = W2 ∩ B; these
have E1 and E2 in their closures in W̃z (resp. p̃−1(E1) and p̃−1(E1) in their closures in
B+

R
(W̃z, D̃ ∩ W̃z)).

The curve Ca of equation w1w2 = a2 intersects B in an annulus Ba for 0 < |a| < r,
which shrinks to a circle when |a| = r and is empty for |a| > r. We will extend h so that
it maps each Ca into itself. Moreover, we will use the local coordinates u2, w1 in B1 and
u1, w2 in B2, and keep the coordinates w1, w2 outside of B. Throughout, we will use the
coordinates w1, w2 in the range.

In these coordinates, our mapping h is written

h(w1, w2)=
(
η1,|a|(|w1|) w1

|w1|
, |a|2

η1,|a|(|w1|)
w2
|w2|

)
in W1 −B1 (7.12)

h(u2, w1)=
(
η2,|a|(|u2|)eiθ1 , a2

η2,|a|(|u2|)
e−iθ1

)
in B1 (7.13)

h(u1, w2)=
(

a2

η2,|a|(|u1|)
e−iθ2 , η2,|a|(|u1|)eiθ2

)
in B2 (7.14)

h(w1, w2)=
(

|a|2

η1,|a|(|w2|)
w1
|w1|

, η1,|a|(|w2|) w2
|w2|

)
in W2 −B2, (7.15)

where η2,|a|(t) = r − (r − |a|)t and

η1,ρ :

[√
ρ(r +

√
r2 − ρ2), ∞

)
→

[

η2,ρ

( (r −
√

r2 − ρ2

ρ

)
, ∞

)
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is a diffeomorphism, to be chosen below.

There are now three compatibilities to check: on the boundary ∂Z, on the boundary of
B and when |u1| = |u2| = 1. The first will be satisfied if we require that

lim
|a|→0

η1,|a| = η1 and lim
|a|→0

η2,|a| = η2.

For the third, our extension of h is precisely the identity on this locus. Indeed, using
formula (7.13), we see

η2,|a|(|u2|)eiθ1 = η2,|a|(1)eiθ1 = |a|eiθ1 = w1

and
a2

η2,|a|(|u2|)
e−iθ1 =

a2

w1
= w2

there; the check for (7.14) is identical.

For the second, we need to guarantee that

η1,|a|

(√
|a|
(
r +

√
r2 − |a|2

))
= η2,|a|

(
r −

√
r2 − |a|2
|a|

)

.

A look at the curve on which the graph of η1,ρ must start (Figure 22) shows that this is
easy to accomplish.

r

r 0 10

|a|

Figure 22. The graphs of the functions η1,ρ (left) and η2,ρ (right) for various values of ρ.

!

Again, in order to prove Theorem VII.11 we will need to control how much h distorts
distances.

Theorem VII.10. For any Riemann metric µ on B+
R

(D) which is continuous in the coor-
dinates ρ, θ, Θ, and for any ε > 0 and α < 1, we can choose h so that

dµ(h(x), π̃(x)) < ε
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and
dµ

(
h(x), h(y)

)
≥ αdµ

(
π̃(x), π̃(y)

)

for any x, y in B+
R

(D̃).

Proof. This is a matter of choosing r and η1 correctly in the constructions above.

In our coordinates, the mapping π̃ is written

π̃ ◦ h−1(w1, 0, θ1, θ2)= (0, 0, θ1, θ2) if |w1| ≤ r
π̃ ◦ h−1(w1, 0, θ1, θ2)= (η1(|w1|) w1

|w1|
, 0, θ1, θ2) if |w1| ≥ r

π̃ ◦ h−1(0, w2, θ1, θ2)= (0, 0, θ1, θ2) if |w2| ≤ r
π̃ ◦ h−1(0, w2, θ1, θ2)= (η1(|w2|) w2

|w2|
, 0, θ1, θ2) if |w1| ≥ r.

This map collapses the thickened torus |w1|, |w2| ≤ r back onto the torus above z. Clearly

dµ(h(x), π̃(x)) < ε

will be small if r is small and η1 is uniformly close to the identity. Again the second part
is an application of Lemma VII.1. !

Infinitely many blow-ups. Suppose that we repeat infinitely many times the following
procedure, as in Section IV.

Take a surface X0 containing a divisor with normal crossings D0 ⊂ X0; although it is
not essential, we will assume that X0 is compact. Choose a point z0 ∈ D0, blow it up to
create a surface X1 = ˜(X0)z0

, with a projection π1 : X1 → X0; set D1 = π−1
1 (D0). Now

choose a new point z1 ∈ D1, etc. Denote by

π̃i : B+
R

(Xi, Di)→ B+
R

(Xi−1, Di−1)

the map induced from πi.

Theorems VII.5 and VII.9 assert that at each stage the pair B+
R

(Di) ⊂ B+
R

(Xi, Di) is
homeomorphic to the pair B+

R
(D0) ⊂ B+

R
(X0, D0). It seems reasonable to think that the

same will remain true in the limit, and it is.

Theorem VII.11. The projective limit of pairs

lim←−(B+
R

(Di), π̃i) ⊂ lim←−((B+
R

(Xi, Di), π̃i)

is homeomorphic to the pair B+
R

(D0) ⊂ B+
R

(X0, D0), and the canonical map

lim←−(B+
R

(Xi, Di), π̃i)→ B+
R

(X0, D0)

can be approximated by homeomorphisms.
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Proof. Theorems VII.5 and VII.9 guarantee that we can choose homeomorphisms

hi : B+
R

(Xi, Di)→ B+
R

(Xi−1, Di−1).

By induction, we will give B+
R

(Xi, Di) the metric which makes hi an isometry; and
Theorems VII.6 and VII.10 then show that each hi can further be chosen so that for any
sequences εi > 0, 0 < αi < 1,

(1) the composition π̃i ◦ h−1
i is εi close to the identity map (of B+

R
(Xi−1, Di−1));

(2) if xi, yi ∈ B+
R

(Di) and xi−1 = π̃i(xi), yi−1 = π̃i(yi), then

d(hi(xi), hi(yi)) ≥ αid(xi−1, yi−1).

Moreover, again by choosing the r sufficiently small, we can assume that for any compact
subset K ⊂ X − D, there exists m such that the mapping hi coincides with π̃ on K for
i > m.

Remark. The open set X − D is naturally embedded as a subset in all B+
R

(Xi, Di); in
terms of this natural embedding, the choice of r above guarantees that hi is the identity
on the compact subset K for i > m.

Denote by gn the composition

lim←−
i
B+

R
(Xi, Di)→ B+

R
(Xn, Dn)

h1◦···◦hn→ B+
R

(X0, D0),

where the first map is the canonical projection. The first condition above guarantees that
the gn converge uniformly if the εn form a convergent series. Call g = limn→∞ gn.

The mapping g is obviously surjective. The second condition guarantees that g is
injective on lim←−B+

R
(Di) if

∏
αn > 0. Moreover, it is injective on X −D since the sequence

is eventually constant and injective on every compact subset. Therefore it is injective.

Finally, since g is bijective, continuous and the domain is compact (a projective limit
of compact sets is compact), it is a homeomorphism. !

VIII. Real oriented blow-ups and the Hopf fibration

The Hopf fibration p : S3 → S2 is a famous example from topology, where the circle
acts on the 3-sphere, and the quotient is the 2-sphere. If we think of S3 as the unit sphere
in C2, and S2 as P1

C
, then it can be written as

p : (z1, z2) 0→ [z1 : z2].

It can also be thought of as the quotient of the 3-sphere by the circle action

R/2πZ× S3 → S3, Θ ∗ (z1, z2) = (eiΘz1, e
iΘz2)
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The Hopf fibration seems a natural candidate to be the real oriented blow-up of a projective
line in a surface, and it is. But it comes up in two different settings, which differ in a subtle
but essential way.

More specifically, we will consider a line in P2
C
, for instance the line at infinity l∞, and

the exceptional divisor E that you get by blowing up the origin. The plane P2
C

has a real
oriented blow-up along both of these lines; we can imagine these real oriented blow-ups
as the boundaries of tubular neighborhoods of the two lines respectively. If we take the
tubular neighborhood of E to be the open unit ball, and the tubular neighborhood of l∞
to be the complement of the closed ball, then both have the same boundary S3. We will
see in Propositions VIII.1 and VIII.2 that there really is a homeomorphism of the 3-sphere
with B+

R
(E) and B+

R
(l∞), and that the first homeomorphism transforms the canonical circle

action on B+
R

(E) into the Hopf action above and that the other transforms the standard
circle action into

Θ ∗ (z1, z2) = (e−iΘz1, e
−iΘz2).

If you think of rotating a line in C2 in the direction of the boundary of a disc, or the
boundary of the outside of a disc, you will see where the minus sign comes from.

You might think that this minus sign is the difference between the two cases, but it isn’t:
the antipodal map S3 → S3 is an orientation-preserving diffeomorphism which transforms
one circle action into the other, so these two circle actions are essentially the same. The
actual difference between the two cases is the orientation of S3, as the boundary of the unit
ball in the case of B+

R
(E), and as the boundary of the outside of the unit ball in the case of

B+
R

(l∞). This may seem a minor problem, but it turns out to have essential consequences.

Indeed, if you further blow up a point z ∈ l∞, making

π : (̃P2
C
)z → P2

C,

set D = π−1(l∞), and still denote by p : B+
R

(D)→ D the projection, then there are fibers
of p which link with linking number 0, and there are none which link with linking number
±2.

On the other hand, if you blow up a point z ∈ E, call E1 the new exceptional divisor
and E′ the proper transform of E, set D = E′ ∪E1, and again denote by p : B+

R
(D)→ D

the projection, then there are fibers which link with linking number 2, and there are none
which link with linking number 0.

These two situations differ geometrically, not just by a conventional sign. Let us now
justify these claims.

The real blow-up of an exceptional divisor. Let π : C̃2
0 → C2 be the plane C2 blown

up at the origin, and E = π−1(0, 0) be the exceptional divisor. Recall the two charts

u1 = x, v1 =
y

x
and u2 = y, v2 =

x

y
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which provide coordinates on overlapping open sets which cover C̃2
0. In each of these

charts, B+
R

(C̃2
0, E) is the closure of the set
{

(uj, vj , θj) ∈ C∗ × C× R/2πZ

∣∣∣∣
uj

|uj |
= eiθj

}
, j = 1, 2

in C× C× R/2πZ, and that p−1(E) is given by the equation uj = 0.

Thus B+
R

(E) is parametrized by the two charts (v1, θ1) and (v2, θ2), and on the overlap
where v1, v2 #= 0, we have

v2 =
1

v1
, θ2 = θ1 + arg v1.

Proposition VIII.1. The mapping S3 → B+
R

(E) given by

(z1, z2) 0→
{

v1 = z2
z1

, θ1 = arg z1 if z1 #= 0

v2 = z1
z2

, θ2 = arg z2 if z2 #= 0

is a diffeomorphism which takes the orientation of S3 as the boundary of the unit ball in
R4 to the chosen orientation of B+

R
(E), and which transforms the Hopf circle action

Θ ∗ (z1, z2) = (eiΘz1, e
iΘz2)

into the canonical circle action

Θ ∗ (vj , θj) = (vj , θj + Θ)

on B+
R

(E).

Proof. The main thing to check is that the mapping is compatible with the identification
θ2 = θ1 + arg v1, which becomes arg z2 = arg z1 + arg(z2/z1).

The map is injective: if we know v1, θ1, then from z2 = v1z1 and the equation |z1|2 +
|z2|2 = 1 we see

|z1|2 =
1

1 + |v1|2
,

and since we also know the argument of z1, we know z1, hence z2.

The surjectivity is also clear from the argument above.

The compatibility with the circle action is

eiΘz1

eiΘz2
=

z1

z2
, arg eiΘz1 = arg z1 + Θ.

The vectors 



0
1
0
0



 ,





0
0
1
0



 ,





0
0
0
1





form a direct basis of T(1,0)S
3 if you orient S3 as the boundary of the ball. The first of

these vectors is tangent to the oriented orbit through (1, 0), whereas the last two project
under p to a direct basis of Tp(1,0)E. !
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The real oriented blow-up of a line in P2
C
.

We now examine the blow-up of a line in P2
C
, which we will take to be the line at infinity

l∞. This time, local coordinates on a neighborhood of l∞ ∈ P2
C

are

u1 =
1

x
, v1 =

y

x
and u2 =

1

y
, v2 =

x

y
.

This leads to the charts C× R/2πZ→ B+
R

(l∞) given by

(vj , θj), j = 1, 2.

On the overlap v1, v2 #= 0 these coordinates are identified by

v2 =
1

v1
, θ2 = θ1 − arg v1.

This is also a variant of the Hopf fibration.

Proposition VIII.2. a) The mapping S3 → B+
R

(l∞) given by

(z1, z2) 0→
{

v1 = z2
z1

, θ1 = − arg z1 if z1 #= 0

v2 = z1
z2

, θ2 = − arg z2 if z2 #= 0

is a diffeomorphism which carries the orientation of S3 as the boundary of the complement
of the 4-ball to the standard orientation B+

R
(l∞).

b) This diffeomorphism transforms the circle action

Θ ∗ (z1, z2) = (e−iΘz1, e
−iΘz2)

into the canonical circle action

Θ ∗ (vj , θj) = (vj , θj + Θ).

The proof is identical to the case above.

Stereographic projection. What really makes these two cases different? It is the ori-
entation which S3 acquires. We invite the reader to check that with the definition of VI.7,
B+

R
(D) is oriented so that a tangent vector to an oriented orbit, followed by an oriented

basis tangent to a section, defines the orientation of the space B+
R

(D). Thus if we reverse
the direction of the circle orbits (and keep the orientation of the base), we change the
orientation of the space.

To better picture the difference of the two cases above, we will identify S3−{(0, 0, 0, 1)}
to R3 via stereographic projection.
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Proposition VIII.3. Set z1 = x1 + iy1 = r1eiθ1 , z2 = x2 + iy2 = r2eiθ2 .

a) The stereographic projection S3 − {north pole}→ R3 given by

X =
x1

1− y2

Y =
y1

1− y2

Z =
x2

1− y2

resp.

X =
x1

1− y2

Y =
y1

1− y2

Z = −
x2

1− y2

(8.1)

maps the orientation of the 3-sphere as the boundary of the inside (resp. outside) of the
unit ball in C2 to the standard orientation of R3.

b) The tori Tr, 0 ≤ r ≤ 1, with parametric equations

X =

( √
1− r2

1− r sinα

)

cosβ

Y =

( √
1− r2

1− r sinα

)

sinβ

Z =
r cosα

1− r sinα

resp.

X =

( √
1− r2

1− r sinα

)

cosβ

Y =

( √
1− r2

1− r sinα

)

sinβ

Z = −
r cosα

1− r sinα

(8.2)

are the images of the tori |z1| =
√

1− r2, |z2| = r. They are tori of revolution around the
z-axis, with two singular tori: the unit circle in the (x, y)-plane (for r = 0) and the z-axis
(for r = 1). The other tori are obtained by rotating around the z-axis the circle in the
(X, Z)-plane with center at X = 1/

√
1− r2, Z = 0 and radius r/

√
1− r2.

c) The circle actions

Θ ∗ (z1, z2) = (eiΘz1, e
iΘz2) resp. Θ ∗ (z1, z2) = (e−iΘz1, e

−iΘz2)

become, in these coordinates,

Θ ∗ (r,α, β) = (r,α+ Θ, β + Θ) resp. Θ ∗ (r,α, β) = (r,α−Θ, β −Θ). (8.3)

Proof. We will prove only the parts concerning the blow-up of the line at infinity, which
appear in the right-hand column, as those are the ones we are concerned with.

a) Recall that if M is a smooth k-manifold with boundary and m ∈ ∂M , then

v1, v2, . . . , vk−1 ∈ Tm∂M

define the standard orientation of ∂M , if v0, v1, . . . , vk−1 define the standard orientation
of M , where v0 is a outward-pointing vector of TmM . The vectors

v0 =





0
0
0
1



 , v1 =





1
0
0
0



 , v2 =





0
1
0
0



 , v4 =





0
0
−1

0
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are a direct basis of R4 with v0 pointing out of the outside of the unit sphere at the south
pole, so v1, v2, v3 define the orientation of S3 as the boundary of the outside. Under the
stereographic projection (8.1) these vectors get mapped to the vectors




1
0
0



 ,




0
1
0



 ,




0
0
1



 ,

which give the standard orientation of R3.

Rewriting the mapping (8.1) in polar coordinates

x1 =
√

1− r2 cosβ, y1 =
√

1− r2 sinβ, x2 = r cosα, y2 = r sinα, 0 ≤ r ≤ 1,

we will immediately get formulas (8.2) and statement c) of the proposition.

To prove part b) it is enough to check that the curves in the (X, Z) plane given by the
parametric equations

X =

√
1− r2

1− r sinα
and Z =

r cosα

1− r sinα

are actually the circles with centers at (1/
√

1− r2, 0) and radii r/
√

1− r2. Indeed,

( √
1− r2

1− r sinα
−

1√
1− r2

)2

+

(
r cosα

1− r sinα

)2

=
r2(r − sinα)2 + r2 cos2 α(1− r2)

(1− r sinα)2(1− r2)
=

r2

1− r2

!

Blowing up one point of a line. Suppose we now want to blow up one point of E or of
l∞. We can symbolically represent the two variants of the Hopf fibration in the following
picture.

Figure 23. The real oriented blow-up of an exceptional divisor (left) and of the line at
infinity (right).

In both B+
R

(P̃2
0, E) and B+

R
(P̃2

2, l∞), S3 − {north pole} is identified by stereographic
projection with R3 with its standard orientation. In both, the z-axis oriented up is one
oriented fiber, and the unit circle in the x, y-plane is another, oriented counterclockwise in
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the first, clockwise in the second. Now we will blow up one point p, on E or l∞ respectively,
and see what happens to the real oriented blow-ups. Choose the unit circle in the x, y-
plane to correspond to p, and thicken it as in Theorem VII.5, corresponding to the region
r ≤ ε for some small ε > 0. This solid torus T intersects the x, z-plane in a disc which has
a canonical orientation, since it projects homeomorphically to E or l∞, and the boundary
orientation of the boundary of the disc in both cases corresponds to α increasing from 0
to 2π. This gives one generator a of H1(∂T ). Letting β increase from 0 to 2π defines a
second generator b of H1(∂T ); this curve also corresponds to the boundary of a disc on the
outside of T , which also has a boundary orientation, and our conventions are consistent.

In these coordinates, an oriented orbit of the circle action on the torus has homology
class a + b in the case of B+

R
(E), and homology class −a− b in the case of B+

R
(l∞).

If we change the circle action inside the torus, as in Theorem VII.5, the homology class
of an orbit is a + 2b in the case of B+

R
(E), and −b in the case of B+

R
(l∞). This is not a

difference in sign convention: fibers inside the torus link with linking number −2 in the first
case, and in the second case have linking number 0 (we are following Milnor’s convention
[Mil4] for the sign of the linking number).

b

a

Figure 24. Blow up P2 at a point z ∈ l∞, and then take the real oriented blow-up of the

divisor consisting l∞ and the exceptional divisor. You obtain a 3-sphere containing a torus, and

a circle action on both components of the complement of the torus. This picture represents the

stereographic projection of this space, with the inside of the torus corresponding to the exceptional

divisor, where the circle orbits do not link, and the outside corresponding to the line at infinity,

where the circles link with linking number 1. Curves describing the homology classes a and b are

drawn on the torus; note that the circle orbits on the outside are in the class −a − b and those

inside are in the class −b.
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So these two alternatives both exist, and even a trusting reader might wonder whether we
have gotten it right: there were about six places where a wrong sign would lead to the two
possibilities getting interchanged. It would be most reassuring to find some independent
way of choosing the correct picture, and there is.

Indeed, the divisors D under consideration consist of two lines: in one case they have
respectively self-intersection −2 and −1, and in the other, 0 and −1 (in both cases, -1
corresponds to the new exceptional divisor). Figure 25 represents these two configurations.

-2 -1 0 -1

Figure 25. The divisor being blown up.

The self intersection number 0 really means that the normal bundle to the proper
transform l′∞ is trivial. A limit on the torus p−1(z̃) of circle orbits coming from the
exceptional divisor is a vector tangent at z to the last exceptional divisor, plus a normal
vector, i.e., a vector tangent to l∞ which makes a full turn around.

This can be moved slightly to a circle in l′∞ turning around z, plus a constant normal
vector. Since the constant normal vector in the small disc around z can extended to a
vector field on l′∞ normal to l′∞, we see the disc on the outside bounded by such an orbit.
So our case, with self intersection of l′∞ zero, definitely corresponds to the proposed picture.

0 -1

Figure 26. The circle at right represents a normal vector to the exceptional divisor, turning

around the divisor, i.e., an orbit of the circle action. This circle can be deformed into the circle

at left, on the original line (at infinity), turning around z, and with a constant normal vector.

IX. Real oriented blow-ups for complex Hénon mappings

Each space X[−N−1,N+1] is obtained from X[−N,N ] by a sequence of blow-ups, first at
qN and pN+1 and then at points of the most recent exceptional divisor; let

πN+1,N : X[−N−1,N+1] → X[−N,N ]

denote the blow-down mapping. By Propositions VII.3 and VII.7, the mapping πN+1,N

induces a projection

π̃N+1,N : B+
R

(
X[−(N+1),(N+1)], D[−(N+1),N+1]

)
→ B+

R

(
X[−N,N ], D[−N,N ]

)
,
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which allows us to consider the projective limit

B+
R

(X∞, D∞) = lim←−
(
B+

R
(X[−N,N ], D[−N,N ]); π̃N+1,N

)
.

There is a canonical inclusion jN : C2 → X[−N,N ] (as in Proposition IV.6, b), which

lifts to j̃N : C2 → B+
R

(X[−N,N ], D[−N,N ]) since the real oriented blow-up is taken along
D[−N,N ] = X[−N,N ] − C2. These inclusions are compatible with π̃N+1,N , leading to an

inclusion j̃∞ : C2 → B+
R

(X∞, D∞).

Theorem IX.1. a) The mapping j̃∞ is injective, with dense image, allowing us to think
of C2 as a subset of B+

R
(X∞, D∞).

b) The Hénon mapping H : C2 → C2 extends continuously to an automorphism

B+
R

(H∞) : B+
R

(X∞, D∞)→ B+
R

(X∞, D∞).

Proof. (a) The injectivity of j̃∞ is clear since all the j̃N are injective. Moreover, all
the jN have dense image by Proposition IV.6, and so do the j̃N since the interior of a
manifold with boundary is dense in the manifold. The density of the image of j̃∞ follows
immediately, since the topology on the projective limit is inherited from the topology of
the product. (This also follows from the much more general Theorem VII.11).

(b) Clearly the Hénon mapping, i.e., the shift, induces an isomorphism

X[−N,N+1] → X[−(N+1),N ],

hence a homeomorphism

B+
R

(
X[−N,N+1], D[−N,N+1]

)
→ B+

R

(
X[−(N+1),N ], D[−(N+1),N ]

)

by Proposition VI.4. The result will follow since

B+
R

(X∞, D∞) = lim←−
M,N→∞

B+
R

(
X[−N,M ], D[−N,M ]

)

when N and M can go to infinity in any way one wants: the pairs [−N, N ] are cofinal in
the projective system of pairs [−N, M ]. !

Remark. The existence of B+
R

(H∞) is a bit less trivial than one might expect. For
instance, there is no well-defined mapping B+

R
(H̃) : B+

R
(X̃, D̃) → B+

R
(P2, l∞). Indeed,

although D̃ = H̃−1(l∞) set theoretically, it is not true in the sense of ideals. In the
sense of ideals, H̃−1(l∞) contains A′, B and L1, . . . , Ld with multiplicity d− 1, and Ld+k

with multiplicity d− k − 1 for k = 0, . . . , d− 3, and finally Ã with multiplicity 1 (for the
notation, see Figure 4). At the double points where two irreducible components of D̃ meet
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and their multiplicities are the same, the map H̃ extends anyway because of Example II.6.
But where the two multiplicities are different, Theorem VI.4 does not guarantee that H̃
extends, and in fact it doesn’t, as can be verified by explicit computation. 4

The remainder of this section is devoted to understanding the structure of B+
R

(X∞, D∞)
in detail, as this is equivalent to understanding the dynamics of Hénon mappings at infinity.

Theorem IX.2. (a) The pair (B+
R

(X∞, D∞),B+
R

(D∞)) is homeomorphic to the pair
(B4, S3), the closed 4-ball bounded by the 3-sphere.

b) The mapping p : B+
R

(D∞)→ D∞ has as its fibers:

• a circle above ordinary points.

• a torus above double points,

• a d-adic solenoid Σ− above p∞ and a d-adic solenoid Σ+ above q∞.

Proof. Part (a) has already been proved in Theorem VII.11. More precisely, we have
seen that the real oriented blow-up of P2 along the line at infinity is a 4-ball bounded by
a 3-sphere, and so lim←−B+

R
(X[−N,N ], D[−N,N ]) is also. Indeed, lim←−B+

R
(X[−N,N ], D[−N,N ]) is

obtained by infinitely many times making a blow-up of a surface X at a point z of a divisor
D, then taking the real oriented blow-up of the resulting surface X̃z along the inverse image
D̃ of the divisor D. That is precisely the situation of Theorem VII.11. Moreover, the first
two cases of part (b) follow immediately from Corollary VI.10.

The third statement is a bit more delicate. The point p∞ is represented by the sequence

p1 ∈ X[0,0], p2 ∈ X[−1,1], p3 ∈ X[−2,2], . . .

and above this point we see the projective limit of the system of circles

p−1
0 (p1)← p−1

1 (p2)← p−1
2 (p3) . . . .

Remark. We are adding an index to avoid ambiguity, calling

pN : B+
R

(
X[−N,N ], D[−N,N ]

)
→ X[−N,N ]

the canonical projection; the added notation is necessary as the pN+1 can be viewed as
points in all X[−M,M ] with M > N (or in X∞), but only in X[−N,N ] are pN+1 and qN

simple points of D[−N,N ]. 4

There is a canonical parametrization of p−1
N (pN+1) ⊂ B+

R
(X[−N,N ], D[−N,N ]), obtained

from the composition

p−1
N (pN+1)⋂

B+
R

(X[−N,N],D[−N,N])

projection to−→
Nth coordinate

p−1(p̃)⋂

B+
R

(X̃,D̃)

applying H̃−→ p−1(p)⋂

B+
R

(P2,l∞)

arg 1/y−→ R/2πZ.
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We will denote this coordinate by θN .

There is also a natural parametrization of p−1
N (q−N ) ⊂ B+

R
(X[−N,N ], X[−N,N ]), which is

a bit simpler, obtained from the similar composition

p−1
N (q−N )⋂

B+
R

(X[−N,N],D[−N,N])

projection to−→
−Nth coordinate

p−1(q′)⋂

B+
R

(X̃,D̃)

8 p−1(q)⋂

B+
R

(P2,l∞)

arg 1/x−→ R/2πZ.

We will denote this coordinate by φN .

Now part (c) follows from Proposition IX.3.

Proposition IX.3. We have

π̃N+1,N (θN+1) = dθN+1 + arg a and π̃N+1,N (φ−N−1) = dφ−N−1.

End of proof of IX.2 using IX.3. One description (see [HO1], Section 3) of the d-adic
solenoid Σd is as

Σd = lim←−(R/2πZ, θ 0→ dθ).

Clearly the second part of Proposition IX.3 shows that precisely the space Σ+ above q∞

is canonically the d-adic solenoid.

For the point p∞, observe that if we set ψ = φ + arg a/(d − 1), then the mapping
φ 0→ dφ+ arg a becomes

ψ 0→ d

(
ψ −

arg a

d− 1

)
+ arg a +

arg a

d− 1
= dψ.

Thus the subset Σ− ⊂ B+
R

(X∞, D∞) above q∞ is also a d-adic solenoid.

Proof of IX.3. Let us first compute the map

p−1(p̃)⋂

B+
R

(X̃,D̃)

→ p−1(p)⋂

B+
R

(P2,l∞)

induced by the blow-down mapping X̃H → P2, where both domain and range are identified
to R/2πZ:

• p−1(p) using arg 1/y;

• p−1(p̃) using (arg 1/y) ◦ H̃.

In Section III, we began by using the coordinates u = x/y, v = 1/y near p, so we see
that arg v is our parameter for p−1(p). Still in the notation of Section III, arg X1 gives the
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parametrization of p−1(p̃). Formula (3.6), for the case k = d − 1, tells us that the point
arg X1 = θ of p−1(p̃) is mapped by B+

R
(H̃) to the point where v has argument

arg
X1

(
Xd−1

1 Yd−1 + a
∑d−2

j=0 QjX
j
1

)

Xd−1
1 Yd−1 + a

∑d−2
j=0 QjX

j
1

= arg X1.

Thus we must see how the blow-down maps p−1(p̃) to p−1(p), working in the coordinate
θ = arg X1 in the domain, and θ = arg v in the range, since these correspond under the
Hénon mapping.

More precisely, consider the mapping from the circle p−1(p̃) ⊂ B+
R

(X̃H , D̃) to the circle
p−1(p) ⊂ B+

R
(P2, l∞). Let a0 = p, a1, . . . , a2d−2 be the successive points at which we

performed blow-ups to get from P2 to X̃H , and finally set a2d−1 = p̃. The point a0, and
the points ad, . . . , a2d−1 are simple points of the divisor constructed so far; the points
a1, . . . , ad−1 are double points. The inverse images of these points are parametrized by

arg v at a0,(
arg X1

arg u

)
at a1,

(
arg X1

arg Xk

)
at ak, k = 2, . . . , d− 1,

arg X1 at ak, k = d, . . . , 2d− 1.

(9.1)

In these coordinates, the blow-down mapping X̃H → P2 induces the composition

θ

a2d−1

0→ · · · 0→ θ

ad

0→
[

θ
θ + arg a

]

ad−1

0→
(

θ
2θ + arg a

)

ad−2

0→ . . .

0→
(

θ
(d− 1)θ + arg a

)

a1

0→ dθ + arg a

a0

.

(9.2)

All of these are straightforward applications of Propositions VII.4 and VII.8. Let us spell
out the mapping which takes ad to ad−1. In that case we are taking the circle above the
point X1 = 0, Xd = a, parametrized by arg X1, to the torus above X1 = 0, Xd−1 = 0. The
blow-down mapping is (

X1

Xd

)
0→
(

X1

Xd−1

)
=

(
X1

X1Xd

)
,

and in particular the circle X1 = ρeiθ, Xd = a is mapped to the circle X1 = ρeiθ, Xd−1 =
ρaeiθ. If we let ρ→ 0 and remember only the arguments, we get the desired formula.

This almost proves the first part of Proposition IX.3; by definition, the mapping
p−1

N (pN+1) → p−1
N−1(pN ) is precisely the mapping above, the domain and range being

identified to R/2πZ by H◦N and H◦(N−1) respectively.
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There are two ways of approaching the first part of Proposition IX.3: to make the
sequence of blow-ups at q, repeating the material of section III to make H−1 well-defined,
or to make a change of variables to make H−1 conjugate to a Hénon mapping, for a new
polynomial p1 and and a new Jacobian a1, of course. Remember that we used the fact
that the polynomial p is monic in Section III, so p1 must also be monic. We invite the
reader to show that in the variables x1, y1, where ζx1 = y and ζy1 = x with ζd−1 = a, we
have

H−1 :

(
x1

y1

)
0→
(

p1(x1)− y1/a
x1

)

with p1 monic. Thus, in these coordinates the blow-down takes

arg(1/y1)→ d arg(1/y1) + arg(1/a).

We invite the reader to check that this means exactly that in the original variables, the
formula of Proposition IX.3 is satisfied. !

X. The topology of B+
R

(X∞, D∞)

We now want to describe the mapping B+
R

(H∞) more precisely. A first statement says
that appropriate restrictions of B+

R
(H∞) and B+

R
(H∞)−1 are solenoidal ([HO1], Section 3).

Remark. Actually, the definition of solenoidal which appears in [HO1] isn’t quite the
right one in our setting, because there the mappings are differentiable, and the notion of
expanding and contracting is with respect to this structure; B+

R
(D∞) doesn’t have a natural

differentiable structure, especially on the solenoids Σ± which are naturally accumulations
of corners. However, the main result we will be using is Theorem 3.1 of [HO1] which uses
none of this structure (and in the main case of interest, we will construct the mapping
explicitly anyway, in Proposition X.1). The construction of Theorem VII.11 provides the
necessary contraction in the fiber directions. 4

Let us denote by Tpi
and Tqi

the tori p̃−1(pi) and p̃−1(qi). Each of these separates
B+

R
(D∞) into two pieces. We will denote by T+

pi
the one which contains the attractive

solenoid Σ+, and by T−
pi

the one which contains the repelling solenoid Σ−, and similarly
for qi.

Proposition X.1. a) The mapping B+
R

(H∞) maps T+
pi

(resp. T+
qi

) into itself, and is
solenoidal of degree d.

b) The mapping B+
R

(H∞)−1 maps T−
pi

(resp. T−
qi

) into itself, and is solenoidal of degree
d.

Proof. We need to examine carefully the sequence of blow-ups which makes H well-
defined, to understand how the tori corresponding to the double points of D∞ are embedded
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in the 3-sphere B+
R

(D∞). Recall that we called a0 = p, a1, . . . , a2d−2 the successive points
at which we performed blow-ups to get from P2 to X̃H , and finally set a2d−1 = p̃.

In Section VIII, we showed how to start, creating a torus Ta0 in the 3-sphere, separating

the solid torus corresponding to l∞ from the solid torus corresponding to the first excep-

tional divisor (which will eventually be the irreducible component B of D̃). See Figure

24 to understand how these solid tori are placed after stereographic projection; the words

“inner” and “outer” will refer to this picture.

The next d− 1 blow-ups are fairly easy to understand, now that we have started right.

We thicken the torus Ta0 , creating an inner torus Ta1 and an outer torus Tp′ = Tp0 (which

we can call by its final name, since it will not be affected by further blow-ups). Then

thicken the inner torus Ta1 , creating an inner torus Ta2 , and one which corresponds to

L1 ∩L2 (between Ta2 and Tp0). Then thicken the inner torus Ta2 again, d− 1 times in all.

The inside of the torus Tp0 is T−
p0

. See Figure 27 for the case d = 3.

The circle orbits fibering the regions between the successive tori are contained in T−
p0

with the innermost torus (corresponding to the component B) removed, which is a space

with homology Z2, generated by a and b (see Figure 24). At the first thickening, an

oriented circle orbit between the two tori is in the homology class −a − 2b, at the next

the new thickened torus is fibered by curves with homology class −a− 3b, etc., ending up

with a thickened torus fibered by circles in the homology class −a− db, and an inner solid

torus (corresponding to B) with fibers in the homology class −b.

In summary, after the first d blow-ups, we have an inner solid torus with fibers in the

homology class −b, then a succession of thickened tori with fibers in the homology classes

−a− db, −a− (d− 1)b, . . . , −a − 2b, (10.1)

and finally the region T+
p0

corresponding to l∞, fibered (by the old Hopf fibers) in the

homology class −a− b. See Figures 27 and 28.

We must now make d − 1 more blow-ups of ordinary points. The first of these can be

realized by thickening a circle orbit in the region corresponding to Ld−1, which is fibered

by circles in the homology class −a − db. We will then thicken a circle inside this torus,

which we may take to be the “core circle”, and repeat this d− 2 times. The final torus we

create this way is Tq1 . All the solid tori are thickenings of the original circle, and hence in

the homology class −a − db.

We need to start making the second series of blow-ups, as we don’t yet have the torus

Tp1 . So thicken a fiber inside T−
q1

, creating a solid torus still in the homology class −a−db,

and thicken it again d− 1 times; the outermost torus of the series just created is Tp1 . We

will not need to describe the further blow-ups.
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Figure 27. The picture above corresponds to the situation after d blow-ups when d = 3, and

after stereographic projection. The outside corresponds to the real oriented blow-up of the line

at infinity (now A′), with the Hopf circle action, as shown. The inner torus corresponds to B,

with the circle action where the orbits are not linked. The region between the inner torus and the

next corresponds to Ld−1; that is where all the further action will take place, thickening a circle

orbit (represented on the drawing, and going around 3 times in one direction as it turns once in

the other direction). The region between the outer torus and the next corresponds to L1; the

circle action there has orbits which turn twice in one direction as they turn once in the other; we

haven’t drawn them to keep the drawing simpler.

-a-b

-b

-a-2b

-a-b

-b

-a-b

-b

-a-2b
-a-3b

-a-b

-b

-a-2b

B

L1

A'

L2

L3

A~

Figure 28. You can almost imagine constructing the pattern of tori in S3 by rotating the figure

above around the z-axis (shown as a heavy line). The case represented corresponds to d = 3.

The “almost” is because the small circles are not actually rotated: as they turn around the z-axis

they also turn in their annulus, so as to connect up and together form a single torus, as shown in

Figure 27.
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Moreover, B+
R

(H∞)−1 is a homeomorphism which maps the solid torus T−
p0

to the solid
torus T−

p1
. We claim that as a map T−

p0
→ T−

p1
it is conjugate to the mapping τd,0 as

defined in ([HO1], Section 3). Recall that the mapping τd,k : S1 × D → S1 × D, where
S1, D ⊂ C are respectively the unit circle and the disc of radius 2, is given by the formula

τd,k(ζ, z) =
(
ζd, ζ + εzζk+1−d

)
.

A “solenoidal” map S1 ×D → S1 ×D is one which is expanding in the circle direction
and contracting in the disc direction. Certainly B+

R
(H∞) expands in the circle direction;

in fact it is β 0→ dβ (this is the coordinate β of the stereographic projection). By choosing
our thickenings sufficiently small, the mapping will be contracting on the discs. !

Corollary X.2. The mappings B+
R

(H∞) : T+
pi
→ T+

pi
and B+

R
(H∞)−1 : T−

pi
→ T−

pi
are

conjugate to τd,0.

Proof. Theorem 3.11 of [HO1] asserts that every unbraided solenoidal mapping from a
solid torus to itself is conjugate to precisely one of the τd,k, and Propositions 4.1 and 4.6
assert that only τd,0 extends to the 3-sphere. Indeed, Proposition 4.6 asserts that when
k #= 0, the forward images of τd,k are knotted; but no homeomorphism of S3 can map an
unknotted solid torus to a knotted one. Since our map B+

R
(H∞) extends to the 3-sphere

B+
R

(D∞), it is enough to prove that

B+
R

(H∞)−1 : T−
p1
→ T−

p1

is solenoidal and unbraided. The unbraided part follows from the homotopy class −a −
db. !

By Theorem 3.1 of [HO1], there are maps π+
i : T+

pi
→ R/2πZ and π−

i : T−
pi
→ R/2πZ

such that the diagrams

T+
pi

B+
R

(H∞)
−−−−−→ T+

pi

π+
i

0 π+
i

0

R/2πZ
θ ,→dθ−−−−→ R/2πZ

T−
pi

B+
R

(H∞)−1

−−−−−−−→ T−
pi

π−
i

0 π−
i

0

R/2πZ
θ ,→dθ−−−−→ R/2πZ

commute.

In our case, these functions π+
i and π−

i can be computed explicitly; they are given by
proposition X.3. Before stating this proposition, notice that

• T+
qi

is the set of x ∈ B+
R

(X∞, D∞) such that
(
p∞(x)

)
i
= q′;

• T−
qi

is the set of x ∈ B+
R

(X∞, D∞) such that
(
p∞(x)

)
i−1
∈ Ã.

• T−
pi

is the set of x ∈ B+
R

(X∞, D∞) such that
(
p∞(x)

)
i−1

= p̃;
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• T+
pi

is the set of x ∈ B+
R

(X∞, D∞) such that
(
p∞(x)

)
i
∈ A′.

There is a natural blow-down mapping Qi : X∞ → X[i,∞), which blows D∞ down onto
D[i,∞).

Since Qi is a blow-down, it induces a mapping

B+
R

(Qi) : B+
R

(X∞, D∞)→ B+
R

(
X[i,∞), D[i,∞)

)
.

More precisely, the blow-downs X[−N,N ] → X[i,N ], i < N induce mappings on the real
oriented blow-ups B+

R
(X[−N,N ], X[−N,N ]) → B+

R
(X[i,N ], D[i,N ]); to construct Qi, we must

pass to the projective limit.

The mapping Qi maps T+
qi

to the circle above qi in B+
R

(D[i,∞]. This circle is canonically
parametrized, by φi. Let us denote

Φi = φi ◦ B+
R

(Qi)|T+
qi

: T+
qi
→ R/2πZ

the composition.

Exactly analogously, there is a natural blow-down Pi : X∞ → X(−∞,i] , which blows
D∞ down onto D(−∞,i].

Again, since Pi is a projective limit of blow-downs, it induces a mapping

B+
R

(Pi) : B+
R

(X∞, D∞)→ B+
R

(
X(−∞,i], D(−∞,i]

)

which maps T−
pi

to the circle above pi. This circle is canonically parametrized, by ψi

(remember that ψi = θi + arg(a/(d− 1)). Let us denote

Ψi = ψi ◦ B+
R

(Pi)|T−
pi

: T−
pi
→ R/2πZ

the composition.

Proposition X.3. (a) We may choose π+
i = Φi.

(b) We may choose π−
i = Ψi.

Proof. (a) Clearly Φi−1(B+
R

(H∞)(x)) = Φi(x) when x ∈ T+
qi

, as the left-hand side is
just the right-hand side shifted one to the left. Moreover, Proposition IX.3 says that
Φi(y) = dΦi−1(y) for y ∈ T+

qi−1
. So

Φi

(
B+

R
(H∞)(x)

)
= dΦi−1

(
B+

R
(H∞)(x)

)
= dΦi(x).

The argument for part (b) is similar. !

Remark. We should discuss what happened to the d − 1 choices of π+ and π−. For
π+, our particular choice was given by the coordinate system in C2, because ultimately,
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ψ = arg 1/x. If we conjugate a Hénon mapping by setting x1 = ζx, y1 = ζy where ζd−1 = 1,
it is easy to show that the Hénon mapping remains of the same form (the polynomial
remains monic and the number a is not changed). For π−, we don’t actually have a
canonical choice. The coordinate θ, which ultimately comes from arg 1/y, is canonical, but
ψ = θ + arg(a/(d − 1)) is exactly ambiguous by a d − 1 root of 1, as one would expect.
4

The point of these computations is that since π+ and π− are conjugacy invariants (up
to the ambiguity above) of the mapping B+

R
(H∞), we can use them to find a condition

for when the restrictions of B+
R

((H1)∞) and B+
R

((H2)∞) to the spheres at infinity are
conjugate, where H1 and H2 are Hénon mappings with corresponding polynomials p1 and
p2, and Jacobians a1 and a2. In order to pin down our result, we need to know something
about toroidal decompositions of 3-manifolds.

Toroidal decompositions. The 3-manifold B+
R

(D∞) − (Σ+ ∪ Σ−) has an interesting
toroidal decomposition. We will give the definitions and basic properties, largely due to
Jaco, Johannson, Shalen and Waldhausen. Our sources for this material are [Hemp] and
especially [Hat2].

Let M be an orientable irreducible 3-manifold with boundary. A properly embedded
surface S ⊂M is incompressible if for any closed embedded disc in D ⊂M with ∂D ⊂ S,
there is a disc D′ ⊂ S with ∂D = ∂D′. The manifold M is atoroidal if each incompressible
torus is isotopic to a boundary component.

Let D ⊂ C be the open unit disc. A Seifert manifold is a 3-dimensional manifold,
foliated by circles, such that each leaf has a neighborhood homeomorphic to the quotient
of D × [0, 1] by the equivalence relation which identifies (0, z) to (1, e2πip/qz) for some
rational number p/q, with the foliation induced by the lines {z}× [0, 1]. The set of leaves
is then a surface with boundary Ω, and the canonical mapping M → Ω is referred to as a
Seifert fibration. This is a locally trivial fibration over the subset Ω′ ⊂ Ω corresponding to
the regular leaves; the singular leaves (like the one corresponding to z = 0 in the model)
correspond to the discrete set Ω−Ω′.

The key results for us are the following:

Theorem X.4. Let M be a 3-dimensional compact orientable manifold with boundary.
Then there exists a collection of disjoint incompressible tori Ti ⊂ M such that each com-
ponent of M −∪iTi is either atoroidal or a Seifert manifold, and a minimal such collection
is unique up to isotopy.

This is exactly Theorem 3.3 of [Hat2].

Theorem X.5. A Seifert manifold with at least two boundary components has a unique
Seifert fibration up to isomorphism.
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This follows immediately from Theorem 4.3 of [Hat2]. Indeed, Hatcher shows that the
Seifert fibration is unique except for a list of exceptions, and all these exceptions have 1
or 0 boundary components.

Theorem X.6. Let f : M → Ω be a Seifert fibration, and let Ω′ ⊂ Ω be the complement
of the points corresponding to singular fibers. Suppose that M is connected and that
∂M #= /©. Then every incompressible surfaces in M without boundary is isotopic to a
surface of the form f−1(γ) for some curve γ ⊂ Ω′, and the isotopy classes of such surfaces
correspond exactly to the isotopy classes of such curves.

This follows from Proposition 3.5 of [Hat2]. Hatcher proves that every incompressible
and boundary-incompressible surface is isotopic to either a vertical or a horizontal sur-
face. Horizontal surfaces have non-empty boundary, and surfaces without boundary are
vacuously boundary-incompressible. So our surfaces are isotopic to vertical surfaces, i.e.,
surfaces of the form f−1(γ).

We will be interested in applying these notions to the manifold B+
R

(D∞)− (Σ+ ∪Σ−),
which comes with a family of tori Tpi

, which we will see are incompressible.

Theorem X.7. a) The tori Tpi
⊂ B+

R
(D∞)− (Σ+ ∪Σ−) are incompressible.

b) Every incompressible torus in B+
R

(D∞)− (Σ+ ∪Σ−) is isotopic to exactly one of the
Tpi

.

Proof. a) The homology H1(B+
R

(D∞)−(Σ+∪Σ−)) is isomorphic to Z[1/d]⊕Z[1/d]. This
is proved for instance using the Alexander duality theorem ([Spa], 6.2, Thm. 16), which
asserts that

H1

(
B+

R
(D∞)− (Σ+ ∪Σ−)

)
= H1(Σ+)⊕H1(Σ−).

The cohomology above is Čech cohomology (isomorphic to Alexander-Spanier cohomol-
ogy), given by the inductive limit of the singular cohomology of a basis of neighborhoods
of Σ±. Using the system of neighborhoods T+

p−i
of Σ+, we see that

H1(Σ+) = lim−→(Z, n 0→ dn) = Z[1/d].

(This is similar to but simpler than Example V.3.)

An isomorphism is specified by sending the generators a, b(see Figure 24) of H1Tp0 to
(0, 1) and (1, 0) in Z[1/d]⊕Z[1/d]. Under this isomorphism, the corresponding generators
of H1(Tpi

) are sent to (0, d−i) and (di, 0). In particular, the inclusion is injective on the
homology of such a torus. If a disc in B+

R
(D∞) − (Σ+ ∪ Σ−) bounds a disc in Tpi

, then
the homology class of this boundary is zero in H1(B+

R
(D∞) − (Σ+ ∪ Σ−)), hence also in

H1(Tpi
), so the curve bounds a disc in the torus, since any simple closed curve in a torus

which is trivial in the homology bounds a disc. (This is not true on surfaces of higher
genus, which is why incompressibility is not defined using injectivity of the inclusion on
homology.) This is the definition of an incompressible torus.
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b) Let T ′ be such a torus. It is contained in the compact manifold T−
pi
∩ T+

pj
for i

sufficiently small and j sufficiently large, which allows us to apply Theorem X.4, where M
must be compact. So it is enough to prove that Tpi+1 , . . . , Tpj−1 is a minimal family of
incompressible tori in T−

pi
∩ T+

pj
such that the components of the boundary are atoroidal

or Seifert manifolds.

First observe that the components of

(
T−
pi
∩ T+

pj

)
−

(
j−1⋃

n=i+1

Tpn

)

are in fact both atoroidal and Seifert manifolds. Indeed, the region T−
pi
∩ T+

pi+1
is home-

omorphic to the region Mi bounded by the tori corresponding to Li,d−2 ∩ Li,d−1 and
Li,d ∩Li,d−1. This region contains the solid torus corresponding to Bi, but that torus can
be collapsed onto a circle without changing the homeomorphism type; call M ′

i the resulting
manifold.

The manifold M ′
i is fibered by the natural circle action, and the circle corresponding

to Bi becomes a singular circle of type (1, d). Thus T−
pi
∩ T+

pi+1
is a Seifert manifold; let

fi : T−
pi
∩ T+

pi+1
→ Ωi be the corresponding projection to the set of leaves (the base). It

is also atoroidal, by Theorem X.6, since Ωi is an annulus with one distinguished point
corresponding to the unique singular fiber. This is seen as follows. In Figure 28, the
manifold Mi corresponds to the annulus between the center circle and the next, with the
d small circles removed.

Figure 29. On the right, we have repeated the relevant part of Figure 28, showing the annulus

corresponding to Mi when d = 3; the three dots represent the intersection of the plane of the

figure with a circle orbit in Mi. The right-hand side represents the first, after applying z 0→ zd

and collapsing the central disc to a point. Every point on the right corresponds to a unique circle

orbit, i.e., the base is an annulus with a single singular fiber (corresponding to the central point).

If you parametrize the disc by z, and compose z 0→ zd with a collapse of the central disc
to a point (corresponding to collapsing the solid torus corresponding to B to a circle), you
manufacture a space which corresponds exactly to the set of leaves. See Figure 29.

Any simple closed curve on an annulus with a puncture is homotopic to a point or to a
boundary component, so there are no incompressible tori in M ′

i by Theorem X.6.
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Now we need to show that our family Tpi+1 , . . . , Tpj−1 is minimal. It is clearly enough

to show that T−
pi
∩ T+

pi+2
is neither atoroidal nor Seifert. It clearly isn’t atoroidal, since it

contains Tpi+1 , so we must show it isn’t Seifert. Suppose f : T−
pi
∩ T+

pi+2
→ Ω is a Seifert

fibration, where Ω is some surface. The surface Ω must have a boundary consisting of two

components, but otherwise we don’t know much about it. By Theorem X.6, there is a

curve γ ⊂ Ω′, where Ω′ is the complement of the projections of the singular fibers, such

that Tpi
is isotopic to T ′

i = f−1(γ); in particular, the restriction of f to the components

of
(
T−
pi
∩ T+

pi+2

)
− T ′

i is a Seifert fibration.

But each of these is already a Seifert fibration, and in fact in a unique way by Theorem

X.5. It is then enough to show that the fibers of fi and fi+1 on the torus Tpi
which

is the intersection of their domains are not homotopic curves; since they should both be

homotopic to the fibers of f , this contradicts the existence of such an f .

In the basis a, b for H1(Tpi
), we have seen that a fiber of f0 has the homology class

−a − db. We claim that a fiber of f1 has the homology class −da − b; knowing this will

end the proof.

We need to repeat the construction of Proposition X.1, to understand the sequence of

tori corresponding to the block B1 of D∞. Take the 3-sphere, with the sequence of real

oriented blow-ups corresponding to B+
R

(D̃), as represented in Figure 27.

The fiber above q is a circle orbit outside the torus corresponding to q′, which we may

take to be the z-axis. Thicken this torus; the fibers inside the thickened torus will now

have the homology class −a− b+ b = −a by Theorem VII.5. Indeed, if you choose a small

disc transverse to the z-axis, it projects to D̃ (in fact, to a neighborhood of q′ in the line

at infinity A′), and the induced orientation gives its boundary the orientation +b. Now,

when we make d− 1 more blow-ups, always of double points, the regions between the tori

created have circle orbits in the classes (−2a − b, . . . ,−da − b). The region foliated by

curves in the class −da− b corresponds to the 3-manifold M1. !
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B-1

B0

Tp0

Tq0

1

2

3

4

5

6

7
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9

Figure 30. The configuration of tori in the 3-sphere at infinity between the torus corresponding

to B0 and B−1, in the case d = 3. The torus corresponding to L−1,1 ∩L−1,2, shown as a heavy

curve, winds three times around the torus corresponding to B0, in the figure a small thickening

of the unit circle in the x, y-plane. The torus corresponding to L0,2∩L1,3, also shown as a heavy

curve, winds three times around the torus B−1, represented in the figure as a thickening of the

z-axis.

Conjugacy invariants of B+
R

(H∞).

Let H1 and H2 be Hénon mappings. We will give a necessary condition for when

the restrictions of B+
R

((H1)∞) and B+
R

((H2)∞) to the spheres at infinity B+
R

(D1,∞) and
B+

R
(D2,∞) are conjugate. To (sort of) lighten notation, we will call these restrictions

B+
R

((Hi)′∞).
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Theorem X.8. In order for B+
R

((H1)′∞) and B+
R

((H2)′∞) to be topologically conjugate, it
is necessary that they have the same degree, and that arg a1 ≡ arg a2 mod 2π/(d− 1).

Proof. That they must have the same degree is clear by counting fixed points in the
solenoids.

We will first investigate the “critical locus” of the map

(π+
1 , π−

0 ) : T−
p0
∩ T+

p1
→ (R/2πZ)2.

Remark. The notion of “critical locus” isn’t quite right: B+
R

(D∞) isn’t naturally a
differentiable manifold, it is naturally a manifold with corners, almost an object of the
piecewise-linear category. What we will find is more PL than C1: it will turn out that
the set of points which have neighborhoods on which π+

1 and π−
0 differ by a constant

is non-empty. In our setting, the critical locus will be the closure of this open set by
definition. This is a much stronger notion of “critical” than one would expect: generically
for a differentiable mapping from a 3-dimensional manifold to a surface, the critical locus
should be a curve. 4

Lemma X.9. On p−1
∞ (B0), we have the identity

π+
1 − π

−
0 = − arg a + π −

arg a

d− 1
= π −

d

d− 1
arg a.

Proof. The parametrized path t 0→
[

c
te−iα

]
, t > 0, thought of as a path in X∞,

approaches a specific point of B0 with coordinate c. Thought of as a path in B+
R

(X∞, D∞),
it approaches the point x above c where Ψ0 = α + (arg a)/(d − 1). Thus π−

0 (x) = α +
(arg a)/(d− 1).

To compute π+
1 (x), apply H to the path: the path t 0→

[
p(c)− ate−iα

c

]
, t > 0 ap-

proaches B+
R

(H∞)(x) ∈ p−1
∞ (B−1). Just as we needed the argument of 1/y to compute

Ψ0 (adjusted by (arg a)/(d− 1)), we need the argument of 1/x (unadjusted) to compute
Φ0(H(x) = Φ1(x); clearly this argument is α− arg a +π. Thus π+

1 (x) = α− arg a +π. !

This means that on this solid torus, the two functions π+
1 and π−

0 differ by the constant
d

d−1 arg a.

Lemma X.10. The solid torus p−1
∞ (B0) is the critical locus of π+

1 , π−
0 .

Proof. We will only outline how to do this, for points above L1. Choose as above a
curve in X∞ tending in B+

R
(X∞, D∞) to a point above a point c ∈ Li. For instance,
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t 0→
[

t−iα

cte−2iα

]
, t > 0 is a curve approaching a point x above L1. On this point, we have

π−
0 (x) = 2α− arg c + (arg a)/(d− 1). If we apply H to this curve and compute arg(1/x),

we find

π+
1 (x) =

{
dα if d > 2;

2α− arg(1− ac) if d = 2.

Since arg c shows up explicitly in the formula for π+
1 − π

−
0 , we see that such a point is not

critical. !

Remark. The point ac = 1 in the case d = 2 above corresponds to B ∩ L1; a similar
point will show up above Ld−1 for every d.

We now need to see that the number d
d−1 arg a from Lemma X.9 is (almost) a conjugacy

invariant of B+
R

(H∞).

Suppose that F : B+
R

(D1,∞) → B+
R

(D2,∞) conjugates B+
R

(H1,∞) → B+
R

(H2,∞), where
we have used indices 1 and 2 to distinguish the objects created from H1 and H2. Then F
must send Σ±

1 to Σ±
2 since these are the closures of the set of periodic points of B+

R
(H1,∞)

and B+
R

(H2,∞) respectively, so it must also send incompressible tori in the complement of
the solenoids Σ±

1 to incompressible tori in the complement of the solenoids Σ±
2 . Since Tpi

separates the Tpj
with j > i from the Tpj

with j < i, we see that the order of the tori
must be preserved, and there exists k such that

F (T1,pi
) is isotopic to T2,pi+k

By composing F with B+
R

((H2)′∞)◦k, we may assume that k = 0, and that

F (T1,pi
) is isotopic to T2,pi

Lemma X.11. The functions π+
1,i and π+

1,i ◦ F must differ by a multiple of 2π/(d− 1) on
their common domain of definition.

Proof. By composing π+
i,1 with an appropriate multiple of 2π/(d − 1), we may assume

that if x1 ∈ Σ+
1 is the fixed point of B+

R
((H1)′∞) with π+

i,1(x1) = 0, the F (x1) = x2 is the

fixed point of B+
R

((H2)′∞) with π+
i,1(x2) = 0. After this change, we must show that π+

1,i

and π+
1,i ◦ F coincide on their common domain.

Choose j sufficiently small so that

T+
p2,j

⊂ T+
p2,i ∩ F (T+

p1,i).

Now both diagrams

T+
p2,j

B+
R

(H2,∞)
−−−−−−→ T+

p2,j

π+
2,i

0 π+
2,i

0

R/2πZ
θ ,→dθ−−−−→ R/2πZ

T+
p2,j

B+
R

(H2,∞)
−−−−−−→ T+

p2,j

π+
i,1◦F−1

0 π+
i,1◦F−1

0

R/2πZ
θ ,→dθ−−−−→ R/2πZ
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commute. The uniqueness statement [HO1], Theorem 3.1 isn’t quite enough to guarantee
that the verical arrows coincide, since they aren’t of degree 1. In that case, the proof
guarantees that such maps differ by a multiple of 1/(di−j−1). This is enough to guarantee
that if π+

2,i and π+
i,1 ◦ F−1 coincide at a single point, then they coincide everywhere; indeed,

they do coincide at x2. Now

π+
2,i =

1

dm
◦ π+

2,i ◦ B
+
R

(H2,∞) and π+
i,1 ◦ F−1 =

1

dm
◦ π+

2,i ◦ B
+
R

(H2,∞);

any difference comes from different branches of 1
dm . Since F (Tp1,i

) is isotopic to Tp2,i
,

and we can choose a branch continuously during the isotopy, we see that indeed π+
2,i and

π+
1,i ◦F−1 (the latter adjusted at the beginning of the proof) must agree on their common

domain of definition. !

Now we need to know something about this common domain of definition.

Lemma X.12. The interiors of the torus F (T+
p1,i

) and the interior of the torus Bi−1 cor-
responding to B2,i−1 must have non-empty intersection.

Proof. An alternative way of saying this is to say that Bi−1 cannot be isotoped, in
B+

R
(D2,∞) − (Σ+

2 ∪ Σ−
2 ), to a torus outside of F (T+

p1,i
). This can be seen from linking

numbers. The presumed isotopy will take place in the complement of T+
p2,j

for j sufficiently

small. All curves (or unknotted solid tori) outside T+
p2,i

have linking number some integer

multiple of di−j with T+
p2,j

. But Bi−1 has linking number di−j−1 with T+
p2,j

(See Figure
31).

Figure 31. Represented here is a 3, 1-curve on the boundary of a solid torus, corresponding to

3 times the generator of the homology of the solid torus, and the core curve of the solid torus.

Clearly they link with linking number 1, whereas any curve outside the torus links with the 3, 1-

curve with linking number some multiple of 3. Thus this figure represents the case i− j = 1 and

d = 3.

Since the linking number must be constant during the isotopy, this is a contradiction. !
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Thus F must map some open subset of the torus corresponding to B1,i to some open
subset of the torus corresponding to B2,i, in such a way that

π±
2,i ◦ F = π1,i

up to a multiple of 1/(d− 1). This proves Theorem X.8. !

Remark. It seems likely that the condition arg a1 = arg a2 is also sufficient for conjugacy.
We will explore this in a future paper. It turns out that the conjugacy properties of
mappings like B+

R
((H)∞) (or the mapping hd of [HO1]) is quite subtle; and that there is an

infinite-dimensional moduli space, even when the maps are hyperbolic on a neighborhood
of the solenoids.

XI. The compactification of compositions of Hénon mappings

A theorem of Friedland and Milnor asserts that any polynomial automorphism of C2 is
either elementary, in the sense that we can find one variable which depends only on itself,
or conjugate to a composition of Hénon maps. Therefore understanding the appropriate
compactification of C2 to which such a composition extends is evidently important.

Milnor, in a personal communication, suggested what the 3-sphere at infinity should
look like; we will now state and prove this conjecture.

Let

Hi :

[
x
y

]
0→
[

pi(x)− aiy
x

]
, i = 1 · · ·k

be k Hénon mappings, with ai #= 0 and pi of degree di ≥ 2. We will consider G =
Hk ◦ · · · ◦H1, which is a polynomial mapping of algebraic degree d = d1 · · ·dk.

Recall that Σd = lim
←

(R/Z, t 0→ dt) is the d-adic solenoid, and σd : Σd → Σd the map

induced by t 0→ dt.

We will call the simplest link of two circles with linking number d the one formed by
the circles 


cos t
sin t
0



 , 0 ≤ t ≤ 2π and




(1 + 1

2 cos dt) cos t
(1 + 1

2 cos dt) sin t
1
2 sin dt





Figure 32. The simplest link of two circles linking with linking number 5.
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Theorem XI.1. a) There exists a topology on C2 % S3 homeomorphic to the 4-ball, with
S3 corresponding to the boundary, such that G extends continuously to a homeomorphism
of g : S3 → S3.

b) The homeomorphism g has two invariant solenoids Σ+, Σ−, one attracting and one
repelling, and both homeomorphic to Σd, and the homeomorphisms can be chosen to be
conjugacies between the restriction g|Σ+ and σd, and between g|Σ− and σ−1

d .

c) The complement M = S3 − (Σ+ ∪ Σ−) has a decomposition by incompressible tori
(Ti)i∈Z, unique up to isotopy, into pieces Mi bounded by Ti and Ti+1, homeomorphic to
the complement of the simplest link of two circles with linking number di mod k. Moreover,
Mi ∩Mj = /© unless |i− j| ≤ 1. The tori can be chosen so that g(Ti) = Ti+k.

In particular, the topology of the sphere at infinity is different for a composition of
Hénon maps with total degree d and for a single such mapping: the solenoids are the same
but they are embedded differently in the 3-sphere.

Proof. Let X̃G be the minimal blow-up of P2 on which G̃ : X̃G → P2 is well-defined.

It can be constructed as follows: set Gm = Hm ◦ · · ·◦H1, so that G1 = H1 and Gk = G,
and define X̃Gm

to be the minimal blow-up of P2 on which G̃m : X̃Gm
→ P2 is well-defined.

Further denote by πGm
: X̃Gm

→ P2 the canonical projection, and D̃Gm
= π−1

GM
(l∞) the

divisor at infinity of X̃Gm
.

We will construct X̃Gm
by induction. Clearly X̃G1 = X̃H1 is the space constructed in

Section III. Suppose we have constructed X̃Gm−1 , together with G̃m−1 and πGm−1 .

Set X̃Gm
to be such that the upper left-hand square of the diagram

X̃Gm
−−−−→ X̃Hm

H̃m−−−−→ P2

0 πHm

0

X̃Gm−1

G̃m−1−−−−→ P2

πGm−1

0

P2

is a fiber product in the category of analytic spaces. Then the top line is a mapping
G̃m : X̃Gm

→ P2, whereas the left-hand column represents X̃Gm
as a modification of P2 at

p. Thus C2 is dense in X̃Gm
, and it is clear by induction that G̃m extends Gm : C2 → C2.

That it is the minimal modification of P2 to which Gm extends follows from the fact that
the construction of Section III is the minimal modification to which the individual Hénon
maps extend. Thus X̃Gm

is the required minimal blow-up.

The divisor above infinity

D̃G = X̃G − C2 = π−1
G (l∞)
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looks as follows.

... ... ... ... ... ......

... ... ... ... ... ......

block corresp.
     to  H1

block corresp.
     to  H2

block corresp.
     to  Hk

q' p~

q0 p0 q1 p1 q2 p2 qk-1pk-1 qk pk

= =

A' A~

2d1-3 lines of
self-inter. -2

2d2-3 lines of
self-inter. -2

2dk-3 lines of
self-inter. -2

A0 A1 A2 Ak-1 Ak

-1 -3 -3 -3 -1d1 d2 dk

==

other
blocks

Figure 33. The divisor D̃G. The top figure gives the labels of all the components and points

to which we will need to refer, the second gives the self-intersections of all these components.

As before, we will avoid an infinite sequence of blow-ups by a considering a sequence
space. Consider the rational mapping G! : X̃G ∼∼> X̃G, which is G̃ wherever it is defined,
and define

ΓG ⊂ X̃G × X̃G

to be the closure of the graph ΓG! ⊂ X̃G × X̃G of G.

Lemma XI.2. A pair (x, y) belongs to ΓG if and only if either

• it is in ΓG! , or

• x = p̃, y ∈ (D̃ − A′) ∪ {p′}.

The proof is analogous to that of Theorem III.4.

Now define the natural compactification of the composition of Hénon mappings G as

X∞(G) =
{
(. . . , x−2, x−1, x0, x1, x2, . . . ) ∈

(
X̃G

)Z

|(xn, xn+1) ∈ ΓG for all n ∈ Z
}
.

Using Lemma XI.2, this space is not so difficult to understand.

Proposition XI.3. The space X∞(G) is compact. The complement of two points q∞ =
(. . . ,q′,q′,q′, . . . ) and p∞ = (. . . , p̃, p̃, p̃, . . . ) is an algebraic manifold.

Proof. The proof is the same as that of Proposition IV.8.
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Again, to understand the structure of the bad points, we will pass to the real oriented
blow-ups.

We can define spaces X[−N,M ](G) analogously to the construction in Section V, with
the divisors D[−N,M ](G); next we construct the real oriented blow-ups

B+
R

(X[−N,M ](G), D[−N,M ](G))

and take their projective limit

B+
R

(X∞(G), D∞(G)) = lim←−
N→∞

(B+
R

(X[−N,N ](G), D[−N,N ](G)).

Note that again we are using Propositions VII.3 and VII.7 to construct the mappings
implicit in the projective limit.

The pair B+
R

(D∞(G)) ⊂ B+
R

(X∞(G), D∞(G)) is the compactification of C2 promised in
Theorem XI.1. By Theorem VII.11, the pair is homeomorphic to (B4, S3), exactly as in
the proof of Theorem IX.2. Moreover, the inclusion of C2 ⊂ B+

R
(X∞(G), D∞(G)) and the

extension of G to the real oriented blow-up is constructed exactly as in IX.1.

The proof of (b) is closely analogous to Proposition IX.3, but requires a bit of terminol-
ogy. First, label components and points of D̃∞ as follows: let A0 = l∞ ⊂ P2, and define
recursively Ai ⊂ X̃Gi

to be the component of H−1
i (Ai−1) which is sent by Hi isomorphi-

cally onto Ai−1. Finally, Let p = p0 and q = q0; by induction each Ai contains the two
points pi,qi which under the isomorphism Gi|Ai

map to pi−1 and qi−1, as in Figure 33.

Next, we will label pm,i and qm,i the points of D∞(G) whose mth entry is pi, this
requires a bit of care when i = 0 and i = k, which we will leave to the reader.

Proposition IX.3 tells us that there are natural angles θj parametrizing p−1(pj) ⊂ X̃Gj
,

and that these angles correspond under the Hénon mappings (see Equation (9.1), where
this angle appears as the argument of v and the argument of X1). Note that we are
considering these fibers at the moment when they are created by the blow-up, so that each
lies above a simple point of the divisor defined so far. Moreover, the same proposition
(specifically, see Equation (9.2)) says that the composition of the Hénon mappings takes
angles θj to angles θj−1 as indicated in the following diagram:

θk
blow-down0→

X̃Gk
→X̃Gk−1

dkθk + arg ak
blow-down0→

X̃Gk−1
→X̃Gk−2

dkdk−1θk + dk−1 arg ak + arg ak−1

blow-down0→
X̃Gk−2

→X̃Gk−3

. . .
blow-down0→
X̃G1→X̃G0

dθk + β,

where d = dk . . . d1 and

β = dk−1dk−2 . . . d1 arg ak + dk−2dk−3 . . . d1 arg ak−1 + · · · + d1 arg a2 + arg a1.
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An analogous argument, using appropriate conjugates of the inverses of the Hj , will
show that the similar parameter φj of p−1(qj) is simply multiplied by d. Now the proof
ends in the same way as the proof of IX.3, showing that the fibers above p∞ and q∞ are
both d-adic solenoids, in one case using the angles φn, and in the other ψn = θn+β/(d−1).

Part (c) has substantially already been proved: The tori corresponding to the pn,j do
form a sequence of incompressible tori in B+

R
(D∞(G))−(Σ+∪Σ−), and the components of

the complements are homeomorphic to the simplest link of two circles which link with link-
ing number dj . Moreover, the proof we have given in Theorem X.7 that this is the unique
toroidal decomposition of B+

R
(D∞(G))− (Σ+ ∪Σ−) goes through without change. !
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Helvet. 48 (1973), 484-491. (Appendice to A. Borel and J-P. Serre Corners and Arithmetics

Groups, 436-483.)

[FS1] J. Fornaess and N. Sibony, Complex Hénon mappings in C2 and Fatou-Bieberbach
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A Compactification of Hénon Mappings in C2 as Dynamical Systems 97

[HO2] J.H. Hubbard and R.W. Oberste-Vorth, Hénon mappings in the complex domain II:
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