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A GEOMETRIC VIEW OF RATIONAL
LANDEN TRANSFORMATIONS

JOHN HUBBARD and VICTOR MOLL

Abstract

In this paper, a geometric interpretation is provided of a new rational Landen transformation. The
convergence of its iterates is also established.

1. Introduction

The transformation theory of elliptic integrals was initiated by Landen in [6, 7],
wherein he proved the invariance of the function

G(a, b) =

∫π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

(1.1)

under the transformation

a1 =
a + b

2
, b1 =

√
ab. (1.2)

Gauss [4] rediscovered this invariance in the process of calculating the arclength of
a lemniscate. The limit of the sequence (an, bn) defined by iteration of (1.2) is the
celebrated arithmetic-geometric mean AGM(a, b) of a and b. The invariance of the
elliptic integral (1.1) leads to

π

2AGM(a, b)
= G(a, b). (1.3)

General information about the AGM and its applications is given in [3]. A geometric
interpretation of the transformation (1.2) is given in [5].

A transformation analogous to the Gauss–Landen map (1.2) has been given in
[1] for the rational integral

U6(a1, a2; b0, b1, b2) =

∫∞

0

b0z
4 + b1z

2 + b2

z6 + a1z4 + a2z2 + 1
dz. (1.4)

Indeed, the integral U6 is invariant under the transformation

a(1)
1 =

a1a2 + 5a1 + 5a2 + 9

(a1 + a2 + 2)4/3
,

a(2)
2 =

a1 + a2 + 6

(a1 + a2 + 2)2/3
,

b(1)
0 =

b0 + b1 + b2

(a1 + a2 + 2)2/3
,
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b(1)
1 =

b0(a2 + 2) + 2b1 + b2(a1 + 3)

a1 + a2 + 2
,

b(1)
2 =

b0 + b2

(a1 + a2 + 2)2/3
. (1.5)

This transformation was obtained by a sequence of elementary changes of variable
and the convergence of

(an, bn) :=
(
a(n)

1 , a(n)
2 , b(n)

0 , b(n)
1 , b(n)

2

)

was discussed in [1]: for any initial data (a0, b0) ∈ !2
+ × !3

+ there exists a number
L, depending upon the initial condition, such that

(an, bn) −→ (3, 3, L, 2L,L), (1.6)

so that

U6(an, bn) −→ L × π

2
. (1.7)

The invariance of U6 under (1.5) shows that

U6(a0, b0) = L × π

2
(1.8)

as n → ∞. Therefore the iteration given above becomes an iterative procedure for
evaluating the integral.

The main result of [2], quoted below, is an extension of (1.5) for an even integrand.

Theorem 1.1. Let R(z) = P (z)/Q(z), with

P (z) =

p−1∑

j=0

bjz
2(p−1−j) and Q(z) =

p∑

j=0

ajz
2(p−j). (1.9)

Define

aj = 0, for j > p,

bj = 0, for j > p − 1,

dp+1−j =

j∑

k=0

ap−kaj−k, for 0 ! j ! p − 1, (1.10)

d1 =
1

2

p∑

k=0

a2
p−k, (1.11)

cj =

2p−1∑

k=0

ajbp−1−j+k, for 0 ! j ! 2p − 1, (1.12)

and

αp(i) =






22i−1

p+1−i∑

k=1

k + i − 1

i

(
k + 2i − 2

k − 1

)
dk+i, if 1 ! i ! p,

1 +

p∑

k=1

dk, if i = 0.

(1.13)
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Let

a+
i =

αp(i)

22iQ(1)2(1−i/p)
, for 1 ! i ! p − 1, (1.14)

and

b+
i = Q(1)2i/p+1/p−2 ×

[
p−1−i∑

k=0

(ck + c2p−1−k)

(
p − 1 − k + i

2i

)]
, for 0 ! i ! p − 1.

(1.15)
Finally, define the polynomials

P+(z) =

p−1∑

k=0

b+
i z

2(p−1−i) and Q+(z) =

p∑

k=0

a+
i z

2(p−i). (1.16)

Then ∫∞

0

P (z)

Q(z)
dz =

∫∞

0

P+(z)

Q+(z)
dz. (1.17)

The proofs in [1, 2] are elementary but lack a proper geometric interpretation. In
particular, the proof of (1.6) given in [1] could not be extended even for degree 8
in view of the formidable algebraic difficulties involved in the arguments given in
[1]. The goal of this paper is to show that the transformation ((1.14), (1.15)) is a
particular case of a general construction: the direct image of a meromorphic 1-form
under a rational map. This will allow us to prove an analogue of ((1.6), (1.8)) for
the integral

U2p(a, b) :=

∫∞

0

b0z
2p−2 + b1z

2p−4 + . . . + bp
z2p + a1z2p−2 + . . . + 1

dz. (1.18)

In fact, we prove that the sequence xn starting at

x0 = (a1, . . . , ap−1; b0, . . . , bp−1)

and defined by xn+1 = x+
n satisfies

xn →
((

p

1

)
,

(
p

2

)
, . . . ,

(
p

p − 1

)
;

(
p − 1

0

)
L,

(
p − 1

1

)
L, . . . ,

(
p − 1

p − 1

)
L

)
,

where

L =
2

π
U2p(a, b).

Moreover, the convergence of the iteration is equivalent to the convergence of the
initial integral.

2. The direct image of a 1-form

Let π : X → Y be a proper analytic mapping of Riemann surfaces (that is, a
finite ramified covering space), and let ϕ be a tensor of any type on X. Then π∗ϕ
is the tensor of the same type on Y , defined as follows. Let U ⊂ Y be a simply
connected subset of Y containing no critical value of π, and let σ1, . . . , σk : U → X
be the distinct sections of π. Then the direct image of π∗ϕ is defined by

π∗ϕ
∣∣∣
U

=
k∑

j=1

σ∗
jϕ. (2.1)
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This defines π∗ϕ except at the ramification values of π, where π∗ϕ may acquire poles
even if ϕ is holomorphic.

We shall be applying this construction in the case where ϕ is a holomorphic
1-form, and in this case π∗ϕ is analytic.

Lemma 2.1. If π : X → Y is proper and analytic as above, and ϕ is an analytic
1-form on X, then π∗ϕ is an analytic 1-form on Y . Furthermore, for any oriented
rectifiable curve γ on Y , we have

∫

γ

π∗ϕ =

∫

π−1γ

ϕ.

Proof. The only problem is to show that π∗ϕ is holomorphic at the critical
values. It is clearly enough to show that the contribution of a neighborhood of a
single critical point is holomorphic. Thus we may assume that π(z) = w = zm for
some m, and that

ϕ = (akz
k + ak+1z

k+1 + . . .)dz,

with k " 0.

For j = 0, . . . , m − 1, set σj(w) = ζjσ0(w), where ζ = e2πi/m and σ0(w) = w1/m for
some branch of the 1/m power, for instance the one where the argument is between
0 and 2π/m. Then

π∗(z
kdz) =

{
0, if k + 1 is not divisible by m,

w(k+1−m)/mdw, if k + 1 is divisible by m.
(2.2)

Thus the first term of the power series for ϕ to contribute anything to π∗ϕ is the
term of degree m − 1, and it contributes to the constant term; similarly, the terms
of degree 2m − 1, 3m − 1, . . . contribute to the terms of degree 1, 2, . . ., all positive
powers. !

This has a useful corollary. Recall that the degree of a meromorphic function
is the maximum of the degrees of the numerator and the denominator when the
rational function is written in reduced form.

Lemma 2.2. If π : "1 → "1 is analytic, and ϕ = R(z)dz is a meromorphic 1-form
on "1 so that R is a rational function of degree k, then π∗ϕ can be written as R1(z)dz,
where R1 is a rational function of degree at most k.

Proof. By Lemma 2.1, the number of poles of π∗ϕ is at most equal to the number
of poles of ϕ, and their orders cannot increase either. !

Note. It is quite possible for the degree of π∗ϕ to be less than the degree of ϕ.
This can happen in two ways: we might have poles at two points z1 and z2, such
that π(z1) = π(z2), and then the polar parts at these points could cancel. We may
also have a pole of order greater then 1 at a critical point, and then the order of
the pole at the corresponding critical value might decrease. (In fact, the pole might
disappear altogether.)
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3. A particular branched cover

We shall be concerned with the specific map

π(z) = w :=
z2 − 1

2z
. (3.1)

This mapping can also be viewed as the Newton map associated to the equation
z2 + 1 = 0. As such, it has ±i as superattractive fixed points, and π is conjugate to
F(z) = z2 via the Möbius transformation M(z) = (z + i)/(z − i); indeed, M ◦ π ◦
M−1 = F .

Let us list some properties of π.

Lemma 3.1. If ϕ has no poles on ! ⊂ "1, then
∫∞

−∞
ϕ =

∫∞

−∞
π∗ϕ.

Proof. If ϕ has no poles on ! (including at infinity), then the integral converges.
Since π maps the real axis (including ∞) to itself as a double cover, the result follows
from Lemma 2.1. !

Let τ : "1 → "1 be the map z *→ −z. Then, clearly, π ◦ τ = τ ◦ π. Call ϕ ‘even’ if
τ∗ϕ = ϕ, and ‘odd’ if τ∗ϕ = −ϕ.

Note. When ϕ = R(z) dz with R a rational function, then ϕ is even if and only
if R is odd, and ϕ is odd if and only if R is even, since dz is odd.

Lemma 3.2. We have the following identities.

(a) π∗π∗ϕ = ϕ + τ∗ϕ.
(b) If ϕ is even, then π∗ϕ = 0.
(c) If ϕ is odd, then π∗ϕ is also odd.

Thus we can restrict our attention to odd 1-forms. Below we calculate π∗(R(z) dz),
where R(z) is an even rational function. We shall consider only the case when the
numerator of R has degree at least 2 less than the denominator, as this avoids a
pole at infinity, which would prevent the integral over ! from converging.

The explicit evaluations of the form π∗ϕ described below were conducted using
‘Mathematica’. The corresponding sections are

σ±(w) = w ±
√
w2 + 1, (3.2)

so that for ϕ = Φ(z)dz we have

π∗ϕ = Φ(σ+(w))
dσ+

dw
+ Φ(σ−(w))

dσ−
dw

. (3.3)

The calculations require a symbolic language, since they involve a formidable amount
of algebraic manipulation.

Example 1. Let

ϕ =
b0

a0z2 + a1
dz. (3.4)
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Then

π∗ϕ =
2b0(a0 + a1)

4a0a1w2 + (a0 + a1)2
dw. (3.5)

Observe that the new 1-form can be written as

π∗ϕ = b0 × A(a0, a1)

G2(a0, a1)w2 + A2(a0, a1)
dw, (3.6)

where A(a, b) and G(a, b) are the arithmetic and geometric means of a and b
respectively.

Example 2. The form

ϕ =
b0z

2 + b1

a0z4 + a1z2 + a2
dz (3.7)

is transformed into

π∗ϕ =
8(a2b0 + a0b1)w2 + 2(a0 + a1 + a2)(b0 + b1)

16a0a2w4 + 4(a0a1 + 4a0a2 + a1a2)w2 + (a0 + a1 + a2)2
dw. (3.8)

4. The convergence of (π∗)nϕ

In this section we present the principal result of the paper.

Theorem 4.1. Let ϕ be a 1-form, holomorphic on a neighborhood U of ! ⊂ "1.
Then

lim
n→∞

(π∗)
nϕ =

1

π

(∫∞

−∞
ϕ

)
dz

1 + z2
,

where the convergence is uniform on compact subsets of U.

Proof. We find it convenient to prove this for the map F(z) = z2, which is
conjugate to π. In that form, the statement to be proved is that if ϕ is analytic in
some neighborhood U of the unit circle, then

lim
n→∞

(F∗)
nϕ =

1

2πi

( ∫

S1

ϕ

)
dz

z
.

Any such 1-form ϕ can be developed in a Laurent series

ϕ =

( ∞∑

k=−∞
akz

k

)
dz

z
,

where
∑∞

k=1(|ak| + |a−k|)ρk < ∞ for some ρ > 1. Note that

a0 =
1

2πi

∫

S1

ϕ.

In this form it is very easy to compute F∗ϕ.

Lemma 4.2. The mapping F∗ on 1-forms is given by

F∗ϕ =
∞∑

k=−∞
a2kz

k dz

z
.

Proof. This is what was computed in Equation 2.2. !
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Thus in the ‘basis’ of forms zk dz/z, the vector corresponding to k = 0 is an
eigenvector with eigenvalue 1, and the rest of the space is nilpotent:

(F∗)
mzk

dz

z
= 0

if m is greater than the greatest power of 2 that divides k. This comes close to
proving Theorem 4.1, but this argument does not rule out

( ∞∑

k=0

zk

)
dz

z
=

dz

z(1 − z)
,

which is also fixed under F∗. We cannot argue merely in terms of formal Laurent
series: convergence must be taken into account.

But this is not hard. Consider the region UR defined by 1/R < |z| < R, and the
space AR of analytic 1-forms

ϕ =

( ∞∑

k=−∞
akz

k

)
dz

z

on UR such that

‖φ‖ = |a0| +
∞∑

k=1

(|ak| + a−k|)Rk < ∞.

We then have
∥∥∥πn

∗ϕ − a0
dz

z

∥∥∥ =
∞∑

k=1

(|a2nk| + |a−2nk|)Rk

=
∞∑

k=1

(|a2nk| + |a−2nk|)R2nk Rk

R2nk

!
R

R2n
‖ϕ‖.

This certainly shows that πn
∗ϕ−a0 dz/z tends to 0, in fact very fast: it superconverges

to 0. !

5. Normalization of the integrands

In the previous section we produced a map π∗ of 1-forms ϕ = R(z) dz that does
not increase the degree and the integral over [0,∞]. Moreover, we showed that the
integrands πn

∗ϕ converge as n tends to infinity. This does not imply the convergence
of the coefficients of R, because of possible common factors and cancellations. Here
we normalize the rational functions so that π∗ induces a convergent iteration on the
coefficients.

We shall write the integrands so that their denominators are monic and with
constant term equal to 1. The latter can be achieved by factoring out the constant
term, while the former is obtained by a change of variable of the form z *→ λz, with
an appropriate λ.

Example 3. For rational functions of degree 2, we obtain
∫∞

0

b0

a0z2 + a1
dz =

∫∞

0

2b0(a0 + a1)

4a0a1w2 + (a0 + a1)2
dw. (5.1)
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This is an identity: both sides normalize to

b0√
a0a1

×
∫∞

0

dx

x2 + 1
. (5.2)

Example 4. The quartic case yields
∫∞

0

b0z
2 + b1

a0z4 + a1z2 + a2
dz =

∫∞

0

b(1)
0 w2 + b(1)

1

a(1)
0 w4 + a(1)

1 w2 + a(1)
2

dw, (5.3)

where

b(1)
0 = 8(a2b0 + a0b1),

b(1)
1 = 2(a0 + a1 + a2)(b0 + b1),

a(1)
0 = 16a0a2,

a(1)
1 = 4(a0a1 + 4a0a2 + a1a2),

a(1)
2 = (a0 + a1 + a2)

2. (5.4)

The normalization shows that
∫∞

0

b0a
1/2
2 z2 + b1a

1/2
0

z4 + a
−1/2
0 a1a

−1/2
2 z2 + 1

dz

equals

(a0 + a1 + a2)
−1/2

×
∫∞

0

(a2b0 + a0b1)w2 + (b0 + b1)a
1/2
0 a

1/2
2

w4 +
[
(a0a1 + 4a0a2 + a1a2)a

−1/2
0 a

−1/2
2 (a0 + a1 + a2)−1

]
w2 + 1

dw.

Naturally, this identity can be verified directly, using
∫∞

0

dx

x4 + 2ax2 + 1
=

∫∞

0

x2 dx

x4 + 2ax2 + 1
=

π

23/2
√
a + 1

.

Example 5. In the case of degree 6 we obtain
∫∞

0

b0z
4 + b1z

2 + b2

a0z6 + a1z4 + a2z2 + a3
dz =

∫∞

0

b(1)
0 w4 + b(1)

1 w2 + b(1)
2

a(1)
0 w6 + a(1)

1 w4 + a(1)
2 w2 + a(1)

3

dw, (5.5)

where

b(1)
0 = 32(a3b0 + a0b2),

b(1)
1 = 8(a2b0 + 3a3b0 + a0b1 + a3b1 + 3a0b2 + a1b2),

b(1)
2 = 2(a0 + a1 + a2 + a3)(b0 + b1 + b2),

a(1)
0 = 64a0a3,

a(1)
1 = 16(a0a2 + 6a0a3 + a1a3),

a(1)
2 = 4(a0a1 + 4a0a2 + a1a2 + 9a0a3 + 4a1a3 + a2a3),

a(1)
3 = (a0 + a1 + a2 + a3)

2. (5.6)

The normalization of (5.5) yields (1.5).
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