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Abstract. In this paper we will give a proof of Kolmogorov’s theorem on the conservation
of invariant tori. This proof is close to the one given by Bennettin, Galgani, Giorgilli and
Strelcyn in [2]; we follow the outline of their proof, but carry out the steps somewhat
differently in several places. In particular, the use of balls rather than polydiscs simplifies
several arguments and improves the estimates.
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In 1954, Kolmogorov [4] announced his theorem on the conservation of invariant
tori when an integrable hamiltonian system is perturbed. He never published a
proof of this result; Arnold [1] did provide a proof, and at about the same time
Moser [4] proved a closely related result, so the whole field has come to be called
KAM theory. Over the years many improvements and variants have appeared.
This paper does not aim at generality, but instead at providing an easy and short
proof of the weakest form of the theorem. Indeed, Bennettin, Galgani, Giorgilli and
Strelcyn have provided such a proof in [2], and the present paper is mainly a further
simplification of their proof.

1. A crash course in hamiltonian mechanics.
All the results presented in this section are standard; we have collected their

proofs in the appendix.
If (X, σ) is a symplectic manifold, then any function H on X has a symplectic

gradient ∇σH, which is the unique vector field such that

σ(ξ,∇σH) = dH(ξ)

for any vector field ξ. We can then consider the Hamiltonian differential equation

ẋ = (∇σH)(x). (1.1)

Example 1.2. If X = R2n, with coordinates (q,p) = (q1, . . . , qn, p1, . . . , pn) and
σ =

∑
i dpi ∧ dqi, then Equation 1.1 becomes the famous Hamiltonian equations of

motion
q̇i =

∂H

∂pi

ṗi = −∂H

∂qi

(1.3)
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The vector field ∇σf has a flow which we will denote by φt
f . It has two key

properties:

• φt
f preserves f , i.e., f ◦ φt

f = f ;
• φt

f preserves σ, i.e., (φt
f )∗σ = σ.

The central construction in Kolmogorov’s theorem is a symplectic diffeomor-
phism, which will be constructed as a composition of hamiltonian flows. In the
process, we will need to compute the Taylor polynomial of functions of the form

t 7→ g ◦ φt
f .

The natural ways to approach this is via the Poisson bracket. The Lie bracket
[∇σf,∇σg] on vector fields is of course well defined and symplectic, and we might
wonder whether it is the symplectic gradient of some function. This is the case.

Define the Poisson bracket of functions on X by

{f, g} = σ(∇σg,∇σf) = df(∇σg) = −dg(∇σf). (1.4)

Then this does correspond to the Lie bracket:

∇σ{f, g} = [∇σf,∇σg].

We will say that functions f, g commute if {f, g} = 0. This certainly implies that
their flows commute, in fact the flows commute if and only if the Poisson bracket
is constant.

In the “standard case” of Example 1.2, the Poisson bracket is computed by the
formula

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (1.5)

Of more immediate relevance, it allows us to write Taylor polynomials:

f ◦ φt
g = f + t{f, g}+

t2

2
{{f, g}, g}+

t3

3!
{{{f, g}, g}, g}+ . . . . (1.6)

Let T = R/Z. We will define an integrable system to be a system where X =
(T)n × Rn, with variables (q ∈ Tn,p ∈ Rn) and symplectic form

∑
i dpi ∧ dqi as

above, and whose Hamiltonian function H(p) depends only on p.
It is easy to integrate the equation (1.3) in this case: the solution with initial

value (q0,p0) is simply

q(t) = q0 + t
∂H

∂p
(p0) = q0 + t ω(p0)

p(t) = p0

In particular, each coordinate p1, . . . , pn is conserved, and the motion is a linear
motion on the torus Tn × {p0}.

A famous theorem of Liouville (Theorem A 6.1 of the Appendix) asserts that
this situation occurs “anytime” you have a mechanical system with n degrees of
freedom and n commuting conservation laws. More precisely, if X is a symplectic
manifold of dimension 2n, and f1, . . . , fn are n commuting functions such that
F = (f1, . . . , fn) is a submersion, and if F−1(0) is compact, then F−1(0) is a torus,
and there are coordinates (q ∈ Tn,p ∈ Rn) on a neighborhood of this torus such
that σ =

∑
dpi ∧ dqi, and the hamiltonian is p1.
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2. An informal statement and proof of Kolmogorov’s theorem.
Suppose we perturb an integrable hamiltonian h0(p) by a small h1(q,p), so that

the functions p1, . . . , pn are no longer conserved. Are there still any tori invariant
under the hamiltonian flow of h = h0 + h1?

Let us ask specifically if the torus corresponding to p = 0 is preserved. Set
ω = ∂h0/∂p. Then Kolmogorov’s theorem asserts that if

• h1(q,p) is sufficiently small, (2.1)
• ω0 = ω(0) is sufficiently irrational, and (2.2)
• ω(p) varies sufficiently fast at p = 0, (2.3)

then there exists a symplectic diffeomorphism Φ : (P,Q) → (p,q) close to the
identity such that if H = h ◦ Φ, then

H(Q,P) = a + ω0 ·P + R(Q,P) with R(Q,P) ∈ O(|P|2). (2.4)

In particular, the motion

Q(t) = Q(0) + tω0, P(t) = 0

is a solution of the hamiltonian equation, which is conjugate to the linear flow with
direction ω0, so that the invariant torus p = 0 is preserved by the perturbation.

Strategy of the proof. The equation 2.4 is an equation for a diffeomorphism Φ,
which we need to solve. Moreover, the solution should be symplectic, adding the
equation Φ∗σ = σ. As usual when solving non-linear equations, we will use a variant
of Newton’s method, approximating Φ by a sequence of maps Φi each computed
from the previous by solving an appropriately linearized equation.

In practice, this will mean writing

Φi = φi ◦ φi−1 ◦ · · · ◦ φ1, (2.5)

where each φi is the time one hamiltonian flow φgi
for some “hamiltonian func-

tion” gi, which is the unknown for which we will solve. This has two important
advantages:
• the unknown gi is a function, and functions are simpler than diffeomorphisms;
• the corresponding mapping φgi

is automatically a diffeomorphism, and it is
automatically symplectic.

Thus the proof is by induction: at the ith stage we will have constructed a
Hamiltonian h̃ = Φ∗i h, which we will develop as a Taylor polynomial with respect
to p, with coefficients that are Fourier series with respect to q. More precisely, we
will write h̃ = h̃0 + h̃1, where

– h̃1 consists of the constant and linear terms with respect to p, except for the
constant terms with respect to q, and

–h0 is everything else.
We will require that h̃1 be “of order εi,” whatever that means. We wish to

solve a linear equation for a function g such that φ∗gh̃ is “better” than h̃. Ideally
we would like the troublesome part (φ∗gh̃)1 to be of order εi+1 ∼ ε2i ; this is the
superconvergence of the standard Newton’s method. But our Newton’s method
is not quite the standard one, and we won’t do that well; but we will achieve
convergence.
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Write φ∗gh̃ as a Taylor polynomial with respect to g:

φ∗gh̃ = h̃ + {g, h̃}+ o(|g|) = h̃0 + h̃1 + {g, h̃0}+ {g, h̃1}+ o(|g|).
Our objective is to eliminate the terms which are not O(|p|)2 except those that are
constant with respect to q. To apply Newton’s method in the standard way, we
would need to solve the linear equation

h̃1 + {g, h̃0}+ {g, h̃1} ∈ o(|p|)
But we won’t quite do this; we will consider {g, h̃1} as quadratically small, since
g and h1 are both small. Of course, we can decide to treat anything we want as
small; the question is whether the inequalities which come out at the end justify
this view. Thus the linear equation we will solve will be

h̃1 + {g, h̃0} ∈ o(|p|). (2.6)

The equation 2.6 is a system of “diophantine partial differential equations;” we
will study such equations in Section 5. In the mean time, even to make the statement
precise, we need to say exactly what “sufficiently” means in the statements 2.1, 2.2
and 2.3.

3. Norms. One of Kolmogorov’s key insights is that using real analytic functions
and the associated sup-norms over regions in Cn substantially simplifies the proofs.
Usually, convergence criteria for Newton’s method require bounds on the second
derivatives (for an elementary treatment of Newton’s method, see [3]); the Cauchy
inequalities of course give such bounds in terms of the sup-norms for analytic func-
tions, and at heart that is why these norms simplify the proof so much.

If X ⊂ Ck is a compact subset, we will use the corresponding script letter X to
denote the Banach algebra of continuous functions on X, analytic in the interior,
with the sup-norm

‖f‖X = sup
x∈X
|f(x)|.

We will consistently endow Cn with the Euclidean norm, denoted simply by an
absolute value sign. The regions we will be interested in are

Bρ = {p ∈ Cn | |p| ≤ ρ}
Cρ = {q ∈ Cn/Zn | | Im (q)| ≤ ρ}
Aρ = Cρ ×Bρ = {(q,p) ∈ Cn/Zn × Cn | |p| ≤ ρ, | Im (q)| ≤ ρ} .

and the corrresponding Banach algebras Bρ, Cρ,Aρ. In these spaces, the sup-norm
will be denoted ‖f‖ρ. Elements of Bρ can be developed in power series, and elements
of Cρ can be developed in Fourier series

f(z) =
∑
k∈Zn

fke2πi k·z

which we will use in an essential way when solving diophantine partial differential
equations.

For vector-valued functions f : X → Cn (i.e., f ∈ Xn), we will use the Euclidean
norm in the range, i.e,

‖f‖X = sup
X
|f |.

This applies also to covectors (i.e., line-matrices) and for matrices we will use the
operator-norm associated to the Euclidean norm on the domain and range, still
denoted by an absolute value sign.
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4. Cauchy’s inequalities on balls. Just as in 1 dimension, we can bound deriva-
tives of analytic functions on balls in terms of the values of the function itself.

Proposition 4.3. If f ∈ Bρ, then we have

‖Df‖ρ−δ ≤
1
δ
‖f‖ρ and ‖D2f‖ρ−δ ≤

4
δ2
‖f‖ρ. (4.4)

Proof. Take z ∈ Bρ−δ, and u ∈ Cn. Since the ball of radius δ around z is contained
in Bρ, the function

g : t 7→ f(z + tδu)

is defined on the unit disc , so that the standard Cauchy inequality says that

δ |(Df(z))u| = |g′(0)| ≤ ‖g‖1 ≤ ‖f‖ρ.

For the second derivative estimate, apply the argument above twice:

|D2f(z)(u,v)| ≤ 2
δ
‖Df(z)(u)‖ρ−δ/2|v| ≤

4
δ2
‖f‖ρ|u||v|.

¤
The case δ = ρ bounds derivatives of functions at the center of balls.

Corollary 4.5. If f ∈ Bρ, then

|Df(0)| ≤ 1
ρ
‖f‖ρ and |D2f(0)| ≤ 4

ρ2
‖f‖ρ.

5. Diophantine conditions. The notion of “sufficiently irrational” is absolutely
key to Kolmogorov’s proof. To motivate it, let us start with diophantine conditions
on numbers.

A number θ is called diophantine of exponent d if there exists a constant C such
that for all coprime integers p, q, we have∣∣∣∣θ − p

q

∣∣∣∣ >
γ

|q|d . (5.1)

It is clearly a stronger requirement to be diophantine with a smaller exponent.
In fact, since for any irrational θ there exists an arbitrarily large q and p prime to
q so that ∣∣∣∣θ − p

q

∣∣∣∣ <
1√
5|q|2

,

we see that no number is diophantine of any exponent smaller than 2. The numbers
which are diophantine of exponent 2 are exactly the numbers whose continued
fraction have bounded entries; these form a set of measure 0.

Proposition 5.2. For any ε > 0, the set of diophantine numbers of exponent 2 + ε
is of full measure.
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Proof. We will consider our “numbers” to be in R/Z. For any integer q ≥ 1, there
are at most q elements of Q/Z which, in reduced form, have denominator q, and so
for any constant γ, the set of numbers θ ∈ R/Z with∣∣∣∣θ − p

q

∣∣∣∣ <
γ

|q|2+ε
,

has total length at most 2γ/q1+ε. Summing this over all q, we see that the set of
numbers θ for which there exists q such that∣∣∣∣θ − p

q

∣∣∣∣ <
γ

|q|2+ε
,

has total length < 2γm(ε), where m(ε) is the sum of the convergent series

m(ε) =
∞∑

q=1

1/q1+ε

and in particular, the intersection of these sets as γ → 0 has measure 0. But the
set of diophantine numbers of exponent 2 + ε is precisely the complement of this
set. ¤

We will now consider “diophantine” vectors in Rn. Our diophantine condition,
the simplest in this setting that corresponds to a set of vectors of full measure, is
the set Ωγ of ω ∈ Rn such that

|k · ω| > γ

|k|n

for all k ∈ Zn − {0}.

Proposition 5.3. The union

Ω =
⋃
γ>0

Ωγ

is of full measure.

Proof. This is very similar to Proposition 5.2 and reduces to the case ε = 1 when
n = 2. The region Sk,γ where

|k · ω| ≤ γ

|k|n

is a slab around the hyperplane orthogonal to k, of thickness 2γ/|k|n+1. The part
within the unit cube Q then has measure ≤ Mγ/|k|n+1, where M is the universal
constant giving the maximal (n − 1)-dimensional measure of the intersection of a
hyperplane and Q. As above, the sum∑

k∈Zn−{0}

1
|k|n+1

is finite, so vol∪k∈Zn−{0} (Sk,γ ∩Q) ≤ (cst)γ, thus⋂
γ>0

⋃
k∈Zn−{0}

Sk,γ ∩Q

has measure 0. Our set Ω is the complement. ¤
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6. A precise statement of Kolmogorov’s theorem.
We are finally in a position to state Kolmogorov’s theorem exactly.

Theorem 6.1. Let ρ, γ > 0 be given, and let h(q,p) = h0(p) + h1(q,p) be a
hamiltonian, with h0, h1 ∈ Aρ and ‖h‖ρ ≤ 1.

Suppose the Taylor polynomial of h0 is

h0(p) = a + ω p +
1
2
p · Cp + o(|p|2),

with ω ∈ Ωγ and C is symmetric and invertible.

Then for any ρ∗ < ρ, there exists ε > 0, which depends on C and γ, but not
on the remainder term in o(|p|2), such that if ‖h1‖ρ < ε, there exists a symplectic
mapping Φ : Aρ∗ → Aρ such that if we set (q,p) = Φ(Q,P) and H = h ◦ Φ, we
have

H(Q,P) = A + ω P + R(Q,P)

with R(Q,P) ∈ O(|P|2).
In particular, the torus P = 0 is invariant under the flow of ∇σH, and on this

torus the flow is linear with direction ω.

7. Partial differential equations and small divisors.
Let g ∈ Cρ, i.e., a function of just q ∈ Cn/Zn. A key role will be played by the

partial differential equation

Df(ω) =
n∑

i=1

ωi
∂f

∂qi
= g, (7.1)

which is to be solved for f ∈ Cρ′ , for an appropriate ρ′ < ρ.
This equation is easy to solve in formal Fourier series: if

f(q) =
∑
k∈Zn

fke2πi k·q, g(q) =
∑
k∈Zn

gke2πi k·q,

then the unique solution to the problem is

fk =
1

2πi (k · ω)
gk. (7.2)

One thing we see immediately is that for there to be a solution we must have
g0 = 0, and that f0 is then arbitrary; both these properties will be important when
we come to solving such equations in Section 10.

It is clear from this formula that the convergence of the series for F depends
crucially on the diophantine properties of ω. If g ∈ Cρ and ω ∈ Ω, then the Fourier
series for f still converges on the interior of Cρ, but we can no longer guarantee
that f is bounded on Cρ. But it is bounded on Cρ′ for any ρ′ < ρ, of course, and
we need to choose ρ′ so as not to lose too much on the radius, and not to lose too
much on the norm either.

Proposition 7.3. If g ∈ Cρ and ω ∈ Ωγ , then for all δ with 0 < δ < ρ we have

‖f‖ρ−δ ≤
κn

γδ2n
‖g‖ρ and ‖Df‖ρ−δ ≤

κn

γδ2n+1
‖g‖ρ,
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where κn is a constant which depends only on n.

Proof. For every y ∈ Rn with |y| ≤ ρ, the function q 7→ g(q− iy) is a continuous
periodic function of q of period 1, which can be written

g(q− iy) =
∑
k∈Zn

gke2πik·(q−iy) =
∑
k∈Zn

(
gke2πk·y)

e2πik·q

so Parseval’s theorem says

‖g‖2ρ ≥
∫

Tn

|g(q− iy)|2|dnq| =
∑
k∈Zn

|gk|2e4πk·y.

This is true for every y with |y| ≤ ρ, in particular for y = ρ k
|k| for any k ∈

Zn − {0}. Since the series above is a series of positive numbers, this gives

‖g‖2ρ ≥ |gk|2e4πρ|k|. (7.4)

Next, we see what ω ∈ Ωγ , together with our formal expression 7.2 for fk gives.

Lemma 7.5. We have

|fk| ≤
1

2πγ
‖g‖ρ|k|ne−2π|k|ρ.

Proof. This follows immediately from 7.4 and 7.2. ¤ Lemma 7.5

Now we need to go back to the sup-norm.

Lemma 7.6. We have

‖f‖ρ−δ ≤
κn

(2πδ)2n

‖g‖ρ
2πγ

.

Proof. We have f(q) =
∑

fke2πi(k·q) . Thus when |q| ≤ ρ− δ, we have∣∣∣∑ fke2πi(k·q)
∣∣∣ ≤ ∑

k∈Zn

|k|n
2πγ
‖g‖ρe−2πρ|k|e2π|k|(ρ−δ)

=
‖g‖ρ
2πγ

∑
k∈Zn

|k|ne−2π|k|δ.

The sum can be rewritten

∑
k∈Zn

|k|ne−2π|k|δ =
1

(2πδ)2n

[
(2πδ)n

∑
k′∈2πδZn

|k′|ne−|k
′|
]

,

and the term in brackets is a continuous function of δ > 0. It is a Riemann sum, so
as δ → 0 it approaches the convergent integral∫

Rn

|x|ne−|x||dnx|.
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So there exists a constant κ′n depending only on n such that for δ ≤ 1, we have

∑
k∈Zn

|k|ne−2π|k|δ ≤ κ′n
(2πδ)2n

.

¤ Lemma 7.6

The case of Df is similar, using Df(q)(u) = 2πi
∑

(k · u)fke2πi(k·q). One finds

|Df(q)(u)| ≤ |u|‖g‖ρκ
′′
n

γ(2πδ)n+1

where κ′′n exists because the integral∫
Rn

|x|n+1e−|x||dnx|

is convergent. Finally, set

κn = max
{

κ′n
(2π)2n

,
κ′′n

(2π)2n+1

}
.

¤ Proposition 7.3

8. The main iterative step. The next proposition constructs a symplectic
change of variables φ(q1,p1) = (q,p), such that h̃ = h ◦ φ is “better” than h:
“closer” to the form 2.4. We will construct using Proposition 8.1 a succession of
changes of variables φk(qk,pk) = (qk−1,pk−1), and hamiltonians hk = hk−1 ◦ φk;
the solution to our problem will be Φ = limk→∞ φk ◦ · · · ◦ φ1. Of course, the
convergence of this sequence is the real issue in the proof.

The construction is very similar to doing one step of Newton’s method: we will
write the non-linear equation saying that the new hamiltonian is of the form 2.4,
linearize the equation and solve it.

If we want to prove the existence of a root of an equation f(x) = 0 in Rn

using Newton’s method, it is enough to show that the Newton map is contracting.
This is misleading since ignores the fact that Newton’s method superconverges;
which is why Newton’s method is an essential tool of numerical analysis. Here the
situation is different: the improved hamiltonian hk is only defined on some Aρk

where ρk+1 = ρk − δk, and the superconvergence is essential to guarantee that the
“error” decreases faster than the domain.

Thus our proof will depend on recursive inequalities: “hard analysis” at its hard-
est. We will have to keep precise track of all the constants, to be sure that the
conclusion of the previous step really is the hypothesis of the next step.

In the statement below, we describe our initial h using numbers
ρ, describing the domain of h,
γ, describing how irrational the desired flow is,
m, describing how fast the angle of the flow is changing, and
ε, describing how big the perturbation to be overcome is.

We will also give ourselves numbers ρ∗ < ρ, m∗ < m, targets below which we
don’t want the new ρ and the new m to fall.

For a function f ∈ Cρ, we set f =
∫

Rn/Zn f(q)|dnq|.
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Proposition 8.1. Let the numbers ρ, ρ∗, γ, m, m∗, ε all be in (0, 1) and satisfy
ρ∗ < ρ, m∗ < m. Let h ∈ Aρ satisfy ‖h‖ρ ≤ 1. We will write h(q,p) = h0(q,p) +
h1(p,q), where

h0(q,p) = a + ω p +
1
2
p · C(q)p + R(q,p)

with a ∈ R, ω ∈ Ωγ , and R(q,p) ∈ O(|p|3)
h1(q,p) = A(q) + B(q) p with A = 0.

Suppose we have the following inequalities:

‖A‖ρ < ε, ‖B‖ρ < ε, and (8.2)

m|v| < |Cv|, ‖Cv‖ρ <
|v|
m

(8.3)

Choose δ so that ρ− 3δ > ρ∗, and suppose that ε is so small that

m− 2η

ρ2
∗

> m∗, where η =
10κ2

n

γ2

ε

m3δ4n+3
. (8.4)

Then there exists a change of variables φ : Aρ−3δ → Aρ, with

‖φ− id‖ρ−3δ ≤ δ/2,

such that if we denote all the quantities associated to φ∗h by ω̃, Ã, B̃, C̃, R̃, then
ω̃ = ω, and

ρ̃ = ρ− 3δ > ρ∗, m̃ = m− 2η

ρ2
∗

> m∗, ε̃ =
η2

2ρ∗
. (8.5)

9. Ending the proof using 8.1. Let us set

εk =
ε0

22τk
, where τ = 4n + 3, (9.1)

δk =
ε

1
2τ
0

2k
K, where K = 2

(
1

2ρ∗

) 1
2τ

(
10κ2

n

γ2m3
∗

) 1
τ

, (9.2)

mk+1 = mk −
√

ε0
2kτ

L, where L =
2
√

2

2τρ
3/2
∗

, (9.3)

and ε0 is chosen sufficiently small so that

ρ− 3
∞∑

k=1

δk > ρ∗ and lim
k→∞

mk ≥ m∗. (9.4)

To justify these equations, define

ηk =
10κ2

n

γ2

εk

m3
kδτ

k

and ηk,∗ =
10κ2

n

γ2

εk

m3
∗δ

τ
k

.
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The formula 9.1 for the epsilon’s is simply parachuted. The formula 9.2 for the
delta’s comes from solving the equation

εk+1 =
η2

k,∗
2ρ∗

=
1

2ρ∗

(
10κ2

n

γ2

εk

m3
∗δ

τ
k

)2

for δk. The formula 9.3 for the m’s comes from setting

mk+1 = mk −
2ηk,∗
ρ2
∗

= mk −
2
√

2εk+1ρ∗
ρ2
∗

.

The second of the requirements 9.4 guarantees that mk > m∗ and thus that
ηk,∗ > ηk for all k.

Now to prove Theorem 6.1 using Proposition 8.1. First set ρ0 = ρ and ρi+1 =
ρi − 3δi, and recursively define a sequence of hamiltonian functions fi : Aρi → R
and changes of variables φi : Aρi+1 → Aρi as follows. Set f0 = h, and suppose that
for all i ≤ k we have defined fi and φi, satisfying the hypotheses 8.2 and 8.3 with
ε = εi and m = mi.

With δ = δk, the requirement 8.4 is satisfied:

mk −
2ηk

ρ2
∗

> mk −
2ηk,∗
ρ2
∗

= mk+1 > m∗,

so there exists a symplectic mapping φk+1 : Aρk+1 → Aρk
such that

‖φk+1 − id‖ρk+1 ≤
δk

2
,

and that if we set fk+1 = φ∗fk, and denote all the corresponding quantities with
tilde’s, then

m̃ = m− 2ηk

ρ2
∗

> m− 2ηk,∗
ρ2
∗

= mk > m∗, ε̃ =
η2

k

2ρ∗
<

η2
k,∗

2ρ∗
= εk+1.

Now define
ψk = φk ◦ φk−1 ◦ · · · ◦ φ1.

Clearly ψk maps Aρk
→ Aρ. In particular, all ψk are defined in Aρ∗ . Moreover, the

sequence of ψk converges to a symplectic mapping Ψ : Aρ∗ → Aρ, since

‖ψk+1 − ψk‖ρ∗ ≤ ‖φk+1 ◦ ψk − ψk‖ρ∗ ≤ ‖φk+1 − id‖ρ∗ ≤
δk

2
,

and thus the sequence (ψk) converges.
Now consider the decomposition of H = Ψ∗h ∈ Aρ∗ as H = H0 + H1, where

H1 consists of the constant and linear terms with respecto to P, except for those
which are constant with respect to Q. We have H = limk→∞ fk, and in particular
H1 = limk→∞ fk,1. Thus

‖H1‖ρ∗ = lim
k→∞

‖f1,k‖ρ∗ ≤ lim
k→∞

εk = 0,

so H = H0. ¤
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10. Proving Proposition 8.1. In this section we will prove Proposition 8.1. This
is quite lengthy, so we first present the strategy.

Strategy. The idea is to write the required symplectic diffeomorphism φ as the
time one hamiltonian flow φg, for some function g which is the unknown for which
we will solve. Develop everything in Taylor polynomial with respect to p, and
isolate the terms that are linear with respect to g.

By formula 1.6, the pullback φ∗gh has the Taylor expansion

φ∗gh = h + {g, h}+ O(|g|2) = h0 + h1 + {g, h0}+ {g, h1}+ O(|g|2).

In the subsection below, we will solve the linearized equation

h1 + {g, h0} ∈ O(|p|2) (10.1)

and in particular we will see that the solution is small approximately of the same
order as h1. The cumbersome terms of φ∗gh, i.e., those which prevent the torus
p = 0 from being invariant with linear flow, are the terms {g, h1} + O(|g|2), and
we see that these are now approximately quadratic with respect to h1. Hence at
the beginning of the next step the cumbersome terms are quadratic with respect to
the previous ones. This provides the superconvergence of the successive coordinate
changes.

Thus, we write

g = λ q + X(q) +
n∑

i=1

Yi(q)pi;

there is no sense in developing further, since only the linear terms of g with respect
to p can contribute to the linear terms of φ∗gh.

Remark. Notice that because of the term λ·q, the function g is defined on Rn×Rn,
not Tn × Rn, though the flow of ∇σg is perfectly well defined on Tn × Rn. This is
clearly necessary. For instance, set n = 1, and consider the family of hamiltonians

hs(p) =
1
2
(p + s)2,

whose associated motion is to rotate at speed p0 + s in the circle p = p0. Think
of T × R as a vertical cylinder. Evidently vertical translation by s transforms hs

into h0. But vertical translation by s is the flow at time s of the “hamiltonian”
g(q, p) = −q, which is only defined on R × R, not on T × R, since the q on the
right is a real variable, not an angular variable periodic of period 1. The freedom
to choose λ will be essential for our purposes. This also explains why the term λ ·q
cannot be incorporated in X(q).

Computing g using diophantine PDE’s. We are planning to make h0 + h1 +
{g, h0} be of the form a + ω0 ·P+ R(Q,P) with R(Q,P) ∈ O(|P|2) as in Equation
2.4. The function h0 is already of that form, so we need to bring h1 + {g, h0} to
that form. Expanding out using 1.5, we find

(h1 + {g, h0})(q,p) = ω · λ + A(q) + DX(q)(ω)

+
(
B(q) +

(
λ + DX(q)

)
C(q) + ωDY (q)

)
· p + O(|p|2).
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To solve Equation 10.1, we need to solve the system of linear equations for X
and Y

DX(q)(ω) = −A(q) (10.2)
DY (q)(ω) = −B(q)−

(
λ + DX(q)

)
C(q). (10.3)

The first equation can be rewritten∑
i

ωi
∂X

∂qi
= −A(q), (10.5)

and the second is really n different equations (an equation for a line-matrix):∑
i

ωi
∂Yj

∂qi
= −Bj(q)−

∑
i

Ci,j(q)
(

λi +
∂X

∂qi

)
. (10.6)

so all these equations are of the form studied in 7.1. We will solve 10.2 first, then
10.3.

Recall that A = 0, so we can find a unique X with X = 0 and satisfying the
estimates

‖X‖ρ−δ ≤
κnε

γδ2n
and ‖DX‖ρ−δ ≤

κnε

γδ2n+1
(10.8)

for all δ satisfying 0 < δ < ρ.
Now for the second lot. We can’t solve that unless we make the average of the

right hand side 0, which we accomplish by setting

λ = −C
−1

(B + (DX)C).

We have
‖B − (DX)C‖ρ−δ ≤ ε +

κnε

mγδ2n+1
≤ 2κnε

mγδ2n+1
, (10.9)

which gives

|λ| ≤ 2κnε

m2γρ2n+1
≤ 2κnε

m2γδ2n+1
. (10.10)

This gives

‖B − (λ + DX)C‖ρ−δ ≤ ‖B − (DX)C‖ρ−δ + ‖λC‖ρ−δ

≤ 2κnε

mγδ2n+1
+

2κnε

m3γδ2n+1
≤ 4κnε

m3γδ2n+1
.

(10.11)

Now applying 7.3 again, we can find Y ∈ Cn
ρ−2δ with Y = 0 satisfying the estimates

‖Y ‖ρ−2δ ≤
4κ2

nε

m3γ2δ4n+1
and ‖DY ‖ρ−2δ ≤

4κ2
nε

m3γ2δ4n+2
. (10.12)

Bounding the vector field ∇σg. We now have our hamiltonian g, together with
the estimate

‖∇σg‖ρ−2δ ≤
(∥∥∥∥ ∂g

∂q

∥∥∥∥2

ρ−2δ

+
∥∥∥∥ ∂g

∂p

∥∥∥∥2

ρ−2δ

)1/2

≤
(
‖Y ‖2ρ−2δ + ‖λ + DX + (DY )p‖2ρ−2δ

)1/2

≤
((

4κ2
nε

m3γδ4n+1

)2

+
(

2κnε

m3γδ2n+1
+

κnε

γδ2n+1
+

4κ2
nε

m3γ2δ4n+2

)2
)1/2

≤ 10κ2
nε

m3γ2δ4n+2
= ηδ ≤ δ

2
.
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Bounding the new hamiltonian. The time one flow map φg : Aρ−3δ → Aρ is
well defined, in fact the image lies in Aρ−5δ/2. Of course, we get immediately

|φg − id‖ρ̃ ≤
δ

2
and ‖φ∗gh‖ρ−3δ ≤ ‖h‖ρ ≤ 1.

In order to prove 8.5, we need to estimate φ∗h− h0. We have the identity

φ∗h = h0 +

−ω·λ+O(|p|2)︷ ︸︸ ︷
h1 + {g, h0}+

[
{g, h1}+ φ∗h− h− {g, h}

]
= h0 − ω · λ + O(|p|2) + ĥ1,

where by definition ĥ1 is the expression in brackets. This function ĥ1 is almost but
not quite h̃1; in particular, it contributes all the troublesome terms Ã + B̃p; more
specifically,

Ã(q) = ĥ1(q,0)− ĥ1(q,0) and B̃(q) =
∂ĥ1

∂p
(q,0).

So we need to bound ĥ1. The case of {g, h1} is staightforward; we are bounding a
derivative after restricting by 3δ, so we get

‖{g, h1}‖ρ−3δ = ‖dh1(∇σg)‖ρ−3δ ≤
ε

3δ
‖∇σg‖ρ−2δ ≤

εη

3

Now for the other term of ĥ1:

‖φ∗gh− h− {g, h}‖ρ−3δ ≤
1
2

sup
0≤t≤1

d2

dt2
|(φt

g)
∗h| ≤ 1

2
‖{h, g}, g}‖ρ−5δ/2

≤ 1
2
‖D2h(∇σg,∇σg)‖ ≤ 4

2

(
2
5δ

)2

(ηδ)2 <
η2

3
.

Using ε < η/2 (it is really much smaller than that), we get

‖ĥ‖ρ̃ <
η2

6
+

η2

3
=

η2

2

where ρ̃ = ρ− 3δ.
This now gives

‖Ã‖ρ̃ = ‖ĥ1(q,0)− ĥ1(q,0)‖ρ̃ ≤ η2.

Similarly, ‖B̃‖ρ̃ is bounded (using the Cauchy estimates of Corollary 4.5; note that
we are estimating the derivative of ĥ1 at the center of a ball of radius ρ̃ > ρ∗):

‖B̃‖ρ̃ = ‖[Dĥ](q,0)‖ ≤ η2

2ρ∗
.

Bounding the C̃ below and above. Next, we attack h− h̃ = h− h ◦ φ. Again
this is a form of Taylor’s theorem, using Equation (1.6):

‖h− h̃‖ρ̃ ≤ sup
0≤t≤1

∣∣∣∣ d

dt
(h ◦ φt

g)
∣∣∣∣ ≤ ‖{g, h}‖ρ−5δ/2

≤ ‖Dh(∇σg)‖ρ−2δ ≤
1
2δ
‖∇σg‖ρ−2δ ≤

ηδ

2δ
=

η

2
.
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This now allows us to estimate C̃(q) − C(q) = D2(h̃ − h)(q,0). Again we are
evaluating the second derivative of a function in the center of a ball, and can apply
Corollary 4.5, to find

‖C̃(q)− C(q)‖ ≤ 4
ρ̃2

η

2
≤ 2η

ρ2
∗
.

This yields

|C̃| ≥ |C| − |(C̃ − C)| ≥ m− 2η

ρ2
∗
,

and
|C̃| ≤ |C|+ |C̃ − C| ≤ 1

m
+

2η

ρ2
∗
≤ 1

m− 2η
ρ2
∗

,

using that if 0 < b < a < 1 (in our case, 0 < 2η/ρ2
∗ < m < 1), then

1
a

+ b ≤ 1
a− b

.

Thus we find that we can take

ρ̃ = ρ− 3δ, ε̃ =
η2

2ρ∗
, and m̃ = m− 2η

ρ2
∗
. ¤
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Appendix: Filling in the crash course

A 1. The symplectic structure of the cotangent bundle. Almost all sym-
plectic manifolds which come up in practice are cotangent bundles of some other
manifold: such cotangent bundles have a natural symplectic structure. In fact,
they carry a cononical 1-form ω defined as follows. Let π : T ∗M → M be the
canonical projection, and let α ∈ T ∗xM be a point of T ∗M with π(α) = x. Then if
ξ ∈ Tα(T ∗M) (a space which is rather hard to think about), we define

ω(ξ) = α([Dπ(α)]ξ).

Let us bring this definition down to earth. Let q1, . . . , qn be local coordinates on
a subset U ⊂M , so that q : U → V is a diffeomorphism, where V is an open subset
of Rn. Any point α ∈ T ∗M can be written (q,

∑
i pi dqi), and q1, . . . , qn, p1, . . . , pn

are local coordinates on T ∗U , i.e., together define a diffeomorphism (q,p) : T ∗U →
V × Rn = T ∗V . The coordinates pi are called the conjugates of the coordinates
qi, and are clearly the coefficients of the dual basis of the ∂/∂qi; together the qi, pi

are called canonical coordinates. With respect to canonical coordinates, we have
ω =

∑
i pi dqi.

The form ω is not closed: we define σ = dω. Clearly in canonical coordinates we
have

σ =
∑

dpi ∧ dqi.

Then (T ∗M, σ) is a symplectic manifold.

A 2. Lagrangian submanifolds. Later in section A 6, we will need Lagrangian
submanifolds. If (X, σ) is a symplectic manifold of dimension 2n, then an n-
dimensional submanifold is called Lagrangian if σ|Y = 0. To understand the main
example we use the following notation. If φ is a 1-form on a manifold M , then φ is
a section of π : T ∗M → M ; we will write the section as φ̃ : M → T ∗M ; of course,
φ and φ̃ are just two ways of thinking of the same thing. Still, the following lemma
shows why the notation might be helpful.

Lemma A 2.1. If φ is a 1-form on a manifold M , then φ̃∗ω = φ.

Think about it this way: φ̃∗ω is a 1-form on M which depends only on φ. What
else could it possibly be?

Proof. We have
φ̃∗(ξ) = ω(Dφ̃(ξ)) = φ(ξ).

¤

Proposition A 2.2. Let M be a manifold, and φ be a 1-form on M . Then the
image of φ̃ is a Lagrangian submanifold of T ∗M if and only if dφ = 0.

Proof. This is just A 2.1 and the naturality of the exterior derivative: Saying that
the image of φ̃ is Lagrangian is precisely saying that φ̃∗σ = 0, but

φ̃∗σ = φ̃∗dω = d(φ̃∗ω) = dφ.

¤
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A 3. Poisson and Lie brackets. We want to check that for any functions f, g
on a symplectic manifold, we have

∇σ{f, g} = [∇σf,∇σg].

This requires as a preliminary the Jacobi identity for Poisson brackets.

Proposition A 3.1. If f, g, h are functions on a symplectic manifold, then

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

Proof. This is a fairly complicated computation, which uses dσ = 0 in an essential
way. It is easiest to use the intrinsic formula for the exterior derivative of a k-form
φ:

dφ(ξ1, . . . , ξk+1) =
n+1∑
i=1

(−1)i+1dφ
(
ξ1, . . . , ξ̂i, . . . , ξn+1

)
(ξi)

+
∑

1≤i<j≤n+1

(−1)i+jφ
(
[ξi, ξj ], ξ2, . . . , ξ̂i, . . . , ξ̂j , . . . , ξn+1

)
.

Thus
0 = dσ(∇σf,∇σg,∇σh)

= d
(
σ(∇σg,∇σh)

)
∇σf − d

(
σ(∇σf,∇σh)

)
∇σg + d

(
σ(∇σf,∇σg)

)
∇σh

− σ
(
[∇σf,∇σg],∇σh

)
+ σ

(
[∇σf,∇σh],∇σg

)
− σ

(
[∇σg,∇σh],∇σf

)
= d

(
{h, g}

)
∇σf − d

(
{h, f}

)
∇σg + d

(
{g, f}

)
∇σh

− d
(
dh(∇σg)

)
∇σf + d

(
dh(∇σf)

)
∇σg

+ d
(
dg(∇σh)

)
∇σf − d

(
dg(∇σf)

)
∇σh

− d
(
df(∇σh)

)
∇σg + d

(
df(∇σg)

)
∇σh

=
{
{h, g}, f

}
−

{
{h, f}, g

}
+

{
{g, f}, h

}
−

{
{h, g}, f

}
+

{
{h, f}, g

}
+

{
{g, h}, f

}
−

{
{g, f}, h

}
−

{
{f, h}, g

}
+

{
{f, g}, h

}
= {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}. ¤

The relation of the Poisson bracket and the Lie bracket is now straightforward.

Proposition A 3.2. For any functions f, g on a symplectic manifold, we have

∇σ{f, g} = [∇σf,∇σg].

Given a vector field ξ and a function h, the function dh(ξ) is just a partial
derivative. Sometimes we find it easier to think in those terms, and write dh(ξ) =
∂ξh.

Proof. Given some third function h, we need to compute:
dh([∇σf,∇σg]) = ∂[∇σf,∇σg]h = ∂∇σf (∂∇σgh)− ∂∇σg(∂∇σfh)

= ∂∇σf{h, g} − ∂∇σg{hf} = d{h, g}(∇σf)− d{h, f}(∇σg)

= {{h, g}, f} − {{h, f}, g} = {{h, g}, f}+ {{f, h}, g}
= {{f, g}, h} = dh(∇σ{f, g}).

The second equality is the definition of the Lie bracket, the next to last is the Jacobi
identity, all the others are the equivalent forms of the Poisson bracket. ¤



18 HUBBARD AND ILYASHENKO

A 4.1.
Let φt

f : M →M be the flow at time t of the vector-field ∇σf .

Proposition A 4.1. We have (φt
f )∗σ = σ.

Remark. It is perfectly possible to prove this by differential calculus, using the
Lie derivative L∇σfσ; we find the integral form closer to the intuition.

Proof. Clearly if a 2-form ψ on M has integral
∫

S
ψ = 0 for all embedded closed

discs S ⊂ M , then ψ = 0. Let S be such an embedded disc, set I = [0, a] and
consider the map F : S × I →M given by F (x, t) = φt

f (x). By Stokes theorem we
have ∫

∂(S×I)

F ∗σ =
∫

S×I

d(F ∗σ) =
∫

S×I

F ∗(dσ) = 0.

Thus∫
S×{0}

F ∗σ −
∫

S×{a}
F ∗σ +

∫
(∂S)×I

F ∗σ =
∫

S

σ −
∫

φa
f S

σ +
∫

(∂S)×I

F ∗σ = 0.

We need to see that the last term vanishes. Let γ : J →M be a parametrization of
the simple closed curve ∂S, which gives the boundary orientation. We can rewrite∫

(∂S)×I

F ∗σ =
∫ a

0

(∫
J

σ((φt
f ◦ γ)′(s),∇σf)ds

)
dt

=
∫ a

0

(∫
J

df(φt
f ◦ γ)′(s)ds

)
dt =

∫ a

0

(0) dt = 0.

This last is because we are integrating df around a closed curve.
Thus

0 =
∫

S

σ −
∫

φa
f S

σ =
∫

S

(σ − (φa
f )∗σ),

and so σ = (φa
f )∗σ for all a. ¤

A 5. Darboux’s theorem. Riemannian manifolds have lots of local geometry.
A piece of a sphere is not locally isometric to a piece of a plane or a piece of a
hyperboloid. All the various curvatures (Ricci, sectional, total, . . . ) are particular
local invariants of the geometry. It comes as a surprise at first that symplectic
forms have no local invariants: all symplectic manifolds of dimension 2n are locally
symplectomorphic. This result, due to Darboux, is not strictly necessary for our
purposes, but it is conceptually important, and helps to justify computations in
local coordinates. The proof given is essentially that in [2].

Theorem A 5.1. Let (X, σ) be a symplectic manifold of dimension 2n, and x ∈
X a point in X. Then there exists an open neighborhood U ⊂ X of x and a
diffeomorphism Ψ : U → R2n with Ψ(x) = 0 such that Ψ∗(

∑
i dqi ∧ dpi) = σ.

Proof. Choose any function q1 on a neighborhood U1 of x with dq1(x) 6= 0. Next,
define a function p1 as follows: choose a smooth hypersurface M ⊂ U1 through
x so that TxX = TxM ⊕ R∇σq1. Consider the map Φ : M × R → X given by
(m, t) 7→ φt

q1
(m). This is a local diffeomorphism at x×{0} by the inverse function
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theorem; let Ψ : U2 →M×R be the inverse, defined on an appropriate neighborhood
U2 ⊂ U1 of x. Now define p1 : U2 → R to be the composition pr2 ◦Ψ. Note that

{p1, q1} = dp1(∇σq1) = 1,

in particular [∇σp1,∇σq1] = 0, so the flows of ∇σp1 and ∇σq1 commute.
If n = 1 we are done; otherwise the other coordinate functions are constructed

by induction. Consider the subset X ⊂ U2 given by q1 = p1 = 0. By the implicit
function theorem, a neighborhood X ′ ⊂ X is a manifold of dimension 2(n− 1), and
by choosing X ′ sufficiently small we may assume that the restriction of σ to X ′ is
non-degenerate. Indeed, it is enough to show that the restriction of σ to TxX is
non-degenerate. Set w1 = ∇σq1, w1 = ∇σp1, and choose any basis w3, . . . ,w2n of
TxX ′. Then

σ(wi,∇σp1) = dp1(wi) = 0, σ(wi,∇σq1) = dq1(wi) = 0 for all i ≥ 3,

and it follows that if we set A to be the matrix A = (σ(wi,wj))1≤i,j≤2n and A′, A′′

the principal minors formed of the first two lines and columns, and the last 2n− 2
respectively, then 0 6= detA = detA′ det A′′, and in particular detA′′ 6= 0.

By induction we may assume that there is a neighborhood V of x in X ′ and
coordinates

q̃2, p̃2, . . . , q̃n, p̃n : V → R

such that σ|V =
∑n

i=2 dq̃i ∧ dp̃i.
Consider the mapping Φ′ : V × R2 given by

Φ′(y, s, t) = φs
∇σq1

(
φt
∇σp1

(y)
)

= φt
∇σp1

(
φs
∇σq1

(y)
)
.

Again by the inverse function theorem Φ′ is a local diffeomorphism, so there ex-
ists a neighborhood U3 of x in X and an inverse Ψ′ : U3 → V × R2 which is a
diffeomorphism onto its image. Now set

qi = q̃i ◦ pr1 ◦Ψ′ and pi = p̃i ◦ pr1 ◦Ψ′.

This gives us our local coordinates: we still need to show that σ =
∑n

i=1 dqi∧dpi.
Since {f, g} = σ(∇σf,∇σg), this is equivalent to showing that {qi, pj} = δi,j , and
that all other Poisson brackets are 0.

There are several cases to consider. First, if i, j ≥ 2, it is enough to verify the
condition on V , since the functions pi, qi are by definition invariant under the flow
φt
∇σp1

◦ φs
∇σq1

, and this flow is hamiltonian. On V , the Poisson brackets are what
is required by the inductive hypothesis.

We have already computed {q1, p1} = 1, and of course {q1, q1} = {p1, p1} = 0. So
we need to show that for i > 1 we have {p1, pi} = {p1, qi} = {q1, pi} = {q1, qi} = 0.
Again, since pi and qi are invariant under the flow φt

∇σp1
◦ φs
∇σq1

, we have

{pi, q1} = dpi(∇σq1) = 0, {qi, q1} = dqi(∇σq1) = 0 for i = 2, . . . , n.

But since φt
∇σp1

◦ φs
∇σq1

= φs
∇σq1

◦ φt
∇σp1

, we also have

{pi, p1} = dpi(∇σp1) = 0, {qi, p1} = dqi(∇σp1) = 0 for i = 2, . . . , n.

¤
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A 6. Liouville’s theorem.
A Hamiltonian system (X, σ, H) will be called a standard completely integrable

system if X = T ∗(Tn) is the cotangent bundle of the torus with its canonical sym-
plectic structure, and the Hamiltonian H depends only on the variables p1, . . . , pn

conjugate to the canonical variabls q1, . . . , qn ∈ R/Z on Tn = Rn/Zn.
It is then very easy to integrate the equations of motion

q̇ =
∂H

∂p
def= ω(p), ṗ = −∂H

∂q
= 0.

We find
p(t) = p(0) = p0, and q(t) = q(0) + tω(p0).

This is actually not quite so simple as the formula makes it look: the formula for
q(t) corresponds to linear motion on the torus Tn, such as an irrational flow when
n = 2; the trajectory may be periodic, or dense in Tn, or dense in a subtorus, if all,
or none, or some of the ratios ωi(p)/ωj(p) are rational; just how they fill up the
torus depends in a delicate way on the diophantine properties of these ratios.

The object of this section is to prove the following theorem.

Theorem A 6.1. Let (M, σ) be a symplectic manifold of dimension 2n, and let

f1, . . . , fn : M → R

be C∞ functions such that the Poisson brackets {fi, fj} all vanish. Suppose that
the set M0 of equation f1 = f2 = · · · = fn = 0 is compact, and that the 1-forms
dfi, i = 1, . . . , n are linearly independent at all points of M0. Then it is possible to
choose coordinates q,p on a neighborhood M ′ of M0 which make the Hamiltonian
system (M ′, σ, f1) isomorphic to a neighborhood of the 0 section in a standard
completely integrable system as above.

Remark. The hypothesis and the implicit function theorem imply that M0 is a
compact n-dimensional manifold; part of the proof is to show that this manifold is
in fact diffeomorphic to a torus.

Proof. Note that M0 is a Lagrangian submanifold; therefore it is possible to choose
a Lagrangian submanifold Z intersecting M0 at a point m0, such that Tm0M =
Tm0M0⊕Tm0Z. By the inverse function theorem, we may assume that restrictions
of the fi to Z give a diffeomorphism of Z onto an open neighborhood U of 0 in Rn.

We can now define a mapping Φ : Z × Rn →M by the formula

Φ(z, t) = φt1f1+···+tnfn(1, z) = φt1
f1

(φt2
f2

(. . . , φtn

fn
(z) . . . )). (A 6.2)

The mapping Φ is an Rn-action in the sense that Φ(z, s + t) = Φ(Φ(z, s), t)), since
the vector-fields ∇σ(fi) commute.

The domain Z ×Rn can be thought of as T ∗Z, since Z has explicit coordinates,
i.e., one can think of (z, t) ∈ Z × Rn as (z,

∑
tidfi) ∈ T ∗Z. Thus Z × Rn carries

the canonical symplectic structure of a cotangent bundle, which we will denote σZ .
The key point of the proof is the following lemma.

Lemma A 6.3. The mapping Φ is (almost) symplectic, i.e., we have Φ∗σ = −σZ .
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Proof. First, observe that is enough to prove this on Z, since σ is invariant under
the hamiltonian flow, and so is σZ . Further, Z and Mz are Lagrangian for both σ
and σZ . So to verify Lemma A 6.3, it is enough to show that

Φ∗σ
(

∂

∂zi
,

∂

∂tj

)
= σZ

(
∂

∂zi
,

∂

∂tj

)
for all 1 ≤ i, j ≤ n.

We have

Φ∗σ
(

∂

∂zi
,

∂

∂tj

)
= σ

(
∂

∂zi
,∇σfj

)
= dfj

(
∂

∂zi

)
= δi,j .

On the other hand

σZ(
∂

∂zi
,

∂

∂tj
) =

n∑
k=1

(dtk ∧ dzk)
(

∂

∂zi
,

∂

∂tj

)

=
n∑

k=1

(
dtk

(
∂

∂zi

)
dzk

(
∂

∂tj

)
− dzk

(
∂

∂zi

)
dtk (∇σfj)

)
= −δi,j .

¤
Define Λ = Φ−1(Z) and Λz = Φ−1({z}). For each z the subset Λz ⊂ Rn is a

discrete subgroup of the additive group Rn. It is a subgroup because Φ is a group
action: if s, t ∈ Λz so that if Φ(z, s) = Φ(z, t) = z, then

Φ(z, s + t) = Φ(Φ(z, s), t) = Φ(z, t) = z

so that s + t ∈ Λz. It is discrete because Φ is a diffeomorphism on a neighborhood
of Z and the flow it describes is transversal to Z.

Moreover, Φ induces a homeomorphism between the compact space M0 and
Rn/Λm0 , so Λm0 is a lattice, i.e., a discrete subgroup of Rn isomorphic to Zn; it
follows that M0 is homeomorphic to a torus. Moreover, by shrinking Z if necessary
we may assume that Λz is still a lattice for all z ∈ Z. Thus we see that the inclusion

Λ ↪→ Z × Rn = T ∗Z
↘ ↙

Z

makes Λ into a bundle of lattices over Z, which we may take to be trivial by taking
Z smaller yet.

We can then choose sections φ1, . . . , φn of Λ such that for each z ∈ Z ′, the
elements φ1(z), . . . , φn(z) of Λz form a basis. These φi are also sections of T ∗Z,
i.e., 1-forms on Z, and their images are Lagrangian submanifolds of T ∗Z, so they
are closed forms on Z. Taking Z smaller yet if necessary, we can set φi = dpi for
appropriate functions pi on Z; moreover, the pi are coordinates on Z, since their
derivatives form a basis; by further shrinking Z if necessary, the functions pi define
a diffeomorphism p : Z → V for an appropriate neighborhood V of 0 in Rn. We
now have our coordinates: the map

Ψ : Rn × V →M given by Ψ(p,q) = Φ(p,
∑

qiφi).
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There is not much to prove: clearly
∑

dqi ∧ dpi = σZ (these are canonical coordi-
nates), so Φ∗σ =

∑
dpi ∧ dqi. ¤

Bibliography
[2] V. Arnold, Mathematical methods of classical mechanics, Springer Verlag, 1985.
[2] G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, A proof of Kolmogorov’s
theorem on invariant tori using canonical transformations defined by the Lie method,
Il Nuevo Cimento 79B, 2 (1984), 201-223
[3] B. Hubbard and J. Hubbard, Vector Calculus, Linear Algebra and Differential
forms, 2nd ed., Prentice Hall, Upper Saddle river, New Jersey 07458, 2002
[4] W. Rudin, Function theory on balls, Springer Verlag, NY (1980)


