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1. Introduction

Models of neuronal bursting have been studied extensively as illustrated

throughout this volume. Different types of periodic bursting have been

observed and classified according to criteria related to bifurcation the-

ory 25,3,19. From the perspective of (geometric) singular perturbation the-

ory 20, bursting is viewed within the context of systems with multiple time

scales – normally a slow time scale and a fast time scale. Most work has

focused upon the “slow motion” of the system during quiescent and active

portions of a bursting cycle. During these epochs, the system state is de-

scribed by attractors that evolve on the slow time scale. The transitions

between quiescent and active states are marked by bifurcations of the “fast

subsystem.” In the singular limit of an infinite separation of time scales, the

slow variables of a system remain fixed on the fast time scale and become

parameters in the fast subsystem. Singular perturbation theory describes

how this picture applies to situations in which the time scales are well, but
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not infinitely, separated. The separation of time scales is not always appar-

ent in the equations themselves, so we seek computational methods that

perform slow-fast decompositions of the dynamics.

The focus of this paper is upon the bifurcation analysis of the fast sub-

systems of neuronal models of bursting. Because these bifurcations mark

the transitions between active and quiescent states in bursting rhythms of

model neurons, they play a key role in determining which types of bursting

can occur in the model. The hypothesis we explore in this paper is that

there are widespread similarities among the fast subsystems of many mod-

els. The basis for this hypothesis is that spike generating sodium currents

are often the largest and fastest currents in neurons, consequently repre-

senting a central part of the fast subsystem. Moreover, less variability has

been found in fast sodium channels than in other common types of chan-

nels 17. This prompts us to study a model with only a fast sodium current

and a passive leak conductance. Using the Hodgkin-Huxley representation

of the sodium conductance and making the familiar assumption that the

activation of this current is “instantaneous” yields a two dimensional vector

field. The bifurcations of this model can be studied thoroughly, although the

numerical analysis must confront issues arising from multiple time scales.

These issues were already apparent in early work of Fitzhugh 11. His work

depicts a “no man’s land” in the phase space of a reduced Hodgkin-Huxley

model that foreshadows numerical issues in determining the bifurcation di-

agrams of these systems. The “cusp and loop” structure for bifurcations of

equilibrium points in this model form a paradigm for the bifurcations of

many neural models.

Classifications of bursting oscillations have not yet produced a good

understanding of how to “tune” models to produce different types of oscil-

lations. Parameter space maps 13 obtained from bifurcation analysis and/or

systematic variation of parameters in neural models display how parameters

such as maximal conductances of different channels interact to produce dif-

ferent oscillatory rhythms. Numerical computations answer questions about

the types of bursting for any chosen set of parameter values without yielding

a clear intuition of what will happen in a new model or in different param-

eter ranges. By investigating how our analysis applies to several bursting

models, we take a step here towards the development of predictive guide-

lines describing which characteristics of a model lead to different kinds of

bursting.
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2. A Two Dimensional Model of Spiking sodium currents

In this section, we study the following two dimensional vector field:

v̇ = −(gNam3h(v − vNa) + gl(v − vl))

ḣ = αh(v)(1 − h) − βh(v)h

αh(v) = 0.07 exp(
−60− v

20
)

βh(v) =
1

1 + exp(−30−v
10 )

m =
1

1 + exp(−(v+35)
9 )

(1)

This vector field is derived from the Hodgkin-Huxley model for squid giant

axon 18 by

• assuming that the gating variable m is at its steady state,

• eliminating the potassium current,

• replacing the steady state curve of m by a sigmoidal “Boltzmann”

that is a good approximation to the Hodgkin-Huxley representation

but analytically simpler, and

• assuming that the capacitance and temperature dependent param-

eters in the model are both 1

We shall set gNa = 120, the value used by Hodgkin-Huxley, in these equa-

tions.

We regard this as a minimal model for action potentials, representative

of the fast dynamics of more complex model neurons containing additional

conductances. In such models, if the gating of other conductances is suffi-

ciently slow, then we examine the singular limit in which they are constant.

The sum of these currents then has the form of a “leak” conductance, the

term gl(v − vl) in equation (1) for v̇. Modulation of the slow currents or

changes in their values on slow time scales can be represented as variations

of these parameters. Thus, crossing bifurcation boundaries in the model is

correlated with changes in the firing properties of the neuron. This is the

conceptual basis for the multiple time scale analysis of neuronal bursting.

Our primary interest in this section is to investigate how the dynamics of

system (1) depend on the parameters gl and vl. The two parameter bifurca-

tion diagram of system (1) yields predictions about the types of transitions

that could occur at the initiation or termination of a burst of action poten-

tials in neurons for which the sodium current is the dominant fast current.
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We analyze several bursting model neurons in Section §3 from this perspec-

tive.

The bifurcation theory of two parameter families of two dimensional

vector fields has been thoroughly studied 28. We employ the classification

of codimension one and two bifurcations in generic families of planar vector

fields to describe the bifurcation diagram of (1). This turns out to be a

more difficult enterprise than initially might be expected, due to the fact

that system (1) itself has two time scales. The insights of geometric singular

perturbation theory point to phenomena that occur on tiny length scales

in parameter space, making it difficult to numerically resolve some aspects

of the bifurcation diagram. In particular, we find thin parameter regions

in which periodic orbits contain “canards,” segments that track unstable

slow manifolds of the system in Fitzhugh’s no man’s land. Some bifurcation

curves lie very close together in these regions.

There are four types of codimension one bifurcations in planar vector

fields with at most one saddle point:

(1) Hopf bifurcation - an equilibrium has Jacobian with trace 0 and positive

determinant

(2) Saddle-node bifurcation - an equilibrium has Jacobian with 0 determi-

nant

(3) Homoclinic bifurcation - a stable and unstable separatrix of a saddle

point coincide

(4) Saddle-node bifurcation of a periodic orbit - the return map of the

periodic orbit has derivative 1 at its fixed point

Normal forms and unfoldings of these bifurcations characterize the types

of qualitative changes occurring in the phase portraits near the bifurca-

tions 14. There are several different types of codimension two bifurcations

that occur in this system. We introduce them as they are encountered in

our description of the bifurcation diagram.

Figure 1 shows a numerically computed bifurcation diagram in the

(gl, vl) parameter plane. The curves of saddle-node bifurcations drawn as

solid curves and Hopf bifurcations drawn as dashed curves were computed

explicitly with the symbolic computer package Maple. Writing J(v, h, gl, vl)

for the Jacobian of the vector field, the defining equations for Hopf bifur-

cation are v̇ = ḣ = tr(J) = 0 and the defining equations for saddle-node

bifurcations are v̇ = ḣ = det(J) = 0. These equations depend upon v in

a complicated manner, but their dependence upon h and the parameters

is simpler. Therefore, we make v the continuation parameter in our cal-
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Fig. 1. Bifurcation diagram of the system (1) in the (gl, vl) plane of parameters. Saddle-
node bifurcations are shown as a solid curve, Hopf bifurcations as a dashed curve, saddle-
node of periodic orbit bifurcations as dash-dotted curves and homoclinic bifurcations as
dotted curves. The two degenerate Hopf bifurcations are marked with diamonds and the
Takens-Bogdanov point with a filled circle. The plus, cross and asterisk mark parameter
values for which the phase portraits are displayed below.

culations. This means that we obtain h, gl, vl as functions of v along each

bifurcation curve. This is done as follows. The equation ḣ = 0 is indepen-

dent of the parameters and linear in h, so we solve ḣ = 0 first to obtain h

as a function of v at equilibrium points. This value of h is substituted into

the other equations. Next, we observe that tr(J) = 0 and det(J) = 0 are

independent of vl and depend linearly on gl, so tr(J) = 0 is solved for gl

in the case of Hopf bifurcation, and det(J) = 0 is solved for gl in the case

of saddle-node bifurcation. Finally, when the values of gl and h are substi-

tuted into the equation v̇ = 0, we obtain a linear equation for vl that is

then solved. Solving these successive equations gives (h, gl, vl) as functions

of v along the saddle-node and Hopf bifurcation curves. The expressions

are lengthy, but Maple performs the calculation readily.
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The number of equilibrium points of the system changes from one to

three upon crossing the saddle-node curve 14. This curve has a codimension

two cusp bifurcation 14 located near (gl, vl) = (4.29367,−51.2428). The

“interior” of the cusp is the region in which there are three equilibria.

When there are three equilibria, exactly one of the three is a saddle. There

is a second codimension two bifurcation point, called a Takens-Bogadnov

bifurcation 14, near (gl, vl) = (0.46387,−63.5318). The Takens-Bogadnov

bifurcation is located by a filled circle in Figure 1. The saddle-node and

Hopf curves intersect tangentially at the Takens-Bogdanov point, and the

Hopf curve terminates because det(J) changes sign on the curve defined

by v̇ = ḣ = tr(J) = 0 at this point. Theoretical analysis 14 demonstrates

that there is also a curve of homoclinic bifurcations that terminates at the

Takens-Bogdanov point.

Periodic orbits emerge from equilibrium points undergoing Hopf bifur-

cation 14. There is a “Lyapunov” quantity determined by the third degree

Taylor expansion of the vector field at each Hopf bifurcation point which de-

termines the stability of the orbits. The Lyapunov quantity of supercritical

Hopf bifurcations is negative and the periodic orbits are stable. At subcrit-

ical Hopf bifurcations the Lyapunov quantity is positive and the periodic

orbits are unstable. In the system (1), there are a pair of codimension two

bifurcation points called degenerate Hopf bifurcations, where the Lyapunov

quantity is zero. These two points, shown with filled diamonds in Figure 1,

bound a segment of supercritical Hopf bifurcations, with the remainder of

the Hopf bifurcation curve consisting of subcritical bifurcations. The Hopf

curve also has a point of self-intersection where the two equilibrium points

that are not saddles simultaneously undergo subcritical Hopf bifurcation.

The properties of a structurally stable planar vector field are charac-

terized by its equilibrium points and their stability, its periodic orbits and

their stability, and by the limit sets of saddle separatrices. Thus we want

to locate periodic orbits and saddle separatrices and see how they change

as the parameters (gl, vl) vary. We have pointed out that periodic orbits

emerge at Hopf bifurcations. Families of periodic orbits in planar vector

fields can also terminate in three other ways.

(1) At saddle-nodes (also called folds) of periodic orbits, a stable periodic

orbit and an unstable periodic orbit coalesce into a single orbit that is

stable from one side and unstable from another.

(2) At homoclinic bifurcations a family of periodic orbits terminates as it

approaches a saddle point and its period grows without bound.
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(3) A periodic orbit may approach a saddle-node equilibrium point at

a saddle-node bifurcation of a parameter. The equilibrium emerges

“astride” the periodic orbit, and once again the period of the periodic

orbit grows unbounded as the bifurcation is approached. Rinzel and

Ermentrout 26 call these bifurcations saddle-nodes in cycles (SNIC).

We seek to compute the bifurcation curves for saddle-nodes of peri-

odic orbits and homoclinic bifurcations. Homoclinic orbits can only exist

when there is a saddle equilibrium; i.e., inside the cusp. We used a “shoot-

ing” strategy to compute parameter values for homoclinic bifurcations. The

defining equation for homoclinic bifurcation can be expressed in terms of a

cross-section Γ to the homoclinic orbit. As a parameter is varied, the inter-

sections of the stable and unstable manifolds of the saddle with Γ smoothly

switch sides, coinciding at the bifurcation value of the parameter. In terms

of a coordinate along Γ, the difference between the intersection of the sta-

ble and unstable manifolds of the saddle with Γ is a defining function for

the homoclinic bifurcation. We begin with parameter values that straddle

the bifurcation and employ a secant method to converge to a bifurcation

value. A bisection algorithm could also be used. Beginning with two nearby

points on a curve of homoclinic bifurcations, a simple extrapolation proce-

dure is used to search for new starting parameter values that straddle the

bifurcation curve. This procedure readily detects two intersecting curves of

homoclinic bifurcations in which the interior of the homoclinic orbit makes

a convex angle at the saddle point. In addition to these “small” homoclinic

orbits, there are two families of “large” homoclinic orbits in which the angle

made by the interior of the homoclinic orbits is larger than π. In generic

families, the two bifurcation curves of large homoclinic orbits terminate at

the intersection of the bifurcation curves of small homoclinic orbits. This

intersection is a codimension two “gluing bifurcation” where the stable and

unstable manifolds of the saddle form a figure eight 12. The large homo-

clinic orbits closely follow branches of small homoclinic bifurcation.a If one

varies parameters and solves the initial value problem, it can be difficult or

impossible to locate parameter values in the very narrow strip between the

large and small bifurcation curves.

aTo reliably compute the large homoclinic bifurcations with a shooting algorithm, it

is important to choose a cross-section for which the intersections with the appropriate
branches of the stable and unstable manifolds of the saddle vary smoothly in a substantial
neighborhood of the bifurcation.
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Figure 2 is a qualitative depiction of the region around the gluing bi-

furcation in Figure 1. This is one region in which we need to rely upon

theoretical insight to develop a consistent bifurcation diagram. The figure

shows the relative position of the large and small homoclinic bifurcation

curves as well as the location of the curve of saddle-node of periodic orbit

bifurcations discussed below. At each homoclinic bifurcation curve, there is

one family of periodic orbits that terminates. Periodic orbits that surround

the right hand equilibrium point (i.e. the equilibrium with larger h) exist in

the strip between the Hopf bifurcation of the right-hand equilibrium and the

curve of small homoclinic bifurcations for loops that surround this equilib-

rium. Similarly, periodic orbits surrounding the left-hand equilibrium occur

in a strip between the Hopf bifurcations of this equilibrium and a small ho-

moclinic curve. Unstable periodic orbits appear to the left and below the

two curves of large homoclinic bifurcations. Figures 4, 5 and 6 lie in the

region to the right of the left Hopf curve. Figure 4 lies in the region labelled

with *1 between the right Hopf and the right homoclinic curve, Figure 5

lies in the region labelled with *2 between the right homoclinic curve and

the large homoclinic curve, and Figure 6 lies in the region labelled with *3

below the curve of saddle-nodes of periodic orbits. The strip between the

large homoclinic curve and the saddle-node of periodic orbits curve is so

thin that we were unable to locate parameter values inside it.

Computation of approximate parameter values for saddle-node (or fold)

bifurcations of periodic orbits in the system (1) is easier than locating the

orbits themselves. At these bifurcations, there is a periodic orbit that is

(weakly) stable from one side and (weakly) unstable from the other. Ex-

pressed in terms of a return map θ, the defining equations are θ(x) = x

and θ′(x) = 1 where x is constrained to the cross-section. However, it is

difficult to compute the return map close to the bifurcating periodic or-

bit because one segment of the periodic orbit is highly stable and another

segment is highly unstable. We discuss this behavior below in relation to

the phase portrait shown in Figure 5. Therefore, we use indirect methods

to locate the saddle-node of periodic orbit bifurcations. To one side of the

bifurcation in the parameter space, there is a pair of nearby periodic orbits,

one stable and one unstable. To the other side of the bifurcation, there are

no nearby periodic orbits. Outside the cusp of saddle-nodes of equilibria,

we followed the curves of saddle-nodes of periodic orbits by searching for

the boundary between parameter regions with and without periodic orbits.

This procedure is time consuming, but accomplishes the desired task rea-

sonably well. The curves extend into the interior of the cusp where they
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Fig. 2. Qualitative depiction of the bifurcation diagram of the system (1) near the
codimension two gluing bifurcation where homoclinic curves cross. Regions are labelled
with the type(s) of periodic orbits found at parameter values in the region. R and L
indicate periodic orbits surrounding a single equilibrium point on the right or left in

Figures 4, 5 and 6; U indicates that there is an unstable periodic orbit surrounding all
three equilibria. Above and to the right of the saddle-node of periodic bifurcation curve
(labelled SNP), there is also a stable periodic orbit surrounding all of the equilibrium
points. The labels *1, *2 and *3 show the regions to which Figures 4, 5 and 6 belong,
respectively.

lie very close to the curves of large homoclinic bifurcations. The end of

each curve of saddle-node bifurcation of periodic orbits that lies outside

the cusp region terminates at a degenerate Hopf bifurcation, near parame-

ter values (gl, vl) = (2.5851,−48.870), (10.277,−42.513). These are marked

by diamonds in Figure 1.

Figures 3–7 show five phase portraits from different regions in the bi-

furcation diagram, illustrating varied aspects of this system. Referring to

Figure 1, the locations of these parameter values are marked on this bifur-

cation diagram. We use the following conventions in these phase portraits:

sinks are drawn as triangles, saddles as +’s and sources as squares. The

stable and unstable manifolds of the saddles and the periodic curves are

drawn as solid curves, while the h nullclines are drawn as dotted curves

and the v nullclines are dash-dotted curves.
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Fig. 3. Phase portrait of the system (1) for (gl, vl) = (1.82,−56). There is a sink,
unstable periodic orbit (small) and stable periodic orbit (large). Nullclines are plotted
as dotted and dash-dotted curves.

Figure 3 shows a phase portrait for parameters (gl, vl) = (1.82,−56),

depicted by the + on the bifurcation diagram in Figure 1. These parameter

values lie outside the cusped region bounded by the saddle-node bifurcation

curve, and it lies between the Hopf curve and the curve of saddle-nodes of

periodic orbits. As shown in the phase portrait, there is a stable equilib-

rium, a small unstable periodic orbit and a large stable periodic orbit. The

unstable periodic orbit divides the basin of attractions of the equilibrium

and the stable periodic orbit.

The three phase portraits in Figures 4, 5 and 6 correspond to parameter

values (2.38643,−56), (2.3864443369,−56), and (2.386444337,−56). These

nearby parameter values are located at the asterisk in Figure 1. There are

four bifurcation curves that pass through this region of Figure 1: from top to

bottom these are a curve of Hopf bifurcations, a curve of small homoclinic

orbits with loops that lie below and to the right of the saddle point, a curve

of large homoclinic orbits with loops in which the upper unstable separatrix
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Fig. 4. Phase portrait of the system (1) for (gl, vl) = (2.38643,−56). There is a sink
(triangle), a source (square) and a saddle (+). Both separatrices of the unstable manifold
of the saddle tend to a stable periodic orbit and the right separatrix of the stable manifold
limits on an unstable periodic orbit. In this and the subsequent figures, the unstable
manifold leaves the saddle more vertically than the stable manifold.

of the saddle returns to the saddle along the right branch of the stable man-

ifold, and a curve of saddle-nodes of periodic orbits. The parameter values

(2.38643,−56) lie between the Hopf curve and the first curve of homoclinic

bifurcations; the parameter values (2.3864443369,−56) lie between the two

homoclinic curves, and the parameter values (2.386444337,−56) lie below

the curve of saddle-nodes of periodic orbits. Phase portraits above the Hopf

curve lie in region C of the bifurcation diagram and have two sources and

a stable periodic orbit. In region C, each branch of the stable manifold of

the saddle comes from a source. Figure 4 depicts a phase portrait below the

Hopf curve: there is a sink, a saddle and a source. The stable manifold of

the saddle has one separatrix that comes from the source, while the other

comes from an unstable periodic orbit that bifurcated from the right-hand

equilibrium point at its (subcritical) Hopf bifurcation. For the parameter
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Fig. 5. Phase portrait of the system (1) for (gl, vl) = (2.3864443369, −56). The change
that has occurred from Figure 4 is that the lower separatrix of the unstable manifold of
the saddle and the right separatrix of the stable manifold have crossed in a homoclinic
bifurcation, annihilating the unstable periodic orbit in the process.

values shown, this periodic orbit is close to forming a homoclinic orbit with

the saddle. Both branches of the unstable manifold tend to the stable peri-

odic orbit surrounding all three equilibrium points. As one passes the first

homoclinic curve between the phase portraits of Figure 4 and Figure 5, the

unstable periodic orbit disappears, the lower branch of the unstable mani-

fold of the saddle tends to the sink and right branch of the stable manifold

comes from the source. As gl increases slightly from 2.3864443369, the right

branch of the stable manifold of the saddle and the upper branch of its un-

stable manifold coalesce into a homoclinic orbit. Crossing this homoclinic

orbit generates a new unstable periodic orbit surrounding all three equi-

librium points because the trace at the saddle is positive. This unstable

periodic orbit quickly collides with the stable periodic orbit in a saddle-

node of periodic orbits bifurcation, annihilating both. Figure 6 shows a

phase portrait for parameter values just to the right of the saddle-node of
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Fig. 6. Phase portrait of the system (1) for (gl, vl) = (2.386444337, −56). The changes
that have occurred from Figure 5 are that the upper separatrix of the unstable manifold
of the saddle and the right separatrix of the stable manifold have crossed in a homoclinic
bifurcation, recreating an unstable periodic orbit that then coalesced with the stable
periodic orbit in a saddle-node of periodic orbits.

periodic orbits bifurcation. Both branches of the unstable manifold of the

saddle tend to the sink in this phase portrait and no periodic orbits remain

in the phase portrait.

These numerical calculations indicate that the distance between the sec-

ond homoclinic bifurcation curve and the saddle-node of periodic orbits is

smaller than 10−9, and we have been unsuccessful in finding parameter val-

ues between these two curves. This is hardly surprising given the nature of

the flow in this parameter region. The second homoclinic orbit is an exam-

ple of a “canard.” This term from singular perturbation theory refers to a

trajectory that follows an unstable branch of a slow manifold. We explain

what this means in the context of Figure 5. Away from the v nullcline, the

magnitude of v̇ is much larger than the magnitude of ḣ. Consequently, we

regard v as the “fast” variable of the system and “h” as the slow variable.

Trajectories are attracted to a neighborhood of the v nullcline where they
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turn and flow slowly along this nullcline until reaching a place where the

nullcline is parallel to the v axis. The typical behavior at these folds is for

trajectories to “jump” to the opposite branch of the nullcline. At the right

hand fold, this does not happen for the unstable manifold of the saddle

in the small parameter range we are investigating. Instead, the unstable

manifold tends back along the middle, unstable branch of the v nullcline.

Only later does it jump. This branch of the nullcline closely approximates

the stable manifold of the saddle. The eigenvalues at the saddle are approx-

imately −0.05 and 3, so the exponential rate of divergence away from the

stable manifold is 60 times faster than the exponential rate of attraction to

the saddle along the manifold. In order to approach the saddle along the

stable manifold, a trajectory must be extremely close to the stable manifold.

Using estimates from the linear approximation at the saddle, the distance

from the stable manifold grows by a factor 260 ≈ 1018 as the distance from

the saddle decreases by a factor of only 1/2. Consequently, even the round-

off errors of floating point arithmetic preclude integration of the unstable

manifold back close to the saddle. The region near the stable manifold is

Fitzhugh’s “no man’s land” – numerical integration of trajectories starting

outside the region do not enter it. As the parameter gl changes, the unstable

and stable manifolds of the saddle sweep past each other. The “take off”

point for where the unstable manifold diverges from the stable manifold

changes so rapidly that it appears discontinuous in the numerical integra-

tions when the manifolds cross. The second homoclinic orbit bifurcation and

the saddle-node of periodic orbit bifurcation both come from trajectories

containing segments inside this “no man’s land,” that bounds the apparent

discontinuity. The bifurcations are too close together in parameter space to

resolve without greatly extended precision for the calculations.

Finally, Figure 7 shows the phase portrait of (1) for parameter values

(gl, vl) = (1.7,−57.75), marked by the cross in Figure 1 near the intersec-

tions of the homoclinic curves. This phase portrait shows tristability: there

are two stable equilibria and a stable periodic orbit representing tonic spik-

ing of the system. The domains of attraction of the stable equilibria are

bounded by unstable periodic orbits that emerged from the equilibria at

subcritical Hopf bifurcations. Note that the parameter values are also close

to the self intersection of the Hopf curve in Figure 1. At the codimension

two gluing bifurcation, both of the unstable periodic orbits grow to homo-

clinic orbits. The stable and unstable manifolds of the saddle point form

a figure eight at the gluing bifurcation. In the parameter space, all of the

homoclinic bifurcation curves meet at this gluing bifurcation.
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Fig. 7. Phase portrait of the system (1) for (gl, vl) = (1.7,−57.75). There are two sinks
(triangles), a saddle, a stable periodic orbit and two unstable periodic orbits. The system
is tristable with three attractors.

We note that the global homoclinic and saddle-node of periodic orbit

bifurcation curves in Figure 1 lie close to the steady state Hopf bifurcation

curves. This property of the system can be attributed to the stiffness of

system (1) in which v is a fast variable relative to h. Hopf bifurcation in a

two dimensional fast-slow system occurs when equilibrium points lie close

to a fold of the slow manifold. As analyzed by Dumortier and Roussarie 9

and others 1,10, the periodic orbits growing from these bifurcation acquire

canards and pass through a parameter regime in which their size changes

extremely rapidly. Global bifurcations are likely to be found, as they are

here, in the canard regions. In the next section, we analyze models of burst-

ing neurons and encounter higher dimensional fast subsystems than the one

described in this section. Although we do not show the global bifurcations of

these models, we expect, and preliminary calculations confirm, that many

will be found close to curves of equilibrium point bifurcation as is the case

in this model.
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3. Fast-slow Analysis of Bursting

Bursting in neuronal models refers to compound oscillations which have an

“active” phase consisting of action potentials and a quiescent phase with-

out action potentials during each period of oscillation. Geometric singular

perturbation theory interprets the transitions between active and quiescent

phases as bifurcations in a fast subsystem of the model, occurring as the

parameters of the fast subsystem change on the slow time scale. We inves-

tigate when the results of the previous section can be applied directly to

models of bursting, assuming that time constants of gating variables for

other currents are slower than the inactivation time scales of the sodium

current. Although this requirement is seldom satisfied (even in the origi-

nal Hodgkin-Huxley model), this analysis gives insight into the role that

additional currents play in the initiation or termination of action potentials.

This section examines these ideas within the context of several models of

neuronal bursting. We approach the separation of fast and slow components

of a system in different ways. Most of the mathematical theory is formulated

in terms of systems in which some phase space variables are slow and others

are fast. This is made explicit by a small parameter ε that is the ratio of

time scales, and ε approaching 0 gives a singular limit in which the slow

variables no longer change on the fast time scale. Here we take a somewhat

different approach based upon the representation of transmembrane current

as a sum of currents associated with different channels. We separate currents

into ones we regard as fast and ones we regard as slow because this allows

us to map the slow dynamics of the system into variations of the leak

parameters in the fast subsystem. However, the phase space variables are

gating variables of the currents and currents with fast activation and slow

inactivation are not readily assigned to the slow or fast categories.

The currents in all the models that we investigate have the Hodgkin-

Huxley representation

Iy = gym
p
yhy (V − Vy) ,

where gy is a constant conductance, Vy is the reversal potential, p is a

positive integer, and my and hy are activation/inactivation variables or

functions that take values in the range [0, 1]. Non-inactivating currents can

be written in this form with hy set to be identically equal to 1; a passive

leak current has both my and hy set identically to 1. The voltage equation
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in these models may be then written as

Cm

dV

dt
= −

∑

y

Iy,

where Cm is the membrane capacitance. We do not consider directly the

effects of an “injected” current in these neuronal models, but this can be

investigated indirectly as a change in the reversal potential of a leak con-

ductance. Our strategy is to map the slow currents into an “effective” leak

current of the fast subsystem, regarding the reversal potential and conduc-

tance of this leak current as slowly varying variables. Specifically, we define

the effective leak parameters as

gLeff
=
∑

y

gym
p
yhy

VLeff
=

(

∑

y

gym
p
yhyVy

)

/gLeff

the sum being taken over the slow currents. The ranges of the activa-

tion/inactivation functions yield a region in the (gLeff
, VLeff

)-plane inside

which the effective leak parameters are confined.

Analysis of bifurcations of the fast subsystems as the effective leak con-

ductance and reversal potential are varied must be repeated for each model.

Methods like those described in the previous section readily yield the bi-

furcation curves for saddle-node and Hopf bifurcations of equilibria. When

the dimension of a fast subsystem is larger than two, computation of the

global bifurcations are problematic for two reasons. First, the methods for

computing these curves in multiple time scale systems discussed in the pre-

vious section were specific to planar vector fields, and robust algorithms

that address these numerical issues in the context of higher dimensional

vector fields are not as well developed. Second, more complicated limit

sets can and do occur, even in the context of the original Hodgkin-Huxley

model for squid axon 15. Consequently, we show only the equilibrium point

bifurcation curves in the examples discussed below.

3.1. Aplysia

The R15 neuron of Aplysia is a bursting neuron whose electrophysiology

has been studied by many researchers, e.g. 21,4. One of the simplest models

of bursting in this neuron is given by Rinzel and Lee 27, which is based

on a model by Plant 24. Their model involves a sodium current INa with
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instantaneous activation; a potassium current, IK; a passive leak current,

IL; a slow calcium current, ICa; and a calcium-activated potassium current,

IK−Ca. Their work is a paradigm for the application of singular perturbation

methods to analyze bursting. They chose fast subsystem variables to be

the membrane potential, the sodium inactivation gating variable, and the

potassium activation gating variable. The activation of the calcium current

and the intra-cellular calcium concentration constitute the slow subsystem,

giving a five dimensional phase space.

Here we regard the calcium and calcium-activated potassium currents as

slow, and the sodium and potassium currents as part of the fast subsystem.

We combine the calcium, calcium-activated potassium currents and leak

currents of the full model to obtain the effective leak parameters of the

fast subsystem. The region in the (gL, VL) plane in which the effective leak

parameters are confined is shown in gray in Figure 8B and D.

Figure 8A shows a typical bursting trajectory from which we calcu-

late the effective leak parameters for a bursting cycle. These effective leak

parameters are plotted in Figure 8B along with the bifurcation curves. Fig-

ure 8C shows a plot of V vs. gLeff
and Figure 8D is a magnified view of the

region in the (gLeff
, VLeff

)-plane where the burst cycle terminates.

Rinzel and Lee described the bursting mechanism in their model as

parabolic. The bursts are apparently terminated by homoclinic bifurcations

that lie close to the curve of saddle-nodes in Figure 8B. The separation

between these curves is smaller than 0.1 mV in the region where the bursting

stops. Note that the burst does not cease when the (gLeff
-VLeff

)-trajectory

first crosses the bifurcation curves, but rather the trajectory crosses and

re-crosses these curves several times during the last few spikes. Although

the time scales of the slow currents are more than a factor of two separated

from the fast currents, this separation is insufficient to exactly obtain the

behavior dictated by the singular limit of slow currents that do not vary.

This phenomenon is also apparent in the figures of Rinzel and Lee’s work
27. We make the following additional observations about these bursting

oscillations:

• during the quiet phase the system inhabits a region where the fast

subsystem has a stable equilibrium

• slowly the effective leak reversal potential increases due to (i) reduction

of Ca++ (which reduces IK−Ca and the hyperpolarizing pull of VK) and

(ii) slow increase of ICa activation (which increases the depolarizing

pull of VCa)
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Fig. 8. Mapping of the Rinzel-Lee model to leak parameters of its fast subsystem. A:
The full model’s bursting trajectory. B: The effective leak parameters and equilibrium
bifurcation curves. The envelope of possible leak parameters is shaded gray. The saddle-
node curve is a solid line, and the Hopf curve is a dashed line that originates at a
Takens-Bogdanov bifurcation (square) and extends to the right out of the panel and
then passes through the panel once more on the upper right. The image of the bursting
trajectory (thick solid line) lies to the left of the Takens-Bogdanov point and passes
through the saddle-node curve. Arrows indicate the direction of traversal. C: Voltage vs.
effective leak conductance for the burst cycle. D: Close up of B showing the region where
bursting terminates.

• eventually, as VLeff
increases, the stable equilibrium disappears in a

saddle-node bifurcation and the system is immediately attracted to a

periodic orbit that was born in a homoclinic bifurcation

• Figure 8B and C show that V rapidly increases with virtually no change

in gLeff
and VLeff

• the spiking eventually stops as Ca++ slowly increases during the spik-

ing, yielding a slow decrease in VLeff
(due to the calcium-activated

potassium current) that causes the trajectory to once again cross the

saddle-node curve and the nearby curve of homoclinic bifurcations (Fig-

ure 8D)
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• following termination of the burst, the trajectory jumps to the stable

voltage equilibrium to start the cycle once again.

Thus the saddle-node and nearby homoclinic curves of the fast subsystem

are of primary importance for the Rinzel-Lee bursting model.

3.2. Thalamic Relay Neurons

We next investigate a bursting model of thalamocortical relay neurons intro-

duced by Wang 29. This four-dimensional model includes three fast currents:

a sodium current, INa, a persistent sodium current, INa(P), and a potassium

current, IK. Both sodium currents are assumed to activate instantaneously.

The sodium inactivation, h, and potassium activation, n, are assumed to

be related by h = (0.85−n) in accord with FitzHugh’s observation 11. The

model also includes a passive leak current, IL, and two slow currents: a

T-type calcium current, IT , and a sag current, Ih, with reversal potential

Vh = −40 mV. The calcium inactivation, hT , and sag current activation,

hH , are the slow variables, although the sag current activation is rapid at

high voltages so that it changes value substantially during an action po-

tential. The calcium activation is assumed to be instantaneous. Thus IT

has a fast activation but slow inactivation, and Ih is rapid at high voltages

but slow when the membrane is polarized; nonetheless, we classify both

of these as slow currents. In addition, the model incorporates an injected

current, which we have set at -0.8 µA; this is equivalent to a decrease in

the leak reversal potential. The leak current (and injected current) along

with IT and Ih are combined to obtain the effective leak parameters of the

fast subsystem.

Figure 9 shows the same information for the Wang model as Figure 8

did for the Rinzel-Lee model. The gray region in Figure 9B is a wedge

where the small current Ih is responsible for the narrowness of the width,

and changes in the large IT current are responsible for movement along the

length of the wedge. During the burst cycle, the effective leak parameters

run along the left edge of the confining region, indicating that Ih remains

very small and is not a substantial player in the bursting cycle.

Note that in comparison to the Rinzel-Lee model, where there was very

little variation of gLeff
between successive spikes, Figure 9C shows that gLeff

varies substantially for the Wang model. This is a manifestation of the fact

that IT is not a completely slow current, having an instantaneous activation

with a half activation value of -65 mV and saturating at about -30 mV. For

this reason, the trajectory in Figure 9C has substantial horizontal move-
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Fig. 9. Mapping of the Wang model to the two dimensional (gLeff
, VLeff

) plane. The
panels of this figure parallel those of Figure 8. The circle indicates the maximum value
attained by gLeff

and VLeff
after the last spike of the burst.

ment during the spikes when the voltage is below -30 mV.

In the quiescent stage of the burst cycle, the system lies near the stable

equilibrium of the fast subsystem. IT (and less importantly Ih) both slowly

increase pushing the voltage upward to the spiking threshold which cor-

responds to the saddle-node curve of the fast subsystem where the stable

equilibrium disappears. During spiking, the calcium current inactivation

decreases until eventually IT becomes too small to push the rebounding

membrane above spiking threshold, thus terminating the burst. In terms of

the fast subsystem, the decrease in IT causes a decrease in VLeff
. Although

the resolution in Figure 9B is insufficient to see this, VLeff
remains above the

saddle-node curve during the spike train and only drops below this curve

after the last spike. It then rises slightly, reaching a maximum marked by

the circle in Figure 9D. Thus, as in the Rinzel-Lee model, termination of

the burst cycle occurs a little below the saddle-node curve where we expect

to find homoclinic bifurcations as discussed in Section 2.



March 21, 2005 15:46 WSPC/Trim Size: 9in x 6in for Review Volume hhfast˙ws

22 J. Guckenheimer, J. H. Tien and A. R. Willms

3.3. Leech Heart Interneurons

Oscillations in Leech Heart Interneurons have been studied extensively by

Calabrese and collaborators 8,16,6; a detailed model of the heartbeat ele-

mental oscillator was constructed by Nadim et al. 22 in 1995. Although the

primary system here is a pair of reciprocally inhibitory neurons, they show

that an individual neuron in their model can also exhibit intrinsic bursting

behavior 23. This leech heartbeat model includes INa, a persistent sodium

current, IP , three different potassium currents, IK1, IK2, and IA, two cal-

cium currents, ICaF and ICaS, a sag current, Ih, with reversal potential

−21 mV, and a passive leak current. Categorizing these currents as slow

or fast is not easy. The activation and inactivation variables for some of

these currents vary considerably with voltage so that the current is fast in

some regimes and slow in others. For example, the activation of ICaS has a

time constant of about 140 ms at voltages above -40 mV, but this reduces

to a fast 5 ms at voltages below -60 mV. Also a number of the currents,

particularly ICaF and IK1, have a rapid activation but slow inactivation. In

order to obtain a fast subsystem which includes all currents with fast com-

ponents, we classified only Ih, IK2, and ICaS as slow (despite the fact that

the activation for ICaS is fast at hyperpolarized voltages). It should also be

noted that the fast subsystem includes some components, for example the

inactivations of IK1 and ICaF, that are slower than some of the slow current

components.

Figure 10 shows the same information for the leech heartbeat model

as Figure 8 did for the Rinzel-Lee model. The number of spikes per burst

cycle is much larger for this model than the previous ones. Spiking is ini-

tiated by a slow increase in Ih which raises the membrane potential to the

point where ICaS turns on and an action potential is generated. This can

be seen in Figure 10D where the trajectory, starting in the lower left corner

of the confining region, first moves into the region, up and to the right (Ih

increasing), and then abruptly turns parallel to the left boundary of the

confining region and VLeff
increases due to ICaS turning on. After about

eight spikes, gLeff
and VLeff

reach their maxima and then ICaS slowly inac-

tivates, reducing both effective leak parameters. The horizontal movement

of the trajectory in the (gLeff
, VLeff

) plane is caused primarily by changes in

the activation gating variable for IK2 which, being only moderately slow,

reacts relatively quickly to changes in the membrane potential.

Termination of the burst cycle occurs shortly after ICaS decreases suffi-

ciently to cause the trajectory in the (gLeff
, VLeff

) plane to cross the saddle-
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Fig. 10. Mapping of the Nadim et al. leech heartbeat model to the two dimensional
(gLeff

, VLeff
)–plane. See caption to Figure 8.

node curve. Although the gross features of the saddle-node and Hopf bi-

furcation curves (Figure 10B) are similar in this model to the system we

studied in Section 2, Figure 10D shows that the bifurcation structure for

this nine-dimensional fast subsystem is more complicated at a finer scale.

The saddle-node curve forms a “bow-tie” shaped region near where the

hopf curve intersects it, and it is in this region that the bursting cycle is

terminating.

3.4. Plateau Oscillations in Leech Heart Interneurons

Cymbalyuk and Calabrese 7 present simpler models of leech heart interneu-

rons than the model described above, which exhibit plateau oscillations.

Their minimal model (model IV) consists of a fast sodium current, INa,

a slow persistent potassium current, IK2, and a passive leak current, IL.

Figure 11 shows the same information for this model as Figure 8 did for

the Rinzel-Lee model.
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Fig. 11. Mapping of the Cymbalyuk-Calabrese simplified leech heart model to the two
dimensional (gLeff

, VLeff
)-plane. See caption to Figure 8.

The shape of the saddle-node and hopf curves is similar to the “cusp

and loop” structure of system (1) except that the Takens-Bogdanov point is

nearly at the cusp of the saddle-node bifurcation curve. Since this model has

only one slow current defined by a single activation variable, the confining

region in the (gLeff
, VLeff

)-plane is a one-dimensional curve (shown in gray in

Figure 11B and D). The bursting trajectory mapped to this plane traverses

a portion of this curve back and forth.

During the quiescent (low voltage) phase of the burst cycle, the voltage

value lies close to the low voltage fixed point in the fast subsystem, the

model’s effective leak parameters lie just underneath the saddle-node curve,

and IK2 is slowly deactivating causing a decrease in gLeff
and increase in

VLeff
. As VLeff

continues to increase, the system crosses the saddle-node

curve, where the low voltage fixed point disappears, and the system quickly

approaches the high voltage fast subsystem fixed point. This corresponds to

the start of the voltage plateau. The high voltage value now activates IK2
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and the trajectory proceeds down and to the right in the (gLeff
, VLeff

)-plane.

At about gLeff
= 14, the path crosses a supercritical Hopf curve, where

the high voltage fixed point becomes unstable and an attracting periodic

orbit is born. This corresponds to the small amplitude plateau oscillations

in Figure 11A. Eventually the attracting periodic orbit is destroyed via a

saddle-node of orbits, terminating the plateau, and the system collapses to

the low voltage fixed point of the fast subsystem to begin the cycle anew.

3.5. Neurons of the Pre-Bötzinger Complex

Butera et al. 5 have proposed Hodgkin-Huxley type models of neurons in

the pre-Bötzinger complex, a region of the brainstem essential to generating

the breathing rhythm. Model I of Butera et al. 5 consists of fast sodium

and potassium currents INa and IK, a persistent sodium current INa(P),

and a passive leak current IL. Both sodium currents are assumed to ac-

tivate instantaneously. Inactivation of INa is approximated by 1 − n. The

inactivation h of INa(P) occurs on a much slower time scale than that of the

other variables.

Despite the slow time scale of h, incorporating INa(P) into an effective

leak current does not work well here. This is partly due to the fact that,

although inactivation of the persistent sodium current is slow, activation is

fast. Furthermore, the true leak reversal potential and the sodium reversal

potential differ significantly (approximately -60 mV for the former, +50

mV for the latter). These factors combine to result in large values of
dVL

eff

dt

during each spike.

Instead, we follow the more traditional analysis of Rinzel and Lee 27, and

treat h as the slow variable. Figure 12 shows a burst trajectory, together

with fixed points of the fast subsystem. Burst initiation corresponds to the

fast subsystem passing through a saddle-node bifurcation. Burst termina-

tion occurs when the fast subsystem goes through a homoclinic bifurcation.

In addition to the leak conductance and reversal potential that we have

been examining throughout this paper, we can also include the slow variable

h and examine the bifurcations in the fast subsystem which result as these

three parameters are varied. Note that the leak conductance and reversal

potential here correspond to the true leak current in model I of Butera

et al. 5, not to an effective leak current. Figures 13(a) and (b) show the

resulting hopf and saddle-node bifurcation surfaces. The shape of the hopf

surface changes significantly as h is varied. On the other hand, the surface

of saddle-nodes does not change much with h. Figures 13(c) and (d) show
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Fig. 12. A burst trajectory for Model I of Butera et al., together with fixed points of the
fast subsystem. Membrane potential V and potassium activation n are the fast variables,
and inactivation of persistent sodium current h the slow variable. Equilibrium points of
the fast subsystem for different values of h are plotted as bold curves. Stable equilibria
are plotted as the solid curve, unstable equilibria are plotted as dashed curves.

the gL − VL bifurcation diagrams for h = 0.21 and h = 0.95, respectively.

Note that Figure 13(c) resembles the bifurcation diagrams for the Rinzel-

Lee, Wang, and Cymbalyuk-Calabrese models, while Figure 13(d) is similar

to the bifurcation diagram of Nadim et al. The similarities in the shapes

of the bifurcation curves for these different models suggest that a small

number of qualitatively distinct bifurcation diagrams may predominate in

the fast subsystems of Hodgkin-Huxley type models.

4. Discussion

Conductance based models for neurons with voltage gated currents based on

the Hodgkin-Huxley formalism combine an equation for membrane poten-

tial with differential equations for the gating variables. Chemical concentra-

tions of ligands or second messengers lead to a somewhat more general class
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Fig. 13. Equilibrium point bifurcation diagrams of a three parameter fast subsystem
(Model I of Butera et al.) with parameters (gL, VL, h). (a) Hopf bifurcations, Takens-
Bogdanov points, and neutral saddles. The white curve separating the two dimensional
surface into two components denotes Takens-Bogdanov points. The component with
larger values of VL consists of Hopf points, while the smaller VL component consists of
neutral saddles. (b) Saddle-node bifurcations. (c) Saddle-node (solid) and Hopf (dashed)
bifurcation curves in the (gL, VL) plane with h = 0.21. (d) Saddle-node and Hopf bifur-
cation curves in the (gL, VL) plane with h = 0.95.

of models, but the model structure is still highly constrained. We would like

to determine the generality and limitations of these models in explaining

observed electrical activity of neurons. Thus, we ask two complementary

questions

• What types of dynamical behavior occur (generically) within this class

of models?

• Are there principles that can be used to construct models and families

of models that display specific types of dynamics?
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The second question is often addressed in the context of fitting models to

experimental data. The first question is more abstract, but even partial an-

swers provide a framework that help us tackle the second. The questions are

difficult because the dynamical behaviors we study are complex, the models

have large numbers of parameters and multiple time scales bring additional

challenges for the analysis. Systematically simulating models throughout

biologically plausible regions of their parameter spaces is hardly feasible.

Nonetheless, we speculate about generalizations in the hope that our com-

putational and analytical studies of models will help sharpen understanding

of how neural systems function.

Theories and models of bursting 25,3,19 point to multiple time scales as a

key factor in the generation of neural rhythms. We present here an analysis

of neuronal bursting that makes use of three time scales. We call these time

scales slow, fast and very fast. Currents that change on the slow time scale

bring a neuron into and out of regimes in which it fires action potentials.

The thresholds and characteristics of the action potentials are determined

by dynamics of the fast and very fast time scales. The bifurcations that

occur in the subsystems that incorporate the fast and very fast dynamics

are shaped by the separation between the fast and very fast time scales.

These bifurcations are found close to parameter values at which the sub-

system has degenerate slow-fast decompositions. The proximity of various

bifurcation curves to one another is explained by the extreme sensitivity

of limit sets containing canards to parameter variations. Consequently, in-

formation about Hopf and saddle-node bifurcations of equilibria together

with a picture of the slow manifolds in these subsystems can be used to

predict information about global bifurcations. As an example, inside the

cusp region of the planar vector field studied in Section §2, all the periodic

orbits undergoing saddle-node bifurcations contain canards. These bifurca-

tions lie extremely close to homoclinic bifurcations and very close to Hopf

bifurcations.

We observe that the very fast subsystems of large classes of neural mod-

els are very similar to one another, describing changes in membrane poten-

tial and the rapid activation of certain currents. Typically, these activations

are treated as instantaneous, removing them from the dynamical variables

of the model and leaving only the membrane potential as a very fast vari-

able. This perspective suggests that there are similarities in the bifurcation

mechanisms among large classes of conductance based models for neurons.

Due to their stiffness, the bifurcation diagrams of these models are diffi-

cult to determine completely, but the equilibrium point bifurcations that



March 21, 2005 15:46 WSPC/Trim Size: 9in x 6in for Review Volume hhfast˙ws

Bifurcations in the Fast Dynamics of Neurons: Implications for Bursting 29

are easy to determine provide a backbone on which to base further study.

Section §2 presents an analysis of one such model that contains only a fast

sodium and a leak current. Reductions of the Hodgkin-Huxley model em-

body a frequent modification of this model by including a non-inactivating

potassium current whose activation is correlated with the inactivation of

the sodium current. The first equation in system (1) is replaced by

v̇ = −(gNam3h(v − vNa) + gKn4(v − vK) + gl(v − vl))

with n = hm − h, where hm is often taken in the range [0.85, 1]. By treat-

ing gK as a secondary parameter, we obtain a one parameter family of

bifurcation diagrams. There are two notable changes in these bifurcation

diagrams:

• The cusp region of saddle-nodes moves to smaller values of gl, exiting

the region where gl > 0 for modest values of gK .

• The Hopf curve undergoes a transition in which the self intersection

point disappears and the curve extends upward along the positive vl

axis.

Figure 14 illustrates these changes, displaying the equilibrium point bifurca-

tion diagram of this system with gK = 3 and hm = 1. These changes in the

equilibrium point bifurcation structure are also associated with changes in

the global bifurcation structure (saddle-nodes of orbits and homoclinics). In

particular, there is no longer a crossing of the two small homoclinic curves

and consequently no gluing bifurcation. Further, stable periodic orbits per-

sist at high vl values all the way to gl = 0. Nonetheless, the curves of

large homoclinic bifurcations and saddle-nodes of orbits still appear to be

located extremely close to the equilibrium saddle-node curve, so that this

curve remains a good indicator of where bursting will terminate.

The examples described in Section §3 illustrate two approaches to the

slow-fast decomposition of neuronal models, each with advantages and dis-

advantages. Our results demonstrate that the equilibrium point bifurcations

of a fast subsystem provide a guide to locating the transitions between spik-

ing and quiescent dynamics in bursting rhythms. As we observe and others

before us have demonstrated, some transitions between spiking and quies-

cent dynamics are associated with global bifurcations. However, we observe

that these global bifurcations are often located close to equilibrium point bi-

furcations due to multiple time scales within the fast subsystems. Since the

theoretical foundations for the analysis of bursting assume a large separa-

tion between slow and fast time scales, we do not expect to obtain definitive
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Fig. 14. The equilibrium point bifurcation diagram for the modified system (1). The
conductance of the potassium current is gK = 3 and hm = 1. Degenerate Hopf bifurca-
tions that bound a segment of supercritical Hopf bifurcation are marked by diamonds.
The Takens-Bogdanov bifurcation is marked by a filled circle.

results about models in which these time scales blur into one another. Even

so, multiple time scale analysis provides useful insight into the dynamics

of these complex systems. Moreover, computational methods based upon

geometric singular perturbation theory can be further refined to give still

more useful insights.

In mapping slow currents to an effective leak current, we treat the ef-

fective leak conductance and reversal potential as new slow variables. The

time scale of the effective leak reversal potential is affected not only by the

activation and inactivation rates of the slow currents, but also by the slow

currents’ reversal potentials. Widely differing reversal potentials may result

in a fast effective leak reversal potential, even if the gating variables of the

included currents are all slow. The mapping to the effective leak current

works best when the slow currents have similar reversal potentials.
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The mapping of slow currents into an effective leak current gives addi-

tional information that can be used to determine whether bursting might

be possible in a model. The figures of Section §3 contain gray regions that

delineate possible values for the conductance and reversal potential of the

effective leak current of the fast subsystems derived from a larger model.

This region is determined solely by the slow currents. The extreme left

point of this region is precisely the conductance and reversal potential of

the true passive leak current. The lower boundary moving to the right of

this point is determined by adding into the equations one slow current at a

time (that is increasing its conductance from zero to its maximum value),

in the order from the current with the lowest reversal potential to the one

with the largest, until we reach the extreme right point where all slow cur-

rents have been added in. The upper boundary is computed similarly but

taking the currents in the opposite order. Superposition of this gray region

upon the bifurcation diagram of the fast subsystem restricts attention to

bifurcations that might be accessible as transitions between attractors of

the fast subsystem. Forcing a trajectory to cross these bifurcation curves in

particular places requires slow and leak currents that vary appropriately on

the slow time scale. In relating the behavior of two different models with

the same fast components, comparison of the plots of the confining regions

of the two sets of slow currents helps determine whether the models have

similar bursting behavior. Of course, the location of the confining region

is just a start, since where the trajectory goes inside the confining region

depends on the specific dynamics of the slow currents.
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