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Abstract

We use Klee’s Dehn-Sommerville relations and other results on face numbers
of homology manifolds without boundary to (i) prove Kalai’s conjecture providing
lower bounds on the f -vectors of an even-dimensional manifold with all but the
middle Betti number vanishing, (ii) verify Kühnel’s conjecture that gives an upper
bound on the middle Betti number of a 2k-dimensional manifold in terms of k
and the number of vertices, and (iii) partially prove Kühnel’s conjecture providing
upper bounds on other Betti numbers of odd- and even-dimensional manifolds.
For manifolds with boundary, we derive an extension of Klee’s Dehn-Sommerville
relations and strengthen Kalai’s result on the number of their edges.

1 Introduction

In this paper we study face numbers of triangulated manifolds (and, more generally,
homology manifolds) with and without boundary. Here we discuss our results deferring
most of definitions to subsequent sections.

Our starting point is a beautiful theorem known as the Dehn-Sommerville relations. It
asserts that the upper half of the face vector of a triangulated manifold without boundary
is determined by its Euler characteristic together with the lower half of the face vector.
In this generality the theorem is due to Vic Klee [8].
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Perhaps the most elegant way to present the Dehn-Sommerville relations is via the
h-vector of a manifold. The entries of this vector are certain (alternating) linear combi-
nations of the face numbers. On the level of h-vectors, the Dehn-Sommerville relations
for triangulated spheres and odd-dimensional manifolds merely state that the h-vector of
these complexes is symmetric. In the case of spheres, the components of the h-vector are
also known to be positive as they equal dimensions of algebraically determined nonzero
vector spaces [20, Chapter 2].

Motivated by Dehn-Sommerville relations together with several commutative algebra
results on Stanley-Reisner rings of triangulated manifolds, Kalai suggested [15, Section
7] a modification of the h-vector, the h′′-vector, as the “correct” h-vector for (orientable)
manifolds without boundary. The h′′-vector of orientable manifolds (both odd-dimensional
and even-dimensional) has since been shown to be symmetric [15] and nonnegative [16].

Our first result is an extension of Klee’s Dehn-Sommerville relations to manifolds with
boundary. Specifically, we show that for a triangulated manifold with a fixed boundary
Γ, the upper half of the h-vector is determined by the Euler characteristic, its lower half,
and the h-vector of Γ. This result is not entirely new. In the language of f -vectors it was
first worked out by Macdonald [12], and then rediscovered by Klain [7], and Chen and
Yan [2]. However its h-vector form appears to be absent from the literature. We then
use this result to define a suitable version of the h′′-vector for manifolds with boundary
as well as show that it is symmetric and nonnegative.

Our next result concerns new inequalities on the face numbers and Betti numbers of
manifolds without boundary. Kalai conjectured (private communication) that the face
numbers of a 2k-dimensional manifold with all but the middle Betti number vanishing are
simultaneously minimized by the face numbers of a certain neighborly 2k–dimensional
manifold. We verify this conjecture. We also prove a part of a conjecture by Kühnel
[11, Conjecture 18] that provides an upper bound on the middle Betti number of a 2k-
dimensional manifold in terms of k and the number of vertices. Both results turn out to
be a simple consequence of the Dehn-Sommerville relations and results from [16].

Kühnel further conjectured [11, Conjecture 18] an upper bound on the i-th Betti
number (for all i) of a (d− 1)-dimensional manifold with n vertices in terms of i, d, and
n. We prove that this conjecture is implied by the g-conjecture for spheres. In particular,
Kühnel’s conjecture holds for manifolds all of whose vertex links are polytopal.

In the last section we return to discussing manifolds with boundary. Here we derive
a strengthening of Kalai’s theorem [6, Theorem 1.3] that provides a lower bound on the
number of edges of a manifold in terms of its dimension, total number of vertices, and
the number of interior vertices. Our new bound also depends on the Betti numbers of the
boundary.

The structure of the paper is as follows. In Section 2 we review necessary background
material. In Section 3 we derive the Dehn-Sommerville relations and define the h′′-vector
for manifolds with boundary. In Section 4 we deal with Kalai’s and Kühnel’s conjectures.
Finally, in Section 5 we prove a new lower bound on the number of edges of manifolds
with boundary.
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2 Simplicial complexes and face numbers

In this section we review necessary background material on simplicial complexes, Dehn-
Sommerville relations, and Stanley-Reisner rings of homology manifolds. We refer our
readers to [20, Chapter 2] and the recent paper [16] for more details on the subject.

Recall that a simplicial complex ∆ on the vertex set [n] = {1, 2, . . . , n} is a collection
of subsets of [n] that is closed under inclusion and contains all singletons {i} for i ∈ [n].
The elements of ∆ are called faces. The maximal faces (with respect to inclusion) are
called facets. The dimension of a face F ∈ ∆ is dimF := |F | − 1 and the dimension of
∆ is the maximal dimension of its faces. For a simplicial complex ∆ and its face F , the
link of F in ∆, lk (F ), is the subcomplex of ∆ defined by

lk (F ) = lk ∆(F ) := {G ∈ ∆ |G ∩ F = ∅ and G ∪ F ∈ ∆}.

In particular, the link of the empty face is the complex itself.
A basic combinatorial invariant of a simplicial complex ∆ on the vertex set [n] is its

f -vector, f(∆) = (f−1, f0, . . . , fd−1). Here, d − 1 = dim ∆ and fi denotes the number
of i-dimensional faces of ∆. Thus f−1 = 1 (there is only one empty face) and f0 = n.
An invariant that contains the same information as the f -vector, but sometimes is more
convenient to work with, is the h-vector of ∆, h(∆) = (h0, h1, . . . , hd) whose entries are
defined by the following relation:

d∑
i=0

hiλ
i =

d∑
i=0

fi−1λ
i(1− λ)d−i. (1)

A central object of this paper is a homology manifold (over a field k), that is, a (d−1)-
dimensional pure simplicial complex ∆ such that for all ∅ 6= F ∈ ∆, the reduced simplicial
homology H̃i(lkF ; k) vanishes if i < d−|F |−1 and is isomorphic to k or 0 if i = d−|F |−1.
A complex is pure if all of its facets have the same dimension. The boundary faces of ∆
are those faces F 6= ∅ such that H̃d−|F |−1(lkF ; k) = 0. When ∆ has no boundary faces,
we write ∂∆ = ∅ and ∆ is called a homology manifold without boundary. Otherwise,
∂∆ is the set of boundary faces together with the empty set. We will assume that ∂∆
is a (d− 2)-dimensional homology manifold without boundary. Under certain conditions
this assumption is superfluous, see, for instance [13]. As demonstrated by the suspension
of the real projective plane whose ‘boundary’ would be the two suspension points for
any field whose characteristic is not two, some additional assumption is required. We
say that ∆ is orientable if the pair (∆, ∂∆) satisfies the usual Poincaré-Lefschetz duality
associated with orientable compact manifolds with boundary. The prototypical example
of a homology manifold (with or without boundary) is a triangulation of a topological
manifold (with or without boundary).

A beautiful theorem due to Klee [8] asserts that if ∆ is a homology manifold with-
out boundary, then the f -numbers of ∆ satisfy linear relations known as the Dehn-
Sommerville relations:

hd−i − hi = (−1)i
(
d

i

)(
(−1)d−1χ̃(∆)− 1

)
for all 0 ≤ i ≤ d. (2)
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Here χ̃(∆) :=
∑d−1

i=−1(−1)ifi is the reduced Euler characteristic of ∆. Proofs of several
results in this paper rely heavily on Klee’s formula (2) and its variations, while other
results are concerned with deriving analogs of this formula for manifolds with boundary.

In addition to the Dehn-Sommerville relations we exploit several results on the Stanley-
Reisner rings of homology manifolds. If ∆ is a simplicial complex on [n], then its Stanley-
Reisner ring (also called the face ring) is

k[∆] := k[x1, . . . , xn]/I∆, where I∆ = (xi1xi2 · · ·xik : {i1 < i2 < · · · < ik} /∈ ∆).

(Here and throughout the paper k is an infinite field of an arbitrary characteristic.)
Since I∆ is a monomial ideal, the ring k[∆] is graded, and we denote by k[∆]i its ith
homogeneous component. The Hilbert series of k[∆], F (k[∆], λ) :=

∑∞
i=0 dimk k[∆]i · λi,

has the following properties.

Theorem 2.1 (Stanley) Let ∆ be a (d− 1)-dimensional simplicial complex. Then

F (k[∆], λ) =

∑d
i=0 hiλ

i

(1− λ)d
.

Theorem 2.2 (Schenzel) Let ∆ be a (d − 1)-dimensional homology manifold, and let
θ1, . . . , θd ∈ k[∆]1 be such that k[∆]/Θ := k[∆]/(θ1, · · · , θd) is a finite-dimensional vector
space over k. Then

F (k[∆]/Θ, λ) =
d∑
i=0

(
hi(∆) +

(
d

i

) i−1∑
j=1

(−1)i−j−1βj−1(∆)

)
· λi,

where βj−1 := dimk H̃j−1(∆; k).

Theorem 2.1 can be found in [20, Theorem II.1.4], while Theorem 2.2 is from [18]. In
view of Theorem 2.2, for a (d− 1)-dimensional homology manifold ∆, define

h′i(∆) := hi(∆) +

(
d

i

) i−1∑
j=1

(−1)i−j−1βj−1(∆). (3)

We remark that if |k| =∞ then a set of linear forms {θ1, . . . , θd} satisfying the assump-
tions of Theorem 2.2 always exists, e.g., choosing “generic” θ1, . . . , θd does the job .

The following theorem summarizes several results on the h′-numbers of homology
manifolds that will be needed later on. For 0 < m =

(
x
i

)
:= x(x − 1) · · · (x − i + 1)/i!

where 0 < x ∈ R, define m<i> :=
(
x+1
i+1

)
. Also set 0<i> := 0.

Theorem 2.3 Let ∆ be a (d− 1)-dimensional homology manifold. Then

1. h′0 = 1, h′1 = f0 − d, and for all 1 ≤ i ≤ d

h′i ≥
(
d

i

)
βi−1 and h′i+1 ≤

(
h′i −

(
d

i

)
βi−1

)<i>
.
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2. Moreover, if ∆ is a homology manifold without boundary that is orientable over k,
i.e., βd−1(∆) = β0(∆) + 1, then

h′d−i − h′i =

(
d

i

)
(βi − βi−1) for all 0 ≤ i ≤ d. (4)

Part 1 of this theorem was recently proved in [16] (see Theorems 3.5 and 4.3 there).
Part 2 is a simple variation of Klee’s Dehn-Sommerville relations, see [15, Lemma 5.1].
It is obtained by combining equations (2) and (3) with Poincaré duality for homology
manifolds.

Eq. (2) implies that all homology spheres and odd-dimensional manifolds without
boundary satisfy hi = hd−i for all i. While this symmetry fails for even-dimensional
manifolds with χ̃ 6= 1, Theorem 2.3 together with Poincaré duality suggests we consider
the following modification of the h-vector and yields the following algebraic version of (2).

Proposition 2.4 Let ∆ be a (d − 1)-dimensional homology manifold without boundary.
Assume further that ∆ is connected and orientable over k. Let

h′′d := h′d and h′′i (∆) := h′i(∆)−
(
d

i

)
βi−1(∆) = hi−

(
d

i

) i∑
j=1

(−1)i−jβj−1, for 0 ≤ i ≤ d−1.

Then h′′i ≥ 0 and h′′i (∆) = h′′d−i(∆) for all 0 ≤ i ≤ d.

In view of Proposition 2.4 and results of [17] that interpret h′′-numbers as dimensions
of homogeneous components of a Gorenstein ring, h′′ can be regarded as the “correct”
h-vector for orientable homology manifolds without boundary. What is the analog of h′′

for manifolds with boundary? We deal with this question in the following section.

3 Dehn-Sommerville for manifolds with boundary

Klee’s equations (2) generate a complete set of linear relations satisfied by the h-vectors
of homology manifolds with empty boundary. More generally, one can fix a (non-empty)
homology manifold Γ and ask for the set of all linear relations satisfied by the h-vectors
of homology manifolds whose boundary is Γ. Deriving such relations and defining what
seems to be the “correct” version of the h′′-vector is the goal of this section.

We have the following version of Dehn-Sommerville relations:

Theorem 3.1 Let ∆ be a (d− 1)-dimensional homology manifold with boundary. Then

hd−i(∆)− hi(∆) =

(
d

i

)
(−1)d−1−iχ̃(∆)− gi(∂∆) for all 0 ≤ i ≤ d,

where gi(∂∆) := hi(∂∆)− hi−1(∂∆).
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Proof: Write fi := fi(∆) and hi := hi(∆). Let f bi := fi(∂∆), and define hbi and gbi in a
similar way. Also let f ◦i := fi(∆) − f bi be the “interior” f -vector, and let h◦i be defined
from f ◦ according to Eq. (1). With this notation, we obtain from [20, Corollary II.7.2]
that

(−1)dF (k[∆], 1/λ) = (−1)d−1χ̃(∆) +
d∑
i=1

f ◦i−1λ
i

(1− λ)i
.

Substituting Theorem 2.1 in the above formula yields

(−1)d
∑d

i=0 hd−iλ
i

(λ− 1)d
= (−1)d−1χ̃(∆) +

d∑
i=1

f ◦i−1λ
i(1− λ)d−i

(1− λ)d
= (−1)d−1χ̃(∆) +

∑d
i=0 h

◦
iλ

i

(1− λ)d
,

which is equivalent to

d∑
i=0

(hd−i − h◦i )λi = (−1)d−1χ̃(∆)(1− λ)d.

Subtracting
∑d

i=0 g
b
iλ

i from both sides and noting that h◦i + gbi = hi, implies the result. �

While Theorem 3.1 appears to be new, f -vector forms of the same equality have appeared
before. Chen and Yan gave a generalization which applies to more general stratified spaces
[2]. However, we believe that the first place where an equivalent formula appears is due
to Macdonald [12].

We now turn to finding the right definition of h′′ for orientable homology manifolds
with boundary. Recall that a connected (d − 1)-dimensional homology manifold ∆ is
orientable over k if Hd−1(∆, ∂∆; k) ∼= k. By Poincaré-Lefschetz duality, if ∆ is such a
manifold, then Hi−1(∆, ∂∆) ∼= Hd−i(∆). Write βi−1(∆, ∂∆) to denote dimHi−1(∆, ∂∆).

We start by expressing gi(∂∆) in terms of its Betti and h′-numbers. Substituting
Eq. (3) in gi(∂∆) = hi(∂∆)− hi−1(∂∆) and recalling that dim(∂∆) = d− 2, we obtain

gi(∂∆) =

[
h′i(∂∆)− h′i−1(∂∆) +

(
d− 1

i− 1

)
βi−2(∂∆)

]
+

(
d

i

) i−1∑
j=1

(−1)i−jβj−1(∂∆). (5)

Theorem 3.2 Let ∆ be a (d− 1)-dimensional homology manifold with nonempty bound-
ary. If ∆ is orientable, then for all 0 ≤ i < d,

h′d−i(∆)−
(

d

d− i

)
βd−i−1(∆) = h′i(∆)− gi(∂∆)−

(
d

i

)
dim Im (Hi−1(∆)

ψ→ Hi−1(∆, ∂∆)),

where gi(∂∆) := h′i(∂∆)− h′i−1(∂∆) +
(
d−1
i−1

)
βi−2(∂∆) and ψ is the map in the long exact

sequence of the pair (∆, ∂∆).
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Proof: If i = 0, then both sides are equal to 0. For 0 < i < d, using Eq. (3) and Theorem
3.1, we obtain

h′d−i(∆) −
(

d

d− i

)
βd−i−1(∆)

= hi(∆)− gi(∂∆) + (−1)d−1−i
(
d

i

)[
χ̃(∆) +

d−i∑
j=1

(−1)jβj−1(∆)

]

= hi(∆)− gi(∂∆) + (−1)d−1−i
(
d

i

)[ d∑
j=d−i+1

(−1)j−1βj−1(∆)

]

= hi(∆)− gi(∂∆) + (−1)i
(
d

i

) i−1∑
j=0

(−1)jβj(∆, ∂∆),

where the last step is by Poincaré-Lefschetz duality. Substituting equations (3) and (5)
in the last expression then yields,

h′d−i(∆) −
(

d

d− i

)
βd−i−1(∆)

= h′i(∆)− gi(∂∆)−
(
d

i

) i−1∑
j=0

(−1)j−i−1 [βj(∆, ∂∆)− βj−1(∂∆) + βj−1(∆)] .

The result follows, since by long exact homology sequence of the pair (∆, ∂∆), the last
summand equals −

(
d
i

)
dim Im (Hi−1(∆)→ Hi−1(∆, ∂∆)). �

Theorem 3.2 suggests the following definition of the h′′-vector and shows (together
with theorem 2.3) that it is symmetric and non-negative.

Definition 3.3 For ∆ — a (d − 1)-dimensional orientable homology manifold with a
nonempty boundary, define

h′′i (∆) =

{
h′i(∆)− gi(∂∆)−

(
d
i

)
dim Im (Hi−1(∆)→ Hi−1(∆, ∂∆)) for i ≤ d/2

h′i(∆)−
(
d
i

)
βi−1(∆) for i > d/2.

Note that in the case of the empty boundary and i < d, this definition agrees with the
one given in Proposition 2.4.

4 Manifolds without boundary: Kalai’s and Kühnel’s

conjectures

In this section we settle a conjecture of Kalai that provides lower bounds for the face
numbers of even-dimensional homology manifolds with all Betti numbers but the middle
one vanishing. We also partially settle a conjecture by Kühnel on the Betti numbers of
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homology manifolds. Throughout this section, ∆ denotes a (d−1)-dimensional orientable
homology manifold without boundary. Note that if k is a field of characteristic two, then
this class includes all triangulated topological manifolds without boundary.

We start by discussing even-dimensional manifolds. The following result was conjec-
tured by Kühnel [11, Conjecture 18].

Theorem 4.1 Let ∆ be a 2k-dimensional orientable homology manifold with n vertices.
Then (

2k + 1

k

)
βk(∆) ≤

(
n− k − 2

k + 1

)
.

Moreover, if equality is attained then βi = 0 for all i < k.

Proof: Choose a nonnegative real number x such that

h′k −
(

2k + 1

k

)
βk−1 =

(
x

k

)
.

It exists since according to Theorem 2.3, h′k−
(

2k+1
k

)
βk−1 ≥ 0. Moreover, the same theorem

implies that h′k+1 ≤
(
x+1
k+1

)
. Thus(

2k + 1

k

)
βk

by (4)
= h′k+1 − h′k +

(
2k + 1

k

)
βk−1 ≤

(
x+ 1

k + 1

)
−
(
x

k

)
=

(
x

k + 1

)
.

Finally, since h′1 = n−2k−1, another application of Theorem 2.3 shows that h′k ≤
(
n−k−2

k

)
,

hence x ≤ n− k − 2, and
(

2k+1
k

)
βk ≤

(
n−k−2
k+1

)
, as required. Furthermore, equality implies

that h′i =
(
n−k−2

i

)
= (h′i−1)<i> for all 2 ≤ i ≤ k + 1, which by Theorem 2.3 is possible

only if βi = 0 for all i < k. �

Theorem 4.1 implies that if βk ≥ 1, then n−k−2 ≥ 2k+1, or equivalently, n ≥ 3k+3.
In other words, having a non-vanishing middle Betti number requires at least 3k + 3
vertices. (This result was originally proved by Brehm and Kühnel for PL-triangulations
[1].) Moreover, if such a homology manifold, Mk, has exactly 3k + 3 vertices, then

βk(Mk) = 1, βi(Mk) = 0 for i < k, and hi(Mk) = h′i(Mk) =

(
k + 1 + i

i

)
for i ≤ k+ 1.

In particular, the face numbers ofMk (whether it exists or not) are uniquely determined
by Eqs. (1) and (2). These face numbers turn out to be minimal in the following sense
(as was conjectured by Gil Kalai, personal communication):

Theorem 4.2 Let ∆ be a 2k-dimensional orientable homology manifold with βk 6= 0 being
the only non vanishing Betti number out of all βl, l ≤ k. Then

fi−1(∆) ≥ fi−1(Mk) for all 1 ≤ i ≤ 2k + 1.
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Proof: Substituting βl = 0, l < k, in Theorem 2.2 and Eq. (2), we obtain that

hj(∆) = h′j(∆) and hk+j+1(∆) = hk−j(∆) + (−1)j
(

2k + 1

k − j

)
βk(∆) for 0 ≤ j ≤ k.

Eq. (1) then implies

fi−1(∆) =
i∑

j=0

(
2k + 1− j
2k + 1− i

)
h′j(∆), if i ≤ k, and (6)

fi−1(∆) =
k∑
j=0

[(
2k + 1− j
2k + 1− i

)
+

(
j

2k + 1− i

)]
h′j(∆)

+ βk(∆)

[
i−k−1∑
j=0

(−1)j
(

k − j
2k + 1− i

)(
2k + 1

k − j

)]
if i ≥ k + 1. (7)

Since (i) the same formulas apply to the f -numbers of Mk, (ii) the coefficients of the
h′-numbers in Eqs. (6) and (7) are nonnegative, and (iii) βk(∆) ≥ 1 = βk(Mk), to
complete the proof it only remains to show that h′i(∆) ≥ h′i(Mk) for all i ≤ k and that
the coefficient of βk in Eq. (7) is nonnegative for all i ≥ k + 1.

The latter assertion follows by noting that the sequence

aj =

(
k − j

2k + 1− i

)(
2k + 1

k − j

)
, 0 ≤ j ≤ i− k − 1

is decreasing (indeed, aj/aj+1 = (k+ 2 + j)/(i− k− 1− j) > 1), and hence a0−a1 + · · ·+
(−1)i−k−1ai−k−1 ≥ 0.

To verify the former assertion, we use the same trick as in the proof of Theorem 4.1. Let
0 ≤ x ∈ R be such that h′k(∆) =

(
x
k

)
. Then according to Theorem 2.3, h′k+1(∆) ≤

(
x+1
k+1

)
while h′k+1(∆)− h′k(∆) =

(
2k+1
k+1

)
βk ≥

(
2k+1
k+1

)
. Thus we have(

2k + 1

k + 1

)
≤ h′k+1(∆)− h′k(∆) ≤

(
x+ 1

k + 1

)
−
(
x

k

)
=

(
x

k + 1

)
.

Hence x ≥ 2k + 1, and so h′k(∆) ≥
(

2k+1
k

)
. Applying Theorem 2.3 once again, we infer

that h′i(∆) ≥
(
k+1+i
i

)
= h′i(Mk) for all i ≤ k. �

In addition to Theorem 4.1, Kühnel conjectured (see [11, Conjecture 18]) that a (d−1)-
dimensional manifold with n vertices satisfies

(
d+1
j+1

)
βj(∆) ≤

(
n−d+j−1

j+1

)
for all 0 ≤ j ≤

bd/2c − 1. The case of j = 0 merely says that every connected component of ∆ has at
least d+ 1 vertices. The case of j = 1 is equivalent to Kalai’s lower bound conjecture [6,
Conjecture 14.1] that was recently settled in [16, Theorem 5.2]. For other values of j we
have the following partial result. We recall that a (d− 1)-dimensional homology sphere Γ
is said to have the hard Lefschetz property if for a generic choice of θ1, . . . , θd, ω ∈ k[Γ]1,
the map

k[Γ]/(θ1, . . . , θd)i
·ωd−2i

−→ k[Γ]/(θ1, . . . , θd)d−i
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is an isomorphism of k-spaces for all i ≤ d/2. It is a result of Stanley [19] that in the
case of char k = 0 all simplicial polytopes have this property, and it is the celebrated
g-conjecture that all homology spheres do.

Theorem 4.3 Let ∆ be a (d− 1)-dimensional orientable homology manifold with n ver-
tices. If for every vertex v of ∆ the link of v has the hard Lefschetz property (e.g.,
char k = 0 and all vertex links are polytopal spheres), then(

d+ 1

j + 1

)
βj(∆) ≤

(
n− d+ j − 1

j + 1

)
for all 0 ≤ j ≤ bd

2
c − 1.

If equality is attained for some j = j0, then βi = 0 for all i 6= j0, 0 ≤ i ≤ bd/2c − 1.

Proof: Since all vertex links of ∆ have the hard Lefschetz property, Theorem 4.26 of [21]
implies that for a sufficiently generic choice of θ1, . . . , θd, ω ∈ k[∆]1 and every j ≤ bd/2c−1,
the linear map

k[∆]/(θ1, . . . , θd)d−j−1
·ω−→ k[∆]/(θ1, . . . , θd)d−j

is surjective. The dimensions of the spaces involved are h′d−j−1 and h′d−j, respectively (see
Theorem 2.2). Also, by [16, Cor. 3.6], the dimension of the kernel of this map is at least(

d
d−j−1

)
βd−j−2. Therefore,

h′d−j ≤ h′d−j−1 −
(

d

d− j − 1

)
βd−j−2 for all j ≤ bd/2c − 1. (8)

Apply Poincaré duality and Eq. (4) to rewrite this inequality in the form

h′j +

(
d

j

)
(βj − βj−1) ≤ h′j+1 −

(
d

j + 1

)
βj,

or, equivalently, (
d+ 1

j + 1

)
βj ≤ h′j+1 −

[
h′j −

(
d

j

)
βj−1

]
. (9)

Let 0 ≤ x ∈ R be such that h′j+1 =
(
x+1
j+1

)
. Then by Theorem 2.3, h′j −

(
d
j

)
βj−1 ≥

(
x
j

)
,

and so the right-hand-side of (9) is ≤
(
x
j+1

)
. Also, since h′1 = n− d, h′j+1 ≤

(
n−d+j
j+1

)
, and

hence x ≤ n− d+ j − 1. Thus
(
d+1
j+1

)
βj ≤

(
x
j+1

)
≤
(
n−d+j−1

j+1

)
, as required.

If equality occurs for some j = j0, then x = n − d + j0 − 1, and we obtain that
h′i+1 =

(
n−d+i
i+1

)
= (h′i)

<i> for all i ≤ j0. By Theorem 2.3 this can happen only if βi−1 = 0

for all i ≤ j0. Moreover in this case, hi+1 =
(
n−d+i
i+1

)
for all i ≤ j0, hence ∆ is (j0 + 1)-

neighborly (that is, every set of j0 + 1 vertices of ∆ is a face of ∆).
What about βi for i > j0? To prove that all these Betti numbers vanish as well, note

that for equality
(
d+1
j0+1

)
βj0 =

(
n−d+j0−1

j0+1

)
to happen, the inequality in (8) should hold as

equality for j = j0. The same argument as in the proof of [16, Theorem 5.2] then shows
that hj0(lk v) = hj0+1(lk v) for every vertex v of ∆. Since, by our assumptions, all vertex
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links of ∆ satisfy the g-conjecture, and since ∆ is (j0 +1)-neighborly, we conclude that for
every vertex v, hi(lk v) = hj0(lk v) for all j0 ≤ i ≤ (d − 1)/2, and that h(lk v) = h(lkw)
for all vertices v and w of ∆. This information about links turns out to be enough to
compute the entire h-vector of ∆. Indeed, it follows from [5, Remark 4.3] that

hr(∆) = (−1)r
(
d

r

)
+

r−1∑
i=0

(−1)r−i−1 (d− 1− i)!i!
(d− r)!r!

· n · hi(lk v).

Hence

gr+1(∆) = hr+1 − hr =

(
d+ 1

r + 1

)[
(−1)r+1 + n

r−1∑
i=0

(−1)r−ihi(lk v)

(d− i)
(
d
i

) +
n · hr(lk v)

(r + 1)
(
d+1
r+1

)] ,
and since hj0(lk v) = hj0+1(lk v) = · · · , we infer that for all j0 + 1 ≤ r ≤ (d− 1)/2,

gr+1(
d+1
r+1

) +
gr(
d+1
r

) = n · hj0(lk v)

[
− 1

(d− r + 1)
(
d
r−1

) +
1

(r + 1)
(
d+1
r+1

) +
1

r
(
d+1
r

)] = 0.

Therefore,

(−1)r−j0
gr+1(
d+1
r+1

) =
gj0+1(
d+1
j0+1

) =
hj0+1 − hj0(

d+1
j0+1

) = βj0 .

Substituting this result in Eq. (9) with j = j0 + 1 and using that all βi for i < j0 vanish,

yields
(
d+1
j0+1

)
βj0+1 ≤

[
hj0+2 +

(
d

j0+2

)
βj0

]
−
[
hj0+1 −

(
d

j0+1

)
βj0

]
= gj0+2 +

(
d+1
j0+2

)
βj0 = 0, and

so βj0+1 = 0. Assuming by induction that βj0+1 = . . . = βr−1 = 0, a similar computation
using Eq. (9) with j = r then implies that βr = 0 for all j0 < r ≤ (d− 1)/2. �

Kalai conjectured [6, Conj. 14.2] that if ∆ is a (d − 1)-dimensional manifold without
boundary, then h′′j+1(∆)−h′′j (∆) ≥

(
d
j

)
βj(∆). This is an immediate consequence of Eq. (9).

Thus Kalai’s conjecture holds for all manifolds whose vertex links have the hard Lefschetz
property.

5 Rigidity inequality for manifolds with boundary

In this section we return to our discussion of the face numbers of homology manifolds
with nonempty boundary. The goal here is to strengthen Kalai’s result [6, Theorem 1.3]
asserting that if ∆ is a (d − 1)-dimensional manifold with boundary and d ≥ 3, then
h2(∆) ≥ f ◦0 (∆), where as in Section 3, f ◦0 (∆) denotes the number of interior vertices of
∆. Our main result is

Theorem 5.1 If ∆ is a connected (d−1)-dimensional homology manifold with nonempty
orientable boundary and d ≥ 5, then

h2(∆) ≥ f ◦0 (∆) +

(
d

2

)
β1(∂∆) + d β0(∂∆). (10)
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If d = 4 and the characteristic of k is two, then

h2(∆) ≥ f ◦0 (∆) + 3 β1(∂∆) + 4 β0(∂∆).

Since the boundary of a 3-manifold with boundary is a collection of closed surfaces,
using a field whose characteristic is two maximizes the relevant Betti numbers, so we have
restricted ourselves to this case. Before beginning the proof of this theorem we establish
some preliminary results pertaining to rigidity in characteristic p > 0. In characteristic
zero the cone lemma, gluing lemma, and Proposition 5.5 follow easily from the work of
Kalai [6] and Lee [10].

Definition 5.2 A (d−1)-dimensional complex ∆ is k-rigid if for generic θ1, . . . , θd+1 lin-
ear forms and 1 ≤ i ≤ d+1, multiplication ·θi : k[∆]/(θ1, . . . , θi−1)1 → k[∆]/(θ1, . . . , θi−1)2

is injective.

It follows from Proposition 5.5 below that if ∆ is k-rigid, then the k-dimension of
k[∆]/(θ1, . . . , θd) is h2(∆) and of k[∆]/(θ1, . . . , θd+1) is g2(∆). In fact, it is not hard
to see (but we will not use it here) that the converse holds as well.

Lemma 5.3 (Cone lemma) If ∆ is k-rigid, then the cone on ∆, C(∆), is k-rigid.

Proof: Observe that k[C(∆)] ∼= k[∆]⊗kk[x0]. Hence for any θ0 of the form x0+
∑n

i=1 αixi,
θ0 is a non-zero-divisor on k[C(∆)]1 and the quotient ring k[C(∆)]/(θ0) is isomorphic to
k[∆]. The assertion follows. �

Lemma 5.4 (Gluing lemma) If ∆1 and ∆2 are (d − 1)-dimensional k-rigid complexes
and there are at least d vertices in ∆1 ∩∆2, then ∆1 ∪∆2 is k-rigid.

Proof: Set ∆ = ∆1 ∪ ∆2. Since ∆l (l = 1, 2) is a subcomplex of ∆, there is a natural
surjection k[∆] −→ k[∆]l. Consider the following commutative square.

k[∆]/(θ1, . . . , θi−1)2 −−−→ k[∆1]/(θ1, . . . , θi−1)2 −−−→ 0x·θi

x·θi

k[∆]/(θ1, . . . , θi−1)1 −−−→ k[∆1]/(θ1, . . . , θi−1)1 −−−→ 0.

(11)

Here, θ is the image of θ in k[∆1]. Suppose ω is in the kernel of the left-hand vertical map.
Then its image in k[∆1]/(θ1, . . . , θi−1)1 must be in the kernel of the right-hand vertical
map, and hence zero when restricted to k[∆1]/(θ1, . . . , θi−1)1. Similarly, ω is zero when
restricted to k[∆2]/(θ1, . . . , θi−1)1. But, if there are at least d vertices in ∆1 ∩ ∆2, then
ω = 0 in k[∆]/(θ1, . . . , θi−1)1. �
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Proposition 5.5 Let ∆1, . . . ,∆b be k-rigid (d − 1)-dimensional complexes with disjoint
sets of vertices. If ∆ = ∪∆i, then for generic linear forms Θ = (θ1, . . . , θd) and ω,

dimk (k[∆]/Θ)2 = h2(∆)+

(
d

2

)
(b−1) and dimk ker

[
(k[∆]/Θ)1

·ω→ (k[∆]/Θ)2

]
= d(b−1).

Proof: Suppose that w is in the kernel of ·θ1 : k[∆]1 → k[∆]2. Using a commutative
square analogous to (11), we see that restricted to each vertex set w is zero. Hence w = 0.
Therefore,

dimk (k[∆]/(θ1))2 = dimk k[∆]2 − dimk k[∆]1 = (f1 + f0)− f0 = f1.

Now replace k[∆] with k[∆]/(θ1) in (11) and consider multiplication by θ2. The same
argument shows that any w in the kernel must restrict to a multiple of θ1 on the vertex
set of each ∆j. The dimension of the space of such w in (k[∆]/(θ1))1 is b− 1. Thus,

dimk(k[∆]/(θ1, θ2))2 = f1 − (f0 − 1) + (b− 1).

Continuing with this reasoning we see that for each i the dimension of the kernel of
multiplication by θi on (k[∆]/(θ1, . . . , θi−1))1 is (i− 1)(b− 1). Hence, for i ≥ 2,

dimk(k[∆]/(θ1, . . . , θi−1))2 = f1 − (i− 2)f0 +

(
i− 1

2

)
+

(
i− 1

2

)
(b− 1).

Setting i = d+ 1 finishes the proof. �

Proof of Theorem 5.1: First we consider the situation when d ≥ 5. Let Γ be the
simplicial complex obtained from ∆ by coning off each component of the boundary of ∆.
Specifically, let c1, . . . , cb be the components of the boundary of ∂∆. We introduce new
vertices n + 1, . . . ,n + b and set

Σ = ((n + 1) ∗ c1) ∪ · · · ∪ ((n + b) ∗ cb) and Γ = ∆ ∪ Σ.

Then Γ is a (d−1)-dimensional pseudomanifold that is k-rigid. The proof is by induction
on d. Any ∆ homeomorphic to S2 is k-rigid. This follows from [14, Cor. 3.5]. So the cone
lemma implies that the closed star of a vertex in a three-dimensional k-homology sphere
is k-rigid. Now, using the gluing lemma we can take the union with closed stars of other
vertices until we see that an arbitrary three-dimensional k-homology sphere is k-rigid.
Since for every vertex v ∈ ∆, the link of v in Γ is a k-homology sphere, induction on d
implies that this link is k-rigid. Hence the closed star of v in Γ is k-rigid for all v ∈ ∆.
Taking the union of the closed stars of the noncone points using the gluing lemma shows
that Γ is k-rigid.

Observe that f0(Γ) = f0(∆) + b and f1(Γ) = f1(∆) + f0(∂∆). Thus h2(Γ) = h2(∆) +
h1(∂∆)−(d−1)β0(∂∆). For Σ we have f0(Σ) = f0(∂∆)+b and f1(Σ) = f1(∂∆)+f0(∂∆).
Hence, h2(Σ) = h2(∂∆)− (d− 1)β0(∂∆).
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Consider the face rings k[Γ] and k[Σ], and let θ1, . . . , θd, ω ∈ k[Γ]1 be generic linear
forms. Since Σ is a subcomplex of Γ, there is a natural surjection φ : k[Γ] −→ k[Σ]. Let
θi denote the image of θi under φ, and consider k(Γ) := k[Γ]/(θ1, . . . , θd) and k(Σ) :=
k[Σ]/(θ1, . . . , θd). Then φ induces a surjection k(Γ) −→ k(Σ). Denoting by I ⊂ k(Γ) its
kernel, we obtain the following commutative diagram whose rows are exact:

0 −−→ I2 −−→ k(Γ)2 −−→ k(Σ)2 −−→ 0x·ω x·ω x·ω
0 −−→ I1 −−→ k(Γ)1 −−→ k(Σ)1 −−→ 0.

(12)

Since Γ is k-rigid, dim k(Γ)2 = h2(Γ) and the middle vertical map is an injection.
Hence the left vertical map is also an injection. By the cone lemma and the argument
which proved that Γ is k-rigid, each of the b components of Σ is k-rigid. Proposition 5.5
says that dimk k(Σ)2 = h2(Σ) +

(
d
2

)
β0(∂∆).

By Proposition 5.5, the dimension of the kernel of the right vertical map is dβ0(∂∆).
Applying the snake lemma, we find that the dimension of the cokernel of ·ω : I1 → I2 is
at least dβ0(∂∆) and thus dim I1 + dβ0(∂∆) ≤ dim I2.

What are the dimensions of I1 and I2? From exactness of rows, we infer that

dim I1 = dim k(Γ)1 − dim k(Σ)1 = (f0(∆) + b− d)− (f0(∂∆) + b− d) = f ◦0 (∆), (13)

and

dim I2 = dim k(Γ)2 − dim k(Σ)2 =

= h2(Γ)− h2(Σ)−
(
d

2

)
β0(∂∆)

= h2(∆)− g2(∂∆)−
(
d

2

)
β0(∂∆)

≤ h2(∆)−
[(
d

2

)
β1(∂∆)−

(
d

2

)
β0(∂∆)

]
−
(
d

2

)
β0(∂∆)

= h2(∆)−
(
d

2

)
β1(∂∆), (14)

where the penultimate step follows from [16, Theorem 5.2] applied to connected compo-
nents of ∂∆ and from the observation that for a (d− 2)-dimensional complex ∂∆, its g2-
number equals the sum of the g2-numbers of its connected components minus

(
d
2

)
β0(∂∆).

Comparing the right-hand-sides of (13) and (14) and using dim I1 + dβ0 ≤ dim I2, implies
the result.

Two modifications are necessary when d = 4. First, each component of the boundary
of ∆ is a closed surface, so the Dehn-Sommerville relations tell us that the g2 of each
component is 3β1. Second, to show that Σ is k-rigid the induction must begin with any
closed surface instead of just S2. In his thesis [4], Fogelsanger proved that any triangulation
of a closed surface is generically 3-rigid in the graph-theoretic sense. Fogelsanger used
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three properties of generic 3-rigidity: a cone lemma, a gluing lemma, and a result of
Whiteley’s concerning vertex splitting [22]. Our cone lemma and gluing lemma cover the
first two. Whiteley’s vertex splitting result, combined with [10, Theorem 10] due to Carl
Lee, is characteristic independent. Hence, Fogelsanger’s proof shows that a triangulation
of a closed surface is k-rigid. �

Now we give a series of examples that show that for any d ≥ 5, β1, β0 and f ◦0 , Theo-
rem 5.1 is optimal. We recall a family of complexes introduced by Kühnel and Lassman.

Theorem 5.6 [9] For every d ≥ 4 and n ≥ 2d− 1 there exists a complex Md(n) with n
vertices such that

• Md(n) is a Bd−2-bundle over the circle. In particular, Md(n) is a manifold with
boundary.

• Depending on the parity of n and d the boundary of Md(n) is either Sd−2×S1 or the
nonorientable Sd−2-bundle over the circle. Hence, for d ≥ 5, the first Betti number
of ∂Md(n) is one for any field. When d = 4 and the characteristic of k is 2, then
β1(∂M4(n)) = 2.

• h2(Md(n)) =
(
d
2

)
.

• All of the vertices are on the boundary of Md(n). The link of every vertex is combi-
natorially equivalent to a stacked polytope.

Evidently, Md(n) for d ≥ 5 is an example of equality in Theorem 5.1 with β1(∂∆) = 1
and f ◦0 = 0. For spaces with β1(∂∆) > 1, begin with two disjoint copies of Md(n). Choose
two (d − 2)-faces on their respective boundaries and a bijection between their vertices.
Now identify these vertices and associated faces according to the chosen bijection. The
resulting space has no interior vertices and is a manifold with boundary whose boundary
is topologically the connected sum of two copies of the boundary of Md(n). Thus the
first Betti number is now two. Direct computation shows that h2 of the new space is
2
(
d
2

)
. Repeating this operation of connected sum along the boundary b times with Md(n)

produces an example of equality in Theorem 5.1 with β1(∂∆) = b and f ◦0 = 0. To construct
∆ with f ◦0 = m > 0 simply take a complex with f ◦0 = 0 and subdivide a facet m times.
Each such subdivision increases h2 and f ◦0 by one while leaving the topological type of
the complex unchanged.

To produce spaces ∆ with β0(∂∆) > 0, begin with any of the above examples. It is
possible to subdivide a facet d times so that there is now a facet with interior vertices.
See [3] for the algorithm. Removing the open facet leaves a manifold whose boundary has
two components, the original and the boundary of the simplex. The new space will have
the same number of interior vertices and its h2 will have increased by d.

In dimension three, the same constructions lead to examples of equality in Theorem 5.1
with arbitrary f ◦, β0, and even β1. Since the boundary of a three-dimensional manifold ∆
must have even Euler characteristic, this is the best we can hope for.
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All of the complexes constructed using the procedures have the property that the link
of every boundary vertex is combinatorially a stacked polytope, and the link of every
interior vertex is a stacked sphere.

Conjecture 5.7 If ∆ is a connected (d−1)-dimensional homology manifold with nonempty
orientable boundary and d ≥ 4, then equality occurs in Theorem 5.1 if and only if all of
the links of ∆ are combinatorially equivalent to stacked polytopes or stacked spheres.
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