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1. Introduction. In 1849, A. de Polignac [20] conjectured that every
odd number larger than 3 can be written as the sum of an odd prime and
a power of 2. He found a counterexample 959 soon. In 1934, N. P. Ro-
manoff [22] proved that the set of positive odd integers which can be ex-
pressed in the form 2n + p has positive lower asymptotic density, where n
is a nonnegative integer and p a prime. In 1950, J. G. van der Corput [11]
proved that the counterexamples to de Polignac’s conjecture form a set of
positive lower density. Using a covering system, P. Erdős [15] proved that
there is an infinite arithmetic progression of positive odd integers each of
which has no representation of the form 2n+p. Recall that {ai (mod mi)}k

i=1

is called a covering system if every integer is congruent to ai (mod mi) for
at least one value of i. For further related results see Chen [3–8], Guy [16],
Cohen and Selfridge [10].

Refining the argument of Erdős, R. Crocker [12] proved that there are
infinitely many positive odd integers not representable as the sum of a prime
and two positive powers of two. P. Z. Yuan [25] proved that there are in-
finitely many positive odd integers not representable as the sum of a prime
power and two positive powers of two. Before this Z. W. Sun and M. H.
Le [23] handled the integers of the form c(2a + 2b) + pα for many values of
the constant c. Another natural problem arises if one replaces the powers
of two by powers of other integers. This is what we discuss in this arti-
cle.
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All these articles are closely connected to Fermat numbers Fn = 22n

+1.
Currently F0, F1, F2, F3, F4 are the only known Fermat primes. We do not
know whether there are infinitely many Fermat primes and whether there are
infinitely many Fermat composite numbers. On the other hand, we cannot
exhibit an odd number of reasonable size which cannot be represented as the
sum of a prime power and two powers of two (with nonnegative exponents).
For example we have checked there are no such numbers between 3 and 107.
One of our results implies that if the number of odd numbers less than x
which cannot be represented as the sum of a prime power and two powers of
two is o(

√
x), then there are infinitely many Fermat primes (Theorem 3′). If

the number of odd numbers less than x which cannot be represented as the
sum of a prime power and two powers of two is O(x1/4), then all sufficiently
large Fermat numbers are primes (Theorem 3). So it is of interest to estimate
the number of odd numbers less than x which cannot be represented as the
sum of a prime power and positive powers of two. Erdős (see Guy [16, A19])
suggested that there may be cx of them less than x, but can > xε be
proved? For related results on Fermat numbers, one may refer to [16, A3]
and [2, 13, 14, 24].

For any integer a ≥ 2 let Na be the set of all positive integers M with
(M,a) = 1 and (M −2, a−1) = 1 such that M cannot be written as the sum
of a prime power and two powers of a. The following theorems are proved.

Theorem 1. Let a be an odd positive integer which is not a power of 2
minus 1. Then |Na ∩ [1, x]| ≥ c1 log x and the set Na ∩ [1, x] contains an

arithmetic progression of length c2 log x/(log log x)3, where c1, c2 are two

computable positive constants depending only on a.

Theorem 2. If a is an even positive integer and there exists an integer

m ≥ 10 such that a2m

+ 1 is composite, then |Na ∩ [1, x]| ≥ c log log x for

all sufficiently large x, where c is a computable positive constant depending

only on a (and m).

Theorem 3. Let a be an even positive integer. If |Na∩[1, x]| = O(x1/4),
then for every sufficiently large integer m, the integer a2m

+ 1 is a prime.

Theorem 4. Let a be an odd positive integer which is not a power of 2
minus 1. If |Na ∩ [1, x]| = O(x1/4 log x), then for every sufficiently large

integer m, the integer 1

2
(a2m

+ 1) is a prime.

Theorem 3′. Let a be an even positive integer. If |Na∩ [1, x]| = o(
√

x),
then there are infinitely many positive integers m such that a2m

+ 1 are

prime.

Theorem 4′. Let a be an odd positive integer which is not a power of 2
minus 1. If |Na∩[1, x]| = o(

√
x log x), then there are infinitely many positive

integers m such that 1

2
(a2m

+ 1) are prime.
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Remark 1. We demand (M,a) = 1 because many odd numbers M with
(M,a) 6= 1 are not of the form M = ak +al +pα (k, l > 0) for trivial reasons:
p would then divide a, and the set of integers ak + al + pα with p | a has
asymptotic density 0. For a similar reason we demand (M − 2, a − 1) = 1
because else M = ak +al +pα would imply p | a−1. Except these two, there
are no other trivial observations.

One might look for a stronger theorem by requiring M to lie in an ar-
bitrary arithmetic progression. If one tries to solve this question with the
same methods, one can see that it is closely related to a conjecture of Erdős:
there are covering systems with distinct and arbitrary large moduli.

Question 1. Given an integer a ≥ 2 and an arithmetic progression,
are there integers in the progression that cannot be written as the sum of a

prime power and two powers of a?

Remark 2. In the previous articles, the theorems and proofs were stated
with positive exponents, and it was implicit that one could improve them
to nonnegative exponents.

Remark 3. The only known method to prove upper bounds is by siev-
ing. Romanoff’s method applies to a > 2 without major change and gives
|Na ∩ [1, x]| ≤ cx for some effectively computable constant c (see [22, 15,
17, 9, 18]). An improvement to |N2 ∩ [1, x]| ≤ cx, where c is a constant less
than 1/4, would be already deep since it would imply Linnik’s approxima-
tion to Goldbach problem with four powers of two (see [18, Prop. 1]), while
currently it is solved unconditionally (resp. under GRH) with eight powers
(resp. seven powers) in [19].

Remark 4. One can think that the larger a is, the fewer integers of the
form ak + al + pα there will be. Still, one cannot deduce the theorem from
the apparently harder case a = 2. Moreover, all the examples constructed
so far involve arithmetic properties of the numbers an − 1, which quite vary
with a. In particular, when a is a power of 2 minus 1 these congruence
methods might fail. We are not convinced at all that Theorem 1 will hold
in this case, and we ask the following question.

Question 2. Is it possible to write any odd integer greater than 10 and

prime to 3 as the sum of two powers of 3 and a prime power?

Remark 5. On the other hand, the condition that a2m

+ 1 is composite
for some m ≥ 10 seems superfluous, and although we do not know how yet,
we believe it should be possible to remove it by a refinement of the method.

2. Proofs. First of all, we construct a suitable covering system. All the
moduli are distinct and no power of two appears as a modulus. Let us recall
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that a conjecture of Erdős states that we cannot find a covering system with
all moduli odd, distinct and greater than one.

Lemma 1.

0 (mod 3), 1 (mod 2 · 3), 4 (mod 22 · 3),
1 (mod 7), 0 (mod 2 · 7), 13 (mod 3 · 7),
22 (mod 23 · 3), 2 (mod 22 · 7), 18 (mod 23 · 7),
40 (mod 2 · 3 · 7), 10 (mod 22 · 3 · 7), 2 (mod 32),

5 (mod 2 · 32), 0 (mod 5), 8 (mod 2 · 5),
11 (mod 3 · 5), 44 (mod 32 · 5), 2 (mod 2 · 3 · 5),
53 (mod 2 · 32 · 5), 14 (mod 22 · 3 · 5), 4 (mod 22 · 5),
17 (mod 22 · 32 · 5), 35 (mod 22 · 32)

is a covering system. We label it by {ai (mod mi)}23
i=1

.

Remark. We can compare this covering system with the one used in
[12, 25] (see below). We allow the use of 6 = m2 as modulus because the
second exception in Zsigmondy’s theorem below does not occur since a is
not 2.

We omit the proof of Lemma 1 which is a direct check once the system
is given.

Lemma 2. Let m be a positive integer. There exists a polynomial Pm(x)
of degree m whose coefficients depend only on m such that for any fixed

m integers a1, . . . , am ≥ 2, and any arithmetic progression of length L, the

number of integers in the arithmetic progression which are of the form

aα1

1
+ · · · + aαm

m ,

where α1, . . . , αm are nonnegative integers, is less than Pm(log L).

Proof. We shall proceed by induction on m.

The case m = 1 is trivial. Assume that the conclusion holds for m. Given
an arithmetic progression of length L with common difference R and initial
term A, let us count the integers of the form x = aα1

1
+ · · · + a

αm+1

m+1
in the

progression.

We may assume that a
αm+1

m+1
is the largest among the aαi

i , by adding m+1
bounds. There is at most one integer 0 ≤ x < R in the progression, so we
may assume A ≥ R, by loss of the constant 1. Now, we have A/(m + 1) <
a

αm+1

m+1
≤ A + (L − 1)R, so that αm+1 lies in a set of cardinality at most

2 log((m + 1)(1 + (L − 1)R/A)) + 1, which is smaller than 2 log(m + 1) +
2 log L + 1. By multiplying the bound by this factor, we may assume that
a

αm+1

m+1
is fixed. So x − a

αm+1

m+1
lies in an arithmetic progression of length less
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than L and is of the form aα1

1
+· · ·+aαm

m . We apply the induction hypothesis,
which concludes the proof of Lemma 2.

Remark. The key issue in this lemma is that the upper bound Pm(log L)
does not depend on the common difference R of the progression.

Example 1. We can take P3(x) = 48x3 + 216x2 + 318x + 157.

Let us recall the main fact concerning the arithmetic property of the
sequence an − 1.

Definition. A prime factor p of an − 1 is called primitive if p ∤ aj − 1
for all 0 < j < n.

Zsigmondy’s Theorem (see [1, 21] for a proof). Let a and n be integers

greater than 1. Then there exists a primitive prime factor of an − 1, except

exactly in the following cases: (i) n = 2, a = 2β −1, where β ≥ 2; (ii) n = 6,
a = 2.

We fix for each pi a primitive prime factor of ami−1 for each 1 ≤ i ≤ 23,
where {ai (mod mi)}23

i=1 is the covering system from Lemma 1. This is pos-
sible by Zsigmondy’s theorem when a > 2. Because the mi are all distinct,
the pi are all distinct. When a = 2 we replace the covering system by the
one in [12], that is,

0 (mod 3), 0 (mod 5), 1 (mod 9), 1 (mod 10),

8 (mod 12), 8 (mod 15), 4 (mod 18), 7 (mod 20),

5 (mod 24), 29 (mod 30), 2 (mod 36), 14 (mod 36),

17 (mod 40), 34 (mod 45), 43 (mod 45), 13 (mod 48),

37 (mod 48), 16 (mod 60), 19 (mod 60), 26 (mod 72),

62 (mod 72), 52 (mod 90), 37 (mod 120), 49 (mod 144),

121 (mod 144), 103 (mod 180), 106 (mod 180), 229 (mod 360).

Similarly, we fix pi for each distinct modulus mi. For nondistinct mi, we take
primes 37 and 109 for modulus 36; 631 and 23311 for modulus 45; 97 and 673
for modulus 48; 61 and 1321 for modulus 60; 433 and 38737 for modulus 72;
577 and 487824887233 for modulus 144; 29247661 and 54001 for modu-
lus 180. Thus the pi are also all distinct. Let T2 = 28 and Ta = 23 (a > 2).

Proofs of Theorems 1 and 2. When a is odd, let

γk =
1

2
(a2k

+ 1), k ≥ 1,

and let γ0 be an odd prime factor of a + 1, which exists by assumption.
When a is even, let

γk = a2k

+ 1, k 6= m,

and let γm be the least odd prime factor of a2m

+ 1.
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The pi and the γk are coprime because there is no power of 2 in the moduli
mi of the covering system. It is clear that pi ∤ 2a(a − 1), (γk, 2a(a − 1)) = 1
and (γk, γl) = 1 for all k 6= l.

For each n ≥ 1, we consider positive integers Mn that satisfy the follow-
ing congruences:

(1) Mn ≡ 0 (mod γk) for 0 ≤ k ≤ n − 1;
(2) Mn ≡ 2 · aai (mod pi) for 1 ≤ i ≤ Ta;
(3) Mn ≡ 1 (mod 2a(a − 1)) if a is odd;
(4) Mn ≡ b (mod 8), where b ∈ {3, 7}, b 6≡ 1 + a (mod 8) if a is even;
(5) Mn ≡ 1 (mod a′(a − 1)), where a′ is the odd part of a, if a is even.

By (3–5) we have (Mn, a) = 1 and (Mn − 2, a − 1) = 1. Suppose that
Mn < a2n

and Mn = ak + al + pα, where k, l, α are nonnegative integers
and p is a prime.

Case 1: Mn = 2 · al + pα for some nonnegative integers l, α and a
prime p. By Lemma 1 there exists an integer i with l ≡ ai (mod mi).
By (2) we have Mn − 2 · al ≡ 2 · aai − 2 · al ≡ 0 (mod pi). Hence

p = pi, α > 0.

Case 2: Mn = ak + al + pα, where k, l, α are nonnegative integers with
k 6= l and p is a prime. We want to prove p = γ0, γ1. We may assume that
k > l. Let r ≥ 0 be the integer with

2r ‖ k − l.

This implies that

γr | ak + al.

Because Mn < a2n

, we have r ≤ n − 1. Hence (1) implies

γr |Mn.

Thus γr | pα, that is,

γr = pβ, β, α > 0.

Now we claim that

p ≡ 1 (mod 2r+1).

In fact, since a2r ≡ −1 (mod p), the order of a (mod p) is exactly 2r+1, so
that the claim is a consequence of Fermat’s little theorem. Now if r ≥ 2, then
k ≡ l (mod 4). If 2 ∤ a, then ak + al ≡ 2 (mod 4) and Mn = ak + al + pα ≡ 3
(mod 4), which contradicts (3). If 2 | a, then ak + al ≡ 0, 1, a, a2 (mod 8)
and Mn = ak + al + pα ≡ 1, 2, a + 1, a2 + 1 (mod 8), which contradicts (4).
Therefore we must have r = 0, 1.

Combining Cases 1 and 2 shows that if Mn < a2n

and Mn ∈ Na, then

(6) Mn ∈ {ak + al + γα
0 , ak + al + γα

1 } ∪ {2ak + pα
i | i = 1, 2, . . . , Ta}.
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Case I: Assume that a is odd. By the Chinese Remainder Theorem, con-
ditions (1–3) are equivalent to a single congruence modulo some integer R.
Because the dependence on n appears only in condition (1), we have

R ≪
n−1
∏

j=0

γj ≪
n−1
∏

j=0

a2j

+ 1

2
≪ 2−n(a2n − 1).

Here and in the following the implied constants depend only on a. The
integers Mn with 0 < Mn < a2n

form an arithmetic progression T of length
≫ 2n. By (6) and Lemma 2 the number of integers in T which are of the
form ak + al + pα, where k, l, α are nonnegative integers and p is a prime,
is less than 25P3(log |T |).

For every sufficiently large x, let n be the integer with

a2n ≤ x < a2n+1

.

Then |T | ≫ 2n ≫ log x and the number of integers in T ∩ Na is more than

|T | − 25P3(log |T |) ≫ log x.

Moreover, it is clear that—up to a multiplicative constant—there are more
than

|T |
25P3(log |T |) ≫ log x

(log log x)3

consecutive terms in T that belong to Na. This completes the proof of
Theorem 1.

Remark. The use of Lemma 2 avoids the introduction of additional
congruences. An explicit (but more involved) construction of an infinite set
of integers in Na is found in Chapter 3.2 of Rui Feng’s master thesis.

Case II: Assume that a is even. We assume that a > 2 (when a = 2,
Theorem 2 is a consequence of [25, Lemma 2.4]; a slight modification of
the argument given below would also work). By the Chinese Remainder
Theorem, conditions (1, 2, 4, 5) are equivalent to a single congruence modulo

R = 8a′(a − 1)
23
∏

i=1

pi ·
n−1
∏

j=0

γj.

Since each pi is a primitive prime factor of ami − 1 and each mi divides one
of 23 · 3 · 7 and 22 · 32 · 5, we have

23
∏

i=1

pi ≤ (a23
·3·7 − 1)(a22

·32
·5 − 1) ≤ a23

·3·7+22
·32

·5 = a348.

Since m ≥ 10 and a2m

+1 is composite, we have (a2m

+1)/γm > a29

. Hence,
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for n ≥ m + 1 we have

n−1
∏

j=0

γj < a−29

n−1
∏

j=0

(a2j

+ 1) = a−29 a2n − 1

a − 1
.

Thus

R < a−161(a2n − 1).

The integers Mn with 0 < Mn < a2n

form an arithmetic progression T of
length at least a161. We choose an arithmetic progression T1 by taking 225

consecutive terms in T . By (6) and Example 1 the number of integers in T1

which are of the form ak + al + pα, where k, l, α are nonnegative integers
and p is a prime, is less than

25(48 · 203 + 216 · 202 + 318 · 20 + 157) < 225.

So there exist integers Mn in T1 ∩Na. For each n > m we have Mn < a2n

<
a2n

+ 1 = γn < Mn+1. For every sufficiently large x, let n be the integer
with

a2n ≤ x < a2n+1

.

Then Mn ≤ x and

|Na ∩ [1, x]| ≥ n − m ≫ log log x.

Similarly we have

|N2 ∩ [1, x]| ≥ n − m ≫ log log x.

This completes the proof of Theorem 2.

Proofs of Theorems 3 and 4. For each integer k ≥ 1, we let γk be the
least odd prime factor of a2k

+ 1. Existence of such factors can be deduced
from the fact that a2k

+ 1 6≡ 0, 4 (mod 8). Recall that a is different from
2β − 1 by assumption, so that we may choose an odd prime factor γ0 | a+ 1.
As before, the primes pi and γk are distinct. It is also clear that pi ∤ 2a(a−1)
and γk ∤ 2a(a − 1).

Now we follow the proofs of Theorems 1 and 2.

By the Chinese Remainder Theorem conditions (1–5) are equivalent to
a single congruence modulo some integer Rn. Because the dependence on n
appears only in condition (1), we have

(7) Rn ≍
n−1
∏

j=0

γj.

Case 1: Assume that a is even and a2k

+ 1 is composite for infinitely
many k. Now we choose two integers n > m + 1, with m arbitrarily large,
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such that a2m

+ 1 and a2n−1

+ 1 are both composite. Then

Rn ≪ a−2m−1 · a−2n−2 ·
n−1
∏

j=0

(a2j

+ 1) ≪ a−2m−1

x3/4
n ,

where xn = a2n − 1. The integers Mn with 0 < Mn ≤ xn form an arithmetic

progression T of length ≫ a2m−1

x
1/4
n . By Lemma 2 the number of integers

in T ∩ Na is more than

|T | − 30P3(log |T |) ≫ a2m−1

x1/4
n .

This contradicts |Na ∩ [1, x]| = O(x1/4) for large x, and completes the proof
of Theorem 3.

Case 2: Assume that a is odd and (a2k

+ 1)/2 is composite for infinitely

many k. As before choose n > m+1 such that (a2m

+1)/2 and (a2n−1

+1)/2
are both composite. Similarly we find that the integers Mn with 0 < Mn ≤
xn = a2n − 1 form an arithmetic progression T of length

≫ a2m−1

2nx1/4
n ≫ a2m−1

x1/4
n log xn.

By Lemma 2 the number of integers in T ∩Na is more than

|T | − 25P3(log |T |) ≫ a2m−1

x1/4
n log xn.

This contradicts |Na ∩ [1, x]| = O(x1/4 log x) for large x, and completes the
proof of Theorem 4.

Proof of Theorem 3 ′. We follow the proof of Theorem 3. Suppose that
a2m

+ 1 are composite for all integers m ≥ K. Then

γm ≤ a−2m−1

(a2m

+ 1),

and by (7) we have

Rn ≪
n−1
∏

m=K

a−2m−1 ·
n−1
∏

m=0

(a2j

+ 1) ≪ a2n−1

.

The integers Mn with 0 < Mn ≤ a2n − 1 form an arithmetic progression T
of length ≫ a2n−1

. By Lemma 2 the number of integers in T ∩ Na, is more
than

|T | − 30P3(log |T |) ≫ a2n−1

,

which contradicts |Na ∩ [1, x]| = o(
√

x). This completes the proof of Theo-
rem 3′.

Proof of Theorem 4′. We follow the proof of Theorem 4. Suppose that
1

2
(a2m

+ 1) is composite for all integers m ≥ K. Then

(10) γm ≤ 2−1/2a−2m−1

(a2m

+ 1).
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By (7) and (10) we have

Rn ≪ 2−n/2

n−1
∏

m=K

a−2m−1 ·
n−1
∏

m=0

(a2j

+ 1) ≪ 2−n/2a2n−1

.

The integers Mn with 0 < Mn ≤ a2n − 1 form an arithmetic progression T
of length ≫ 2n/2a2n−1

. By Lemma 2 the number of integers in T ∩ Na is
more than

|T | − 25P3(log |T |) ≫ 2n/2
√

a2n − 1,

which is in contradiction with |Na∩ [1, x]| = o(
√

x log x). This completes the
proof of Theorem 4′.
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Nouv. Ann. Math. 8 (1849), 423–429.
[21] M. Roitman, On Zsigmondy primes, Proc. Amer. Math. Soc. 125 (1997), 1913–1919.
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