
ON ASYMPTOTIC VALUES OF CANONICAL QUADRATIC L-FUNCTIONS

NICOLAS TEMPLIER

Abstract. We derive an asymptotic for the first moment of Hecke L-series associated to canonical qua-
dratic characters. This provides another proof and slightly generalizes recent results by Masri and Kim-
Masri-Yang.

Résumé. On établit le comportement asymptotique du premier moment des séries L de Hecke associées
aux caractères quadratiques canoniques. On donne ainsi une nouvelle démonstration ainsi qu’une légère
amélioration de résultats récents de Masri et Kim-Masri-Yang.
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1. Introduction

We shall study L-functions associated to certain ramified Hecke characters on a quadratic field Q(
√
D)

traditionally called “canonical characters”. The special values of these L-functions have been studied
in several aspects: Rohrlich [13–15] and Miller-Yang [9] (nonvanishing), Duke-Friedlander-Iwaniec [2]
(implies subconvexity), Fouvry-Iwaniec [3] (low-lying zeros), Villegas-Zagier [11,12] and Villegas-Yang [10]
(period formula), Liu-Xu [6], Masri [7, 8], Kim-Masri-Yang [5] (first moment).

This article provides a “rudimentary” proof of the asymptotic expansion for the first moment:

(1.1) L(η) :=
1

h(D)

∑
χ∈cCl(D)

L(1/2, ηχ), as D → −∞.

(η is a canonical character and χ runs over class group characters ; our notations are defined below, and
see (1.4) for the final result). By rudimentary we mean that we only make use of the functional equation
of the L-functions L(s, ηχ) and estimates for character sums (Burgess estimate). We shall also consider
a variant where the average is over a subgroup of characters, see below. In the proof we avoid the use of
the following deep results:

• Villegas-Zagier period formulas;
• Duke’s equidistribution Theorem.

As a consequence our results hold in a better generality.
Although for those familiar with the theory of moments of special values of L-functions the existence

of such a proof may not be very surprising, we believe it is important to have the details clearly written
down for the sake of further research. For instance, from the work of Masri and Kim-Masri-Yang, one
was inclined to think that the moment (1.1) is governed by a GL(2)-subconvexity estimate (Duke-Iwaniec
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bounds) while in the contrary we show in this paper that it is governed by a GL(1)-subconvexity estimate
(Burgess bound).

Another feature of our work (Theorem 2) is the observation that the asymptotic of the moment over
characters χ of the subgroup Ĉl(D)2 may be dealt with thanks to the well-known explicit description
of the 2-torsion ideal classes 1. This might turn to be useful in other contexts because characters in
Ĉl(D)2 tend to have a more stable sign of functional equation. In the proof the off-diagonal terms appear
complicated at first sight (which might explain why the observation has not been made earlier), but we
show that a straightforward simplification occurs. Before stating the results, we now proceed to recall
classical facts on Hecke characters. Since the tools involved in the proofs are by now very standard we
have made effort to keep the paper as short and elementary as possible.

1.1. Hecke characters. An introduction to Hecke characters in the classical language may be found in
section 3.8 of the book [4] and we shall mainly follow their notations and conventions. A character shall
always mean unitary character. Let K be a number field, O its ring of integers and ClK the ideal class
group. A Hecke character η comes with a conductor m (integral ideal of O) and an archimedean part
η∞. More precisely it is a character η : Im → S1 from the group of fractional ideals of Q(

√
D) prime to

m which satisfies:

(1.2) η((α)) = ηf (α)η∞(α), ∀α ∈ O with (α,m) = 1.

Here ηf : (O/m)× → S1 is a Dirichlet character and η∞ : K×∞ → S1. One says that η is unramified
when m = O and η∞ is trivial. An unramified Hecke character is a character on ClK , i.e., a class group
character.

Conversely if m, ηf and η∞ are such that ηf (ε)η∞(ε) = 1 for all units ε ∈ O×, then there exist Hecke
characters with finite part ηf and archimedean part η∞ (this is a consequence of the strong approximation
theorem). Those characters with the same archimedean part, conductor and underlying finite part differ
by multiplication by a class group character.

The L-function associated to a Hecke character η is:

(1.3) L(s, η) :=
∑
a⊂O

η(a)
Nas

where a runs through all integral O-ideals prime to m.
Now we specialize the discussion to K = Q(

√
D) and describe some examples. If D < 0, then K∞ ' C

and η∞(z) = ( z
|z|)

l for a weight l ∈ Z (the “frequency” in the terminology of [4, p. 59]).

1.1.1. Class group characters. We shall denote the ideal class group by Cl(D) and the dual group of class
group characters by Ĉl(D). Let h(D) be the class number. If a is an ideal of OD, we denote by [a] ∈ Cl(D)
its ideal class.

The subgroup Ĉl(D)2 ⊂ Ĉl(D), image of the map χ 7→ χ2, is of index 2ω(D)−1 by Gauss genus theory.
It is orthogonal to the 2-torsion Cl2(D) ⊂ Cl(D).

More classical are the characters belonging to the 2-torsion Ĉl2(D) ⊂ Ĉl(D) in other words the char-
acters which take real values. They are called genus characters. This subgroup is orthogonal to Cl(D)2

thus we may view genus characters as characters on the quotient Cl(D)/Cl(D)2 which consists of genus
classes. If a is an ideal, its genus class is traditionally denoted by {a}.

1.1.2. Canonical characters. The Kronecker character χD is the real primitive Dirichlet character of
conductor |D|. We may view it as a character on (Z/DZ)× ' (OD/(

√
D))×.

We assume from now on that D ≡ 1(4) and D < −3 so that the group of units is trivial: O×D = {±1}.
Let ψ be an Hecke character of conductor (

√
D), finite part χD and weight 1 (the units compatibility

condition is satisfied since χD(−1) = −1). Such a ψ is an example of a canonical character in the the
sense of Rohrlich [15].

1in spirit this is close to how the Villegas-Zagier formula is proved in [11,12]



3

1.1.3. Base change characters. Let ε be a primitive Dirichlet character of modulus q, with (q,D) = 1.
Then ρ(a) := ε(Na) defines a primitive Hecke character ρ : I(q) → S1 of conductor (q) and trivial infinite
part. Its finite part ρf : (OD/(q))× → S1 is the composition ε ◦N of ε and the norm map.

1.2. Main result.

Theorem 1. Let k > 1 and ε be a primitive real Dirichlet character of modulus q > 1 coprime with D.
For each D, let η be a Hecke character of conductor (q

√
D), weight 2k− 1, finite part ε ◦N ·χD and such

that the sign of the functional equation of L(s, η) is +1 (see § 2.2). As D → −∞ we have

(1.4) L(η) = 2L(q)(1, χD) +Ok,q(|D|−1/16).

Here the notation L(q) means that the prime factors above q in the Euler product have been removed.

The value L(η) does not depend on the choice of the character η since two choices would differ by a
class group character (it depends only on ε and k which are fixed and on D → −∞). In the sequel we
may and shall choose η := ρψ2k−1 (see § 1.1.2 and § 1.1.3).

Remark 1. Under Lindelöf hypothesis one would have L(1/2, ηχ)�ε (|D| qk)ε. This is compatible with
the value of the main term L(q)(1, χD) on the right-hand-side of (1.4) which does not vary much with q
and is independent of k (its order of magnitude is really (q |D|)ε).

Remark 2. The remainder term depends polynomially on k and q. We did not try to optimize the
exponents (the 1/16 is far from optimal) but rather wanted to provide as simple proof as possible of an
asymptotic with power saving in the D parameter.

1.3. Average over a subgroup of class group characters. In [5], Kim, Masri and Yang consider an
interesting variant (this came from the structure of the Villegas-Zagier formula):

(1.5) L2(η) :=
h2(D)
h(D)

∑
χ∈cCl(D)2

L(1/2, ηχ).

It is important to observe that unlike L(η), the value of L2(η) may depend on the choice of η. More
precisely we have the identity:

(1.6) L(η) =
1

h2(D)

∑
κ∈cCl2(D)

L2(ηκ).

They showed that the main term of the asymptotic as D → −∞ does not depend on the choice of η.
We shall recover that result (in a slightly more general version) in section 3:

Theorem 2. Under the same assumptions as in Theorem 1, one has:

(1.7) L2(η) = 2L(q)(1, χD) +Ok,q(|D|−1/64).

Remark 3. In view of (1.6), Theorem 1 is a special case of Theorem 2 (except for the exponent of D in
the remainder term).

Remark 4. It is possible (see also [8]), to address the case sgn η = −1 for which L(1/2, ηχ) is replaced by
L′(1/2, ηχ). The only change is to adapt the choice of G in the approximate functional equation method.

Remark 5. The results in [5] correspond to the following particular choice of Dirichlet character ε (this
choice is made so that the Villegas-Zagier period formula is known [10]). Write q = |d| for some odd
fundamental discriminant d and ε := χd (Kronecker symbol). It is then assumed that all prime factors
of 2d are split in Q(

√
D). In that case (O/(d))× ' (Z/dZ)× × (Z/dZ)×. , and the character ρf is the

composition of that isomorphism with χd × χd. The fact that the result of [5] coincides with (1.7) is
inspected in section 4.
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1.4. Structure of the proofs. The proof of Theorem 1 (§ 2) is rather straightforward, see also [9] for a
nearby approach. After applying the approximate functional equation, a weighted character sum emerges
and standard techniques reduce it to the Burgess estimate.

The proof of Theorem 2 (§ 3) presents some interesting features. Along the same line we arrive at a
sum indexed by 2-torsion ideal classes. As we shall see only the trivial class contribute to the main term
of the final asymptotic (1.7). To show this we make use of the explicit description of the 2-torsions ideal
classes (genus theory going back to Gauss) which are parametrized by the factorizations D = D1 ·D2 of
the discriminant.

The reason for the contribution of a non-trivial class to be negligible is not obvious as D1 or D2 could
be very small compared to D. In other words non-trivial 2-torsion class could be “arbitrary close” to the
principal class. Nevertheless the saving in (1.7) is independent of the presence of small prime factors of
D, the key uniform tool is Lemma 3.1.

2. Proof of Theorem 1.

In this section and the next one the multiplicative “constants” involved in � and O may depend on k
and q. We do not display this dependence explicitly to ease notations. In other words we consider k and
q as fixed.

2.1. Functional equation. First observe that η is a primitive Hecke character of conductor m = (q
√
D).

By definition we have:

(2.1) L(s, η) =
∑

(a,qD)=1

η(a)Na−s,

and the functional equation is given, e.g., in [4, Theorem 3.8]. The Gamma factor is (2π)−sΓ(s+k− 1/2)
and the arithmetic conductor is |D|Nm = q2D2. The dual character η may be explicited as follows. Let
σ be the nontrivial automorphism of K/Q. We claim that η = ησ · ε2 ◦N. Indeed, for all ideal a with
(a, qD) = 1:

(2.2) ηση(a) = η(a)η(a) = η((Na)) = ηf (Na)η∞(Na) = ε(Na)2.

Since ε is real2, then η = ησ. In particular L(s, η) = L(s, η). The root number will be evaluated in the
next section. Its value, denoted sgn η does not depend on the choice of η.

2.2. Epsilon factors. The root number of ψ2k−1 is (−1)k+1χD(2), see [12]. The root number of ρ ·ψ2k−1

is

(2.3) sgn η = (−1)k+1χD(2)
τ(ε)2

q
,

where τ(ε) is the Gauss sum of ε. This follows3 by a similar computation as in [8, Appendix], see
also [4, Exemple 5, § 3.8]. In particular note that sgn η ∈ {±1}. We assume from now on that sgn η = +1.

2.3. First moment. By orthogonality of characters on a finite abelian group, we have:

(2.4)
1

h(D)

∑
χ∈cCl(D)

L(s, ηχ) =
∑

(α,qD)=1

η((α))Nα−s.

The sum is over elements α ∈ OD modulo units O×D, so that (α) runs over principal ideals. Observe that
the value η((α)) = ηf (α)η∞(α) is explicit in terms of ε and k.

2In that particular case ρ = ε ◦N, which is a base change from GL1(Q), is also a base change from U1(K/Q). The class
group characters are base change from unramified automorphic characters on U1(K/Q). In general the property η ' ησ

characterizes base change from U1(K/Q).
3The reader should be careful that the root number of ρ · ψ2k−1 is not the product of the root numbers of ρ and ψ2k−1
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2.4. Approximate functional equation. Let X := |qD|. When sgn η = +1, let G(s) be fixed once and
for all which satisfies:

• G is odd: G(s) = −G(−s), s ∈ C×,
• G is meromorphic with a single pole at s = 0 which is simple and of residue Res0G = 1.
• G is of polynomial growth on vertical lines.

Introduce the cutoff function:

(2.5) V (y) :=
∫

(2)
y−sV̂ (s)

ds

2iπ

where:

(2.6) V̂ (s) := (2π)−s
Γ(s+ k)
(k − 1)!

G(s).

We may express the critical value in the following way (see, e.g., [4, Theorem 5.3]):

(2.7) L(
1
2
, ηχ) = 2

∑
(a,qD)=1

η(a)χ(a)Na−1/2V (
Na

X
).

2.5. Main term. Averaging over χ ∈ Ĉl(D) we thus obtain:

(2.8) L(η) = 2
∑

α∈OD/{±1}
(α,qD)=1

ε(Nα)(
α2

Nα
)kα−1V (

Nα

X
)

which is the starting point of our analysis.

A typical element α ∈ OD may be written as α =
a+ b

√
D

2
, with a ≡ b(2). A diagonal term arises

when b = 0, we set:

(2.9) L0 = 2
∑

a>1, (a,qD)=1

a−1χD(a)V (
a2

X
).

(recall that ε is real so that ε(a2) = 1). Taking into account the Mellin transform (2.5) that defines V ,
we may write:

(2.10) L0 = 2
∫

(2)
L(q)(s+ 1, χD)Ŵ (s)

ds

2iπ

where

(2.11) Ŵ (s) :=
∫ ∞

0
V (

y2

X
)ys

dy

y
=

1
2
V̂ (s/2)Xs/2.

In particular Res0 Ŵ = Res0 V̂ = 1. It is classical to estimate L0 by a deformation of contour to
<e s = −1/2 and then make use of Burgess estimate:

(2.12) L0 = 2L(q)(1, χD) +O(|D|−1/16).

2.6. Remainder terms. When b 6= 0, say even, we need to estimate an off-diagonal term. It is easy to
check that the contribution from a = 0 is negligible and we set:

(2.13) Lb :=
∑

a>1,a≡bD(2)

ε(
a2 + b2 |D|

4
)χD(a)(

a+ b
√
D

a− b
√
D

)k−1/2(a2 + b2 |D|)−1/2V (
a2 + b2 |D|

4X
).

The rapid decay of the V -function [4, Proposition 5.4] shows that:

(2.14) Lb �A |b|−A log |D| , for all A > 0,

and we shall apply this estimate when |b| > |D|η.
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A similar estimate may be applied when a > |D|1/2+η, so that we may suppose that the a-sum is of
length at most |D|1/2+η. The a-sum is a smoothly weighted sum of the character χD(a) twisted by a
q-periodic function. We thus obtain by Burgess estimate:

(2.15) Lb �η |D|−1/8+η |b|A , for some A and all η > 0.

Choosing η arbitrary small, we conclude that:

(2.16)
∑
b6=0

Lb � |D|−1/8+η .

This together with (2.12) concludes the proof of Theorem 1.

3. Proof of Theorem 2.

The first steps of the proof are similar. The sections 2.1, 2.2 and 2.4 are identical. As for § 2.3,
averaging over the subgroup Ĉl(D)2 ⊂ Ĉl(D) yields in the present case:

(3.1)

h2(D)
h(D)

∑
χ∈cCl(D)2

L(s, ηχ) =
∑

(a,qD)=1
a2 principal

η(a)Na−s

=
∑

D=D1·D2

|D1|−s
∑

α∈d−1
1 /{±1}

(d1(α),qD)=1

η(d1(α))Nα−s.

The first sum is over all factorizations of D in product of two coprime (fundamental) discriminants4. The
ideal d1 is of norm |D1|. More details on the structure of the 2-torsion Cl2(D) are recalled in the next
paragraph.

3.1. Gauss genus group. It is a classical result by Gauss that Cl2(D) is of cardinality 2ω(D)−1. More
precisely a 2-torsion ideal class contains exactly two ideals d1 with Nd1|D. In other words:

(3.2) Cl2(D) = {[d1],Nd1 = |D1| , D = D1 ·D2}.

This justifies the identity (3.1) above.
In the context of (3.1) we may perform the following further manipulations. Recall that the sum is

over α ∈ d−1
1 such that (d1(α), qD) = 1; fix such an element α1. Then:

(3.3) η(d1(α)) = η(d1(α1))η((αα−1
1 )), for all such α ∈ d−1

1 .

Now the first term is fixed and the second term is explicit.
Let us introduce coordinates to be even more explicit:

(3.4) d−1
1 = {a+ b

√
D/D1

2
, a ≡ b(2)}.

An element α = a+b
√
D/D1

2 satisfies (d1(α), D) = 1 if and only if (b,D1) = 1 and (a,D2) = 1. Put

α1 = A+B
√
D/D1

2 . One clearly has:

(3.5) 4 |D1|Nα = a2 |D1|+ b2 |D2|

and it is not difficult to check that:

(3.6) χD(αα−1
1 ) = χD(D1Nα1)χD(aAD1 − bBD2).

4we do identify the factorizations D = D1 ·D2 and D = D2 ·D1
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3.2. Main term. From (3.1) we may split L2(η) into:

(3.7) L2(η) =
∑

D=D1·D2

L2(η,D1)

where:

(3.8) L2(η,D1) := |D1|−1/2
∑

α∈d−1
1 /{±1}

(d1(α),qD)=1

η(d1(α))Nα−1/2V (
|D1|Nα

X
).

The term L2(η, 1) is precisely equal to L(η) which has already been dealt with (Theorem 1). This yields
the same main term in Theorem 2.

3.3. Remainder terms. Now we proceed to bound the remaining terms, that is we assume that |D1| > 1
and |D2| > 1. In general such a double sum may be difficult to handle. But we shall see that it is again
possible to extract character sums and to apply Burgess estimate.

Up to multiplication by the number

(3.9) η(d1(α1))χD(D1Nα1)ε(A2 |D1|+B2 |D2|)(
A
√
D1 −B

√
D2

A
√
D1 +B

√
D2

)k−1/2,

which is of absolute value one, L2(η,D1) is equal to:

(3.10)
∑

α=
a+b
√
D/D1
2

ε(a2 |D1|+ b2 |D2|)χD(aAD1 − bBD2)

(
a
√
D1 + b

√
D2

a
√
D1 − b

√
D2

)k−1/2(a2 |D1|+ b2 |D2|)−1/2V (
a2 |D1|+ b2 |D2|

4X
).

The first observation is that the term involving χD splits as the product of two smaller characters:

(3.11) χD(aAD1 − bBD2) = χD(AD1 −BD2)× χD2(a)χD1(b), ∀a, b.

Put:

(3.12) f(x, y) := (
x+ y

x− y
)k−1/2(|x|2 + |y|2)−1/2V (

|x|2 + |y|2

4
), x, y ∈ C

and g(a, b) := f(
a
√
D1√
X

,
b
√
D2√
X

). Observe that a and b are always non-zero because (a,D2) = (b,D1) = 1

and |D1| , |D2| > 1.
As before the value of the character ε depends only on a and b modulo q. The cases when a or b is

negative are similar, so that we need to estimate:

(3.13) X−1/2
∑

16a≡a0(q)
16b≡b0(q)

χD2(a)χD1(b)g(a, b).

We shall proceed by integration by parts. The following lemma summarizes the bounds to be applied
for the summations on a and b. We fix a small exponent η = 1/64 which separates the contributions of
the small (a, b) and the large (a, b).

Lemma 3.1. (i) For all ε > 0:

(3.14) X−1/2
∑

16a<|D2|1/2|D|−η

16b<|D1|1/2|D|−η

(
a2 |D1|+ b2 |D2|

X
)−1/2 �ε |D|−η+ε .
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(ii) For all ε > 0:

(3.15) |D|−1/2
∑
a,b>1

|D|1−2η6a2|D1|+b2|D2|

∂2f

∂x∂y
(
a
√
D1√
X

,
b
√
D2√
X

)�ε |D|ε+7η .

Proof. Recall X = q |D|. (i) follows by comparison with an integral. (ii) When differentiating twice the
function f , several terms occur, each one we bound trivially:

(3.16)
∂2f

∂x∂y
(x, y)� max

j∈{0,1}k∈{0,1}
l∈{0,1,2}m∈{0,1,2}

|x|j |y|k (|x|2 + |y|2)−l−1/2(|x|+ |y|)−mV (
|x|2 + |y|2

4
).

Inserting this into (3.15) one gets the result. �

Let us continue the proof. For notational simplicity we forget about the ε’s. The terms with a2 |D1|+
b2 |D2| 6 |D|1−2η are dealt with (i) of Lemma 3.1. They are bounded by � |D|−1/64.

From Burgess estimate, we have:

(3.17) Sx :=
∑

16a6x
a≡a0(q)

χD1(a)� |D1|3/8 .

We use a similar notation for Sy � |D2|3/8 where 1 6 b 6 y and b ≡ b0(q). By partial summation
on (3.13), it is enough to estimate:

(3.18) X−1/2
∑

a>1,b>1

|D|1−2η6a2|D1|+b2|D2|

|SaSb| |g(a+ q, b+ q)− g(a+ q, b)− g(a, b+ q) + g(a, b)| .

The second quantity is bounded by�q

√
|D|
X

∂2f

∂x∂y
(
a
√
D1√
X

,
b
√
D2√
X

), so that we may apply (ii) of Lemma 3.1

which yields a bound � |D|ε+7η−1/8 � |D|−1/64.

4. Appendix – consistency of periods.

The aim of this section is to simplify the main term given by Kim-Masri-Yang in [5, Theorem 1.5] and
then check that the result coincides with Theorem 1. To keep consistent notations put ε = χd, q = d
with all prime factors of d split in Q(

√
D). Observe that L(q)(1, χD) = L(1, χD)φ(d)/d. Since D is

assumed to be odd, one has χD(2) = (−1)
D−1

4 . In [5], D ≡ 1(8) so that χD(2) = 1 and ε = χd so that
τ(ε)2/q = sgn(d). This is compatible with the fact that sgn(d) = (−1)k−1 is equivalent to sgn η = +1, as
claimed in [5, Theorem 1.5].

The main term in [5] is proportional to the L2-norm of the θ-series occurring in the Villegas-Zagier
formula. The following shows it coincides with the quantity 2L(q)(1, χD) in (1.7).

Lemma 4.1. Let θ be the theta series whose definition is recalled below (its weight is k−1/2 and its level
is 4d2) and let <,> be the normalized Petersson inner product. Assume θ is a cusp form. Then:

(4.1)
(8π)k−1

(k − 1)!
< θ, θ >=

φ(d)
d

.

By normalized Petersson inner product it is meant that (where Γ = Γ0(4d2)):

(4.2) < θ, θ >:= vol(Γ\H)−1

∫
Γ0(4d2)\H

|θ(x+ iy)|2 yk−1/2dxdy

y2
.

Remark 6. The identity holds without the assumption that θ is a cusp form. It is made to shorten the
proof of the lemma. By [5], θ is a cusp form if and only if D has a prime factor congruent to 3 (mod 4).
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4.1. Orthogonal polynomials. We set H(z) := (8π)(1−k)/2Hk−1

(√
2πz

)
which is equal to the polyno-

mial in [5, Introduction]. Here Hk is the standard Hermite polynomial of degree k (see [1, Chapter 22]
for instance):

Definition 4.1 (Hermite polynomial).

(4.3) Hn(X) :=
∑

06j6n/2

n!
j!(n− 2j)!

(−1)j(2X)n−2j .

The orthogonality relation is:

(4.4)
∫ ∞
−∞

Hn(x)Hm(x)e−x
2
dx =

{
n!2n
√
π if n = m,

0 else.

4.2. Real-analytic theta series. The theta series θ occurring in Lemma 4.1 is:

(4.5) θ(z) := (2y)(1−k)/2
∑

n>1,(n,d)=1

χd(n)H
(
n
√

2y
)
e(n2z).

4.3. Proof of the Lemma. To compute a Petersson inner product, an efficient method is to introduce
Eisenstein series:

(4.6) E(s, z) :=
∑

γ∈Γ∞\Γ

(=m γz)s, <e s > 1.

Recall that E admits an analytic continuation to C with a simple pole at s = 1 with residue 1/ vol(Γ\H)−1.
Since θ is a cusp form, < θ, θ > is the residue at s = 1 of

(4.7) I(s) :=
∫

Γ\H
|θ(z)|2(=m z)k−1/2E(s, z)

dxdy

y2
, s 6= 1.

Unfolding, yields:

I(s) =
∫

Γ∞\H
|θ(x+ iy)|2yk−1/2ys

dxdy

y2

= 21−k
∑

(n,d)=1

∫ ∞
0

∣∣∣H(n√2y
)∣∣∣2 y1/2+se−4πn2y dy

y2
.

After the change of variable y  y/n2, we obtain:

(4.8) I(s) = 21−kζ(d)(2s− 1)
∫ ∞

0
H
(√

2y
)2
ys−1/2e−4πy dy

y
.

Thus from (4.4) we deduce (with the change x := (4πy)1/2):

< θ, θ > = 21−k × 2ζd(1)−1

∫ ∞
0

H
(√

2y
)2
y1/2e−4πy dy

y

= 21−k × 2ζd(1)−1 × (8π)1−k
∫ ∞

0
Hk−1

(√
4πy

)2
y1/2e−4πy dy

y

= (16π)1−k × 2ζd(1)−1 × (4π)−1/2

∫ ∞
0

Hk−1

(
x
)2
e−x

2
2dx

= (16π)1−k × 2ζd(1)−1 × (4π)−1/2 × (k − 1)!2k−1√π

= (8π)1−k(k − 1)!ζd(1)−1,

which completes the proof of Lemma 4.1.
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