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Abstract

Singularly perturbed systems of ordinary differential equations arise in many

biological, physical and chemical systems. We present an example of a singu-

larly perturbed system of ordinary differential equations that arises as a model

of the electrical potential across the cell membrane of a neuron. We describe

two periodic solutions of this example that were numerically computed using

continuation of solutions of boundary value problems. One of these periodic

orbits contains canards, trajectory segments that follow unstable portions of a

slow manifold. We identify several mechanisms that lead to the formation of

these and other canards in this example.
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1 Introduction

From the mechanics of the Van der Pol oscillator to the chemical kinetics of enzy-

matic reactions, singularly perturbed systems of ordinary differential equations de-

scribe complicated behavior that results from the multiple time scales in the system.

Solutions of the forced Van der Pol oscillator, for example, contain such complicated

phenomena as canard solutions and horseshoes. As the dimension of the systems in-

creases, so does the complexity of the solutions. Previous work on qualitative analysis

of singularly perturbed systems has focused on local phenomena within low dimen-

sional systems. Our long-term goal is to understand and classify the local and global

bifurcations that occur in these systems using the tools of geometric singular per-

turbation theory and asymptotic analysis. Towards that end, we have undertaken a

numerical study of a system of coupled relaxation oscillators, motivated by a model

of two coupled neurons.

Reciprocal inhibition of two neurons is a classical mechanism for the creation

of “half center” oscillations in which there is a left-right alternation in the activ-

ity of the neurons. When one oscillator is active, the second is quiescent, and vice

versa. The reciprocal inhibition prevents both oscillators from being active simulta-

neously. This simple network architecture is widely observed and believed to pro-

vide the neural basis of many rhythmic motions which have a bilateral symmetry

in which symmetric elements act with a half period phase shift [Cohen et al., 1988].

Models of varying degrees of detail for half center oscillations have been studied.

Wang and Rinzel [1992] and Skinner et al [1994] considered phase models in which

each oscillator was represented by a single phase variable. This work introduced

the concepts of “release” and “escape” and used them to understand the effects of

modulatory inputs on the period of the oscillations. Nadim et al. [1995a, 1995b] for-

mulated and studied much more detailed Hodgkin-Huxley like models for the leech

heart that were based upon extensive physiological data, and they compared model

simulations with measurements. Here we study a model introduced by Rowat et
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al. [Rowat & Selverston, 1993, Guckenheimer & Rowat, 1997] of intermediate com-

plexity to these two. Rowat’s model represents each neuron by two variables, a

membrane potential and a “recovery” variable. In this model, the periodic action

potentials of an active neuron are averaged and represented by equilibria that have

an elevated membrane potential relative to the membrane potential of a quiescent

neuron.

Rowat’s model is a singularly perturbed system with two fast and two slow vari-

ables. The membrane potentials are the fast variables while the recovery variables

are assumed to change on a slower time scale. Both the relaxation of the mem-

brane potential to an equilibrium and the response of a post synaptic neuron to the

passage of the presynaptic neuron through its threshold are fast processes. In the

singular limit, the ratio of time scales becomes infinite and these models approach

phase models of the type referenced above. The singular perturbation problem allows

us to examine in an abstract setting the fast dynamics associated to the release and

escape mechanisms. One of our objectives, only partially realized, is to characterize

the dynamical events that occur at fast transitions between different states of the

reciprocally inhibiting pair.

There have been few dynamical studies of the qualitative properties of singularly

perturbed systems. As we demonstrate below, there are severe limitations on the

capability of numerical integration to compute families of stable orbits that contain

segments that are locally unstable. The locally unstable solutions are known as ca-

nards. Numerical integration of singularly perturbed systems with canards usually

gives spurious results, producing discontinuous or chaotic transitions between stable,

periodic solutions that in fact are connected by continuous families. Boundary value

problem solvers that use continuation algorithms to track solutions are more suc-

cessful in computing these solutions, yet present different computational challenges.

The results in this paper were computed using AUTO, a widely known package for

solving boundary value problems [Doedel et al., 1998]. To compute solutions within

specified error tolerances, we required as many as 1000 mesh intervals whereas the
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value recommended in the singular perturbation example of Doedel et al [1998, p.

80] is 100. Moreover, it is apparent that important aspects of the solution branches

computed by AUTO are not adequately resolved. In particular, we are unable to

identify bifurcations of the periodic orbits or relate these to the AUTO calculation

of eigenvalues for the monodromy maps of the orbits. Here we present results from

our numerical study that illustrate the formation of canards of several different types,

and we discuss their qualitative properties.

2 Singularly Perturbed Systems

Consider the standard form of a singularly perturbed system

x′ = f(x,y)

y′ = ε g(x,y),
(1)

where ε is a small parameter [Mischenko & Rozov, 1980]. Due to this small param-

eter, the dynamics of the variable x evolve on a much faster time scale than the

dynamics of the variable y. Thus, x is commonly referred to as the fast variable

and y is called the slow variable. The essential idea in singular perturbation theory

is to deduce the behavior of the solutions of the singularly perturbed system (1) by

studying two limiting cases. The first limit ε → 0 defines the fast subsystem:

x′ = f(x,y)

y′ = 0,
(2)

where the slow variables y are constant parameters in the vector field of the fast

variable. The second limit is obtained by first rescaling time t = τε and then setting

ε = 0. The resulting system is called the slow subsystem:

y′ = g(x,y)

f(x,y) = 0,
(3)
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a differential-algebraic system of equations. The set of equilibria of the fast system

f(x,y) = 0 is called the critical manifold. By combining the solutions of the fast and

slow subsystems appropriately, the qualitative behavior of the singularly perturbed

solution can be determined. Folds in the critical manifold correspond to saddle-node

bifurcation points in the fast subsystem and are distinguished in the full system

since the fundamental nature of the solutions change at these points. Fold points

correspond to points where the Jacobian f
x

is singular. For points where f
x

is non-

singular, the implicit function theorem can be applied so that (3) becomes y′ =

g(x(y),y) and determines the dynamics of the slow subsystem.

It is a fundamental result of Fenichel [1979] that, for ε sufficiently small, a normally

hyperbolic subset of the critical manifold persists as a locally invariant manifold that

is O(ε) close to the critical manifold. This perturbed manifold is called the slow

manifold.

3 The Classical Canard

Special solutions to singularly perturbed systems were discovered by a group of French

mathematicians using techniques from nonstandard analysis [Benoit et al., 1981]. These

solutions, called canard solutions, include segments of the solution that remain close

to the unstable part of the slow manifold. The unstable nature of the canard solution

combined with the fact that the solution only exists in parameter ranges that are

exponentially small in relation to the small parameter ε make these solutions analyt-

ically elusive and computationally challenging. The numerical computation of these

special canard solutions is the point that we address in this paper.

Consider the ‘classical’ example of a system with canard solutions

ẋ =
y − x2 − x3

ε

ẏ = a − x

(4)

with ε = 0.001. The nullclines for this system are plotted in Fig. 1; the dashed and
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dotted lines are the x and y nullclines, respectively. In this case, the critical manifold

is the x nullcline y = x3 + x2. This system undergoes a Hopf bifurcation when a = 0,

and as a decreases, a family of periodic orbits grows out of the origin. This is a

family of canard solutions; the orbits travel down the right side of the x nullcline,

and then continue up the unstable part of the x nullcline before jumping to the right.

The distance that the orbits track the unstable slow manifold increases, up to where

the orbit reaches the local maximum in the nullcline. As a decreases further, the

distance that the orbit follows the unstable slow manifold decreases, but now the

orbit jumps left (i.e. x jumps down in value) to the left-most stable branch of the

slow manifold. Eventually, the canard disappears, and the periodic orbit becomes the

standard relaxation oscillation.

Computation of the canards of this system with numerical integration fails com-

pletely. The Jacobian of the vector field is





1000(−2x − 3x2) 1000

−1 0



 .

We consider −1 << a < 0. On the critical manifold for x ∈ [−1/2,−1/6], the x

components of nearby trajectories separate at a rate at least exp(250t). The equations

for the slow subsystem reduces to ẋ = −1/(2 + 3x) (taking a = 0), and we find that

a trajectory requires at least time 1/3 to traverse the portion of the critical manifold

where −1/2 < x < −1/6. During this time, the relative separation of trajectories in

the x direction increases by a factor of well over exp(80). Thus, an initial condition

must have an accuracy of at least exp(−80) close to the slow manifold to be able to

track it with a numerical integration algorithm. Consequently, initial conditions that

differ by unit precision but lie on opposite sides of the unstable portion of the slow

manifold separate without tracking the unstable slow manifold very far. Standard

numerical integration algorithms, when applied to the initial value problem, produce

“chaotic” trajectories that jump erratically left and right on subsequent returns to

the unstable slow manifold rather than giving a good representation of a periodic
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orbit with a canard. An example is shown in Figs. 1 and 2.

In contrast, boundary value problem solvers that use continuation methods are

able to track canard solutions. To illustrate this point, we use AUTO [Doedel et al., 1998]

to track canard solutions of a system of singularly perturbed ordinary differential

equations with two fast variables and two slow variables. As we will demonstrate,

this particular system is much more complicated than Eq. (4) and includes canards

qualitatively different from those found in (4).

More specifically, we demonstrate two additional classes of canards that we have

observed, distinct from the classical canard described above. The first type of canard

that we observed enters the unstable part of the slow manifold at a fold, a point that

is not normally hyperbolic. In the fast subsystem, this corresponds to a trajectory

entering a saddle-node (degenerate) equilibrium. We call this a fold initiated canard.

For such a canard to form, the vector field on the critical manifold near the fold must

point away from the fold.

The second class of canards occurs when the slow manifold is of saddle type (i.e.

has stable and unstable fibers), and a trajectory enters the slow manifold along a

stable fiber. In the fast subsystem, this trajectory is the stable manifold of a saddle.

We call this a saddle initiated canard. Note that this type of canard can only occur

in systems with at least two fast variables.

4 The Model

4.1 The equations

The Hodgkin-Huxley equations [Hodgkin & Huxley, 1952], a widely accepted model

for the voltage potential in a squid giant axon, is a well known system of mildly

stiff ordinary differential equations. Instead of trying to understand a model with

the complexity of the Hodgkin-Huxley equations, we study a simpler model of two

coupled neurons that does not attempt to resolve individual conductances within the
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membranes of the neurons. The particular model that we studied was formulated as

a description of neurons coupled with reciprocal inhibition in the gastric mill circuit

of a lobster [Guckenheimer & Rowat, 1997, Rowat & Selverston, 1993]. Specifically,

the model is

v′

1
= −

(

v1 − a tanh
(σ1v1

a

)

+ q1 + ωf(v2)(v1 − r)
)

v′

2
= −

(

v2 − a tanh
(σ2v2

a

)

+ q2 + ωf(v1)(v2 − r)
)

q′
1

= ε(−q1 + sv1)

q′
2

= ε(−q2 + sv2),

(5)

where the fast variables vk represent the membrane potential and the slow variables

qk represent the idealized gating of the membrane channels. We assume that the two

neurons are coupled by a function of the form ωf(vj)(vi − r) where f(x) is given by

f(x) =
1.0

1.0 + exp(−4γ(x − θ))
(6)

and the parameter ω controls the coupling strength. The parameter γ governs the

steepness of the threshold for synaptic coupling. We take γ = 10, a value large enough

to produce a steep threshold between minimal and maximal synaptic current. We

take the small parameter ε to be ε = 0.0001.

From a different perspective, Eq. (5) also represents two “oscillators” (v1, q1) and

(v2, q2) coupled by the function (6). When isolated (ω = 0), each oscillator has

parameter ranges in which it is bistable, that is it has two stable equilibria. The

equilibria of an isolated neuron with larger values of vi represent states in which the

neuron fires periodic action potentials. The oscillations associated with these periodic

states are averaged, however. More complete models of reciprocal inhibition include

the spiking action potentials of the active state [Nadim et al., 1995a].

We assume that the oscillators are identical, that is, the parameters for each

oscillator are the same, with the exception of σ, the parameter which controls the
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steepness of the tanh function. The value of the remaining parameters are:

ω = 0.03, γ = 10, r = −4,

θ = 0.01333, a = 1, s = 1.
(7)

4.2 Fast and slow subsystems

To understand the qualitative features of the solutions of (5), we describe our numeri-

cally computed solutions to the full singularly perturbed system in terms of the singu-

lar solutions of the fast and slow subsystems [Arnold et al., 1994, Guckenheimer & Holmes, 1983,

Jones, 1994, Kevorkian & Cole, 1981, Mischenko & Rozov, 1980]. The fast subsys-

tem is

v′

1
= −

(

v1 − a tanh
(σ1v1

a

)

+ q1 + ωf(v2)(v1 − r)
)

v′

2
= −

(

v2 − a tanh
(σ2v2

a

)

+ q2 + ωf(v1)(v2 − r)
)

(8)

where the slow variables, q1 and q2, act as parameters. The slow subsystem is given

by

q′
1

= (−q1 + sv1)

q′
2

= (−q2 + sv2),
(9)

−
(

v1 − a tanh
(σ1v1

a

)

+ q1 + ωf(v2)(v1 − r)
)

= 0

−
(

v2 − a tanh
(σ2v2

a

)

+ q2 + ωf(v1)(v2 − r)
)

= 0
(10)

where the algebraic Eqs. (10) define the critical manifold.

To understand the solutions to the full singularly perturbed system (5) we use

information from the fast subsystem (8) and the slow subsystem (9) and (10). We

begin by studying folds in the critical manifold. Folds in the critical manifold occur

where the Jacobian of (10) with respect to the fast variables v = (v1, v2) is singular.

Specifically

det(f
v
) = 0, (11)
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where Eq. (10) defines f(v,q). Thus the solutions (v1, v2) to (11) define the curve

of fold points on the critical manifold. The projection of these fold lines on the slow

variables (q1, q2) is given by substituting the solutions (v1, v2) into (10) and solving

for the corresponding pair (q1, q2).

The fold lines of the critical manifold determine possible points at which the

solution will either leave the neighborhood of the slow manifold and begin a fast

transition or form a fold initiated canard. The points along the fold lines at which

a fold initiated canard is possible are determined by the dynamics on the critical

manifold near the fold line. Although the slow dynamics are typically defined in

terms of the slow variable q (as described in the introduction), we express the slow

dynamics in terms of the fast variables as a matter of convenience. Equation (10) can

easily be solved for q = f̂(v), whereas solving v = g(q) is much more difficult.

To determine the dynamics near a fold in the critical manifold, we consider the

vector form of the Eqs. (9) and (10):

q′ = g(v,q),

f(v,q) = 0 .
(12)

The implicit function theorem can be applied to solve f(v,q) = 0 for q as a function

of v. Then Eq. (9) becomes

v′ = (f̂
v
)−1g(v, f̂)

=
adj f̂

v

det f̂
v

g(v, f̂), (13)

where f̂ is defined by the relation q = f̂(v). The vector field defined in (13) becomes

singular at the fold since det f̂
v

= 0 along the fold. To circumvent this singularity,

we multiply the right hand side of the equation by det f̂
v
, a scalar quantity that will

change the length of the vector field, and possibly the sign of the vector field. But by

calculating the sign of det f̂
v

independently, we will know the direction of the vector

field at a fold. Note that q can be recovered from the relation q = f̂(v1, v2).
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5 Computation of Solutions

Our primary tool for numerically computing families of periodic orbits was the con-

tinuation package AUTO [Doedel et al., 1998]. AUTO uses collocation to solve the

boundary value problem associated with finding a periodic orbit. Because we are

computing fairly complicated periodic orbits in a system with widely different time

scales, it was necessary to use as many as 1000 mesh points and error tolerances as

low as 10−10. (This may be compared to the singular perturbation example given by

Doedel, et al [1998], where only 100 mesh points were used with error tolerances of

10−6.) The average time for AUTO to compute 1000 periodic solutions on an SGI

Challenge L with 4 R10,000-195 MHz CPUs and 2 Gigabytes of 4-way interleaved

memory was 45 minutes.

To compute a starting solution for the continuation algorithm, we solved the

system using a numerical initial value problem solver, at a set of parameters for which

the computed trajectory approaches a periodic orbit with no canards. We used the

MATLAB function ODE15S, an adaptive algorithm designed for stiff systems, to solve

the differential equations. To obtain accurate results, we used error tolerances as low

as 10−9. For large ranges of the parameter σ2, the system converges to a stable periodic

orbit. We used orbits computed this way as starting points in AUTO. Additionally,

we used MATLAB to plot and animate the solutions generated by AUTO.

Because our system of equations is four-dimensional, visualization of the phase

space is problematic. We plot an assortment of projections to do so. The two-

dimensional projections that we have found most useful are the fast variables (v1, v2),

the first oscillator (v1, q1), and the second oscillator (v2, q2). Occasionally it is also

helpful to see three dimensional projections, so in some cases we plot (v1, v2, q1) and

(v1, v2, q2).

The parts of the solution where the speed of the trajectory is much greater than ε

(which for our computations is 10−4) are called “fast transitions”; these are the parts

where the fast subsystem provides a good approximation to the full system. When a
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trajectory slows down to O(ε), the fast subsystem is no longer a good approximation;

the “fast” variables are now changing on the same time scale as the slow variables.

In this case, the slow subsystem (i.e the dynamics on the critical manifold) provides

a good approximation to the solution, and we will often say that the trajectory is

“on the slow manifold”. In the plots of solutions (such as Fig. 3), the slow parts are

plotted with thick (blue) lines, and the fast transitions are plotted with thinner (red)

lines. Whether a part of the solution is considered slow or fast in these plots is decided

by computing the norm of the vector field. If it is above an arbitrary threshold, it is

called fast; otherwise it is slow.

We begin by describing in Sec. 5.1 one of the simpler solutions of (5) that rep-

resents two symmetric oscillators. This example provides a basis for introducing the

projections and the terminology with which we describe the behavior of the solutions.

With this foundation, we present in Sec. 5.2 a more complicated asymmetric solution

containing three canards.

5.1 Symmetric oscillators

Models of symmetrically coupled reciprocally inhibited identical neurons such as (5)

produce “half-center” oscillations in which the two neurons oscillate half a period out

of phase of each other. There is a symmetry of the orbits corresponding to interchange

of the two neurons and advancing time a half period. While one neuron is active,

the other is quiescent. We begin by presenting a solution of (5) which exhibits this

behavior. This will illustrate the two-dimensional and three-dimensional projections

of trajectories in the context of a simple and familiar example.

Consider the model (5) with the parameter values given by Eq. (7) and σ1 = σ2 =

2. The stable periodic solution that exhibits half-center oscillations is depicted in

Figs. 3, 4, and 5. In Fig. 3, three two-dimensional projections of the solution are

shown. The plots of the solution projected onto the fast variables (v1, v2) (Fig. 3(c))

also contain the projections of the fold curves of the slow manifold (computed by
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solving Eq. (11)) plotted as thin solid curves. Note that the changes in speed of the

orbit occurring at B and D correspond to the orbit leaving the slow manifold at a

fold and beginning a fast transition to another part of the slow manifold. Compare

also Fig. 5 where the jumps of vi occur simultaneously at times 0% and 50% of the

period.

Figures 3(a) and 3(b) show the “phase plane” associated with each of the oscilla-

tors. Each plot includes the qi-nullcline (dot-dashed line), the vi threshold (vertical

dashed line), and the projection of the periodic orbit. In addition, the plots contain

the upper and lower limits of the vi-nullcline (thin solid lines). The lower limit of

the vi-nullcline corresponds to the value of the coupling function being zero, which

occurs when the voltage of the other oscillator is sufficiently below the threshold θ.

Analogously, the upper limit corresponds to the value of the coupling function be-

ing one, which occurs when the voltage of the other oscillator is sufficiently above

the threshold θ. When the voltage of the other oscillator is in a neighborhood of

the threshold θ, the value of the coupling function is between zero and one and the

vi-nullcline is between the upper and lower limits.

Figures 4(a) and 4(b) are three dimensional plots of the periodic orbit in (v1, v2, q1)

coordinates and (v1, v2, q2) coordinates, respectively. These plots include the two

dimensional critical manifold.

The following detailed description of the periodic orbit refers to Figs. 3, 4 and 5.

At point A, the orbit has just completed a fast transition; in the fast subsystem, this

means that the orbit has entered a small neighborhood of a critical point of the fast

subsystem, which in this case is a stable node. The orbit then moves along the slow

manifold from A to B. In Fig. 3(a), the segment from A to B is close to the lower

v1-nullcline. Because v1 is to the left of the v1 threshold (as shown by the vertical

dashed lines in Fig. 3(a)), v2 is on its upper nullcline, and similarly v1 is on the lower

nullcline because v2 is above threshold. At B, the orbit reaches a fold in the slow

manifold. This can be seen in Fig. 3(b), where we see that the slow segment ends

at the knee (i.e. local maximum) of the upper v2-nullcline. In Fig. 3(c), we see that
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B is the intersection of the trajectory and a fold line; in Fig. 4(b), it is clear that B

is at the fold in the slow manifold. A fast transition begins at B. In Fig. 3(b), the

fast transition is a jump down (to the left). During this jump, v2 crosses threshold,

which moves the v1-nullcline up towards its upper limit. When this happens, the first

oscillator is no longer near its nullcline, and it begins a fast jump up (to the right).

In the terminology of Skinner, et al [1994], the first oscillator has been “released”.

As it jumps, it crosses the threshold for activating its synaptic inhibition of the

second oscillator. Thus the point C lies on the lower nullcline for v2. Both oscillators

cross their threshold in the transition from B to C, the first oscillator turning on its

inhibition of the second oscillator while the second oscillator turns off its inhibition of

the first oscillator. Because the oscillators are symmetric, the transitions C → D → A

are the same as A → B → C, but with the roles of the oscillators reversed.

5.2 Asymmetric oscillators

The symmetric solution presented in Sec. 5.1 is a stable periodic orbit with no canards.

It can be computed quite easily by letting a standard numerical differential equation

solver integrate forward in time until a given convergence criterion is reached. As

we track one parameter families of periodic orbits to the system (5), allowing the

parameter σ2 to vary, canards appear and disappear in the periodic orbits. The

occurrence of canards makes computing periodic orbits more difficult. We saw in

Sec. 3 that when a periodic orbit has a canard, using an initial value problem solver

has severe limitations, even if the orbit is stable. The degeneracies of the slow-fast

system associated with the formation of canards are discussed in Sec. 6. In this

section, we describe a single periodic orbit that illustrates the complexity of the

solutions to Eq. (5). We also note that this complexity seems to be beyond that

which has been achieved previously in computations with AUTO. The example we

display has parameters σ1 = 3 and σ2 = 1.2652372051. Figures 6, 7 and 8 show a

periodic orbit computed by AUTO at these parameter values. This example contains
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one fold initiated and two saddle initiated canards.

To understand the structure of this trajectory and how it interacts with the slow

manifold, we give a detailed description of the periodic orbit, beginning at the point

labeled A. In the symmetric half-center oscillations, the interaction between the two

oscillators can be easily characterized. When the first oscillator is on its lower (upper)

nullcline, the second oscillator is on its upper (lower) nullcline. The solution presented

in Figs. 6, 7 and 8 shows a much more complicated interaction between the oscillators.

Beginning at the point labeled A, the first oscillator makes a series of jumps between

its upper and lower nullclines without crossing its synaptic threshold (depicted by

the vertical dashed line), so the second oscillator remains on its upper nullcline in

a typical relaxation oscillation pattern. In contrast to the symmetric solution, in

this example both oscillators can be on their upper nullcline at the same time! An

analogous situation exists as the first oscillator jumps between its upper and lower

nullclines as it proceeds from point C to the maximum of the lower nullcline. The

first oscillator is always above its threshold, thus the second oscillator remains on its

lower nullcline.

For generic trajectories, stable segments of slow motion in the system terminate

near fold points of the critical manifold or near points of Hopf bifurcation. Thus the

location of folds is closely related to the initiation of canards. In this system, the

folds lie close to the local minima and maxima of the v nullclines in the plane of each

oscillator, except when the other oscillator is at its synaptic threshold. We locate fold

initiated canards visually by looking for points of tangency between the projection of

a trajectory into the plane of one of the oscillators and the v nullcline in that plane.

Our example periodic orbit contains one fold initiated canard at the point labeled

B. As can be seen in Fig. 6(c), the first oscillator makes a fast transition from its

lower nullcline to a minimum of its upper nullcline. (This corresponds to a trajectory

encountering a saddle-node point in the fast subsystem.) At this point, labeled B, the

orbit proceeds up the unstable portion of the slow manifold (corresponding to saddles

in the fast system). This is a fold initiated canard. At the next fast transition, the
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first oscillator leaves the unstable portion of its upper nullcline, follows the stable

manifold of another saddle (in the fast subsystem) to the unstable lower nullcline at

B’ and a saddle initiated canard is born. This brief canard ends when the trajectory

leaves the saddle, and in the subsequent fast transition, v1 decreases while v2 remains

approximately constant. This part of the orbit is the horizontal segment in the upper

part of the (v1, v2) projection shown in Fig. 6(d) with v2 ≈ 0.9. Next, there is a slow

transition to a fold of the second oscillator. In the subsequent fast transition, the

trajectory misses the fold of the first oscillator on the upper nullclines and continues

on to the point labeled C, where the oscillations described in the previous paragraph

continue. A second saddle initiated canard is formed as the first oscillator leaves the

maximum of its lower nullcline and is drawn in along the stable manifold of a saddle

in the fast subsystem to the unstable part of the upper nullcline at point D. As the

orbit leaves this saddle initiated canard, the first oscillator crosses threshold, thus

forcing the second oscillator to jump to its upper nullcline. The next fast transition

occurs at the initial point A where the second oscillator reaches the local maximum

of its upper nullcline. We have returned to the initial point of the periodic orbit.

Prior to the formation of the saddle initiated canard at the point labeled D,

the trajectory crosses the fold curves of both oscillators almost at the same time.

This point labeled F is seen in Fig. 6(d), the (v1, v2) projection at the upper right

intersection of the two fold curves. Our description of the dynamics obscures some of

the detail associated with the fold surfaces of the four dimensional coupled system.

One aspect of this model is that the synaptic conductance term through which the two

oscillators are coupled is almost constant except at the synaptic threshold. Away from

the synaptic threshold, the critical surface of the coupled system is approximated by

products of the critical curves of each oscillator (in its inhibited or uninhibited state

depending upon whether the other oscillator is above or below synaptic threshold).

The fold curves of the coupled system are approximately products of the fold points

of one oscillator with the critical curve of the other. This is what we have displayed

in our figures. The resulting self intersections of the approximate fold curves are
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degenerate singularities that we call double folds. For a generic mapping, we expect

to encounter only folds and cusps as singularities of the projection of the critical

manifold onto the plane of the fast variables, not double folds [Arnold, 1968]. The

flow near a double fold point is the product flow of two saddle-nodes. It has a quadrant

of trajectories that flow into the double fold point and a quadrant of trajectories that

leave the double fold point. Thus we should not be surprised to see a trajectory that

encounters the intersection point of the two fold curves. Guckenheimer and Khibnik

[1997] have analyzed the bifurcations of two weakly coupled oscillators, showing how

the dynamics of uncoupled oscillators perturb with weak coupling. We have not

attempted here to resolve details of the dynamics of the frozen system (ε = 0) near

the intersection points of the fold curves.

6 Formation of Canards

We have displayed three different types of canards:

• “classical” canards associated with Hopf bifurcation

• fold initiated canards that occur as a fast trajectory approaches a critical man-

ifold near a fold point

• saddle initiated canards that occur when a fast trajectory approaches the critical

manifold along the stable manifold of a saddle point

In this section, we present numerical examples that illustrate the formation of each

type of canard in the system (5). We show one additional type of classical canard,

initiated by the appearance of a “folded saddle” [Arnold et al., 1994] rather than a

Hopf bifurcation. We demonstrate intermediate stages of the processes that create

each type of canard as a parameter or initial point varies. Illustrations of the evolution

of classical and fold initiated canards can be found in Diener [1984] and Arnold et al

[1994].
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6.1 Classical canards

As was discussed in Sec. 3, there is a family of periodic orbits for the system (4),

parametrized by a, that is born in a Hopf bifurcation and ultimately becomes a relax-

ation oscillation. The Hopf bifurcation and relaxation oscillations occur on opposite

sides of the critical manifold. As the periodic solutions grow, they cross the critical

manifold by developing segments that lie along the unstable portion of the slow man-

ifold. These are canards. The properties of these canards have been analyzed in great

detail from multiple perspectives [Diener, 1984, Dumortier & R. Roussarie, 1996, Eckhaus, 1983].

The salient features of the “classical” asymptotic analysis are that

• The canards occur at parameter values comparable to ε.

• The parameter interval during which the canards occur has a length comparable

to exp(−c/ε) with c a positive constant that has been explicitly computed.

• There are asymptotic expansions for the canards and the parameter values at

which they occur.

• As ε → 0, the canards approach closed curves formed from segments of the slow

and fast vector fields

Hopf initiated canards can occur in systems with one slow and one fast variable

as illustrated by the system (4). The periodic orbits of (5) that we have exhibited

thus far are not close to Hopf bifurcations. We have numerically investigated some

Hopf bifurcations that occur in (5), and they exhibit the same qualitative behavior

as those (4). For example, Fig. 9 shows solutions (in the (v2, q2) plane) from a family

of periodic orbits that arise from a Hopf bifurcation that occurs when (σ1, σ2) =

(3, 2.7338807152). As predicted by the asymptotic analysis of the Hopf canards,

the periodic orbits grow in amplitude very quickly at some distance from the Hopf

bifurcation itself.
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6.1.1 Classical canard (second example)

This example shows the formation of a canard by passage through a folded saddle.

The smallest dimension in which folded saddles occur is in systems with two slow

variables and one fast variable. At typical fold points of a generically perturbed

system, trajectories on the critical manifold approach the fold from both sheets or they

leave the fold from both sheets. At isolated points of a fold curve in a generic system

with two slow variables, equilibrium points may be encountered [Arnold et al., 1994].

When this happens, the trajectories on the critical manifold approach the fold curve

on one side of the equilibrium point and leave the fold curve on the other side of

the equilibrium point. In the slowly varying system, some trajectories may have

extensions that go through the fold while remaining close to the critical manifold.

These are classical canards in that the trajectory tracks a critical manifold through

a fold as do the Hopf initiated canards. We call these canards equilibrium point

initiated canards.

Figure 10 shows the relevant details of a solution with an equilibrium point initi-

ated canard. There is one aspect of this example that differs a bit from other examples

that we present, namely that the canard formation itself takes place along a canard.

The incoming trajectory to the fold curve lies along a portion of the slow manifold

with one unstable direction, and the outgoing trajectory lies along a portion of the

slow manifold with two unstable directions. The three panels of the figure show the

projection of segments of three solutions onto the plane of the second oscillator. Not

shown in the figure, the projection of this trajectory segment onto the plane of the

first oscillator lies near the unstable branch of the v1 nullcline. As the parameter σ2

varies, v1 approaches its synaptic threshold from above during the slow motion. This

causes the inhibition of the second oscillator to diminish and raises the v2 nullcline.

Only the lower limit of the v2 nullclines corresponding to full inhibition from the first

oscillator is shown in the figure. The equilibrium point initiated canard occurs as an

equilibrium point approaches a fold point of the critical manifold. This equilibrium
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point is called a folded saddle. The figure displays the q2 nullcline as well as the

lower limit of the v2 nullclines. When the q2 and v2 nullclines cross near the local

minimum of the v2 nullcline, the system is close to the folded saddle point where the

equilibrium point initiated canard occurs.

6.2 Fold initiated canards

A fold initiated canard occurs when a fast transition passes through a neighborhood of

a saddle-node point for the fast subsystem, leaving this neighborhood along a branch

of unstable points in the slow manifold. Recall that saddle-node points of the fast

subsystem are fold points of the critical manifold. At generic fold points, the flow

either

• approaches the fold from both sheets of the slow manifold resulting in a fast

jump, or

• leaves the fold on both sheets of the slow manifold.

The fold initiated canards occur in the second case. The essential properties of the

fold initiated canard occur already in systems with one fast and one slow variable.

The system of equations

ẋ = −y + x2,

ẏ = ε.
(14)

provides a model for the flow in this regime.

Scaling analysis of system (14) provides useful information. Rescaling system (14)

by setting τ = ε1/3t, X = ε−1/3x and Y = ε2/3y yields the system

dX
dτ

= −Y + X2,

dY
dτ

= 1.
(15)

Thus, much of the ε-dependence of system (14) is described by this scale change.

Solutions of system (14) are shown in Fig. 11. The heavy line is the critical manifold

y = x2. There is a single trajectory that maintains a bounded distance from the
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critical manifold as t → ∞. This trajectory divides the plane into two halves. In

one half, trajectories approach the stable branch of the slow manifold as t → ∞.

In the other half, the trajectories leave the neighborhood of the slow manifold, with

x → ∞ in finite time and y remaining bounded. Consider trajectories beginning at

(−1, y0). As y0 increases towards −0.1, the solutions come close to the fold (i.e. the

minimum of the parabola), and follow the right branch of the parabola for increasing

distances before accelerating off to the right. Further increases in y0 yield solutions

that again follow the right branch of the parabola, but then jump off the parabola on

the left side (decreasing x); these trajectories then converge to the left branch of the

parabola. As y0 is increased still further, the distance that these orbits track the right

branch of the parabola decreases, until finally the orbits are simply reversing their

horizontal direction in the vicinity of the minimum of the parabola. Larger values of

y0 give the solutions that converge to the left branch of the parabola from the left.

This qualitative picture describes the behavior of a flow near a generic fold at which

trajectories on the slow manifold leave the fold.

All the solutions that track the right branch of the parabola are canards. These

solutions occur in a very small interval of y0. A rigorous analysis of these observations

is given by Mischenko and Rozov [1980]. These canards are also briefly discussed in

Sec. 5.4 of Arnold, et al [1994]; there they are called ducks (i.e. canards) with relax-

ation. Here we give a crude estimate demonstrating that the set of initial conditions

in system (14) that track the unstable slow manifold for distance 2 is a strip whose

width is smaller than exp(−1/ε). The variable y increases at the constant rate ε while

the variational equations show that trajectories separate in the x direction from one

another at the rate 2x. Thus, along the right hand branch of the parabola y = x2,

solutions take time 1/ε to traverse the horizontal strip 1 < y < 2 and they spread

apart horizontally by relative amounts exceeding exp(−2/ε). Consequently, initial

conditions with x = 0 that pass close to (2, 4) on the unstable branch of the slow

manifold form a strip whose width is small compared to exp(−1/ε). Thus, we expect

that the saddle initiated canards of length O(1) in a family of periodic orbits occur
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over parameter ranges that are small compared to exp(−1/ε) .

In our discussion of system (14), we have considered the changes in behavior within

a family of solutions parametrized by an initial condition. In this family we see two

separate asymptotic behaviors, separated by a special solution. In our numerical

computation of solutions to (5), we are not varying initial conditions. We follow a

family of periodic orbits. Some periodic orbits within the family may approach a fold

in the critical manifold and result in fold initiated canards within the family. We have

indeed found numerous examples of this; we show two of them here. However, as the

canard of the periodic orbit approaches the equivalent of the special solution that

separates the asymptotic behaviors in (14), the canard does not become arbitrarily

long. We see in our computations that the canard eventually reaches another fold in

the slow manifold, resulting in further complications and possibly additional canards.

The two examples discussed below show fold initiated canards observed in our system

of two coupled oscillators corresponding to the two sides of the special separating

solution.

6.2.1 Fold initiated canard (first example).

Figure 12 shows details of four orbits from a family of periodic orbits in which a canard

forms as the parameter σ2 is varied. The orbit labeled (1) makes a fast transition

that comes “close” to the slow manifold; this can be seen in the plot of v1 vs. t in

Fig. 12, where v1 jumps up at about t = 0.998, slows a bit when v1 is near −0.4,

and then jumps rapidly near t = 1. If we could watch a movie of this solution in the

(v1, v2) plane, we would see that there is a region of the phase plane that is close to

a saddle-node bifurcation. Orbit (1) is influenced by this region, but its speed does

not slow down to O(ε).

Orbits (2), (3), and (4), however, do come close enough to the saddle-node region

to slow down to O(ε). Orbit (2) has a small canard, and in (3) and (4) the canard

tracks the unstable part of the slow manifold for successively longer times. In our
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(v1, v2) movie, we would see the trajectory come close to the saddle-node point. While

the trajectory lingers here, the saddle-node bifurcation takes place, and the trajectory

remains near the saddle born in this bifurcation. The time that it stays near the saddle

increases from orbit (2) to orbit (4). When the trajectory leaves the saddle, it does

so by jumping away from the node, along the unstable manifold of the saddle in the

fast (v1, v2) subsystem.

6.2.2 Fold initiated canard (second example).

Figure 13 also shows the formation of a fold initiated canard which exhibits different

behavior in the phase plane of the fast subsystem. First consider orbit (1). In our

(v1, v2) movie, we would see the trajectory get drawn into a stable node. There is a

nearby saddle, but once the orbit is close to the node and we enter the slow regime,

the saddle and node move apart.

In orbit (2) of Fig. 13, the trajectory gets drawn into the stable node, but now

the saddle is very close. A saddle-node bifurcation is imminent. In orbits (3) and

(4), the trajectory is drawn into a saddle-node point (or at least something that is

extremely close to a saddle-node point), where it slows down to O(ε). The saddle-

node bifurcation takes place while the trajectory is nearby, and the trajectory stays

near the saddle for a longer time. Orbit (3) stays near the saddle only a moderate

time, while orbit (4) remains near it significantly longer. When the trajectories leave

the saddle, they jump back to the stable node.

6.3 Saddle initiated canards

A saddle initiated canard results from a fast transition being close to the stable

manifold of a saddle in the fast subsystem. In the singular limit ε = 0, the frozen

system has a normally hyperbolic invariant manifold of equilibria that are saddles

in the fast subsystem. Fenichel [1979] studied the persistence of normally hyperbolic

manifolds and introduced coordinate systems that give normal forms for the transverse
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dynamics along these manifolds. Ilyashenko et al [to appear] prove that C r coordinate

transformations reduce a generic three dimensional system with one slow and two fast

variables to a system of the form

ẋ = a(z)x,

ẏ = −b(z)y,

ż = ε.

(16)

with a and b smooth functions of the slow variable z. Further information that

is relevant to the stability of periodic orbits containing saddle initiated canards is

contained in the Exchange Lemma of Jones and Kopell [1994].

An example of a saddle initiated canard is shown in Fig. 14. The three axes in this

plot are v1, v2 and t. This is a plot of the region labeled B′ in the solution discussed

in Sec. 5.2, and shown in Fig. 6. At several values of t, a direction field of the phase

plane of the fast subsystem is plotted. We clearly see the fast transition (from t = 0

to t ≈ 1× 10−3) that encounters a saddle in the fast subsystem. The orbit stays close

to this saddle from t ≈ 1×10−3 to t ≈ 3×10−3. It then leaves the saddle and makes a

fast transition to a stable node. The same plot, but viewed from above looking down

the t axis, is shown in Fig. 15.

7 Discussion

We have shown that even the simplest singularly perturbed systems arising from

neurobiology have complex dynamical behavior. We have studied a model system

for reciprocal inhibition of two neurons with two fast and two slow variables. This

model produces solutions containing many subtle features that span time scales. In

particular, families of periodic orbits in this system encounter canards, trajectory

segments that follow unstable portions of the slow manifold. There are several ways

in which canards form, corresponding to different bifurcations in the singular limit

of the system. We have displayed four of these: two types of “classical” canards
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corresponding to Hopf bifurcations and folded saddles, fold initiated canards corre-

sponding to systems with two saddle-node points and a separatrix joining them, and

saddle initiated canards in which the separatrix of a saddle-node point flows to a

saddle point. Individual periodic orbits may contain several canards. We described

an asymmetric periodic orbit in Sec. 5.2 that contains one fold initiated canard and

two saddle initiated canards.

Our numerical study is incomplete in two fundamental respects. First, we have not

addressed the stability of the periodic orbit described in Sec. 5.2. As we demonstrated

in Sec. 2, the inability of numerical integration algorithms to converge to solutions

with canards does not imply that these solutions are unstable. Numerical integration

algorithms are simply unable to solve initial value problems that contain canards of

substantial length. In contrast, boundary value problem solvers that use continua-

tion methods to track solutions were able to compute complicated solutions containing

multiple canards as shown in Sec. 5.2. Although the boundary value problem solver

that we used (AUTO) was able to compute this orbit with multiple canards, its calcu-

lations of the Floquet multipliers seemed unreliable and thus did not provide stability

information for the orbits. Subsequent work by Lust [Lust, personal communication]

has indicated that more sophisticated algorithms than those used in AUTO are re-

quired to compute the multipliers accurately.

The second incomplete aspect of our numerical study is that we have not dis-

cussed bifurcations of periodic orbits in this singularly perturbed system. AUTO

computes one parameter families of orbits with one varying parameter in the system,

but the bifurcation diagrams and information about Floquet multipliers produced

by AUTO are inadequate to determine the types of bifurcations encountered within

these families. Singularly perturbation theory does not yet provide foundations for

such a study either. There has been little work describing the bifurcations of peri-

odic orbits in singularly perturbed systems beyond the analysis of canard formation

near Hopf bifurcations. Mechanisms for the formation and evolution of canards have

been described [Arnold et al., 1994, Diener, 1984], but these have not been related
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to the bifurcations of periodic orbits in which they appear. We hope that this work

will stimulate further development of such theory. Canards are common in singularly

perturbed systems even if they are difficult to compute numerically.
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Figure 1: A numerically computed solution to Eq.(4) (a = −3.7757344 × 10−4).

The right figure is a closer look at the region where the canard leaves the unstable

part of the slow manifold. The numerical algorithm produces trajectories that jump

erratically left and right from the unstable part of the slow manifold rather than

clearly tracking the stable periodic orbit with a canard. This solution was computed

using the MATLAB subroutine ODE15S, with error tolerances set to 10−11.
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Figure 2: A plot of the fast variable x of (4) versus time demonstrates the erratic

behavior of the solution illustrated in Fig. 1.
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Figure 3: Three two-dimensional projections of the periodic solution of the symmetric

oscillators that exhibit half-center oscillations are portrayed in this figure. The phase

portraits of the oscillators (v1, q1) and (v2, q2) depict the slow segments of the orbit

(thick solid blue lines) and fast segments of the orbit (thick solid red lines) as well

as the qi-nullclines (dot-dashed line), the upper and lower bounds of the vi-nullclines

(thin solid line), and the vi-threshold (vertical dashed line). The (v1, v2) projection

of the solution also contains the fold lines, as defined by Eq. (11).
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Figure 4: Two three-dimensional views of the critical manifold and the periodic so-

lution of the symmetric system give a different perspective on the solution.
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Figure 5: The voltage of each oscillator is plotted against time t for the periodic

solution to the symmetric system. The voltage potential of the first oscillator v1

represented by the solid line and v2 is represented by the dashed line.
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Figure 6: Complicated periodic orbit computed by AUTO for asymmetric oscillators.

The upper figures depict the phase plane for the first oscillator (a) and the second

oscillator (b). The bottom left figure (c) is a blowup of the local minimum of the

nullcline of the first oscillator shown in the upper left. The bottom right figure (d)

depicts the projection of the solution onto the fast variables.
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Figure 7: Three dimensional views of the asymmetric periodic orbit. These figures

include the two dimensional critical manifold, and show that the orbit tracks the

slow manifold when the trajectory is moving slowly (thick intervals of the curve).

The canards are visible in the figure on the left; they are the thick parts of plotted

trajectory that track the slow manifold in the region −0.5 < v1 < 0.5 (between the

lower fold and the upper fold).

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

t

v
1

v
2

Figure 8: Complicated periodic orbit computed by AUTO for asymmetric oscillators.

This orbit has three canards.
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Figure 9: This sequence of plots shows the periodic orbits that arise from a Hopf

bifurcation.
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Figure 10: The first plot (a) illustrates a regular jump off a fold. The second plot

(b) shows the q2 nullcline is very close to the fold, and a canard is beginning to form,

and in (c) there is a longer canard.
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Figure 11: Solutions to (14), the model system for the fold initiated canard, with

ε = 0.01. The heavy line is the critical manifold y = x2.
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Figure 12: A sequence of trajectories that show the formation of a fold initiated

canard. The labeled curves are small parts of larger periodic orbits; we only show the

region of each plot that is relevant to the formation of canards. The phase of each

orbit has been chosen so that the large jump in v1 occurs at t ≈ 1. Orbit (1) does

not have a canard. Orbits (2), (3) and (4) have canards, and the part of the orbit

that tracks the slow manifold is successively longer in each.
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Figure 13: A sequence of trajectories that show the formation of a fold initiated

canard. The labeled curves are small parts of larger periodic orbits; we only show

the region of each plot that is relevant to the formation of canards. The phase of

each orbit has been chosen so that they are all making approximately the same fast

transition at t = 0. Orbits (1) and (2) do not have canards, but the fast transition

of (2) ends near the fold. The fast transition of (3) ends very close to the fold and

shows the beginning of a canard. Orbit (4) shows a significant canard, in which the

orbit tracks the unstable part of the slow manifold out to t ≈ 0.02.
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Figure 14: A saddle initiated canard. The trajectory remains near the saddle from

t ≈ 1 × 10−3 to t ≈ 3 × 10−3.

The layers show the directions field of the fast subsystem.
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Figure 15: A saddle initiated canard. This is the same plot as Fig. 14, but viewed

from above, looking down on the (v1, v2) plane.
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