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Chapter 1
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Mathematics Department
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Ithaca, NY 14853

1.1 Introduction

In keeping with the spirit of the Colston conference on Nonlinear Dynam-
ics and Chaos, this chapter emphasizes ideas more than details, describing
my vision of how the bifurcation theory of multiple time scale systems
will unfold. Multiple time scale dynamical systems are rife with compli-
cated phenomena. The subject has a complicated history that interweaves
three different viewpoints: nonstandard analysis, classical asymptotics and
geometric singular perturbation theory. My perspective is decidedly geo-
metric but draws upon asymptotic analysis, recognizing the fundamental
contributions first expressed in the language of nonstandard analysis. The
success of dynamical systems theory in elucidating patterns of bifurcation
in generic systems with a single time scale motivates the goal here, namely
to extend this bifurcation theory to systems with two time scales. There
are substantial obstacles to realizing this objective, both theoretical and
computational. Consequently, the final shape that the theory will take is
still fuzzy.

It may seem strange to talk about computational barriers to a math-
ematical theory, so I give some explanation for this. Much of the progress

1 Research partially supported by the Department of Energy and the National Science
Foundation.
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in dynamical systems theory throughout its history has been inspired by
close examination of examples. This has been the case even before the
widespread use of computers to study dynamical systems. As an early
instance of an example involving multiple time scales, the concept of re-
laxation oscillations was introduced by van der Pol in the context of the
equation that bears his name. Though the analysis in his paper is restricted
to this single system, there is a clear statement that the idea of relaxation
oscillation applies to a broad class of multiple time scale system. In recent
decades, computer studies of models have been one of the foundations for
the creation of new theory. Computer simulation and analysis enables ex-
tensive studies of model systems. Work on such systems as quadratic maps,
the Henon mapping, the standard map, the Lorenz system and Duffing’s
equation has been crucial in developing intuition about general properties
of dynamical systems. General theory has been based upon what has been
learned from these examples, in some cases incorporating computer proofs
to establish facts that are not readily proved otherwise. In the realm of mul-
tiple time scale systems, the strategy of working from computer studies has
been less prevalent than in other areas of dynamical systems theory. This
is due partly to the failure of “standard” numerical integration algorithms
to resolve important qualitative properties of multiple time scale systems.
This failure is not only a consequence of the long times required to resolve
the fast time scales in a system with two time scales, but also to the extreme
instability and disparity of scales in the phase and parameter spaces that
we encounter when studying these systems. Asymptotic analysis of local
phenomena in multiple time scale systems demonstrates that the theory is
subtle, frequently involving quantities that scale exponentially with the ra-
tio of time scales. Consequently, our understanding of the phenomenology
of multiple time scale systems is not yet at the level of our understanding
of other important classes of dynamical systems. For example, much less
is known about bifurcations of the forced van der Pol equation than the
bifurcations of the Lorenz system, even though the van der Pol system has
a much older heritage, including the monumental work of Cartwright and
Littlewood that established the existence of chaotic dynamics in dissipa-
tive dynamical systems. Thus, I suggest that the development of better
computational methods for studying multiple time scale systems is needed
to help create more mathematical theory.

Bifurcation theory of dynamical systems classifies bifurcations by codi-
mension and describes their unfoldings. The primary objects of interest are
families of C" vector fields that depend upon k parameters. The theory
examines dynamical phenomena that are persistent, meaning that C® per-
turbations of the family exhibit the same phenomenon. If a phenomenon
occurs persistently in a k£ parameter family but not in k£ — 1 parameter
families, then we say that it has codimension k. This definition gener-
alizes the usage of codimension in singularity theory but is imprecise in
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this setting. Since formal definitions of the concept of codimension are
complicated, I shall focus upon phenomenology here. We want to have a
good understanding of a rich set of examples before attempting to formu-
late a comprehensive, rigorous theory. In the simplest cases, codimension
k bifurcations occur on a manifold of codimension k in the space of C”
vector fields. Equivalently, in these cases there will be a set of k defining
equations for the bifurcations.

An unfolding of a codimension k bifurcation is a k parameter family
that contains the codimension & bifurcation in a persistent way. The term
unfolding also refers to a description of the dynamics within such a k pa-
rameter family. The usefulness of bifurcation theory is due in part to the
structural stability properties of unfoldings. However, those results come
after our main task here, determining the unfoldings themselves. The local
structure and existence of normal forms for multiple time scale systems has
been studied both using asymptotic [10, 20] and geometric methods [1, 14].
Apart from the analysis of canards in the van der Pol model [7], little at-
tention has been given to bifurcation in this analysis. We emphasis here
periodic orbits, especially relaxation oscillations in which the periodic
motions include segments that alternately evolve on the slow and fast time
scales. Bifurcations of relaxation oscillations add a new set of issues to
those that have been addressed for multiple time scale systems. Theory
formulated for systems with a single time scale is still valid, but there are
enormous distortions in the unfoldings of systems with two time scales com-
pared to those of single time scale systems. As we remarked above, this
distortion can be sufficiently extreme that software designed for single time
scale systems is unable to compute important qualitative aspects of these
unfoldings. Instead of tackling the bifurcations of relaxation oscillations
directly, we concentrate on the slow-fast decomposition of trajectories.
Analyzing this decomposition in terms of transversality properties enables
us to gain insight into the bifurcations.

1.2 Definitions and Background

We study slow-fastsystems in this paper that are written in the form

ex = f(xv y)

g =g(z,y) (L)
' = f(x,y)
Y =eg(z,y) (12

Here z € R™ are the fast variables and y € R™ are the slow variables. In
the limit € = 0, system (1.1) becomes a system of differential algebraic
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equations (called the reduced system) on the slow time scale and system
(1.2) becomes a parametrized family of differential equations (called the
layer equations ) on the fast time scale. For fixed y, the equations & =
f(z,y) are a fast subsystem. We limit our attention in this paper to
systems in which the attractors of the fast subsystems are all equilibria.
In this case, we say that the slow-fast system has no rapid oscillations.
The critical manifold of the slow-fast system is the set of solutions of
f(x,y) =0in R™*™.

In slow-fast systems with no rapid oscillations, trajectories approach
an e-neighborhood of the critical manifold on the fast time scale, and then
move inside this neighborhood on the slow time scale. This leads us to ex-
pect that as e — 0 the limit of a trajectory with a specified initial condition
will be a finite union of trajectories of fast subsystems and curves that lie on
the critical manifold. The curves on the critical manifold are themselves
trajectories of a system of differential equations called the slow flow of
the system. This image is made more explicit by several general theorems
about the dynamics of slow-fast systems near their critical manifolds. We
recall some of these results here, omitting details.

The first result is that the critical manifolds of generic slow-fast sys-
tems are indeed manifolds. This is a corollary of the Transversality The-
orem, stating that the regular values of a a mapping f : R — R™
form a set of second Baire category. For generic systems (1.1), zero is a
regular value of f and its inverse image for f is a manifold of dimension
n. However, note that generic one parameter families of slow-fast systems
may encounter parameters for which there are singularities of the critical
manifold since the rank deficient linear maps A : R™*" — R™ form a
subset of codimension n + 1.

Projection 7, of the critical manifold onto the space of slow variables
plays a special role in the theory. At regular points of s, we can solve the
equation f(z,y) = 0 implicitly to obtain a locally defined function z(y)
whose graph is an open region of the critical manifold. The equation y =
g(z(y),y) then defines a vector field on the critical manifold that is called
the slow flow of the slow-fast system. While the slow-fast system is not
tangent to the critical manifold, the slow flow often yields an approximation
to the flow on a nearby invariant manifold, called a slow manifold (or
true slow manifold). Existence of the slow manifold and convergence of
trajectories of the slow-fast system on the slow manifold to those of the
slow flow on the critical manifold was proved by Tikhonov [20] in the case
of attracting slow manifolds and by Fenichel [8] in the hyperbolic case. The
slow manifolds are not unique, but rather consist of a collection of slow
manifolds that lie within a distance that is O(e~%/¢) from one another.
The distance between the slow manifolds and critical manifold is O(e).

At singular points of the projection ms of the critical manifold, we
cannot expect the slow flow to be defined. Consider the following system



Definitions and Background 5

with one slow and one fast variable that is a standard example of a slow-fast
system with a fold in its critical manifold:

ek =y + a2

J=1 (1.3)
At the fold point (z,y) = (0,0), the equation y = 1 is incompatible with
the algebraic equation y = —x? obtained by setting ¢ = 0. This is an-
noying, but doesn’t seem like a big obstacle to understanding the reduced
system. However, when the critical manifold of a slow-fast system is two
dimensional, new phenomena occur that prompt further analysis. This is
illustrated by the system

e =y + a2
gy =ax+ bz (1.4)
z=1

Here the critical manifold is defined by y = 2 and the fold curve is defined
by x =y = 0. At points where bz < 0, the slow flow is pointing toward
the fold curve on the two sheets of the slow manifold. Where bz > 0, the
slow flow is pointing away from the fold curve on the two sheets of the
slow manifold. At the origin, there is a transition. To study this transition
more carefully, we rescale the slow flow so that it has a continuous extension
across the fold curve. We can use (z, z) as a regular system of coordinates
near the fold. We differentiate the algebraic expression i+ 22 appearing in
the reduced system of (1.4) to obtain § = —2x& for motion of the reduced
system on the critical manifold. We then replace y by —2zz in the slow
flow equations. Rescaling the resulting equations by —2z yields the system

T =ax + bz
. (1.5)
z= -2

This rescaled slow flow is clearly defined across the fold curve. It has
the same trajectories as the slow flow except that the direction of the
trajectories is reversed in the half plane x > 0. The origin is an equilibrium
point of this system, called a folded equilibrium. Folded equilibria occur
at the transition for motion in the slow flow toward a fold to motion away
from the fold. Folded equilibria in systems with two dimensional slow
manifolds are classified by the type of equilibrium in the rescaled system,
so that we speak of folded nodes, foci and saddles.

In the case of folds for the system (1.3) with one slow and one fast
variable, the geometry of the slow-fast system for € > 0 is evident: when
trajectories reach the fold, they jump along a fast segment. With the
scaling of variables © = e(1/3X; y = @)Y, ¢t = /3T, ¢ disappears
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from the system 1.3. Thus, the geometry of the flows for different values of
¢ are all qualitatively the same, with features that scale as indicated by the
coordinate transformation. Solutions of the equivalent Riccati equation
i =t + 22 have been studied in terms of special functions [20]. There is a
single solution that remains close to the parabola y + x? = 0 with z > 0
for all time ¢t < 0. Figure 1.1 shows a phase portrait of the flow past the
origin in system (1.3).

Figure 1.1. The flow in a neighborhood of the origin for the system (1.3). The
critical manifold is the parabola drawn with a thick line.

With two slow variables, the geometry of the solutions of (1.4) that
pass near a folded singularity is much more complicated than that of sys-
tem (1.3). In the case of a folded saddle, Benoit [3] proved that there are
two algebraic solutions of (1.4) that remain close to the critical manifold
for all time. These solutions have a hyperbolic structure and hence sta-
ble and unstable manifolds that divide the phase space into regions with
similar asymptotic properties. It is noteworthy that one of the algebraic
solutions passes from the stable sheet of the slow manifold to the unstable
sheet. There are solutions in the unstable manifold of this trajectory that
flow along the unstable sheet of the slow manifold and then leave the slow
manifold, with a fast segment that either ends back at the stable sheet of
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the slow manifold or goes to infinity in finite time. Solutions that flow along
the unstable sheet for a finite period on the slow time scale are called ca-
nards. Typically, the regions of initial conditions that give rise to canards
are exponentially thin; i.e. of width O(e=¢/#) for a suitable positive con-
stant ¢ that is independent of €. The reason for this behavior is the fast
instability of the slow manifold. This instability is also an impediment to
numerical computation of the canards. Deviations from the slow manifold
are amplified exponentially on the fast time scale, so that even tiny per-
turbations on the order of round-off errors are quickly magnified into large
separations of numerically computed trajectories from the canards.

Part of our message in this lecture is that canards play a central role
in the bifurcations of relaxation oscillations. In the singular limit, changes
in generic families of periodic orbits appear to be discontinuous. In many
of these situations, canards form the “connecting glue” that spans these
discontinuities. There are several mechanisms that lead to the formation
of periodic orbits in generic one parameter families of slow-fast systems. In
the next two sections, we discuss some of these, illustrating how the slow-
fast decompositions of trajectories gives a starting point for the analysis
of periodic orbits with canards. We end this section with comments about
two open problems.

The characterization of canards that are associated with folded nodes
in systems with two dimensional critical manifolds has not carried out fully.
Benoit [3] proved the existence of canards near folded nodes, but he was
unable to determine fully what the set of canard trajectories are in this case.
Folded nodes present another problem for the general theory of relaxation
oscillations in addition to the question of characterizing the canards. On
the critical manifold, there is an entire open region of trajectories that flow
to the folded node under the slow flow. Since the subsequent evolution of
these trajectories from the folded node may involve canards beginning at
the folded node, it is possible that there may be open regions of relaxation
oscillations possessing canards in systems with two slow variables that do
not collapse in the singular limit. I do not know of any examples that have
been studied carefully to determine the properties of the trajectories that
pass through regions with folded nodes. Relaxation oscillations passing
through a folded node occur in the forced van der Pol system (described in
Section §5 below) but the parameter regions and scale on which the relevant
dynamics occur may make this a difficult example to analyze numerically.

I am unaware of any systematic studies of the slow-fast dynamics in
systems with n > 2 slow variables. The critical manifolds of such systems
are n-dimensional and the folds of their critical manifolds are (n — 1)-
dimensional. Using singularity theory, we can introduce coordinates so that
a regular fold is given by the equations y; + 22 = 0;2; = 0,1 < i < m.
Following the argument described above, we use coordinates (z1,y2, - - ., Yn)
near the fold and use the relation 31 = 2x147 to obtain the slow flow in
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this coordinate system. Rescaling the system by the factor 2z, we obtain
a rescaled vector field on the critical manifold that has equilibria along the
(n — 2)-dimensional submanifold defined by x1 = ¢1(0,y) = 0, where ¢1
is the right hand side of the equation for y; in these coordinates. What
happens near the folds of these generic slow-fast systems? I believe that
little is known about such systems.

1.3 Slow-fast Decompositions

Let v be a continuous family of trajectories in R™*™ for system (1.1) de-
fined for € > 0 small. For € = 0, we understand that a trajectory is a union
of trajectories of fast subsystems and the slow flow. A slow-fast decom-
position of v is defined by a partition of v that depends continuously on &
with the property that ~q is partitioned into segments that lie in the critical
manifold and segments that lie in its complement. To discuss the decom-
position, we introduce some more terminology. First, we will continue to
use the term trajectory to refer to a family of the type described above: a
trajectory of a slow-fast system is a continuous family ~y. that is (1) smooth
for each e > 0 and (2) solves the slow-fast equations when € > 0. The re-
duced trajectory is the restriction of a trajectory to € = 0. We partition
a reduced trajectory into slow segments that lie on the critical manifold
and fast segments on which the limiting differential-algebraic equation
does not vanish. Without additional assumptions, there is little reason to
believe that trajectories with finite slow-fast decompositions will exist. We
approach this issue by seeking to characterize the settings in which we find
stable relaxation oscillations whose slow-fast decomposition is stable under
perturbation.

When a trajectory arrives at a fold that terminates a slow segment, the
fold point is a non-hyperbolic equilibrium point of the fast subsystem. The
fast segment originating at this equilibrium will lie in its (weak) unstable
manifold. The only circumstance in which we expect there to be a unique
trajectory of the fast subsystem with this equilibrium point as its c-limit
set is the case in which the fold point is a nondegenerate saddle-node with
spectrum in the (closed) left half plane. (I am unaware of any systematic
study of examples of relaxation oscillations in which the fold points have
have higher dimensional unstable manifolds.) So we confine ourselves to
this setting and make three assumptions about the relaxation oscillations
that will be at the beginning of a family:

(i) The ends of the slow segments are fold points of the critical manifold
with eigenvalues for the fast subsystem that are non-positive.

(ii) The ends of the fast segments are regular points of a stable sheet of
the critical manifold. and

(iii) The slow flow is transverse to the umbra of the fold.
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We explain the third assumption in more detail. The first implies that the
fold points near the trajectory are saddle-nodes of their fast subsystems
with one dimensional weakly unstable manifolds. From each of these fold
points, there is a unique trajectory with the fold point as its a-limit set.
We call the w-limit sets of these points the umbra of the fold. The umbra
is a codimension one submanifold of the critical manifold since we assume
that the w-limit sets of all trajectories are equilibrium points of the fast
subsystems. If the slow flow is tangent to the fold, we shall say that there
is an umbral tangency. We shall call a relaxation oscillation that satisfies
properties (1-3) above a simple relaxation oscillation. The following theo-
rem is an immediate consequence of results of Levinson [16] analyzing the
properties of trajectories that jump at regular fold points.

Theorem: Hyperbolic periodic orbits that are simple relaxation os-
cillations have slow-fast decompositions that vary continuously with per-
turbation.

For trajectories that satisfy the first two assumptions above, we can
augment the slow flow of system (1.1) to obtain a hybrid system that
represents the limit behavior of trajectories as ¢ = 0. Hybrid dynamical
systems [2] are ones in which there are

e a discrete set of bounded manifolds and flows on these manifolds, and
e mappings from the manifold boundaries into the manifolds

Here the transition maps from the manifold boundaries will be the projec-
tion of a fold along the fast subsystem to its umbra. So the hybrid system
that we obtain consists of the stable sheets of the critical manifold with
its slow flow together with the maps of regular folds on the boundary to
their umbra. The definition of this hybrid system will break down at folded
equilibria, at trajectories whose fast segments do not end in the interior of
a stable sheet of the critical manifold, and at boundary points more compli-
cated than a fold. Return maps for this hybrid system need not be locally
invertible in the neighborhood of trajectories with umbral tangencies. In
Section §5, we illustrate these ideas with the forced van der Pol system as
a model example.

1.4 Degenerate Decomposition and Bifurcation

This section examines generic mechanisms by which a one parameter family
of stable, simple relaxation oscillations can reach a parameter value where
its slow-fast decomposition becomes degenerate. We examine the slow-fast
decomposition of the reduced periodic orbit and use transversality theory
to determine the types of degeneracies that will persist with smooth per-
turbations of a one parameter family. Persistence implies that the reduced
orbits have at most one degeneracy in their slow-fast decomposition. De-
generacies that may occur include the following:
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(i) A fast segment ends at a regular fold point. (There are two cases that
differ as to whether the slow flow approaches or leaves the fold near
this point.)

(ii) A slow segment ends at a folded saddle.

(iii) A fast segment encounters a saddle point of the fast subsystem.

(iv) There is a point of Hopf bifurcation at a fold.

(v) A slow segment ends at a cusp.

(

vi) The reduced system has a quadratic umbral tangency.

This list is incomplete, not taking account of reduced trajectories that
contain folded nodes. We leave as an open question the formulation of a
classification of codimension one degenerate decompositions that contains
all of the degeneracies that occur in generic families of simple relaxation
oscillations. For each of the cases on the list, we want to determine what
the presence of a degenerate decomposition implies about nearby canards
and bifurcations and to analyze asymptotic properties of the families of
periodic orbits related to the degenerate decomposition. There are several
levels on which this analysis can be performed. The least precise level is to
introduce specific models for portions of the flow and base the analysis upon
these models. The most elementary descriptions of homoclinic “Silnikov”
bifurcation are a well known example of this type of analysis [13]. Our
ultimate goal is to give a rigorous analysis. In the case of Hopf bifurcation
at a fold, Dumortier and Roussarie 7] have given a thorough analysis of
one version of the van der Pol system.

Kathleen Hoffman, Warren Weckesser and I have begun to formulate
analyses for some of the cases on the above list. I give here the barest
sketch of the case in which there is a fast segment that begins at a fold and
ends at a fold with slow trajectories flowing away from the fold. This type
of degenerate decomposition occurs in a model of reciprocal inhibition of a
pair of neurons studied by Guckenheimer et al. [11].

Figure 1.2 is a three dimensional plot of the slow manifold and two
periodic orbits of the family we now describe. We work with a system
that has 2 slow variables and 1 fast variable. We assume that the critical
manifold, shown shaded in the figure, has three non-intersecting fold curves
and is independent of the parameter in the family. The fold curves are
labeled 1,2,3 and plotted as dotted lines. The fast variable is x; the axes
are labeled in the figure. The projections of the first and third fold curves
onto the y — z plane intersect transversally. Cross-sections of the critical
manifold orthogonal to the z axis are quartic curves with two local maxima
(on folds 1 and 3) and a local minimum (on fold 2). The fast flow is assumed
to be in the negative x direction for points above the critical manifold and
in the positive x direction for points below the critical manifold. Folds 2
and 3 are in-folds with trajectories of the slow flow moving into the folds;
fold 1 is an out-fold with trajectories of the slow flow leaving the fold. The
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fold curves partition the critical manifold into four sheets, that are labeled
a, b, ¢, d with increasing x. Sheets b and d of the critical manifold are stable,
sheets a and ¢ are unstable. The slow flow on sheets a and b is downwards,
the slow flow on sheet d is upwards, and the slow flow on sheet ¢ changes
direction from downwards along fold 2 to upwards along fold 3.

Canard ,“.

05

\ Sheetd

Figure 1.2. Schematic representation of a system having a periodic orbit with
a degenerate slow-fast decomposition of the type in-fold — out-fold.

Assume that at an initial value of the parameter, there is a stable
periodic orbit with two slow segments on sheets b and d and two fast
segments, the first from fold 3 to sheet b and the second from fold 2 to
sheet d. In the figure, this is the smaller closed curve drawn with solid
lines. The orbit is drawn so that the slow flow is parallel to the x — y
plane. Assume further that, with the changing parameter, the orbits move
in the direction of decreasing z. At a critical value of the parameter, the
fast segment beginning on fold 3 hits fold 1 instead of the interior of sheet
b. This is the location of a degenerate decomposition. The continuation
of the family from the degenerate decomposition will have periodic orbits
with canards lying on sheet a. The longer closed curve in the figure shows
one of these. The canard that is shown terminates at a fast segment that
connects sheet a with sheet b. In the periodic orbit, the canard is followed
by a slow segment along sheet b, a fast segment from fold 2 to sheet d, a
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slow segment on sheet d and finally the fast segment from fold 3 to fold 1.

Using models for different portions of the flow, we describe approxi-
mations of the return maps for the canard periodic orbits in this family.
The return map is a composition of transition maps along slow and fast
segments. Introduce uniformizing coordinates near fold 1 at the end of the
fast segment from fold 3 to fold 1:

2

EL=Yy—1x
y=1 (1.6)
=z

(Here, (z,y.z) are different coordinates from those depicted in the figure,
but z is still the direction of fast motion.) In these coordinates, model the
trajectories originating at fold 3 as the plane parametrized by (v,u,au).
This set of trajectories has umbra on sheet b along the curve (z,y,2) =
(v/u,u,au), u > 0. In (z,z) coordinates on the critical manifold, z = 22 /a
on the curve of incoming trajectories from fold 3. The slow trajectories
of the model system (1.6) lie along curves z = 2% + ¢ for varying c. For
points (v/u, au), c(u) = au — %u3/2. On the critical manifold, these points
reach = 1 along the slow flow with z = 2 + au — v*2?. The leading
order term is regular, but the map is not C2. The orbit with a degenerate
slow-fast decomposition may still be stable.

The canards for this family occur along sheet a, extending the slow

flow trajectory with z = %m?’. If a canard jumps back to sheet b with
x = —xq > —1, then the value of z along the jump is z4 = —%mfl and
the value of ¢ is ¢q = —%mz. This arrival point on sheet b reaches z = 1
with z = % — %xz Depending upon the sign of a, the intersections of

the trajectories initiated by these canards overlaps the set of trajectories
originating at (x,y,2) = (Vu,u,au), u > 0 or is disjoint from this set of
trajectories.

Beyond the “scaling region” of the model equations (1.6), trajectories
that remain near the canard to reach x = x4 come from an “exponentially
thin slab” along sheet a of the critical manifold that flows across fold 3.
Let y = y. give the intersection of the infinite canards of the model system
(1.6) with = 1. (This is a set parallel to the z axis since the normal form
equations for & and y are independent of z.) Denoting ¢; = O(1) the time
of a jump from the canard starting near fold curve 1, the difference of its
y coordinate from y. is y, =~ exp(—L/¢€) where L is given by an integral of
the fast eigenvalue along the canard trajectory to the terminal time of the
canard. The phase space coordinates of the end point of the canard are
estimated by y; = ye +yp — £ Iny,, z; = /75 and z. = (—+ Iny,)3/2. The
derivative of (x;,y;, z;) with respect to y, has order €¢/y, = eexp(—L/e)
whose magnitude is large. Thus the formation of the canards leads to
violent stretching of the return map for the cycles.
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Assuming that the orbit with a degenerate decomposition is stable,
there are now four cases to analyze. These are determined by the sign of
a and orientation of the reduced return map for the periodic orbit with
degenerate decomposition. One case yields a monotone return map with a
single saddle-node and one case yields a single period doubling. One of the
two remaining cases yields a period doubling cascade and chaotic invariant
sets. The final case begins with a stable, orientation reversing return map
at the degenerate orbit but then changes orientation as the canards develop
and there is a saddle-node bifurcation. In all of these cases, the bifurcations
of the original periodic orbit occur as the canards begin to develop, not with
the O(e) separation found in the case of Hopf bifurcation and the canard
formation in the van der Pol system [7].

This sketch of how relaxation oscillations bifurcate close to a degen-
erate decomposition with a fast segment joining two folds is far from a
complete or rigorous analysis. Filling in details of that analysis is one of
the places that we go from here. Some of the other cases on the list of
degenerate decompositions have been studied already, but there is hardly
a coherent theory of codimension one bifurcation of stable relaxation os-
cillations analogous to what we know about bifurcations of systems with
a single time scale. The cases of periodic orbits passing through a folded
saddle and umbral tangencies occur in the forced van der Pol system, de-
scribed in the next section. Our discussion of this example gives the flavor
of how the study of the reduced systems and the degeneracies in the slow-
fast decompositions of their trajectories gives new insight into the dynamics
of multiple time scale dynamical systems.

1.5 The Forced van der Pol Equation

The forced van der Pol equation can be written in the form

ET=y+x— x—B
¥ = —x + asin(276) (1.7)
0=w

Here 6 is a cyclic variable on the circle S* that is normalized to have length
1 and we restrict our attention to the regime in which ¢ > 0 is small.
This system was introduced and studied by van der Pol in the 1920’s.
He introduced the term relaxation oscillations to describe the solutions of
the unforced system [25]. A generalization of the van der Pol equation,
the Fitzhugh-Nagumo system [22] has been widely studied as a model of
nerve impulses. The literature on the dynamics of the forced van der Pol
system is dominated by the work of Cartwright and Littlewood during the
period approximately 1940-55 [4, 5, 17, 18]. Recently, Kathleen Hoffman,
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Warren Weckesser and I have begun to study this system further, using the
conceptual framework described in previous sections [12]. In particular,
we are interested in characterizing the bifurcations of periodic orbits and
other invariant sets that take place in this system. Apart from a couple
of numerical studies [9, 19] at values of ¢ that are large enough to make
tracking canards feasible with initial value solvers, little has been done in
this direction. Earlier work has been based primarily upon analysis of the
return map to a section of constant #. In contrast, we focus upon the slow-
fast decomposition of trajectories. These are readily determined since the
fold curves are given by x = +1, y = F2/3 and the fast subsystems flow
parallel to the z-axis. Fast segments beginning at the fold with z = +1
return to the critical manifold at * = F2. In our view, the slow flow
provides a scaffolding that will enable a comprehensive understanding of
the dynamics for the system.

The rescaled slow flow on the critical manifold y = z3/3 — x has a
global representation in (x, ) coordinates as

' = —z + asin(270)

0 =w(x®—1) (1.8)
The equilibrium points of this system can be easily determined and its
phase portraits produced numerically. Figure 1.5 shows a representative
phase portrait for parameter values a = 1.5, w = 1. When 0 < a < 1, the
slow flow has no folded singularities. When a < 1, there are four folded
singularities, two on each circle of the fold curve. The limits of the simplest
relaxation oscillations in the system correspond to closed curves obtained
from initial conditions that begin on the circle x = 2, flow to x = 1, connect
to x = —2 along a segment 6 = const, flow from there to x = —1 and then
connect to the initial point with another segment 8 = const. (There are
also simple relaxation oscillations for some parameter values that have more
than two slow segments and more than two fast segments.) All of these
relaxation oscillations are stable in the fast directions of the flow; some are
also stable along the slow manifold and some are unstable along the slow
manifold.

We investigate the simple relaxation oscillations in more detail by con-
structing the return map to z = 2 for the reduced system. The analysis
is made easier by exploiting the symmetry S(z,y,6) = (—x,—y,0 +0.5) of
the slow-fast system and its restriction to the critical manifold and rescaled
slow flow. The half return map H is defined by following the slow flow from
x =2 tox =1, jumping from x = 1 to x = —2 and applying the by sym-
metry. If (2, 6p) flows to (1,6;1) under the slow flow, then H(6y) = 61 + 0.5(
mod 1) When a > 1, the map H is discontinuous at points lying in the
stable manifold of the folded saddle. The limit values of H at the two sides
of the discontuity are 65 + 0.5 and 6,, + 0.5 where the folded saddle has
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Figure 1.3. The phase portrait of the rescaled slow equation for the forced van
der Pol equation with a = 4 and w = 1.55. The circles x = £1 and =z = +2
are drawn together with stable and unstable manifolds of the folded saddles.
The stable manifolds have negative slope at the saddle points and the unstable
manifolds have positive slope.

(z, ) coordinates (1,6,) and (1,0,) is the (first) intersection of the unsta-
ble manifold of the folded saddle with z = 1. The map H has one local
maximum and one local minimum when a > 2. These occur at the points of
umbral tangency (2, & sin™"(2/a) and (2,0.5 — 2 sin~'(2/a) where & =0
in the slow flow.

Fixed points of H correspond to trajectories with two fast and two
slow segments, the fast and slow segments each forming a symmetric pair.
Our investigations of these fixed points show two primary types of bifurca-
tions: saddle-nodes and “homoclinic” bifurcations where the fixed points
approach a discontinuity of H. The saddle-node bifurcations do not involve
degenerate decomposition of periodic orbits in a direct way. They corre-
spond to saddle-nodes of periodic orbits in which a stable and unstable
periodic orbit of the reduced system coalesce. The second type of bifurca-
tion occurs when the periodic orbits in the slow flow approach heteroclinic
orbits that connect the two folded saddles with two connecting segments
that are related by the symmetry. There are two forms of heteroclinic or-
bit that differ as to whether the connecting orbits contain a segment that
follows the unstable manifolds of the folded saddles or not. The periodic
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orbits that contain segments lying close to the unstable manifolds of the
folded saddle occur to the right of the stable manifolds of the folded saddle.
There are additional distinctions that can be made that reflect the types
of branches of the half return map that contain points from the homoclinic
orbits.

Analysis of the half return map H does not address directly the issues
of canards and bifurcations associated to degenerate decompositions that
we discussed in previous sections. The discovery of chaotic dynamics in
the forced van der Pol system by Cartwright and Littlewood was a seminal
event in the history of dynamical systems [4]. Their discovery was based
upon results of Birkhoff in the case that there are two fixed points of H
whose orbits in the reduced system have different periods. The subsequent
analysis of Littlewood [17, 18] makes it evident that the chaotic trajectories
involve canards.

We have begun to extend our analysis of the reduced system and its
half return map to take account of the limiting behavior of canard solutions
in the forced van der Pol system. Figure 1.4 shows a plot (a = 4, w = 1.55)
that allows us to determine the limiting position of canards as ¢ — 0
and the subsequent trajectories to their next return(s) with the circle z =
2. Trajectories that reach the folded saddle at = 1 along its stable
manifold (dashed line) can continue past the folded saddle along the stable
manifold (dotted line) to smaller values of x. (Recall that our rescaling of
the slow flow reversed time in the strip |z| < 1.) In the three dimensional
phase space, the canard trajectories follow the unstable sheet of the critical
manifold, from which they can then jump to one of the two stable sheets of
the critical manifold. The jumps are parallel to the x axis, and their images
on the two stable sheets are also drawn as dotted lines. These images act
like the umbra of fold curves in that they are the initial points for slow
segments of the trajectories that begin on the canards. The canards that
jump up to x > 1 have trajectories that next reach the circle x = 1 in the
interval between 6, (at the end point of the dash-dotted unstable manifold
of the folded saddle) and the intersection point of the stable manifold with
x = 1. From z = 1, these trajectories jump to z = —2. One of them
lands in the stable manifold of the lower folded saddle (dashed line in the
lower half of the figure). The extension of the trajectory jumping from the
unstable manifold of the (upper) folded saddle is shown as a dash-dotted
line. The canards that jump down to x < —1 initiate slow segments that
flow to x = —1 and then jump back to x = 2. One of these trajectories lands
in the stable manifold of the upper folded saddle at its third intersection
with the circle z = 2. The trajectories at the endpoints of the umbra from
the canards that jump down are potted as solid lines.

Figure 1.5 plots the value of § at returns of the canards described
in the previous paragraph to x = 2. The dotted line is at a (integer
translated) value of the third intersection of the stable manifold of the
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Figure 1.4. Information about canards in the forced van der Pol equation with
a = 4 and w = 1.55. Canard trajectories at the upper folded saddle follow the
dotted stable manifold down to the right and jump vertically up or down to
one of the two other dotted curves. The unstable manifold of the upper folded
saddle and its prolongation after jumping from x = 1 to * = —2 is drawn as a
dash-dotted curve. Branches of both folded saddles are drawn as dashed curves.
The solid curves in the lower half of the figure begin at the ends of the canard
umbra shown as the lower dotted curve.

folded saddle with x = 2. Its intersection with the solid line comes from
a canard that jumps down, flows to x = —1 and then jumps to a point
in the stable manifold of the upper folded saddle. The vertical segment
of the graph comes from the canard that jumps up, flows to £ = 1 and
then jumps to x = —2, landing in the stable manifold of the lower folded
saddle. The points in this region will follow canards symmetric to the
ones described above. In particular, there will be one canard that jumps
down, flows to x = —1 and then jumps to z = 2, landing in a point of
the stable manifold of the upper saddle. This description of the evolution
of canards leads to the identification of the solenoid [23] (suspension of a
horseshoe) discovered by Cartwright and Littlewood. A cross-section to the
stable manifold of the folded saddle will first flow along the slow manifold
becoming compressed in the transverse direction to the slow manifold. A
small portion will then follow canards and the evolution described above,
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the transverse direction to the vector field inside the slow manifold being
stretched along the canards. Two portions of these canards will return to
the upper sheet of the slow manifold, passing through the original cross-
section to the stable manifold of the folded saddle. The return map of this
cross-section appears to have a horseshoe. We end with a conjecture and a
question about this description of chaotic dynamics in the forced van der
Pol equation:

Conjecture: For the parameter values a = 4, w = 1.55 and € > 0 suf-
ficiently small, the nonwandering set of the forced van der Pol equation
(1.7) counsists precisely of two stable periodic orbits and and a hyperbolic
solenoid that is the suspension of a full shift map on two symbols.
Question: What are the bifurcations that lead to the creation and de-
struction of the chaotic trajectories in the forced van der Pol system?

241

221

181

161
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Figure 1.5. The 6 coordinate of returns of canard trajectories to the circle
x = 2 are plotted. vs. their initial 6 coordinate. The steep vertical segment is an
artifact: there is a discontinuity where the trajectories contain segments of the
stable manifold of the lower folded saddle. The dotted line gives the 6 coordinate
for an intersection of the stable manifold of the upper folded saddle with = = 2.
The extreme point at the right of the curve corresponds to the “maximal” canard,
the trajectory that follows the stable manifold of the folded saddle all the way to
its intersection with = 1 before jumping to x = —2.
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