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Abstract

We consider the statistical experiment given by a sample y(1), . . . , y(n) of a stationary
Gaussian process with an unknown smooth spectral density f . Asymptotic equivalence,
in the sense of Le Cam’s deficiency ∆-distance, to two Gaussian experiments with simpler
structure is established. The first one is given by independent zero mean Gaussians with
variance approximately f(ωi) where ωi is a uniform grid of points in (−π, π) (nonpara-
metric Gaussian scale regression). This approximation is closely related to well-known
asymptotic independence results for the periodogram and corresponding inference meth-
ods. The second asymptotic equivalence is to a Gaussian white noise model where the
drift function is the log-spectral density. This represents the step from a Gaussian scale
model to a location model, and also has a counterpart in established inference meth-
ods, i.e. log-periodogram regression. The problem of simple explicit equivalence maps
(Markov kernels), allowing to directly carry over inference, appears in this context but is
not solved here.

1 Introduction and main results

Estimation of the spectral density f(ω), ω ∈ [−π, π] of a stationary process is an im-
portant and traditional problem of mathematical statistics. We observe a sample y(n) =
(y(1), . . . , y(n))0 from a real Gaussian stationary sequence y(t) with Ey(t) = 0 and autoco-
variance function γ(h) = Ey(t)y(t + h). Consider the spectral density, defined on [−π, π]
by

f(ω) =
1

2π

∞X
h=−∞

γ(h)exp(ihω) (1.1)
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where it is assumed that
P∞

h=−∞ γ2(h) <∞. Let Γn be the n×n Toeplitz covariance matrix
associated with γ(·), i.e. the matrix with entries

(Γn)j,k = γ(k − j) =

Z π

−π
exp (i (k − j)ω) f(ω) dω, j, k = 1, . . . , n. (1.2)

Write Γn(f) for the covariance matrix corresponding to spectral density f and note that
y(n) has a multivariate normal distribution Nn(0,Γn(f)). Let Σ be a nonparametric set
of spectral densities to be described below. We are interested in the approximation of the
statistical experiment

En = (Nn(0,Γn(f)), f ∈ Σ) (1.3)

in the sense of Le Cam’s deficiency pseudodistance ∆(·, ·); see the end of this section for a
precise definition. The statistical interpretation of the Le Cam distance is as follows. For two
experiments E and F having the same parameter space, ∆(E ,F) < ε implies that for any
decision problem with loss bounded by 1 and any statistical procedure with the experiment
E there is a (randomized) procedure with F the risk of which evaluated in F nearly matches
(within ε) the risk of the original procedure evaluated in E . In this statement the roles of E
and F can also be reversed. Two sequences En,Fn are said to be asymptotically equivalent if
∆(En,Fn)→ 0.

As a guide to what can be expected, consider first the case where fϑ, ϑ ∈ Θ is a smooth
parametric family of spectral densities. Assume thatΘ is a real interval; under some regularity
conditions, the model is well known to fulfill the standard LAN conditions with localization
rate n−1/2 and normalized Fisher information at ϑ

1

4π

Z π

−π

µ
∂

∂ϑ
log fϑ(ω)

¶2
dω

(Davies (1973), Dzhaparidze (1985), chap. I.3, cf. also the discussion in van der Vaart (1998),
Example 7.17). Consider the parametric Gaussian white noise model where the signal is the
log-spectral density:

dZω = log fϑ(ω)dω + 2π
1/2n−1/2dWω, ω ∈ [−π, π] (1.4)

and note that in the family (fϑ, ϑ ∈ Θ), this model has the same asymptotic Fisher informa-
tion. This is in agreement with the LAN result for the spectral density model, but it suggests
that the above white noise approximation might also be true for larger (i.e. nonparametric)
spectral density classes Σ.

As a second piece of evidence for the white noise approximation in the nonparametric case we
take known results about the approximate spectral decomposition of the Toeplitz covariance
matrix Γn(f). It is a classical difficulty in time series analysis that the exact eigenvalues and
eigenvectors of Γn(f) cannot easily be found and used for inference about f ; in particular, the
eigenvectors depend on f . However for an approximation which is a circulant matrix (denoted
Γ̃n(f) below), the eigenvectors are independent of f and the eigenvalues are approximately
f(ωj) where ωj are the points of an equispaced grid of size n in [−π, π]. If the approximation
by Γ̃n(f) were justified, one could apply an orthogonal transformation to the data y(n) and
obtain a Gaussian scale model

zj = f1/2(ωj)ξj , j = 1, . . . , n (1.5)
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where ξj are independent standard normal. For this model, nonparametric asymptotic equiv-
alence theory was developed in Grama and Nussbaum (1998). Results there, for certain
smoothness classes f ∈ Σ, with f bounded away from 0, lead to the nonparametric version
of the white noise model (1.4)

dZω = log f(ω)dω + 2π
1/2n−1/2dWω, ω ∈ [−π, π], f ∈ Σ. (1.6)

Our proof of asymptotic equivalence will in fact be based on the approximation of the covari-
ance matrix Γn(f) by the circulant Γ̃n(f), cf. Brockwell and Davis (1991), § 4.5. However
we shall see that this tool does not enable a staightforward approximation of the data y(n)

in total variation or Hellinger distance. Therefore our argument for asymptotic equivalence
will be somewhat indirect, involving ”bracketing” of the experiment En by upper and lower
bounds (in the sense of informativity) and also a preliminary localization of the parameter
space.

To formulate our main result, define a parameter space Σ of spectral densities as follows. For
M > 0, define a set of real valued even functions on [−π, π]

FM =
©
f :M−1 ≤ f(ω), f(ω) = f(−ω), ω ∈ [−π, π]

ª
.

Thus our spectral densities are assumed uniformly bounded away from 0. Let L2(−π, π) be
the usual (real) L2-space on [−π, π]; for any f ∈ L2(−π, π), let γf (k), k ∈ Z be the Fourier
coefficients according to (1.1). For any α > 0 and M > 0 let

Wα(M) =

(
f ∈ L2(−π, π) : γ2f (0) +

∞X
k=−∞

|k|2αγ2f (k) ≤M

)
. (1.7)

These sets correspond to balls in the periodic fractional Sobolev scale with smoothness coeffi-
cient α. Note that for α > 1/2, by an embedding theorem (Lemma 5.6, Appendix), functions
in Wα(M) are also uniformly bounded. Define an a priori set for given α > 0, M > 0

Σα,M =Wα(M) ∩ FM .

Consider also a Gaussian scale model (1.5) where the values f(ωj) are replaced by local
averages

Jj,n (f) = n

Z j/n

(j−1)/n
f(2πx− π)dx, j = 1, . . . , n

Theorem 1.1 Let Σ be a set of spectral densities contained in Σα,M for some M > 0 and
α > 1/2. Then the experiments given by observations

y(1), . . . , y(n), a stationary centered Gaussian sequence with spectral density f

z1, . . . , zn, where zj are independent N(0, Jj,n (f))

with f ∈ Σ are asymptotically equivalent.

Let k·kBα
p,q
be the Besov norm on the interval [−π, π] with smoothness index α (see Appendix,

Section 5.3). For the second main result we impose a smoothness condition involving this
norm for the α > 1/2 from above and p = q = 6.
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Theorem 1.2 Let Σ be a set of spectral densities as in Theorem (1.1), fulfilling additionally
kfkBα

6,6
≤M for all f ∈ Σ. Then the experiments given respectively by observations

z1, . . . , zn, where zj are independent N(0, Jj,n (f))

dZω = log f(ω)dω + 2π
1/2n−1/2dWω, ω ∈ [−π, π]

with f ∈ Σ are asymptotically equivalent.

The proof of this result is in the thesis Zhou (2004). The present paper is devoted to the
proof of Theorem 1.1.

In nonparametric asymptotic equivalence theory, some constructive results have recently
been obtained, i.e. explicit equivalence maps have been exhibited which allow to carry over
optimal decision function from one sequence of experiments to the other. Brown and Low
(1996) and Brown, Low and Zhang (2002) obtained constructive results for white noise with
drift and Gaussian regression with nonrandom and random design. Brown, Carter, Low
and Zhang (2004) found such equivalence maps (Markov kernels) for the i.i.d. model on
the unit interval (density estimation) and the model of Gaussian white noise with drift; cf.
also Carter (2002). The theoretical (nonconstructive) variant of this result had earlier been
established in Nussbaum (1996), in the sense of an existence proof for pertaining Markov
kernels. This indirect approach relied on the well known connection to likelihood processes
of experiments, cf. Le Cam and Yang (2000). In the present paper, the result of Theorem 1.1
are of nonconstructive type, using a variety of methods for bounding the ∆-distance between
the time series experiment and the model of independent zero mean Gaussians. Similarly,
the proof of Theorem 1.2 in Zhou (2004) is nonconstructive, but it appears likely in that
a second step, relatively simple "workable" equivalence maps can be found, at least for the
case of Theorem 1.1 related to the classical result about asymptotic independence of discrete
Fourier transforms.

To further discuss the context of the main results, we note the following points.

1. Asymptotic independence of discrete Fourier transforms. Let

dn(ω) =
nX

k=1

exp (−ikω) y(k), ω ∈ (−π, π)

be the discrete Fourier transform of the time series y(1), . . . , y(n). Assume n is uneven and
let ηj be complex standard normal variables. It is well known that for the Fourier frequencies
ωj = 2πj/n, j = 1, . . . , (n− 1)/2 in (0, π), there is an asymptotic distribution

(πn)−1/2 dn(ωj) ≈ exp(iωj)f1/2(ωj)ηj

and the values are asymptotically uncorrelated for distinct ωj , ωk. For a precise formulation
cf. relation (2.12) below or Brockwell and Davis (1991), Proposition 4.5.2. This fact is the
basis for many inference methods (e.g. Dahlhaus and Janas (1996)); see Lahiri (2003) for
an extended discussion of the asymptotic independence. A linear transformation to n − 1
independent real normals and adding a real normal according to (2πn)−1/2dn(0) ≈ N(0, f(0))
suggests the Gaussian scale model (1.5).
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2. Log-periodogram regression. Consider also the periodogram

In(ω) =
1

2πn
|dn(ω)|2 .

Note the equality in distribution
¯̄
ηj
¯̄2 ∼ χ22 ∼ 2ej , where ej is standard exponential. As a

consequence of the above result about dn(ωj), we have for j = 1, . . . , (n− 1)/2

In(ωj) ≈ f(ωj)ej (1.8)

with asymptotic independence. Assuming this model exact and taking a logarithm gives rise
to the inference method of log-periodogram regression (for an account cf. Fan and Gijbels
(1996), sec. 6.4)

3. The Whittle approximation. This is an approximation to −n−1 times the log-likelihood
of the time series y(1), . . . , y(n). In a parametric model fϑ, ϑ ∈ Θ, with multivariate normal
law Nn (0,Γn(fϑ)), computation of the MLE involves inverting the covariance matrix Γn(fϑ),
which is difficult since both eigenvectors and eigenvalues depend on ϑ in general. Replacing
Γ−1n (fϑ) by Γn(1/4π

2fϑ) and using an approximation to n−1 logΓn(fϑ) leads to an expression
LW (f) + log 2π where

LW (f) =
1

4π

Z π

−π

µ
log fϑ(ω) +

In(ω)

fϑ(ω)

¶
dω (1.9)

is the Whittle likelihood (cf. Dahlhaus (1988) for a brief exposition and references). A
closely related expression is obtained by assuming the model (1.8) exact: then −n−1 times
the log-likelihood is

LW
n (f) = n−1

(n−1)/2X
j=1

µ
log fϑ(ωj) +

In(ωj)

fϑ(ωj)

¶
i. e. a discrete approximation to (1.9). For applications of the Whittle likelihood to non-
parametric inference cf. Dahlhaus and Polonik (2002).

4. Asymptotics for LW (f). The accuracy of the Whittle approximation has been described
as follows (Coursol and Dacunha-Castelle (1982), Dzhaparidze (1986), Theorem 1, p. 52) .
Let Ln(f) be the log-likelihood in the experiment (1.3); then

Ln(f) = −nLW (f)− n log 2π +OP (1) (1.10)

uniformly over f ∈ Σ1/2,M . This justifies use of LW (f) as a contrast function, e.g. it yields
asymptotic efficiency of the Whittle MLE in parametric models (Dzhaparidze (1986), Chap.
II), but falls short of providing asymptotic equivalence in the Le Cam sense. Indeed if (1.10)
were true with oP (1) in place of OP (1) and with LW (f) replaced by LW

n (f) then this would
already imply total variation equivalence, up to an orthogonal transform, of the exact model
(1.8) with f ∈ Σ1/2,M (via the Scheffe lemma argument of Delattre and Hoffmann (2002)).
In section 2 below (cf. relation (2.18)) we note a corresponding negative result, essentially
that this total variation approximation over f ∈ Σ1/2,M does not take place.

5. Conditions for Theorem 1.2. For a narrower parameter space, i. e. a Hölder ball
with smoothness index α > 1/2, the result of Theorem 1.2 has been proved by Grama
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and Nussbaum (1998). Note that the Sobolev balls Wα(M) figuring in Theorem 1.1 are
natural parameter sets of spectral densities since the smoothness condition is directly stated
in terms of the autocovariance function γf (·). The Besov balls Bα

p,p(M) given in terms of
the norm k·kBα

p,p
are intermediate between L2-Sobolev and Hölder balls. For the white noise

approximation of the i.i.d. (density estimation) model, Brown, Carter, Low and Zhang (2004)
succeeded in weakening the Hölder ball condition in Nussbaum (1996) to a condition that Σ
is compact both in the Besov spaces B1/22,2 and B

1/2
4,4 on the unit interval. This is immediately

implied by Σ ⊂ Bα
4,4(M) for some α > 1/2. Our condition for Theorem 1.2 is slightly stronger,

i.e. Σ ⊂ Bα
6,6(M) for some α > 1/2. In Remark 5.8 (Appendix) we note a sufficient condition

in terms of the autocovariance function γf (·), i.e. give a description of the periodic version
of the Besov ball.

Throughout this paper we adopt the notation that C represents a constant independent of
n and the parameter (spectral density) f ∈ Σ, and the value of which may change at each
occurrence, even on the same line.

Relations between experiments. All measurable sample spaces are assumed to be
Polish (complete separable) metric spaces equipped with their Borel sigma algebra. For
measures P, Q on the same sample space, let kP −QkTV be the total variation distance. For
the general case where P, Q are not necessarily on the same sample space, suppose K is a
Markov kernel such that KP is a measure on the same sample space as Q. In that case,
kQ−KPkTV is defined and will be used as generic notation for a Markov kernel K.

Consider now experiments (families of measures) F = (Qf , f ∈ Σ) and E = (Pf , f ∈ Σ),
with the same parameter space Σ. All experiments here are assumed dominated by a sigma-
finite measure on their respective sample space. If E and F are on the same sample space,
define their total variation distance

∆0 (E ,F) = sup
f∈Σ

kQf − PfkTV .

In the general case, the deficiency of E with respect to F is defined as

δ (E ,F) = inf
K
sup
f∈Σ

kQf −KPfkTV

where inf extends over all appropriate Markov kernels. Le Cam’s pseudodistance ∆ (·, ·)
between E and F then is

∆ (E ,F) = max (δ (E ,F) , δ (F , E)) .

Furthermore, we will use the following notation involving experiments E ,F or sequences of
such En = (Pn,f , f ∈ Σ) and Fn = (Qn,f , f ∈ Σ).

Notation.

E ¹ F (F more informative than E): δ (F , E) = 0
E ∼ F (equivalent): ∆ (E ,F) = 0
En ' Fn (asymptotically total variation equivalent): ∆0 (Fn, En)→ 0
En - Fn (Fn asymptotically more informative than En): δ (Fn, En)→ 0
En ≈ Fn (asymptotically equivalent): ∆ (Fn, En)→ 0
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Note that "more informative" above is used in the sense of a semi-ordering, i.e. its actual
meaning is "at least as informative". We shall also write the relation ' in a less formal way
between data vectors such as x(n) ' y(n), if it is clear from the context which experiments
the data vectors represent.

2 The periodic Gaussian experiment

From now on we shall assume that n is uneven. Our argument for asymptotic equivalence is
such that it easily allows extension to the case of general sequences n→∞ (cf. Remark 4.10
for details).

Recall that the covariance matrix Γn = Γn(f) has the Toeplitz form (Γn)j,k = γ(k − j),
j, k = 1, . . . , n, i.e.

Γn =

⎛⎜⎜⎜⎜⎝
γ(0) γ(1) . . . γ(n− 2) γ(n− 1)
γ(1) γ(0) . . . . . . γ(n− 2)
. . . . . . . . . . . . . . .

γ(n− 2) . . . . . . γ(0) γ(1)
γ(n− 1) γ(n− 2) . . . γ(1) γ(0)

⎞⎟⎟⎟⎟⎠ .

Following Brockwell and Davis (1991), § 4.5 we shall define a circulant matrix approximation
by

Γ̃n =

⎛⎜⎜⎜⎜⎝
γ(0) γ(1) . . . γ(2) γ(1)
γ(1) γ(0) . . . . . . γ(2)
. . . . . . . . . . . . . . .
γ(2) . . . . . . γ(0) γ(1)
γ(1) γ(2) . . . γ(1) γ(0)

⎞⎟⎟⎟⎟⎠
where in the first row, the central element and the one following it coincide with γ((n−1)/2).
More precisely, for given uneven n define a function on integers h with |h| < n

γ̃(n),f (h) =

½
γf (h), |h| ≤ (n− 1)/2

γf (n− |h|), (n+ 1)/2 ≤ |h| ≤ n− 1

and set
(Γ̃n)j,k(f) = γ̃(n),f (k − j), j, k = 1, . . . , n. (2.1)

We shall also write Γ̃n(f) for the corresponding n×n matrix, or simply Γ̃n and γ̃(n)(h) if the
dependence on f is understood. Define

ωj =
2πj

n
, |j| ≤ (n− 1)/2. (2.2)

It is well known (see Brockwell and Davis (1991), relation 4.5.5) that the spectral decompo-
sition of Γ̃n can be described as follows. We have

Γ̃n =
X

|j|≤(n−1)/2
λjuju

0
j (2.3)
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where λj are real eigenvalues and uj are real orthonormal eigenvectors. The eigenvalues are

λj =
X

|k|≤(n−1)/2
γ(k) exp(−iωjk), |j| ≤ (n− 1)/2.

Note that λj = λ−j , j 6= 0 and that the λj are approximate values of 2πf in the points ωj .
Indeed define

f̃n(ω) =
1

2π

X
|k|≤(n−1)/2

γ(k)exp(ikω), ω ∈ [−π, π] (2.4)

a truncated Fourier series approximation to f ; then f̃n is an even function on [−π, π] and

λj = 2πf̃n(ωj), |j| ≤ (n− 1)/2. (2.5)

The eigenvectors are

u00 = n−1/2 (1, . . . , 1) , (2.6)

u0j = (2/n)1/2 (1, cos(ωj), cos(2ωj) . . . , cos((n− 1)ωj)) , (2.7)

u0−j = (2/n)1/2 (0, sin(ωj), sin(2ωj) . . . , sin((n− 1)ωj)) , j = 1, . . . , (n− 1)/2. (2.8)

In our setting, the circulant matrix Γ̃n is positive definite for n large enough. Indeed, Lemma
5.6 Appendix implies that f̃n ≥ M−1/2 uniformly over f ∈ Σ, for n large enough, so that
Γ̃n(f) is a covariance matrix. Define the experiment, in analogy to (1.3),

Ẽn =
³
Nn(0, Γ̃n(f)), f ∈ Σ

´
(2.9)

with data ỹ(n), say. The sequence ỹ(n) may be called a ”periodic process” since it can be
represented in terms of independent standard Gaussians ξj , as a finite sum

ỹ(n) =
X

|j|≤(n−1)/2
λ
1/2
j ujξj (2.10)

where the vector uj describes a deterministic oscillation (cp. (2.6)-(2.8)). Accordingly Ẽn
will be called a periodic Gaussian experiment.

The periodic process ỹ(n) is known to approximate the original time series y(n) in the following
sense. Define the n× n-matrix

Un =
¡
u−(n−1)/2, . . . ,u(n−1)/2

¢
(2.11)

and consider the transforms

z(n) = (2π)−1/2U 0ny
(n), z̃(n) = (2π)−1/2U 0nỹ

(n).

Denote Cov(z(n)) the covariance matrix of the random vector z(n). Then we have (Brockwell
and Davis (1991), Proposition 4.5.2), for given f ∈ Σ

sup
1≤i,j≤n

¯̄̄
Cov(z(n))i,j − Cov(z̃(n))i,j

¯̄̄
→ 0 as n→∞. (2.12)
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Since Cov(z̃(n)) is diagonal with diagonal elements λj/2π, this means that the elements of
z(n) are approximately uncorrelated for large n.

Note that z̃(n) can also be written, in accordance with (2.10) and (2.5)

z̃(n) =
³
f̃1/2n (ωj)ξj

´
|j|≤(n−1)/2

(2.13)

which is nearly identical with the Gaussian scale model (1.5). Thus the question appears
whether the approximation (2.12) can be strengthened to a total variation approximation of
the respective laws L

¡
z(n)|f

¢
and L

¡
z̃(n)|f

¢
.

The answer to that is negative; let us introduce some notation. For n×n matrices A = (ajk)
define the Euclidean norm kAk by

kAk2 := tr
£
A0A

¤
=

nX
j=1

nX
k=1

a2jk.

If A is symmetric, we denote the largest and smallest eigenvalues by λmax(A), λmin(A). For
later use, we also define the operator norm of (not necessarily symmetric) A by

|A| :=
¡
λmax(A

0A)
¢1/2

.

If A is symmetric nonnegative definite then |A| = λmax(A). The following lemma shows
that the Hellinger distance between the laws of y(n) and ỹ(n) depends crucially on the total
Euclidean distance

°°°Γn(f)− Γ̃n(f)°°° between the covariance matrices, so that an elementwise
convergence as in (2.12) is not enough.

Lemma 2.1 Let A,B be n× n covariance matrices and suppose that for some M > 1

0 < M−1 ≤ λmin(A) and λmax(A) ≤M.

Then there exist � = �M > 0 and K = KM > 1 not depending on A,B and n such that
kA−Bk ≤ � implies

K−1 kA−Bk2 ≤ H2 (Nn(0, A), Nn(0, B)) ≤ K kA−Bk2 .
where H(·, ·) is the Hellinger distance.

The proof is in section 5. To apply this lemma, set A = Γn(f), B = Γ̃n(f) and note that, since
f ∈ Σ is bounded and bounded away from 0 (both uniformly over f ∈ Σ), the condition on
the eigenvalues of Γn(f) is fulfilled, also uniformly over f ∈ Σ (Brockwell and Davis (1991),
Proposition 4.5.3). We shall see that the expression

°°°Γn(f)− Γ̃n(f)°°°2 is closely related to a
Sobolev type seminorm for smoothness index 1/2. For any f ∈ L2(−π, π) given by (1.1) set

|f |22,α :=
∞X

k=−∞
|k|2α γ2f (k), kfk22,α := γ2f (0) + |f |22,α (2.14)

provided the right side is finite; the Sobolev ball Wα(M) given by (1.7) is then described by
kfk22,α ≤M . Also, for any natural m define a finite dimensional linear subspace of L2(−π, π)

Lm =

½
f ∈ L2(−π, π) :

Z
f(ω)exp(ikω)dω = 0, |k| > m

¾
.
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Lemma 2.2 (i) For any f ∈ Σ we have°°°Γn(f)− Γ̃n(f)°°°2 ≤ 2 |f |22,1/2 (2.15)

and for f ∈ Σ ∩ L(n−1)/2
|f |22,1/2 =

°°°Γn(f)− Γ̃n(f)°°°2 .
(ii) For any f, f0 ∈ Σ we have°°°Γn(f)− Γn(f0)− ³Γ̃n(f)− Γ̃n(f0)´°°°2 ≤ 2 |f − f0|22,1/2 . (2.16)

Proof. (i) From the definition of Γn(f) and Γ̃n(f) in terms of γ(·), γ̃(n)(·) we immediately
obtain °°°Γn(f)− Γ̃n(f)°°°2 = X

|k|≤n−1
(n− |k|)

³
γ(k)− γ̃(n)(k)

´2

=
n−1X

|k|=(n+1)/2
(n− |k|) (γ(k)− γ(n− |k|))2 = 2

(n−1)/2X
k=1

k (γ(k)− γ(n− k))2 (2.17)

≤ 2

(n−1)/2X
k=1

2k
¡
γ2(k) + γ2(n− k)

¢
≤ 4

n−1X
k=1

kγ2(k) ≤ 2 |f |22,1/2 .

The first inequality is proved. The second one follows immediately from (2.17).

(ii) Note that for any n, the mapping f → Γn(f) if it is defined by (1.2) for any f ∈ L2(−π, π)
is linear, and the same is true for f → Γ̃n(f) defined by (2.1). Hence

Γn(f)− Γn(f0) = Γn(f − f0), Γ̃n(f)− Γ̃n(f0) = Γ̃n(f − f0).

Now the argument is completely analogous to (i) if γ(k) = γf (k) is replaced by γf−f0(k).

Our assumption f ∈ Σ, i.e. kfk22,α ≤ M for some α > 1/2 provides an upper bound M for

|f |22,1/2 but does guarantee that this term is uniformly small. Thus we are not able to utilize

Lemma 2.1 to approximate En by Ẽn in Hellinger distance. In fact this Hellinger distance
approximation does not take place: take a fixed m, select f ∈ Σ∩Lm such that kfk22,1/2 < �
with � from Lemma 2.1 and use the lower bound in this lemma to show that

H2
³
Nn(0,Γn(f)), Nn(0, Γ̃n(f))

´
≥ K−1�2 (2.18)

for all sufficiently large n. Thus the direct approximation of the time series data y(n) by the
periodic process ỹ(n) in total variation distance fails.

However that does not contradict asymptotic equivalence since the latter allows for a random-
ization mapping (Markov kernel) applied to ỹ(n) and y(n), respectively, before total variation
distance of the laws is taken. We will show the existence of appropriate Markov kernels in
an indirect way, via a bracketing of the original time series experiment by upper and lower
bounds in the sense of informativity.
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Let now En again be the time series experiment (1.3); we shall find an asymptotic bracketing,
i.e. two sequences E̊l,n, E̊u,n such that

E̊l,n - En - E̊u,n

and such that both E̊l,n and E̊u,n are asymptotically equivalent to Ẽn given by (2.9), and to
E̊n representing the independent Gaussians z1, . . . , zn in Theorem 1.1.

3 Upper informativity bracket

The spectral representation (2.10) of the periodic sequence ỹ(n) = (ỹ(1), . . . , ỹ(n))0 can be
written

ỹ(t) = (2π/n)1/2f̃1/2n (0)ξ0 + 2(π/n)
1/2

(n−1)/2X
j=1

f̃1/2n (ωj) cos((t− 1)ωj)ξj

+2(π/n)1/2
1X

j=−(n−1)/2
f̃1/2n (ωj) sin((t− 1)ωj)ξj , t = 1, . . . , n. (3.1)

We saw that here ỹ(n) is a one-to-one function ỹ(n) = Uz̃(n) of the n-vector of independent
Gaussians z̃(n) (cf. (2.13)), but the approximation of ỹ(n) to y(n) is not in the total variation
sense (cf. (2.18)). Now take a limit in (3.1) for n → ∞ and fixed t and observe that
(heuristically) this yields the spectral representation of the original stationary sequence y(t)

y(t+ 1) =

Z
[0,π]

√
2f1/2(ω) cos(tω)dBω +

Z
[−π,0]

√
2f1/2(ω) sin(tω)dBω, t = 0, 1, . . . (3.2)

where dBω is standard Gaussian white noise on [−π, π] (cf. Brockwell and Davis (1991),
Probl. 4.31). Here for any n, the vector y(n) = (y(1), . . . , y(n))0 is represented as a functional
of the continuous time process

dZ∗ω = f1/2(ω)dBω, ω ∈ [−π, π].

Thus a completely observed process Z∗ω, ω ∈ [−π, π] would represent an upper informativity
bracket for any sample size n, but this experiment is statistically trivial since the observation
here identifies the parameter f .

Our approach now is to construct an intermediate series ỹ(m,n) of size n in which the uniform
size n grid of points ωj , |j| ≤ (n − 1)/2 is replaced by a finer uniform grid of m > n points
in the representation (3.1). Thus ỹ(n,m) is a functional not of n independent Gaussians but
of m > n of these; call their vector z̃(m). The random vector z̃(m) now represents an upper
informativity bracket which remains nontrivial (asymptotically) ifm−n→∞ not too quickly.
An equivalent description of that idea is as follows. Consider m > n and the periodic process
ỹ(m) given by (2.10) where the original sample size n is replaced by m. Then define ỹ(n,m)

as the vector of the first n components of ỹ(m). The law of ỹ(n,m) is Nn(0, Γ̃n,m(f)) where
Γ̃n,m(f) is the upper left n× n submatrix of Γ̃m(f).

11



We now easily observe the improved approximation quality of ỹ(n,m) for y(n). Assume that m
is also uneven. First note that for (m+ 1)/2 ≥ n we already obtain Γ̃n,m(f) = Γn(f). This
follows immediately from the definition of the circular matrix Γ̃m(f) via the autocovariance
function γ̃(m)(·). However we would like to limit the increase of sample size, i.e. require
m/n→ 1; therefore, in what follows we assume m < 2n− 1.

Lemma 3.1 Assume m is uneven, n < m < 2n− 1. Then for any f ∈ Σ we have°°°Γn(f)− Γ̃n,m(f)°°°2 ≤ 4 (m− n+ 1)1−2α |f |22,α ,

and hence if m = mn is such that m− n→∞ as n→∞ then

sup
f∈Σ

H2
³
Nn(0,Γn(f)), Nn(0, Γ̃n,m(f))

´
→ 0. (3.3)

Proof. From the definition of Γn(f) and Γ̃n,m(f) we immediately obtain°°°Γn(f)− Γ̃n,m(f)°°°2 = X
|k|≤n−1

(n− |k|)
³
γ(k)− γ̃(m)(k)

´2

= 2
n−1X

k=(m+1)/2

(n− k) (γ(k)− γ(m− k))2 ≤ 4
n−1X

k=(m+1)/2

(n− k)
¡
γ2(k) + γ2(m− k)

¢
.

Now note that for m > n, the relation (m + 1)/2 ≤ k ≤ n − 1 implies k ≥ (n + 1)/2 and
therefore n− k < k, and note also n− k < m− k. We obtain an upper bound

≤ 4
n−1X

k=(m+1)/2

kγ2(k) + 4
n−1X

k=(m+1)/2

(m− k)γ2(m− k)

= 4
n−1X

k=(m+1)/2

kγ2(k) + 4

(m−1)/2X
k=m−n+1

kγ2(k) = 4
n−1X

k=m−n+1
kγ2(k)

≤ 4(m− n+ 1)1−2α
n−1X

k=m−n+1
k2αγ2(k) ≤ 4(m− n+ 1)1−2α |f |22,α

where α > 1/2. This proves the first relation. For the second, recall that |f |22,α ≤ M for
f ∈ Σ and invoke Lemma 2.1 together with the subsequent remark on the eigenvalues of
Γn(f).

Define the experiment
Ẽn,m =

³
Nn(0, Γ̃n,m(f)), f ∈ Σ

´
then (3.3) implies En ' Ẽn,m if m−n→∞. Moreover, we have Ẽn,m ¹ Ẽm by definition, thus

En - Ẽm

12



in casem−n→∞. We know that Ẽm is equivalent (via the linear transformation (2π)−1/2U 0)
to observing data z̃(n) given by (2.13). Define E̊n by

E̊n =
³
Nn(0, Γ̊n(f)), f ∈ Σ

´
(3.4)

where
Γ̊n(f) = Diag (Jj,n(f))j=1,...,n .

Note that the data z1, . . . , zn in Theorem 1.1 are represented by E̊n. We shall also write z̊(n)
for their vector, so that L(̊z(n)|f) = Nn(0, Γ̊n(f)).

Proposition 3.2 We have E̊n ≈ Ẽn, with corresponding equivalence maps (Markov kernels)
as follows. Let ỹ(n) and z̊(n) be data in Ẽn and E̊n respectively. Then, for the orthogonal
matrix Un given by (2.11)

(2π)−1/2U 0nỹ
(n) ' z̊(n), and (2π)1/2Unz̊

(n) ' ỹ(n).

Proof. Note that our first claim can also be written z̃(n) ' z̊(n) where z̃(n) is from (2.13). To
describe L(z̃(n)|f), define δj = f̃n(ωj−(n+1)/2) for j = 1, . . . , n and a n× n covariance matrix

∆n(f) = Diag (δj)j=1,...,n .

Then L(z̃(n)|f) = Nn(0,∆n(f)). The conditions on f (see also Lemma 5.6 Appendix) imply
that uniformly over j = 1, . . . , n

Jj,n(f) ≥ C−1, Jj,n(f) ≤ C

for some C > 0 not depending on f and n. Now apply Lemma 2.1 to obtain

H2
³
Nn(0, Γ̊n(f)), Nn(0,∆n(f))

´
≤ C

°°°Γ̊n(f)−∆n(f)
°°°2 = C

nX
j=1

(Jj,n(f)− δj)
2 .

By Lemma 5.7 this is o(1) uniformly in f . This implies the first relation '. The second
relation is an obvious consequence.

For a choice m = n+rn, rn = 2 [log(n/2)] we immediately obtain the following result. Define
the upper bracket Gaussian scale experiment E̊u,n by

E̊u,n := E̊n+rn . (3.5)

Corollary 3.3 Consider experiments En and E̊u,n given respectively by (1.3) and (3.5), (3.4)
with parameter space Σ = Σα,M where M > 0, α > 1/2. Then as n→∞

En - E̊u,n.
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4 Lower informativity bracket

The upper bound (2.15) for the Hellinger distance of y(n) and the periodic process ỹ(n)

which does not tend to 0, can be improved in a certain sense if f is restricted to a shrinking
neighborhod, Σn(f0) say, of some f0 ∈ Σ. At this stage, f0 is assumed known so the covariance
matrices Γn(f) and Γ̃n(f) can be used for a linear transformation of y(n) which brings it closer
to the periodic process ỹ(n). The linear transformation of y(n) which depends on f0 can be
construed as a Markov kernel mapping which yields asymptotic equivalence En(f0) ≈ Ẽn(f0)
if these are the versions of En and Ẽn with f restricted to f ∈ Σn(f0).

Such a local asymptotic equivalence can be globalized in a standard way (cf. Nussbaum
(1996), Grama and Nussbaum (1998)) if sample splitting were available in both global exper-
iments En and Ẽn. For the original stationary process that would mean that observing a series
of size n is equivalent to observing two independent series of size approximately n/2. We will
establish an asymptotic version of sample splitting for y(n) which involves omitting a fraction
of the sample in the center of the series, i.e. omitting terms with index near n/2. The ensu-
ing loss of information means that the globalization procedure only yields a lower asymptotic
informativity bracket for En, i.e. a sequence Ẽ#3,n such that Ẽ

#
3,n - En. The experiment Ẽ

#
3,n

will be made up of two independent periodic processes with the same parameter f and with
a sample size m ∼ (n− logn)/2. Each of these is equivalent to a Gaussian scale model (2.13)
with n replaced by m ; further arguments show that observing these two is asymptotically
equivalent to a Gaussian scale model E̊l,n := E̊2m with grid size 2m ∼ n− logn.

A crucial step now consists in showing that in the Gaussian scale models E̊n, the grid size n
can be replaced by n − logn or n + logn. This step is an analog, for the special regression
model, of the well known reasoning in the i.i.d. case that additional observations may be
asymptotically negligible (cf. Mammen (1986) for parametric i.i.d. models, Low and Zhou
(2004) for the nonparametric case). Thus it follows that the lower and upper bracketing
experiments E̊l,n, E̊u,n are both asymptotically equivalent to E̊n, and the relations

E̊l,n - En - E̊u,n

then imply En ≈ E̊n, i.e. Theorem 1.1.

4.1 Local experiments

Let κn be a sequence κn & 0, fixed in the sequel. A specific choice of κn will be made in
section 4.4 below (see (4.12)). Let k·k∞ be the sup-norm for real functions defined on [−π, π],
i.e.

kfk∞ = sup
ω∈[−π,π]

|f(ω)|

and for f0 ∈ Σ define shrinking neighborhoods

Σn(f0) =
n
f ∈ Σ : kf − f0k∞ + kf − f0k2,1/2 ≤ κn

o
. (4.1)

The restricted experiments are

En(f0) = (Nn(0,Γn(f)), f ∈ Σn(f0)) , Ẽn(f0) =
³
Nn(0, Γ̃n(f)), f ∈ Σn(f0)

´
.

14



For shortness write Γ = Γn(f), Γ0 = Γn(f0) and similarly Γ̃ = Γn(f), Γ̃0 = Γ̃n(f0). Define a
matrix

Kn = Kn(f0) = Γ̃
1/2
0 Γ

−1/2
0 (4.2)

and in experiment En(f0) consider transformed observations

y̌(n) := Kn(f0)y
(n).

Consider also the experiment E∗n(f0) given by the laws of y̌(n), i.e.

E∗n(f0) =
¡
Nn(0,Kn(f0)Γn(f)K

0
n(f0)), f ∈ Σn(f0)

¢
.

Clearly En(f0) ∼ E∗n(f0); the next result proves that E∗n(f0) ' Ẽn(f0) and thus En(f0) ≈ Ẽn(f0).

Lemma 4.1 We have

sup
f0∈Σ

sup
f∈Σn(f0)

H2
³
Nn(0,Kn(f0)Γn(f)K

0
n(f0), Nn(0, Γ̃n(f)

´
≤ C κn.

Proof. In view of Lemma 2.1, it suffices to show that

sup
f∈Σ

³
λmax(Γ̃n) + λ−1min(Γ̃n)

´
≤ C (4.3)

and that °°°KnΓnK
0
n − Γ̃n

°°°2 ≤ C κn.

Note that
λmax(Γ̃) = max

|j|≤(n−1)/2

¯̄̄
f̃n(ωj)

¯̄̄
, λmin(Γ̃) = min

|j|≤(n−1)/2

¯̄̄
f̃n(ωj)

¯̄̄
and that Lemma 5.6 implies

sup f∈Σ
°°°f − f̃n

°°°
∞
→ 0.

Hence (4.3) follows immediately from f ∈ Σ, more specifically the fact that values of f are
uniformly bounded and bounded away from 0. According to Proposition 4.5.3 in Brockwell
and Davis (1991), the assumption f ∈ Σ also implies a corresponding property for Γ, i.e.

sup
f∈Σ

¡
λmax(Γn) + λ−1min(Γn)

¢
≤ C. (4.4)

Note that eigenvalues of Γ0 and Γ̃0 share property (4.3) since f0 ∈ Σ.

Set G = Γ−1/20 ΓΓ
−1/2
0 and G̃ = Γ̃

−1/2
0 Γ̃Γ̃

−1/2
0 . Since°°°KnΓnK
0
n − Γ̃n

°°° ≤ ¯̄̄Γ̃0 ¯̄̄ °°°G− G̃
°°°

it now suffices to show that °°°G− G̃
°°° ≤ C κn. (4.5)
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To establish (4.5), denote ∆ = Γ− Γ0, ∆̃ = Γ̃− Γ̃0 and observe°°°G− G̃
°°° =

°°°Γ−1/20 ΓΓ
−1/2
0 − Γ̃−1/20 Γ̃Γ̃

−1/2
0

°°°
=

°°°Γ−1/20 ∆Γ
−1/2
0 − Γ̃−1/20 ∆̃Γ̃

−1/2
0

°°°
≤

°°°Γ−1/20

³
∆− ∆̃

´
Γ
−1/2
0

°°°+ °°°Γ−1/20 ∆̃Γ
−1/2
0 − Γ̃−1/20 ∆̃Γ̃

−1/2
0

°°° . (4.6)

We shall now estimate the two terms on the right side separately. By elementary properties
of eigenvalues we obtain °°°Γ−1/20

³
∆− ∆̃

´
Γ
−1/2
0

°°° ≤ ¯̄Γ−10 ¯̄ °°°∆− ∆̃°°°
where

¯̄
Γ−10

¯̄
≤ C and according to Lemma 2.2 (ii)°°°∆− ∆̃°°°2 ≤ 2 |f − f0|22,1/2 .

Furthermore °°°Γ−1/20 ∆̃Γ
−1/2
0 − Γ̃−1/20 ∆̃Γ̃

−1/2
0

°°°
=

°°°³Γ−1/20 − Γ̃−1/20

´
∆̃Γ

−1/2
0 + Γ̃

−1/2
0 ∆̃

³
Γ
−1/2
0 − Γ̃−1/20

´°°°
≤ 2C

¯̄̄
∆̃
¯̄̄ °°°Γ−1/20 − Γ̃−1/20

°°° = C
¯̄̄
∆̃
¯̄̄ °°°Γ−1/20

³
Γ̃
1/2
0 − Γ1/20

´
Γ̃
−1/2
0

°°°
≤ C

¯̄̄
∆̃
¯̄̄ °°°Γ1/20 − Γ̃1/20

°°° .
Applying Lemma 5.1 and Lemma 2.2 (i) we obtain°°°Γ1/20 − Γ̃1/20

°°°2 ≤ C
°°°Γ0 − Γ̃0°°°2 ≤ C |f0|22,1/2 .

Here |f0|22,1/2 ≤ |f0|
2
2,α ≤M . Collecting these estimates yields°°°G− G̃

°°°2 ≤ C

µ
|f − f0|22,1/2 +

¯̄̄
∆̃
¯̄̄2¶

.

To complete the proof, it suffices to note that, since Γ̃ and Γ̃0 have the same set of eigenvectors
(cf. (2.3) and (2.6)-(2.8))¯̄̄

∆̃
¯̄̄2

= λmax(Γ̃− Γ̃0)2 = (2π)2 max
|j|≤(n−1)/2

µ¯̄̄
f̃n(ωj)− f̃0,n(ωj)

¯̄̄2¶
≤ C

°°°f̃n − f̃0,n

°°°2
∞
≤ C kf − f0k2∞ + C n1−2α logn kf − f0k22,α

where the last inequality is a consequence of Lemma 5.6. Hence
¯̄̄
∆̃
¯̄̄
≤ Cκn, which establishes

(4.5).
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4.2 Sample splitting

Consider sample splitting for a stationary process: Take the observed y(n) = (y(1), . . . , y(n))
and omit r observations in the center of the series. Recall that n was assumed uneven; assume
now also r to be uneven and set m = (n− r)/2, then the result is the series y(1), . . . , y(m),
y(n−m+ 1), . . . , y(n). The total covariance matrix for these reduced data is

Γ
(m)
n,0 (f) :=

µ
Γm(f) An,m

A0n,m Γm(f)

¶
where the m×m matrix An,m = An,m(f) contains only covariances γf (r+1), γf (r+2) and
of higher order. In fact A is the upper right m×m submatrix of Γn(f), i.e.

An,m=

⎛⎝ . . . γ(n− 2) γ(n− 1)
γ(r + 2) . . . γ(n− 2)
γ(r + 1) γ(r + 2) . . .

⎞⎠ .

In the sequel we set rn = 2[logn/2] + 1 and thus rn ∼ logn, m = (n− rn) /2. The corre-
sponding experiment we denote

E#0,n =
³
N2m(0,Γ

(m)
n,0 (f)), f ∈ Σ

´
Consider also the experiment where two independent stationary series of length m are ob-
served, y(m)1 and y

(m)
2 , say. The corresponding experiment is

E#1,n :=
³
N2m(0,Γ

(m)
n,1 (f)), f ∈ Σ

´
(4.7)

where

Γ
(m)
n,1 (f) :=

µ
Γm(f) 0m×m
0m×m Γm(f)

¶
.

Clearly we have E#0,n ¹ En.

Proposition 4.2 E#0,n ' E
#
1,n.

Proof. Use Lemma 2.1 to compute the Hellinger distance. Take A = Γ(m)n,1 ; then the eigen-
values of A are those of Γm(f), so that (4.4) can be invoked. The squared distance of the
covariance matrices Γ(m)n,0 and Γ

(m)
n,1 is°°°Γ(m)n,0 − Γ
(m)
n,1

°°°2 = 2 kAn,mk2 ≤ 2
n−1X

k=r+1

(k − r)γ2(k)

≤ 2
n−1X

k=r+1

kγ2(k) ≤ (r + 1)1−2α |f |22,α .

Since rn →∞, the result follows.

We have shown that two independent stationary sequences of length m = (n− rn) /2 are
asymptotically less informative than one sequence of length n. Having obtained a method of
sample splitting for stationary sequences (with some loss of information), we can now use a
localization argument to complete the proof of the lower bound.
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4.3 Preliminary estimators

For the globalization procedure, we need existence of an estimator f̂n, in both of the global
experiments En and Ẽn (or E̊n), such that f̂n takes values in Σ and°°°f̂n − f

°°°
∞
+
°°°f̂n − f

°°°
2,1/2

= op(1)

uniformly over f ∈ Σ. More specifically, a rate op(κn) with κn from (4.1) is needed in the
above result, but κn has not been selected so far, and will be determined based on the results
of this section (cf. (4.12) below). Select β ∈ (1/2, α) and consider the norm kfk2,β according
to (2.14). Note that kfk2,1/2 ≤ C kfk2,β and that according to Lemma 5.6 kfk∞ ≤ C kfk2,β;
therefore it suffices to show °°°f̂n − f

°°°2
2,β
= op(1). (4.8)

For this, we shall use a standard truncated orthogonal series estimator and then modify it to
take values in Σ. The empirical autocovariance function is

γ̂n(k) =
1

n− k

n−kX
j=1

y(j)y(k + j), k = 0, . . . , n− 1.

We have unbiasedness: Eγ̂n(k) = γf (k); for the variance of γ̂n(k) we have the following
result.

Lemma 4.3 For any spectral density f ∈ L2(−π, π), and any k = 0, . . . , n− 1

V arγ̂n(k) ≤
5

n− k

n−1X
j=0

γ2f (j).

Proof. For given k, set m = n− k and z(j) = y(j)y(j + k)− γf (k), j = 1, . . . ,m. The z(j)
form a zero mean stationary series, with autocovariance function ρ(j), say. We have

E

Ã
1

m

mX
k=1

z(k)

!2
=

1

m2

X
1≤j,k≤m

ρ(k − j) =
1

m
ρ(0) + 2

1

m2

m−1X
k=1

(m− k)ρ(k)

≤ 2

m

m−1X
k=0

ρ(k). (4.9)

The computation in Shiryaev (1996), (VI.4.5-6) gives

ρ(j) = γ2(j) + γ(j − k)γ(j + k).

The inequality
2 |γ(j − k)γ(j + k)| ≤ γ2(j − k) + γ2(j + k)

now implies
m−1X
k=0

ρ(k) ≤ 5
2

n−1X
k=0

γ2(k)
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(we bound the sum involving γ2(j − k) by 2
Pn−1

j=0 γ
2(j)). In conjunction with (4.9) this

proves the lemma.

For the orthogonal series estimator, define a truncation index ñ = [n1/(2α+1)] and set

f̂n(ω) =
X
|k|≤ñ

γ̂n(k)exp(ikω), ω ∈ [−π, π]. (4.10)

Lemma 4.4 In the experiment En the estimator f̂n fulfills for any β ∈ (1/2, α) and any
γ ∈

³
0, α−β
2α+1

´
sup
f∈Σ

P

µ°°°f̂n − f
°°°2
2,β

> n−γ
¶
→ 0. (4.11)

Proof. By the Markov inequality, it suffices to prove

sup
f∈Σ

Ef

°°°f̂n − f
°°°2
2,β
= o(n−γ).

A bias-variance decomposition and Lemma 4.3 yield

Ef

°°°f̂n − f
°°°2
2,β

=
X
|k|≤ñ

max
³
1, |k|2β

´
V arγ̂n(k) +

X
|k|>ñ

|k|2βγ2(k)

≤
X
|k|≤ñ

max
³
1, |k|2β

´ 5

n− k

⎛⎝n−1X
j=0

γ2f (j)

⎞⎠+ ñ2β−2α
X
|k|>ñ

|k|2αγ2(k)

≤ C

n
kfk22

X
|k|≤ñ

max
³
1, |k|2β

´
+ ñ2β−2α |f |22,α

≤ C kfk22 n−1ñ2β+1 + C |f |22,α ñ2(β−α)

≤ C
³
kfk22 + |f |

2
2,α

´
n2(β−α)/(2α+1).

Since kfk22 ≤ C kfk22,α and |f |
2
2,α ≤ kfk

2
2,α, the result follows.

We now turn to preliminary estimation in the periodic experiment Ẽn with data vector ỹ(n).
Note that this data vector can be construed as coming from a stationary sequence with
autocoviance function γ̃(n)(·) given by (2.1) for |k| ≤ n−1 and γ̃(n)(k) = 0 for |k| > n−1, i.e.
the stationary sequence having spectral density f̃n. Thus if γ̂n(k) again denotes the empirical
autocoviance function in this series then we can apply Lemma 4.3 to obtain

V arγ̂n(k) ≤
5

n− k

n−1X
j=0

γ̃2(n),f (j), k = 0, . . . , n− 1.

Obviously
n−1X
k=0

γ̃2(n),f (k) =

(n−1)/2X
k=0

γ2f (k) +

(n−1)/2X
k=1

γ2f (k) ≤ 2 kfk22 .
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Now use the estimator (4.10) with ñ as above; since ñ = o((n−1)/2), we have the unbiasedness

Eγ̂n(k) = γf (k), k = 0, . . . , ñ.

Thus the proof of the following result is entirely analogous to Lemma 4.4; the estimator f̂n
is also formally the same function of the data.

Lemma 4.5 In the experiment Ẽn the estimator f̂n fulfills (4.11) for any β ∈ (1/2, α) and
any γ ∈

³
0, α−β
2α+1

´
.

Finally consider modifications such that the estimator takes values in Σα,M . Consider the

space W β =
n
f ∈ L2(−π, π) : kfk22,β <∞

o
; this is a periodic fractional Sobolev space which

is Hilbert under the norm kfk2,β. There the set Σα,M is compact and convex; hence there
exists a (k·k2,β-continuous) projection operator Π onto Σα,M inW β (cf. Balakrishnan (1976),
Definition 1.4.1 ). Then °°°Π³f̂n´− f

°°°
2,β
≤
°°°f̂n − f

°°°
2,β

.

The modified estimators Π
³
f̂n

´
thus again fulfill (4.11). A summary of results in this section

is the following.

Proposition 4.6 In both experiments En and Ẽn there are estimators f̂n taking values in Σ
and fulfilling for any γ ∈

³
0, α−1/22α+1

´
sup
f∈Σ

P

µ°°°f̂n − f
°°°
∞
+
°°°f̂n − f

°°°
2,1/2

> n−γ
¶
→ 0.

4.4 Globalization

In this section we denote

Pf,n := L(y(n)|f) = Nn (0,Γn(f)) , P̃f,n := L(ỹ(n)|f) = Nn

³
0, Γ̃n(f)

´
Consider again the experiment E#1,n of (4.7 where two independent stationary series y

(m)
1 and

y
(m)
2 of length m = (n− rn) /2 are observed. In modified notation we now write

E#1,n = Em ⊗ Em = (Pf,m ⊗ Pf,m, f ∈ Σ) .

We shall compare this with the experiments

E#2,n : = Em ⊗ Ẽm =
³
Pf,m ⊗ P̃f,m, f ∈ Σ

´
,

E#3,n : = Ẽm ⊗ Ẽm =
³
P̃f,m ⊗ P̃f,m, f ∈ Σ

´
.

At this point select the shrinking rate κn of the neighborhoods Σn(f0) (cp. (4.1)) as

κn = n−γ , γ =
α− 1/2
2(2α+ 1)

(4.12)
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Proposition 4.7 We have E#2,n - E
#
1,n.

Proof. We shall construct a sequence of Markov kernels Mn such that

sup
f∈Σ

H2
³
Pf,m ⊗ P̃f,m,Mn (Pf,m ⊗ Pf,m)

´
→ 0.

Define Mn as follows: given y
(m)
1 and y

(m)
2 , and A, a measurable subset of R2m, set

Mn

³
A, y

(m)
1 , y

(m)
2

´
= 1A

³
y
(m)
1 ,Km(f̂m(y

(m)
1 ))y

(m)
2

´
where Km(f) is the matrix defined by (4.2), i.e. for f ∈ Σ by

Km(f) = Γ̃
1/2
m (f)Γ−1/2m (f)

and f̂m is the estimator in Em of Proposition 4.6 applied to data y
(m)
1 . Thus the Markov

kernel Mn is in fact a deterministic map, i.e. given y
(m)
1 , y

(m)
2 , it defines a one point measure

on R2m concentrated in
³
y
(m)
1 ,Km(f̂m(y

(m)
1 ))y

(m)
2

´
. Thus the law Mn (Pf,m ⊗ Pf,m) is the

joint law of y(m)1 and Km(f̂m(y
(m)
1 ))y

(m)
2 under f . The latter we split up into the marginal law

of y(m)1 , i.e. Pf,m and the conditional law of Km(f̂m(y
(m)
1 ))y

(m)
2 given y

(m)
1 ; write PK

f,m|y
(m)
1

for the latter. We have

PK
f,m|y

(m)
1 = Nn

¡
0,KΓm(f)K

0¢ for K = Km(f̂m(y
(m)
1 )).

Now clearly

H2
³
Pf,m ⊗ P̃f,m,Mn (Pf,m ⊗ Pf,m)

´
= EfH

2
³
P̃f,m, P

K
f,m|y

(m)
1

´
(4.13)

where Ef is taken wrt y
(m)
1 under Pf,m. Define

Bf,m :=

½
y ∈ Rm :

°°°f̂m(y)− f
°°°
∞
+
°°°f̂m(y)− f

°°°
2,1/2

≤ κm

¾
.

By definition of Σm(f0) (cf. (4.1)) we have f ∈ Σm(f̂m(y)) if y ∈ Bf,m. Thus Lemma 4.1
implies

sup
y∈Bf,m,f∈Σ

H2
³
P̃f,m, P

K
f,m|y

´
= o(1).

Moreover by Proposition 4.6

Pf,m
¡
Bc
f,m

¢
= o(1) uniformly over f ∈ Σ. (4.14)

Hence

EfH
2
³
P̃f,m, P

K
f,m|y

(m)
1

´
=

Z
Bf,m

H2
³
P̃f,m, P

K
f,m|y

´
dPf,m(y) + o(1)

= o(1)Pf,m(Bf,m) + o(1) = o(1) (4.15)

uniformly over f ∈ Σ. In conjunction with (4.13) the last relation proves the claim.

The next result is entirely analogous if we replace the estimator f̂m based on data y(m) by
the one based on data ỹ(m) and formally reverse the order in the product Pf,m ⊗ P̃f,m.
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Proposition 4.8 We have E#3,n - E
#
2,n.

Proof. We construct a sequence of Markov kernels M̃n such that

sup
f∈Σ

H2
³
P̃f,m ⊗ P̃f,m, M̃n

³
Pf,m ⊗ P̃f,m

´´
→ 0.

Define M̃n as follows: given y
(m)
1 and ỹ

(m)
2 , and A, a measurable subset of R2m, set

M̃n

³
A, y

(m)
1 , ỹ

(m)
2

´
= 1A

³
Km(f̂m(ỹ

(m)
2 ))y

(m)
1 , ỹ

(m)
2

´
where f̂m is the estimator defined in the previous subsection, applied to data ỹ

(m)
2 . Analo-

gously to (4.14) we have

P̃f,m
¡
Bc
f,m

¢
= o(1) uniformly over f ∈ Σ.

A reasoning as in (4.15) completes the proof.

For the experiment E#3,n which consists of product measures P̃f,m ⊗ P̃f,m, we can invoke
Proposition 3.2, applying the equivalence map given there componentwise (i.e. to independent

components
³
ỹ
(m)
1 , ỹ

(m)
2

´
in E#3,n). A summary of the lower informativity bound results so far

can thus be given as follows. For rn = 2 [log(n/2)] define the lower bracket Gaussian scale
experiment E̊l,n by

E̊l,n := E̊(n−rn)/2 ⊗ E̊(n−rn)/2. (4.16)

Corollary 4.9 Consider experiments En and E̊l,n given respectively by (1.3) and (4.16), (3.4)
with parameter space Σ = Σα,M where M > 0, α > 1/2. Then as n→∞

E̊l,n - En.

4.5 Bracketing the Gaussian scale model

The proof of Theorem 1.1 is complete if the lower and upper informativity bounds E̊l,n and E̊u,n
coincide in an asymptotic sense. Since we already established the relation E̊l,n - En - E̊u,n
(Corollaries 3.3, 4.9), it now suffices to show that E̊u,n - E̊l,n. This essentially means that in
the special nonparametric regression model E̊n of Gaussian scale type, having rn additional
observations does not matter asymptotically. "Additional observations" here refers to an
equidistant design of higher grid size. The problem of additional observations for i. i. d. models
has been discussed by Le Cam (1974) and Mammen (1986) under parametric assumptions.
For nonparametric i. i. d. models, one can use the approximation by Gaussian white noise or
Poisson models to bound the influence of additional observations. For simplicity, consider a
Gaussian white noise model on [0, 1]

dZt = f(t)dt+ n−1/2dWt, t ∈ [0, 1], f ∈ Σ
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with parameter space Σ. Consider this experiment Fn, say and also Fn+rn . Multiplying the
data by n1/2 gives an equivalent experiment

dZ∗t = n1/2f(t)dt+ dWt, t ∈ [0, 1], f ∈ Σ

and the corresponding one for (n+ rn)
1/2. Now, for given f , the squared Hellinger distance

of the two respective measures is bounded by

C
³
(n+ rn)

1/2 − n1/2
´2
kfk22

= C
r2n
n
(1 + o(1)) kfk2

if rn = o(n). Thus if rn = o(n1/2) and supf∈Σ kfk2 ≤ C then we have Fn ≈ Fn+rn .

Comparable results can be obtained for nonparametric i. i. d. and regression models if these
can be approximated by Fn. In the present case, conversely, for the nonparametric Gaussian
scale regression E̊n, a result of type E̊n ≈ E̊n+rn is a prerequisite for the Gaussian location
(white noise) approximation. Note that for a narrower parameter space, given by a Lipschitz
class, the white noise approximation of E̊n has been established (cf. Grama and Nussbaum,
1998).

Remark 4.10 The relation
E̊l,n - En - E̊u,n (4.17)

has been proved under the technical assumption that n is uneven. If n is even, note first that
En−1 - En - En+1 (omitting one observation from En+1 and En) and apply (4.17) to obtain

E̊l,n−1 - En - E̊u,n+1

The relation Eu,n - El,n which will be proved for uneven n in the remainder of this section is
easily seen to extend to Eu,n+2 - El,n. This suffices to establish the main result Theorem 1.1
for general sample size n→∞.

4.5.1 First part of the bracketing argument

Denote again m = (n− rn)/2 where rn = 2[(logn)/2] + 1.

Lemma 4.11 For E̊l,n = E̊m ⊗ E̊m we have

E̊m ⊗ E̊m ≈ E̊2m.

Proof. Note that the measures in E̊m ⊗ E̊m are product measures, which can be described,
after a rearrangement of components, as

Q1,m :=
mO
j=1

(N(0, Jj,m(f))⊗N(0, Jj,m(f)))
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whereas the measures in E̊2m are

Q2,m :=
mO
j=1

(N(0, J2j−1,2m(f))⊗N(0, J2j,2m(f))) .

Now Lemma 2.1 yields

H2 (Q1,m,Q2,m) ≤ C
mX
j=1

³
(J2j−1,2m(f)− Jj,m(f))

2 + (J2j,2m(f)− Jj,m(f))
2
´
.

Define a partition of (−π, π) into n intervals Wj,n, j = 1, . . . , n of equal length and for any
f ∈ L2(−π, π), let

f̄n =
nX

j=1

Jj,n(f)1Wj,n (4.18)

be the L2-projection of f onto piecewise constant functions wrt the partition. Note that we
have

°°f̄2m − f̄m
°°2
2
=
2π

m

mX
j=1

³
(J2j−1,2m(f)− Jj,m(f))

2 + (J2j,2m(f)− Jj,m(f))
2
´

so that

H2 (Q1,m, Q2,m) ≤ Cm
°°f̄2m − f̄m

°°2
2
≤ Cm

³°°f − f̄2m
°°2
2
+
°°f − f̄m

°°2
2

´
.

The result now follows from
sup
f∈Σ

m
°°f − f̄m

°°2
2
→ 0. (4.19)

which is a consequence of Lemmas 5.3 and 5.5.

4.5.2 Second part of the bracketing argument

In view of E̊2m = E̊n−rn , our next aim is to show

E̊n−rn ≈ E̊n

where rn does not grow too quickly. Previously we defined rn = 2[(logn)/2] + 1, but we will
assume more generally now that rn = o(n1/2).

Consider the gamma density with shape parameter a > 0

ga(x) =
1

Γ(a)
xa−1 exp(−x), x ≥ 0

where Γ(a) is the gamma function, and more generally the density with additional scale
parameter s > 0

ga,s(x) =
1

Γ(a)
s−axa−1 exp(−xs−1), x ≥ 0.
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We will call the respective law the Γ(a, s) law. Clearly if X ∼ Γ(a, 1) then sX ∼ Γ(a, s). It is
well known that Γ(n/2, 2) = χ2n and that the following result holds. Assume X ∼ Γ(a, s) and
Y ∼ Γ(b, s); thenX+Y ,X/(X+Y ) are independent random variables, andX+Y ∼ Γ(a+b, s)
while X/(X + Y ) has a Beta(a, b) distribution (Bickel and Doksum (2001), Theorem B.2.3,
p. 489).

Furthermore, for fixed a > 0 consider the family of laws

(Γ(a, s), s > 0) . (4.20)

Clearly this is a one parameter exponential family; the shape of this exponential family
implies that in a product family ¡

Γ⊗n(a, s), s > 0
¢

with n i.i.d. observations X1, . . . ,Xn, the sum
Pn

i=1Xi is a sufficient statistic. This suffi-
cient statistic has law Γ(na, s); hence for any subset S ⊂ (0,∞) we have the equivalence of
experiments ¡

Γ⊗n(a, s), s ∈ S
¢
∼ (Γ(na, s), s ∈ S) . (4.21)

Lemma 4.12 For all a > 0 and for s, t > 0

H2 (Γ(a, s),Γ(a, t)) = 2

Ã
1−

Ã
1−

¡
s1/2 − t1/2

¢2
s+ t

!a!
.

Proof. We have

H2 (Γ(a, s),Γ(a, t)) = 2

µ
1−

Z
g1/2a,s (x)g

1/2
a,t (x)dx

¶
,

Z
g1/2a,s (x)g

1/2
a,t (x)dx =

1

Γ(a)

Z ∞

0
xa−1s−a/2t−a/2 exp

µ
−x

µ
1

2s
+
1

2t

¶¶
dx.

With a substitution u = x
¡
1
2s +

1
2t

¢
this becomes

1

Γ(a)

Z ∞

0

Ã
2s1/2t1/2

s+ t

!a

ua−1 exp(−u)du

=

Ã
2s1/2t1/2

s+ t

!a

=

Ã
1−

¡
s1/2 − t1/2

¢2
s+ t

!a

.

Lemma 4.13 We have, for all s > 0 and a, b > 0

H2 (Γ(a, s),Γ(b, s)) = 2

Ã
1− Γ((a+ b)/2)

(Γ(a)Γ(b))1/2

!
.
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Proof. In this caseZ
g1/2a,s (x)g

1/2
b,s (x)dx =

1

Γ1/2(a)Γ1/2(b)

Z ∞

0
x(a+b)/2−1s−(a+b)/2 exp

¡
−xs−1

¢
dx

=
Γ((a+ b)/2)

Γ1/2(a)Γ1/2(b)
.

In E̊n we observe (cp. (3.4)
zj = J

1/2
j,n (f)ξj , j = 1, . . . , n

for independent standard normals ξj , which by sufficiency is equivalent to observing z2j =

Jj,n(f)ξ
2
j . Thus E̊n is equivalent to

E̊n,1 :=

⎛⎝ nO
j=1

Γ(1/2, 2Jj,n(f)), f ∈ Σ

⎞⎠ . (4.22)

Set againm = n−rn. The above experiment in turn is equivalent, by the sufficiency argument
for the scaled gamma law invoked in (4.21), to

E̊n,m :=

⎛⎝ nO
j=1

Γ⊗m(1/2m, 2Jj,n(f)), f ∈ Σ

⎞⎠ .

Analogously we have

E̊m ∼ E̊m,1 ∼ E̊m,n :=

⎛⎝ mO
j=1

Γ⊗n(1/2n, 2Jj,m(f)), f ∈ Σ

⎞⎠ . (4.23)

Introduce an intermediate experiment

E̊∗m,n :=

⎛⎝ mO
j=1

Γ⊗n(1/2m, 2Jj,m(f)), f ∈ Σ

⎞⎠
Lemma 4.14 We have the total variation asymptotic equivalence

E̊∗m,n ' E̊n,m as n→∞.

Proof. Write the measures in E̊n,m as a product ofmn components, i.e. as⊗mn
i=1Q1,i where the

component measures Q1,i are defined as follows. For every i = 1, . . . ,mn, let j(1, i). be the
unique index j ∈ {1, . . . , n} such that there exists k ∈ {1, . . . ,m} for which i = (j− 1)m+ k.
Then

Q1,i := Γ(1/2m, 2Jj(1,i),n(f)), i = 1, . . . ,mn.

Analogously, let j(2, i) be the unique index j ∈ {1, . . . ,m} such that there exists k ∈
{1, . . . , n} for which i = (j − 1)n + k. Then the measures in E̊∗m,n are a product of mn
components, i. e. are ⊗mn

i=1Q2,i where

Q2,i = Γ(1/2m, 2Jj(2,i),m(f)), i = 1, . . . ,mn.
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Then the Hellinger distance between measures in E̊n,m and E̊∗m,n is, using Lemma 2.19 in
Strasser (1985) and then Lemma 4.12

H2

Ã
mnO
i=1

Q1,i,
mnO
i=1

Q2,i

!
≤ 2

mnX
i=1

H2 (Q1,i, Q2,i) (4.24)

= 4
mnX
i=1

⎛⎜⎜⎝1−
⎛⎜⎝1−

³
J
1/2
j(1,i),n(f)− J

1/2
j(2,i),m(f)

´2
Jj(1,i),n(f) + Jj(2,i),m(f)

⎞⎟⎠
1/2m

⎞⎟⎟⎠ .

By using the inequality¡
s1/2 − t1/2

¢2
s+ t

=
(s− t)2

(s+ t)(s1/2 + t1/2)2
≤ (s− t)2

s2

and observing that for f ∈ Σ, we have Jj,n(f) ≥M−1, we obtain an upper bound for (4.24)

4
mnX
i=1

µ
1−

³
1−M2

¡
Jj(1,i),n(f)− Jj(2,i),m(f)

¢2´1/2m¶
. (4.25)

The expression Jj(1,i),n(f)− Jj(2,i),m(f) can be described as follows. For any x ∈
¡
i−1
mn ,

i
mn

¢
,

i = 1, . . . ,mn we have

Jj(1,i),n(f)− Jj(2,i),m(f) = f̄n(x)− f̄m(x). (4.26)

where f̄n is defined by (4.18). Now as a consequence of Lemmas 5.4 and 5.5

sup
f∈Σ

°°f̄n − f̄m
°°
∞ ≤ sup

f∈Σ

°°f − f̄n
°°
∞ + sup

f∈Σ

°°f − f̄m
°°
∞ = o(1). (4.27)

Note that for m→∞ and z → 0 we have¡
1− Cz2

¢1/2m
= exp

µ
1

2m
log
¡
1− Cz2

¢¶
= exp

µ
− 1

2m

¡
Cz2 +O(z4)

¢¶
= 1− 1

2m

¡
Cz2 +O(z4)

¢
+ o

µ
z2

m

¶
.

Thus from (4.25) we obtain in view of (4.27)

H2

Ã
mnO
i=1

Q1,i,
mnO
i=1

Q2,i

!
≤ C

mnX
i=1

1

m

¡
Jj(1,i),n(f)− Jj(2,i),m(f)

¢2
(1 + o(1)).

As a consequence of (4.26) we obtain°°f̄n − f̄m
°°2
2
=

mnX
i=1

1

mn

¡
Jj(1,i),n(f)− Jj(2,i),m(f)

¢2
which implies

H2

Ã
mnO
i=1

Q1,i,
mnO
i=1

Q2,i

!
≤ Cn

°°f̄n − f̄m
°°2
2
≤ Cn

°°f − f̄m
°°2
2
+ Cn

°°f − f̄n
°°2
2
.

Now as in (4.19) this upper bound is o(1) uniformly over f ∈ Σ.
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Lemma 4.15 We have the asymptotic equivalence

E̊∗m,n ' E̊m,n as n→∞.

Proof. We know (cf. (4.23), (4.22)) that E̊m,n ∼ E̊m,1 where

E̊m,1 =

⎛⎝ mO
j=1

Γ(1/2, 2Jj,m(f)), f ∈ Σ

⎞⎠ .

Analogously, using (4.21) again, we obtain

E̊∗m,n ∼ E
∗
m,1 :=

⎛⎝ mO
j=1

Γ(n/2m, 2Jj,m(f)), f ∈ Σ

⎞⎠
For given f ∈ Σ, the Hellinger distance between the two respective product measures is
bounded by (using Lemma 2.19 in Strasser (1985) and then Lemma 4.13)

2
mX
j=1

H2 (Γ(1/2, 2Jj,m(f)),Γ(n/2m, 2Jj,m(f))) = 4
mX
j=1

Ã
1− Γ(1/4 + n/4m)

(Γ(1/2)Γ(n/2m))1/2

!
.

Note that this bound does not depend on f ∈ Σ. Write n/m = 1 + δ where δ = rn/m; the
above is

4
mX
j=1

(Γ(1/2)Γ(1/2 + δ/2))1/2 − Γ(1/2 + δ/4)

(Γ(1/2)Γ(1/2 + δ/2))1/2
. (4.28)

The Gamma function is infinitely differentiable on (0,∞); by a Taylor expansion we obtain

Γ(1/2 + δ/4) = Γ(1/2) + Γ0(1/2)
δ

4
+O(δ2),

Γ1/2(1/2 + δ/2) = Γ1/2(1/2) +
1

2
Γ−1/2(1/2)Γ0(1/2)

δ

2
+O(δ2).

Consequently
(Γ(1/2)Γ(1/2 + δ/2))1/2 − Γ(1/2 + δ/4) = O(δ2)

so that (4.28) becomes

mX
j=1

O(δ2)

Γ(1/2)(1 + o(1))
= mδ2O(1) ≤ r2n

m
O(1).

The condition rn = o(n1/2) now implies that this upper bound is o(1). We thus established
total variation asymptotic equivalence E̊m,1 ' E

∗
m,1.
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5 Appendix: auxiliary statements and analytic facts

5.1 Proof of Lemma 2.1

Consider the spectral decompositions of A and B:

A = C1Λ1C
0
1, B = C2Λ2C

0
2

where Λi are n×n diagonal matrices and Ci are orthogonal matrices. Recall the simultaneous
diagonalization of A and B: setting D = Λ

−1/2
1 C 01, we obtain

DAD0 = In, B̃ := DBD0

and letting B̃ = C̃Λ̃C̃ 0 be the spectral decomposition of B̃, we obtain with D̃ := C̃ 0D

D̃AD̃0 = In, D̃BD̃0 = Λ̃.

We now claim that °°°In − Λ̃°°°2 ≤M2 kA−Bk2 . (5.1)

Indeed we have °°°In − Λ̃°°°2 = tr
h
(In − Λ̃)(In − Λ̃)

i
= tr

h³
D̃AD̃0 − D̃BD̃0

´³
D̃AD̃0 − D̃BD̃0

´i
= tr

h
D̃0D̃ (A−B) D̃0D̃ (A−B)

i
Now for eigenvalues λmax(·) we have

λmax

³
D̃0D̃

´
= λmax

³
D̃D̃0

´
= λmax

³
C̃ 0DD0C̃

´
= λmax

¡
DD0¢

= λmax

³
C1Λ

−1/2
1 Λ

−1/2
1 C 01

´
= λ−1min (A) ≤M, (5.2)

hence °°°In − Λ̃°°°2 ≤ M tr
h
D̃0D̃ (A−B) (A−B)

i
≤ M2 tr [(A−B) (A−B)] =M2 kA−Bk2

so that (5.1) is proved. Similarly to (5.2) we obtain a bound from below

λmin

³
D̃0D̃

´
= λ−1max (A) ≥M−1

which yields analogously to (5.1)°°°In − Λ̃°°°2 ≥M−2 kA−Bk2 . (5.3)

29



Consider now the Hellinger affinity AH(·, ·) between the one dimensional normals N(0, 1) and
N(0, σ2): if ϕ is the standard normal density then

AH(N(0, 1), N(0, σ
2)) = σ−1/2

Z
ϕ1/2(x)ϕ1/2(xσ−1)dx

=

µ
2σ

1 + σ2

¶1/2
=

µ
1− (1− σ)2

1 + σ2

¶1/2
=

µ
1− (1− σ2)2

(1 + σ)2(1 + σ2)

¶1/2
Let h = σ2 − 1; then as h→ 0

logAH(N(0, 1),N(0, σ
2)) = −h

2

16
(1 + o(1)). (5.4)

The matrix D̃ is nonsingular, and since the Hellinger distance is invariant under one-to-one
transformations,

H2 (Nn(0, A),Nn(0, B)) = H2
³
Nn(0, In), Nn(0, Λ̃)

´
=

= 2
³
1−AH(Nn(0, In), Nn(0, Λ̃))

´
= 2

Ã
1−

nY
i=1

AH(N(0, 1), N(0, λ̃i))

!

= 2

Ã
1− exp

Ã
nX
i=1

log
³
AH(N(0, 1), N(0, λ̃i))

´!!
(5.5)

where λ̃i, i = 1, . . . , n are the diagonal elements of Λ̃. Let us assume that kA−Bk ≤ �→ 0
where the dimension n of A,B may vary arbitrarily. Since

sup
i=1,...,n

¯̄̄
1− λ̃i

¯̄̄2
≤

nX
i=1

(1− λ̃i)
2 =

°°°In − Λ̃°°°2
we may write, in view of (5.1) and (5.4)

log
³
AH(N(0, 1), N(0, λ̃i))

´
= − 1

16

³
1− λ̃i

´2
(1 + ρi)

where supi=1,...,n |ρi|→ 0 as �→ 0. Since¯̄̄̄
¯
nX
i=1

³
1− λ̃i

´2
ρi

¯̄̄̄
¯ ≤

Ã
sup

i=1,...,n
|ρi|
!

nX
i=1

³
1− λ̃i

´2
we obtain for �→ 0

−16
nX
i=1

log
³
AH(N(0, 1), N(0, λ̃i))

´
=

nX
i=1

³
1− λ̃i

´2
(1 + ρi)

=
nX
i=1

³
1− λ̃i

´2
+ o(1)

nX
i=1

³
1− λ̃i

´2
=
°°°In − Λ̃°°°2 (1 + o(1))
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and as a consequence from (5.5)

H2 (Nn(0, A), Nn(0, B)) = 2

µ
1− exp

µ
− 1
16

°°°In − Λ̃°°°2 (1 + o(1))

¶¶
=

1

8

°°°In − Λ̃°°°2 (1 + o(1)).

In conjunction with (5.1) and (5.3), the last relation proves the lemma.

5.2 An auxiliary result for the proof of Lemma 4.1

Let A,B be two n × n covariance matrices. Recall that for every covariance matrix A
there is a uniquely defined symmetric square root matrix A1/2: if A = DΛD> is a spectral
decomposition (D orthogonal, Λ diagonal) of A then A1/2 = DΛ1/2D>.

Lemma 5.1 Let A,B be two n× n covariance matrices. Then°°°A1/2 −B1/2
°°°λmin(A1/2 +B1/2) ≤ kA−Bk .

Proof. Observe that³
A1/2 −B1/2

´
B1/2 +A1/2

³
A1/2 −B1/2

´
= A−B³

A1/2 −B1/2
´
A1/2 +B1/2

³
A1/2 −B1/2

´
= A−B

Add up the two equations and set S=
¡
A1/2 +B1/2

¢
; D =

¡
A1/2 −B1/2

¢
; then

DS + SD = 2 (A−B) . (5.6)

Take the squared norm k·k2 on both sides and observe

kDS + SDk2 = tr [(DS + SD)(DS + SD)]

= 2tr [DSSD] + 2tr [DSDS] .

Clearly we have

tr [DSSD] ≥ (λmin(S))
2 tr [DD]

tr [DSDS] = tr
h
S1/2DSDS1/2

i
≥ λmin(S)tr

h
S1/2DDS1/2

i
≥ (λmin(S))

2 tr [DD] .

The last two displays imply

kDS + SDk2 ≥ 4 (λmin(S))2 kDk2

which in conjunction with (5.6) yields

kDkλmin(S) ≤ kA−Bk .
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5.3 Besov spaces on an interval

Let f be a function defined on I = [0, 1] and for 0 < h < 1 define

k∆hfkpp : =

Z 1−h

0
|f(x)− f(x+ h)|p dx for 1 ≤ p <∞,

k∆hfk∞ = sup
0≤x≤1−h

|f(x)− f(x+ h)| .

For 1 ≤ p ≤ ∞, the modulus of smoothness is defined as

ω(f, t)p := sup
0<h≤t

k∆hfkp .

For 0 < α < 1 and 1 ≤ q ≤ ∞ define a Besov type seminorm |f |Bα
p,q
by

|f |Bα
p,q

: =

µZ ∞

0

µ
ω(f, t)p

tα

¶q dt

t

¶1/q
for 1 ≤ q <∞,

|f |Bα
p,q

= sup
t>1

ω(f, t)p for q =∞

and a norm kfkBα
p,q
by

kfkBα
p,q
:= kfkp + |f |Bα

p,q
.

The Besov space Bα
p,q (for 1 ≤ p <∞, 0 < α < 1) is the set of f where kfkBα

p,q
<∞, equipped

with the norm k·kBα
p,q
. Define also the Hölder norm

kfkCα := kfk∞ + sup
x6=y

|f(x)− f(y)|
|x− y| (5.7)

and the corresponding Hölder space Cα. For two different spaces, B and B0 say, an embedding
theorem (written B /→ B0) is a norm inequality

kfkB0 ≤ C kfkB
where C depends on B0, B. Thus the embedding implies the set inclusion B ⊂ B0. We cite
the basic embedding theorem for our case, which is obtained by combining Theorems 18.4
, 18.5 18.8 in Besov, Il’in and Nikol’skii (1979) with Theorems 3.3.1 and 2.5.7. in Triebel
(1983), for the special case of a domain [0, 1].

Proposition 5.2 Let 0 < α0 < α < 1 and 1 ≤ p, q, p0, q0 ≤ ∞. Then
i) if q < q0 then

Bα
p,q /→ Bα

p,q0

ii) if p < p0 and α− (1/p− 1/p0) > 0 then for α0 = α− (1/p− 1/p0)

Bα
p,q /→ Bα0

p0,q

iii) if p ≥ p0 then
Bα
p,q /→ Bα0

p0,q0 .

iv) we have Bα
∞,∞ = Cα in the sense of equivalence of norms:

Bα
∞,∞ /→ Cα and Cα /→ Bα

∞,∞.
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Approximation by step functions. Consider a partition of [0, 1] into n intervals Wj,n

j = 1, . . . , n of equal length and for any f ∈ L2(0, 1), let f̄n be the L2-projection onto the
piecewise constant functions, i.e.

f̄n =
nX

j=1

Jj,n(f)1Wj,n , where Jj,n(f) = n

Z
Wjn,

f(x)dx. (5.8)

Lemma 5.3 For 0 < α < 1 and f ∈ Bα
2,2 we have°°f − f̄n
°°2
2
≤ 4 n−2α |f |2Bα

2,2
.

Proof. Note first °°f − f̄n
°°2
2
=

nX
j=1

Z
Wj,n

(f(x)− Jj,n(f))
2 dx. (5.9)

For any interval (a, b) and ε = b− a we haveZ b

a

µ
f(x)− ε−1

Z b

a
f(u)du

¶2
dx =

Z b

a

µ
ε−1

Z b

a
(f(x)− f(u)) du

¶2
dx

(by Jensen’s inequality) ≤
Z b

a
ε−1

Z b

a
(f(x)− f(u))2 dudx

= 2ε−1
Z b

a

Z b

x
(f(x)− f(u))2 dudx.

With a change of variable h = u− x the above equals

2ε−1
Z b

a

Z b−x

0
(f(x)− f(x+ h))2 dhdx

≤ 2ε−1
Z b

a

Z b−x

0
(b− x)2α+1

(f(x)− f(x+ h))2

h2α+1
dhdx

≤ 2ε2α
Z b

a

Z b−x

0

(f(x)− f(x+ h))2

h2α+1
dhdx.

Setting now (a, b) =Wj,n, b = j/n and ε = n−1 we obtain for j = 1, . . . , n− 1Z
Wj,n

(f(x)− Jj,n(f))
2 dx ≤ 2n−2α

Z
Wj,n

Z j/n−x

0

(f(x)− f(x+ h))2

h2α+1
dhdx (5.10)

≤ 2n−2α
Z
Wj,n

Z 1/n

0

(f(x)− f(x+ h))2

h2α+1
dhdx

whereas for j = n we have only the bound (5.10), i.eZ
Wn,n

(f(x)− Jn,n(f))
2 dx ≤ 2n−2α

Z
Wn,n

Z 1−x

0

(f(x)− f(x+ h))2

h2α+1
dhdx.
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Hence from (5.9) by adding the upper bounds

°°f − f̄n
°°2
2
=

n−1X
j=1

Z
Wj,n

(f(x)− Jj,n(f))
2 dx+

Z
Wn,n

(f(x)− Jn,n(f))
2 dx,

n−1X
j=1

Z
Wj,n

(f(x)− Jj,n(f))
2 dx ≤ 2n−2α

Z 1/n

0

Z 1−1/n

0

(f(x)− f(x+ h))2

h2α+1
dxdh

≤ 2n−2α
Z 1/n

0
k∆hfk22 h−(2α+1)dh

and Z
Wn,n

(f(x)− Jn,n(f))
2 dx ≤ 2n−2α

Z 1

1−1/n

Z 1−x

0

(f(x)− f(x+ h))2

h2α+1
dhdx. (5.11)

Now set

g(x, h) = (f(x)− f(x+ h))2 h−(2α+1),

A = {(x, h) : 0 ≤ h ≤ 1/n, 0 ≤ x ≤ 1− h} .

Then Z 1/n

0
k∆hfk22 h−(2α+1)dh =

Z
A
g(x, h)d(x, h)

and the second integral in (5.11) can be written in the same way but over a domain

A∗ = {(x, h) : 0 ≤ h ≤ 1− x, 1− 1/n ≤ x ≤ 1} .

Since A∗ ⊂ A and g(x, h) ≥ 0, we obtain°°f − f̄n
°°2
2
≤ 2n−2α

Z
A
g(x, h)d(x, h) + 2n−2α

Z
A∗

g(x, h)d(x, h)

≤ 4n−2α
Z 1/n

0
k∆hfk22 h−(2α+1)dh ≤ 4n−2α |f |

2
Bα
2,2

.

Lemma 5.4 For 1/2 < α < 1 and f ∈ Bα
2,2 we have°°f − f̄n

°°
∞ ≤ Cα n1/2−α kfkBα

2,2
.

Proof. For 0 < β < 1, consider the Hölder space Cβ with norm kfkCβ (cf. (5.7)). For
f ∈ Cβ, the result °°f − f̄n

°°
∞ ≤ n−β kfkCβ

is immediate. By Proposition 5.2 (ii),(i) and (iv), we have the embeddings

Bα
2,2 /→ B

α−1/2
∞,2 /→ Bα−1/2

∞,∞ /→ Ca−1/2. (5.12)

Setting β = a− 1/2, we obtain the result.
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Periodic spaces. For any f ∈ L2(0, 1) and 0 < α < 1, let kfk2 ,α be the norm defined in
terms of Fourier coefficients analogous to (2.14), i.e.

kfk22,α := γ2f (0) +
∞X

j=−∞
|j|2α γ2f (j), where γf (j) =

Z 1

0
exp(2πijx)f(x)dx.

Let Wα be the set of f where kfk2,α < ∞ equipped with this norm. This is the periodic

version of the Besov-Sobolev space Bα
2,2 (thus a standard notation for W

α would be B̃α
2,2);

we will prove one part of this claim via the embedding below. For a more comprehensive
treatment cf. Triebel (1983), Theorem 9.2.1.

Lemma 5.5 For 0 < α < 1 we have

Wα /→ Bα
2,2.

Proof. We will first establish the inequality

kfk2Bα
p,q
≤ Cα

Ã ∞X
n=1

n2α−1ω2(f, n−1)2 + kfk22

!
. (5.13)

To this end, note that for h ≥ 1 we have ω2(f, h)2 = ω2(f, 1)2 and therefore, by integrating
over intervals ((n+ 1)−1, n−1)Z ∞

0

µ
ω(f, t)22
t2α

¶
dt

t
≤

∞X
n=1

(n+ 1)2α+1ω2(f, n−1)2

µ
1

n(n+ 1)

¶
+

Z ∞

1

µ
ω(f, 1)22
t2α

¶
dt

t

which in view of ω(f, 1)22 ≤ 4 kfk
2
2 gives a bound

|f |2Bα
2,2
≤ 22α

∞X
n=1

n2α−1ω2(f, n−1)2 + 4 kfk22
Z ∞

1
t−(2α+1)dt.

and thus (5.13). Define a periodic version of k∆hfk22 by first extending the function f outside
[0, 1] periodically, and then setting°°°∆̃hf

°°°2
2
:=

Z 1

0
|f(x)− f(x+ h)|2 dx.

The periodic modulus of smoothness is then

ω̃(f, t)2 := sup
0<h≤t

°°°∆̃hf
°°°
2
. (5.14)

Evidently we have ω(f, t)2 ≤ ω̃(f, t)2 for all t > 0. Now°°°∆̃hf
°°°2
2
=

∞X
j=−∞

γ2f (j) |1− exp(ijh)|2 = 4
∞X

j=−∞
γ2f (j) sin

2

µ
jh

2

¶
≤

X
|j|≤n

γ2f (j)j
2h2 + 4

X
j|>n

γ2f (j).
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Consequently
∞X
n=1

n2α−1ω2(f, n−1)2 ≤
∞X
n=1

n2α−1ω̃2(f, n−1)2

≤
∞X
n=1

n2α−1
X
|j|≤n

γ2f (j)j
2n−2 + 4

∞X
n=1

n2α−1
X
|j|>n

γ2f (j)

=
∞X

j=−∞
γ2f (j)j

2
X
n≥|j|

n2α−3 + 4
∞X

j=−∞
γ2f (j)

X
n<|j|

n2α−1

≤ Cα

∞X
j=−∞

γ2f (j)|j|2α + Cα

∞X
j=−∞

γ2f (j)|j|2α ≤ Cα kfk22,α

which in conjunction with (5.13) proves the claim.

For any f ∈ L2(0, 1) (real-valued) and uneven n, let

f̃n(x) =
X

|j|≤(n−1)/2
γf (j) exp(2πijx)

be its truncated Fourier series. The letter C denotes generic constants depending on α but
not on f .

Lemma 5.6 For 1/2 < α < 1 we have

Wα /→ Cα−1/2,°°°f − f̃n

°°°
∞
≤ Cn1/2−α kfk2,α .

Proof. The first relation follows from Lemma 5.5 and the embedding (5.12). The second
then follows from the Cauchy-Schwartz inequality via

°°°f − f̃n

°°°2
∞
≤

⎛⎝ X
|j|>(n−1)/2

j2αγ2f (j)

⎞⎠⎛⎝ X
|j|>(n−1)/2

j−2α

⎞⎠ ≤ kfk22,α C n1−2α.

Let ωj,n be the midpoint of the interval Wj,n j = 1, . . . , n (cf. (5.8)).

Lemma 5.7 For 1/2 < α < 1 and f ∈ B̃α
2,2 we have along uneven n

nX
j=1

³
f̃n(ωj,n)− Jj,n(f)

´2
≤ Cα n1−2α kfk22,α .

Proof. Note that
nX

j=1

³
f̃n(ωj,n)− Jj,n(f)

´2
≤
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≤ 2
nX

j=1

³
Jj,n(f̃n)− Jj,n(f)

´2
+ 2

nX
j=1

³
f̃n(ωj,n)− Jj,n(f̃n)

´2
.

Here by Parseval’s relation and the projection property of f̄n the first term is bounded by

2n
°°°f − f̃n

°°°2
2
≤ 2n

µ
2

n− 1

¶2α
kfk22,α ≤ Cα n1−2α kfk22,α .

Thus it remains to show that
nX

j=1

³
f̃n(ωj,n)− Jj,n(f̃n)

´2
≤ Cα n1−2α kfk22,α . (5.15)

We have¯̄̄
f̃n(ωj,n)− Jj,n(f̃n)

¯̄̄
≤ n

Z
Wj,n

¯̄̄
f̃n(x)− f̃n(ωj,n)

¯̄̄
dx ≤ n

Z
Wj,n

¯̄̄̄Z ωj,n

x
Df̃n(t)dt

¯̄̄̄
dx

≤ n

Z
Wj,n

|x− ωj,n|1/2
µZ ωj,n

x

³
Df̃n(t

´2
dt

¶1/2
dx

≤ n−1/2
ÃZ

Wj,n

³
Df̃n(t

´2
dt

!1/2
.

Consequently
nX

j=1

³
f̃n(ωj,n)− Jj,n(f̃n)

´2
≤ n−1

Z
[0,1]

³
Df̃n(t

´2
dt.

By termwise differentiation and Parseval’s relation the right side equals

n−1
X

|j|≤(n−1)/2
j2γ2f (j) =

X
|j|≤(n−1)/2

µ
|j|2−2α

n

¶
|j|2αγ2f (j)

≤ n1−2α kfk22,α

which establishes (5.15).

Remark 5.8 Periodic Besov spaces B̃α
p,q. These can be defined for 0 < α < 1 and 1 ≤

p, q ≤ ∞ analogously to the spaces Bα
p,q as above, using an periodic increment norm

°°°∆̃hf
°°°
p

and a periodic modulus of smoothness ω̃(f, t)p defined analogously to (5.14). Clearly then
B̃α
p,q /→ Bα

p,q. An intrinsic characterization in terms of Fourier coefficients γf (k) is as follows:
for p ≥ 2 and 1/2 < α < 1 the expression⎛⎜⎝ ∞X

j=0

2jαq

°°°°°°
X

2j−1−1<|k|<2j
γf (k) exp(2πikx)

°°°°°°
q

p

⎞⎟⎠
1/q

is an equivalent norm in B̃α
p,q; cf. Nikolskii, sec. 5.6, relation (6) (cp. also Triebel (1983),

definition 2.3.1/2). .
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