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Université de Bretagne-Sud and Cornell University

Abstract. We consider a nonparametric model En, generated by independent ob-
servations Xi, i = 1, ..., n, with densities p(x, θi), i = 1, ..., n, the parameters of which
θi = f(i/n) ∈ Θ are driven by the values of an unknown function f : [0, 1]→ Θ in a
smoothness class. The main result of the paper is that, under regularity assumptions,
this model can be approximated, in the sense of the Le Cam deficiency pseudodis-
tance, by a nonparametric Gaussian shift model Yi = Γ(f(i/n)) + εi, where ε1, ..., εn

are i.i.d. standard normal r.v.’s, the function Γ(θ) : Θ → R satisfies Γ′(θ) =
√
I(θ)

and I(θ) is the Fisher information corresponding to the density p(x, θ).

1. Introduction

Consider the nonparametric regression model with non-Gaussian noise

Xi = f (i/n) + ξi, i = 1, ..., n,(1.1)

where ξ1, ..., ξn are i.i.d. r.v.’s of means 0 and finite variances, with density p(x) on the
real line, and f(t), t ∈ [0, 1], is an unknown real valued function. It is well-known that,
under some assumptions, this model shares many desirable asymptotic properties of
the Gaussian nonparametric regression model

Xi = f (i/n) + εi, i = 1, ..., n,(1.2)

where ε1, ..., εn are i.i.d. standard normal r.v.’s. In a formal way, two sequences of
statistical experiments are said to be asymptotically equivalent if the Le Cam pseudo-
distance between them tends to 0 as n→∞. Such a relation between the model (1.2)
and its continuous time analog was first established by Brown and Low [3]. In a paper
by Nussbaum [15] the accompanying Gaussian model for the density estimation from
an i.i.d. sample was found to be the white noise model (1.2) with the root of the
density as a signal. The case of generalized linear models (i.e. a class of nonparametric
regression models with non-additive noise) was treated in Grama and Nussbaum [7].
However none of the above results covers observations of the form (1.1). It is the aim of
the present paper to develop an asymptotic equivalence theory for a more general class
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2 I. GRAMA AND M. NUSSBAUM

of nonparametric models, in particular for the location type regression model (1.1). In
Section 4 we shall derive simple sufficient conditions for the models (1.1) and (1.2) to
be asymptotically equivalent; a summary can be given as follows. Let f be in a Hölder
ball with exponent β > 1/2. Let p (x) be the density of the noise variables ξi, and

set s (x) =
√
p (x). Assume that the function s′ (x) satisfies a Hölder condition with

exponent α, where 1/2β < α < 1, and, for some δ > 2β+1
2β−1

and ε > 0,

sup
|u|≤ε

∫ ∞
−∞

∣∣∣∣s′(x+ u)

s(x)

∣∣∣∣2δ p(x)dx <∞.

Assume also that the Fisher information in the parametric location model p (x− θ),
θ ∈ R is 1. Then the models (1.1) and (1.2) are asymptotically equivalent. The above
conditions follow from the results of the paper for a larger class of nonparametric
regression models which we now introduce.

Let p(x, θ) be a parametric family of densities on the measurable space (X,X , µ),
where µ is a σ-finite measure, θ ∈ Θ and Θ is an interval (possibly infinite) in
the real line. Our nonparametrically driven model is such that at time moments
t1, ..., tn we observe a sequence of independent X-valued r.v.’s X1, ..., Xn with densities
p(x, f(t1)), ..., p(x, f(tn)), where f(t), t ∈ [0, 1] is an unknown function and ti = i/n,
i = 1, ..., n. The principal result of the paper is that, under regularity assumptions
on the density p(x, θ), this model is asymptotically equivalent to a sequence of ho-
moscedastic Gaussian shift models, in which we observe

Yi = Γ(f(ti)) + εi, i = 1, ..., n,

where ε1, ..., εn are i.i.d. standard normal r.v.’s, Γ(θ) : Θ → R is a function such that

Γ′(θ) =
√
I(θ) and I(θ) is the Fisher information in the parametric family p(x, θ),

θ ∈ Θ.
The function Γ(θ) can be related to the so called variance stabilizing transformation

(see Remark 3.3 below). In the case of the location type regression model (1.1), derived
from the family p (x− θ), θ ∈ Θ, we have Γ(θ) = θ. For other nontrivial examples we
refer the reader to our Section 4, where it is assumed that the density p(x, θ) is in a
fixed exponential family E (see also Grama and Nussbaum [7]). Notable among these
is the binary regression model (cf. [7]): let Xi be Bernoulli 0-1 r.v.’s with unknown
probability of success θi = f(ti), i = 1, ..., n, where f is in a Hölder ball with exponent
β > 1/2 and is separated form 0 and 1. Then the accompanying Gaussian model is

Yi = 2 arcsin
√
f(ti) + εi, i = 1, ..., n.

The function Γ(θ) = 2 arcsin
√
θ is known to be the variance-stabilizing transformation

related to the Bernoulli random variables.
The global result above is derived from the following local result. Define a lo-

cal experiment to be generated by independent observations X1, ..., Xn with densities
p(x, g(t1)), ..., p(x, g(tn)), where g(t) is in a certain neighborhood of ”nonparametric
size” (i.e. whose radius is large relative to n−1/2) of a fixed function f. We show that
this model is asymptotically equivalent to a heteroscedastic Gaussian model, in which
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we observe

Yi = g(ti) + I(f(ti))
−1/2εi, i = 1, ..., n.(1.3)

As an example, for binary regression (Bernoulli observations) with probabilities of
success θi = f(ti), i = 1, ..., n we obtain the local Gaussian approximation (1.3) with
I(θ) = 1

θ(1−θ) .

In turn, the local approximation (1.3) is a consequence of a more general local
result for nonparametric models satisfying some regularity assumptions, which is of
independent interest. Namely, we show that if the log-likelihood of a nonparametric
experiment satisfies a certain asymptotic expansion in terms of independent random
variables, subject to a Lindeberg type condition, and with a remainder term converging
to 0 at some rate, then a version of this experiment can be constructed on the same
measurable space with a Gaussian experiment such that the Hellinger distance between
the corresponding probability measures converges to 0 at some rate. The proof of the
last result is based on obtaining versions of the likelihood processes on a common
probability space by means of a functional Hungarian construction for partial sums,
established in Grama and Nussbaum [8].

The abovementioned results are part of an effort to extend Le Cam’s asymptotic
theory (see Le Cam [12] and Le Cam and Yang [13]) to a class of general models with
infinite dimensional parameters which cannot be estimated at the usual ”root-n” rate
n−1/2. The case of the infinite dimensional parameters which are estimable at this rate
was considered for instance in Millar [14]. The approach used in the proofs of the
present results is quite different from that in the ”root-n” case and was suggested by
the papers of Brown and Low [3] and Nussbaum [15] (see also Grama and Nussbaum
[7]). An overview of the technique of proof can be found at the end of the Section 3.

A nonparametric regression model with random design, but Gaussian noise was
recently treated by Brown, Low and Zhang [5]. We focus here on the nongaussian case,
assuming a regular nonrandom design i/n, i = 1, . . . , n: the model is generated by a
parametric family of densities p(x, θ), θ ∈ Θ, where θ is assumed to take the values
f(i/n) of the regression function f . The term nonparametrically driven parametric
model shall also be used for this setup.

The paper is organized as follows. Section 2 contains some background on asymptotic
equivalence. Our main results are presented in Section 3. In Section 4 we illustrate
the scope of our regularity assumptions by considering the case of the location type
regression model and the exponential family model (known also as the generalized
linear model). In Section 5 we prove our basic local result on asymptotic equivalence
for a general class of nonparametric experiments. Then in Section 6 we just apply this
general local result to the particular case when the nonparametrically driven parametric
model satisfies the regularity assumptions of the Section 3. In Sections 7 and 8 we
globalize the previous local result twofold: first over the time interval [0, 1], and then
over the parameter set Σβ. The global form over Σβ requires a reparametrization of
the family p(x, θ) using Γ(θ). At the end of Section 7, we show that this allows a
homoscedastic form of the accompanying local Gaussian experiment, which can readily
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be globalized. Finally in the Appendix we formulate the functional Komlós-Major-
Tusnády approximation proved in [8] and some well-known auxiliary statements.

2. Background on asymptotic equivalence

We follow Le Cam [12] and Le Cam and Yang [13]. Let E = (X,X , {Pθ : θ ∈ Θ}) and
G = (Y,Y, {Qθ : θ ∈ Θ}) be two experiments with the same parameter set Θ. Assume
that (X,X ) and (Y,Y) are complete separable (Polish) metric spaces. The deficiency
of the experiment E with respect to G is defined as

δ (E ,G) = inf
K

sup
θ∈Θ
‖K · Pθ −Qθ‖Var ,

where the infimum is taken over the set of all Markov kernels K : (X,X )→ (Y,Y) and
‖·‖Var is the total variation norm for measures. Le Cam’s distance between E and G is
defined to be

∆ (E ,G) = max{δ (E ,G) , δ (G, E)}.
An equivalent definition of the Le Cam distance is obtained if we define the one sided
deficiency δ (E ,G) as follows: let (D,D) be a space of possible decisions. Denote by
Π(E) the set of randomized decision procedures in the experiment E , i.e. the set
of Markov kernels π(x,A) : (X,X ) → (D,D). Define L(D,D) to be the set of all loss
functions L(θ, z) : Θ×D → [0,∞) satisfying 0 ≤ L(θ, z) ≤ 1. The risk of the procedure
π ∈ Π(E) for the loss function L ∈ L(D,D) and true value θ ∈ Θ is set to be

R(E , π, L, θ) =

∫
X

∫
D

L(θ, z)π(x, dz)Pθ(dx).

Then the one-sided deficiency can be defined as

δ (E ,G) = sup sup
L∈L(D,D)

inf
π1∈Π(E)

sup
π2∈Π(G)

sup
θ∈Θ
|R(E , π1, L, θ)−R(E , π2, L, θ)| .

where the first supremum is over all possible decision spaces (D,D).
Following Le Cam [12], we introduce the next definition.

Definition 2.1. Two sequences of statistical experiments En, n = 1, 2, ... and Gn,
n = 1, 2, ... are said to be asymptotically equivalent if

∆ (En,Gn)→ 0, as n→∞,
where ∆ (En,Gn) is the Le Cam deficiency pseudo-distance between statistical experi-
ments En and Gn.

From the above definitions it follows that, if in the sequence of models En there
is a sequence of procedures πn1 such that the risks R(En, πn1 , Ln, θ) converge to the
quantity ρ(θ), for a uniformy bounded sequence of loss functions Ln, then there is a
sequence of procedures πn2 in Gn, such that the risks R(Gn, πn2 , Ln, θ) converge to the
same quantity ρ(θ), uniformly in θ ∈ Θ. This indicates that the asymptotically minimax
risks for bounded loss functions in one model can be transferred to another model. In
particular one can compute the asymptotically minimax risk in non-Gaussian models
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by computing it in the accompanying Gaussian models. This task, however, remains
beyond of the scope of the present paper.

3. Formulation of the results

3.1. The parametric model. Let Θ be an interval (possibly infinite) in the real line
R and

E = (X,X , {Pθ : θ ∈ Θ})(3.1)

be a statistical experiment on the measurable space (X,X ) with the parameter set Θ
and a dominating σ-finite measure µ. The last property means that for each θ ∈ Θ
the measure Pθ is absolutely continuous w.r.t. the measure µ. Denote by p (x, θ) the
Radon-Nikodym derivative of Pθ w.r.t. µ :

p (x, θ) =
Pθ (dx)

µ (dx)
, x ∈ X, θ ∈ Θ.(3.2)

For the sake of brevity we set p(θ) = p(·, θ). We shall assume in the sequel that for any
θ ∈ Θ

p (θ) > 0, µ-a.s. on X.(3.3)

Assumption (3.3) implies that the measures Pθ, θ ∈ Θ are equivalent: Pθ ∼ Pu, for
θ, u ∈ Θ.

3.2. The nonparametric model. Set T = [0, 1]. Let F0 = ΘT be the set of all
functions on the unit interval T = [0, 1] with values in the interval Θ :

F0 = ΘT = {f : [0, 1]→ Θ} .

Let H (β, L) be a Hölder ball of functions defined on T and with values in R, i.e. the
set of functions f : T → R, which satisfy a Hölder condition with exponent β > 0 and
constant L > 0 : ∣∣f (β0) (t)− f (β0) (s)

∣∣ ≤ L |t− s|β1 , t, s ∈ T,

where the nonnegative integer β0 and the real β1 ∈ (0, 1] are such that β0 + β1 = β,
and which also satisfy

‖f‖∞ ≤ L, where ‖f‖∞ = sup
t∈T
|f (t)| .

Set for brevity, Σβ = F0∩H (β, L) . In the nonparametrically driven model to be treated
here it is assumed that we observe a sequence of independent r.v.’s X1, ..., Xn with val-
ues in the measurable space (X,X ) , such that, for each i = 1, ..., n, the observation Xi

has density p (x, f (i/n)) where the function f is unknown and satisfies the smoothness
condition f ∈ Σβ. We shall make use of the notation P n

f = Pf(1/n)× ...×Pf(n/n), where

Pθ is the probability measure in the parametric experiment E and f ∈ Σβ.
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3.3. Regularity assumptions. Assume that β > 1/2. In the sequel the density p(x, θ)
in the parametric experiment E shall be subjected to the regularity assumptions (R1) ,
(R2) , (R3) , which are assumed to hold true with the same ε > 0.

R1: The function s (θ) =
√
p (θ) is smooth in the space L2 (X,X , µ) : there is a

real number δ ∈ ( 1
2β
, 1) and a map

•
s (θ) : Θ→ L2 (X,X , µ) such that

sup
(θ,u)

1

|u− θ|1+δ

(∫
X

(
s (x, u)− s (x, θ)− (u− θ) •s (x, θ)

)2

µ (dx)

)1/2

<∞,

where sup is taken over all pairs (θ, u) satisfying θ, u ∈ Θ, |u− θ| ≤ ε.

It is well-known (see Strasser [17]) that there is a map
•
l (θ) ∈ L2 (X,X , µ) such that

the function
•
s (θ) in condition (R1) can be written as

•
s (θ) =

1

2

•
l (θ)

√
p (θ), µ-a.s. on X.(3.4)

Moreover,
•
l (θ) ∈ L2 (X,X , Pθ) and

Eθ

•
l (θ) =

∫
X

•
l (x, θ) p (x, θ)µ (dx) = 0, θ ∈ Θ,

where Eθ is the expectation under Pθ. The map
•
l (θ) is called tangent vector at θ. For

any θ ∈ Θ, define an extended tangent vector
•
lθ (u) , u ∈ Θ, by setting

•
lθ (x, u) =


•
l (x, θ) , if u = θ,

2
u−θ

(√
p(x,u)
p(x,θ)

− 1
)
, if u 6= θ.

(3.5)

R2: There is a real number δ ∈ (2β+1
2β−1

,∞) such that

sup
(θ,u)

∫
X

∣∣∣∣•lθ (x, u)

∣∣∣∣2δ p (x, θ)µ (dx) <∞,

where sup is taken over all pairs (θ, u) satisfying θ, u ∈ Θ, |u− θ| ≤ ε.

The Fisher information in the local experiment E is

I (θ) =

∫
X

(
•
l (x, θ)

)2

p (x, θ)µ (dx) , θ ∈ Θ.(3.6)

R3: There are two real numbers Imin and Imax such that

0 < Imin ≤ I (θ) ≤ Imax <∞, θ ∈ Θ.
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3.4. Local result. First we state a local Gaussian approximation. For any f ∈ Σβ,
denote by Σβ

f (r) the neighborhood of f, shifted to the origin:

Σβ
f (r) =

{
h : ‖h‖∞ ≤ r, f + h ∈ Σβ

}
.

Set

γn = c (β)

(
log n

n

) β
2β+1

,

where c (β) is a constant depending on β. Throughout the paper γn will denote a
sequence of real numbers satisfying, for some constant c ≥ 0,

γn ≤ γn = O(γn logc n).(3.7)

By definition the local experiment

Enf =
(
Xn,X n, {P n

f+h : h ∈ Σβ
f (γn)}

)
is generated by the sequence of independent r.v.’s X1, ..., Xn, with values in the mea-
surable space (X,X ) , such that for each i = 1, ..., n, the observation Xi has density

p (x, g (i/n)) , where g = f + h, h ∈ Σβ
f (γn) . An equivalent definition is:

Enf = E (1)
f ⊗ ...⊗ E

(n)
f ,(3.8)

where

E (i)
f =

(
X,X , {Pg(i/n) : g = f + h, h ∈ Σβ

f (γn)}
)
, i = 1, ..., n.(3.9)

Theorem 3.1. Let β > 1/2 and I (θ) be the Fisher information in the paramet-
ric experiment E . Assume that the density p(x, θ) satisfies the regularity conditions
(R1−R3) . For any f ∈ Σβ, let Gnf be the local Gaussian experiment, generated by
observations

Y n
i = h (i/n) + I (f (i/n))−1/2 εi, i = 1, ..., n,

with h ∈ Σβ
f (rn) , where ε1, ..., εn is a sequence of i.i.d. standard normal r.v.’s. Then,

uniformly in f ∈ Σβ, the sequence of local experiments Enf , n = 1, 2, ... is asymptotically
equivalent to the sequence of local Gaussian experiments Gnf , n = 1, 2, ... :

sup
f∈Σβ

∆
(
Enf ,Gnf

)
→ 0, as n→∞.

3.5. Global result. By definition the global experiment

En =
(
Xn,X n, {P n

f : f ∈ Σβ}
)

is generated by the sequence of independent r.v.’s X1, ..., Xn, with values in the mea-
surable space (X,X ) , such that for each i = 1, ..., n, the observation Xi has density
p (x, f (i/n)) , where f ∈ Σβ. In other words En is the product experiment

En = E (1) ⊗ ...⊗ E (n),
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where

E (i) =
(
X,X , {Pf(i/n) : f ∈ Σβ}

)
, i = 1, ..., n.

We shall make the following assumptions:

G1: For any β > 1/2, there is an estimator f̂n : Xn → Σβ, such that

sup
f∈Σβ

P
(∥∥∥f̂n − f∥∥∥

∞
≥ γn

)
→ 0, n→∞.

G2: The Fisher information I(θ) : Θ → (0,∞) satisfies a Hölder condition with
exponent α ∈ (1/2β, 1).

The main result of the paper is the following theorem, which states a global Gaussian
approximation for the sequence of experiments En, n = 1, 2, ... in the sense of Definition
2.1.

Theorem 3.2. Let β > 1/2 and I (θ) be the Fisher information in the parametric
experiment E . Assume that the density p(x, θ) satisfies the regularity conditions (R1-
R3) and that conditions (G1-G2) are fulfilled. Let Gn be the Gaussian experiment
generated by observations

Y n
i = Γ (f (i/n)) + εi, i = 1, ..., n,

with f ∈ Σβ, where ε1, ..., εn is a sequence of i.i.d. standard normal r.v.’s and Γ (θ) :

Θ → R is any function satisfying Γ′ (θ) =
√
I (θ). Then the sequence of experiments

En, n = 1, 2, ... is asymptotically equivalent to the sequence of Gaussian experiments
Gn, n = 1, 2, ... :

∆ (En,Gn)→ 0, as n→∞.

Remark 3.1. Examples in Efromovich and Samarov [6], Brown and Zhang [4] [see
also Brown and Low [3]] show that asymptotic equivalence, in general, fails to hold
true when β ≤ 1/2.

Remark 3.2. Assumption (G1) is related to attainable rates of convergence in the
sup-norm ‖·‖∞ for nonparametric regression. It is well known that for a parameter

space H (β, L), β ≤ 1 the attainable rate for estimators of f is (log n/n)β/(2β+1) in
regular cases (cf. Stone [16]). For a choice γn = γ̄n logc n condition (G1) would be

implied by this type of result. However for a choice γn = γ̄n = c(β)
(

(log n/n)β/(2β+1)
)

(G1) is slightly stronger (the classical rate result would also require c(β) → ∞ for
convergence to 0 in (G1)). In the case of the Gaussian location-type regression ((1.1)
for normal ξi) this is a consequence of the optimal constant result of Korostelev [10].
The extension to our nongaussian regression models would be of technical nature; for
the density estimation model it has been verified in Korostelev and Nussbaum [11] and
applied in a similar context to here in Lemma 9.3 of [15] .

Remark 3.3. The function Γ (θ) can be related to so called variance-stabilizing trans-
formation, which we proceed to introduce. Let X1, ..., Xn be a sequence of real valued
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i.i.d. r.v.’s, with law depending on the parameter θ ∈ Θ. Let µ (θ) be the common
mean and σ(θ) be the common variance. By the central limit theorem,

√
n {Sn − µ(θ)} d→ N (0, σ (θ)) ,

where Sn = (X1 + ...+Xn) /n. The variance-stabilizing transformation is defined to
be a function F on the real line, with the property that the variance of the limiting
normal law does not depend on θ, i.e.

√
n {F (Sn)− F (µ(θ))} d→ N (0, 1) .

The function F pertaining to our nonparametric model can be computed and the
relation to the function Γ can be clarified in some particular cases. Let σ(θ) = I(θ) > 0
and µ (θ) satisfy µ′ (θ) = I (θ) . Let a (λ) be the inverse of the strictly increasing function
µ (θ) on the interval Θ and µ (Θ) be its range. Assume that the Xi take values in µ(Θ).
One can easily see that a variance stabilizing transformation is any function F (λ),

λ ∈ µ(Θ) satisfying F ′ (λ) = 1/
√
I (a (λ)), λ ∈ µ(Θ). In this case, our transformation

of the functional parameter f is actually the transformation of the mean µ(θ)

Γ(θ) = F (µ(θ)),

corresponding to this variance stabilizing transformation. In the other particular case,
when the mean of Xi is µ(θ) = θ, both transformations Γ and F just coincide: Γ(θ) =
F (θ).

We follow the line developed in Nussbaum [15] (see also Grama and Nussbaum [7]).
The proof of Theorem 3.1 is given in Section 7 and contains three steps:

• Decompose the local experiments Enf and Gnf into products of independent ex-
periments:

Enf = En,1f ⊗ ...⊗ E
n,m
f , Enf = Gn,1f ⊗ ...⊗ G

n,m
f .

Here m = o(n) and En,kf represents the k-th ”block” of observations of size
(approximately) n/m.

• Show that each component En,kf can be well approximated by its Gaussian

counterpart Gn,kf in the sense that there exist equivalent versions Ẽn,kf and G̃n,kf
on a common measurable space such that

H2
(
P̃ n,k
f,h , Q̃

n,k
f,h

)
= o

(
m−1

)
,

where H2 (·, ·) is the Hellinger distance between the probability measures P̃ n,k
f,h

and Q̃n,k
f,h in the local experiments Ẽn,kf and G̃n,kf respectively.

• Patch together the components Ẽn,kf and G̃n,kf , k = 1, ...,m by means of the
convenient property of the Hellinger distance for the product of probability
measures

H2
(
P̃ n
f,h, Q̃

n
f,h

)
≤

m∑
k=1

H2
(
P̃ n,k
f,h , Q̃

n,k
f,h

)
=

m∑
i=1

o
(
m−1

)
= o (1) .
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The challenge here is the second step. For its proof, in Section 5, we develop a
general approach, according to which any experiment En with a certain asymptotic
expansion of its log-likelihood ratio (condition LASE) can be constructed on the same
measurable space with a Gaussian experiment Gn, such that the Hellinger distance
between the corresponding probability measures converges to 0 at a certain rate. Then
we are able to check condition LASE for the model under consideration using a strong
approximation result (see Theorem 9.1).

Theorem 3.2 is derived from the local result of Theorem 3.1 by means of a globalizing
procedure, which is presented in Section 8.

4. Examples

4.1. Location type regression model. Consider the regression model with non-
Gaussian additive noise

Xi = f(i/n) + ξi, i = 1, ..., n,(4.1)

where ξ1, ..., ξn are i.i.d. r.v.’s of means 0 and finite variances, with density p(x) on
the real line, f ∈ Σβ and Σβ is a Hölder ball on [0, 1] with exponent β > 1/2. This
model is a particular case of the nonparametrically driven model, introduced in Section
3, when p(x, θ) = p(x − θ) is a shift parameter family and θ ∈ R. Assume that the
derivative p′(x) exists, for all x ∈ R. Then the extended tangent vector, defined by
(3.4), is computed as follows

•
lθ(x, u) =


p′(x−θ)
p(x−θ) , if u = θ,

2
u−θ

√
p(x−u)−

√
p(x−θ)√

p(x−θ)
, if u 6= θ.

Set s (x) =
√
p(x). Then it is easy to see that conditions (R1-R3) hold true, if we

assume that the following items are satisfied:

L1: The function s′ (x) satisfies Hölder’s condition with exponent α, where α ∈
(1/2β, 1), i.e.

|s′ (x)− s′ (y)| ≤ C |x− y|α , x, y ∈ R.

L2: For some δ > 2β+1
2β−1

and ε > 0,

sup
|u|≤ε

∫ ∞
−∞

∣∣∣∣s′(x+ u)

s(x)

∣∣∣∣2δ p(x)dx <∞.

L3: The Fisher informational number is positive:

I = 4

∫ ∞
−∞

s′(x)2dx =

∫ ∞
−∞

p′(x)2

p(x)
dx > 0.

It is well-known that a preliminary estimator satisfying condition (G1) exists in this
model. Then, according to Theorem 3.2, under conditions (L1-L3) the model defined
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by observations (4.1) is asymptotically equivalent to a linear regression with Gaussian
noise, in which we observe

Yi = f(i/n) + I−1/2εi,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.

4.2. Exponential family model. Another particular case of the model introduced
in Section 3 arises when the parametric experiment E = (X,X , {Pθ : θ ∈ Θ}) is an one-
dimensional linearly indexed exponential family, where Θ is a possibly infinite interval
on the real line (see Brown [2]). This means that the measures Pθ are absolutely
continuous w.r.t. a σ-finite measure µ(dx) with densities (in the canonical form)

p(x, θ) =
Pθ(dx)

µ(dx)
= exp (θU(x)− V (θ)) , x ∈ X, θ ∈ Θ,(4.2)

where the measurable function U(x) : X → R is a sufficient statistic in the experiment
E and

V (θ) = log

∫
X

exp (θU(x))µ(dx)

is the logarithm of the Laplace transformation of U(x). It is easy to see that regularity
conditions (R1-R3) and (G1-G2) are satisfied, if we only assume that 0 < c1 ≤ V ′′(θ) ≤
c2 < ∞ and

∣∣V (k)(θ)
∣∣ ≤ c2, for any k ≥ 3 and two absolute constants c1 and c2 (for

other related conditions see Grama and Nussbaum [7]). We point out that, for all these
models, the preliminary estimator of condition (G1) above can easily be constructed
(see for instance [7]).

Now we shall briefly discuss some examples. Note that the parametrizations in these
is different from the canonical one appearing in (4.2). We have chosen the natural
parametrizations, where an observation X in the experiment E has mean µ(θ) = θ,
since this facilitates computation of the function Γ(θ).

Gaussian scale model. Assume that we are given a sequence of normal observations
X1, ..., Xn with mean 0 and variance f(i/n), where the function f(t), t ∈ [0, 1] satisfies
a Hölder condition with exponent β > 1/2 and is such that c1 ≤ f(t) ≤ c2, for some
positive absolute constants c1 and c2. In this model the density of the observations has

the form p(x, θ) = 1√
2πθ

exp
(
− x2

2θ2

)
, x ∈ R and the Fisher information is I(θ) = 2θ−2.

This gives us Γ(θ) =
√

2 log θ. Then, by Theorem 3.2, the model is asymptotically
equivalent to the Gaussian model

Yi =
√

2 log f(i/n) + εi,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.
Poisson model. Assume that we are given a sequence of Poisson observationsX1, ..., Xn

with parameters f(i/n), where the function f(t), t ∈ [0, 1] satisfies a Hölder condition
with exponent β > 1/2 and is such that c1 ≤ f(t) ≤ c2, for some positive absolute con-
stants c1 and c2. In this model p(x, θ) = θx exp (−θ) , x ∈ X = {0, 1, ...} and I(θ) = θ−1.
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As a consequence Γ(θ) = 2
√
θ. According to Theorem 3.2, the model is asymptotically

equivalent to the Gaussian model

Yi = 2
√
f(i/n) + εi,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.
Binary response model. Assume that we are given a sequence of Bernoulli observa-

tions X1, ..., Xn taking values 0 and 1 with probabilities 1− f(i/n) and f(i/n) respec-
tively, where the function f(t), t ∈ [0, 1] satisfies a Hölder condition with exponent
β > 1/2 and is such that c1 ≤ f(t) ≤ c2 for some absolute constants c1 > 0 and c2 < 1.
In this model p(x, θ) = θx(1 − θ)1−x, x ∈ X = {0, 1} and I(θ) = 1

θ(1−θ) . This yields

Γ(θ) = 2 arcsin
√
θ. By Theorem 3.2, this model is asymptotically equivalent to the

Gaussian model

Yi = 2 arcsin
√
f(i/n) + εi,

where ε1, ..., εn are i.i.d. standard normal r.v.’s.

5. Some nonparametric local asymptotic theory

The aim of this section is to state and discuss a condition on the asymptotic be-
haviour of the likelihood ratio which can be used for Gaussian approximation of our
nonparametric regression models. This condition will resemble an LAN-condition,
but will be stronger in the sense that it requires an asymptotic expansion of the log-
likelihood ratio in terms of independent random variables. Although LAN conditions
for nonparametric experiments have been stated and their consequences been devel-
oped extensively, (see for instance Millar [14], Strasser [17] and references therein), the
context of this was n−1/2-consistent estimation problems, where an n−1/2-localization
of the experiments is useful and implies weak convergence of the sequence En to a
limit Gaussian experiment G. In contrast, we assert the existence of a version of the
experiment En on the same sample space with a suitable Gaussian experiment Gn such
that the Hellinger distance between corresponding measures goes to 0 at some rate.
The existence of a limit experiment G is not assumed here: it is replaced by a suitable
sequence of approximating experiments Gn.

It should be mentioned that the scope of applicability of this theory is actually
larger than exploited here: it can be used to establish asymptotic equivalence results
for regression models with i.i.d. observations, such as models with random design,
and for models with dependent observations. However these results remain beyond of
the scope of the present paper. Here we restrict ourselves to the model introduced in
Section 3.

5.1. A bound for the Hellinger distance. First we shall give sufficient conditions
for a rate of convergence to 0 of the Hellinger distance between the corresponding
measures of two statistical experiments.

Assume that F is an arbitrary set and that for any f ∈ F we are given a system of
sets Ff (r) , r > 0, to be regarded as a system of neighborhoods of f. Let rn, n = 1, 2, ...
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be a sequence of real numbers satisfying 0 < rn ≤ 1 and rn → 0, as n → ∞. Let, for
any n = 1, 2, ... and any f ∈ F ,

Enf =
(
Xn,X n,

{
P n
f,h : h ∈ Ff (rn)

})
and

Gnf =
(
Xn,X n,

{
Qn
f,h : h ∈ Ff (rn)

})
be two statistical experiments with the same sample space (Xn,X n) and the same
parameter space Ff (rn) . Assume that the ”local” experiments Enf and Gnf have a
common ”central” measure, i.e. that there is an element h0 = h0 (f) ∈ Ff (rn) such
that P n

f,h0
= Qn

f,h0
= Pn

f and P n
f,h � P n

f,h0
, Qn

f,h � Qn
f,h0

, for any h ∈ Ff (rn) .

Theorem 5.1. Let α1 > α ≥ 0. Assume that, for some c1 > 0,

sup
f∈F

sup
h∈Ff (rn)

Pn
f

(∣∣∣∣∣log
dP n

f,h

dP n
f,h0

− log
dQn

f,h

dQn
f,h0

∣∣∣∣∣ ≥ c1r
α1
n

)
= O

(
r2α1
n

)
(5.1)

and, for any ε ∈ (0, 1),

sup
f∈F

sup
h∈Ff (rn)

P n
f,h

(
log

dP n
f,h

dP n
f,h0

> −ε log rn

)
= O

(
r2α1
n

)
(5.2)

and

sup
f∈F

sup
h∈Ff (rn)

Qn
f,h

(
log

dQn
f,h

dQn
f,h0

> −ε log rn

)
= O

(
r2α1
n

)
.(5.3)

Then there is an α2 > α such that

sup
f∈F

sup
h∈Ff (rn)

H2
(
P n
f,h, Q

n
f,h

)
= O

(
r2α2
n

)
.

Proof. Set, for brevity

L1,n
f,h =

dP n
f,h

dP n
f,h0

, L2,n
f,h =

dQn
f,h

dQn
f,h0

, Ψn =
√
L1,n
f,h −

√
L2,n
f,h.

Consider the set

An =
{∣∣logL1,n

f,h − logL1,n
f,h

∣∣ ≤ rα1
n

}
.

With these notations, by the definition of the Hellinger distance [see (9.2)], we have

H2
(
P n
f,h, Q

n
f,h

)
=

1

2
En
fΨ2

n =
1

2
En
f1AnΨ2

n +
1

2
En
f1AcnΨ2

n.(5.4)
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Changing measure in the first expectation in the right hand side of (5.4), we write

En
f1AnΨ2

n =

∫
Ωn

1An

(√
L1,n
f,h/L

2,n
f,h − 1

)2

dQn
f,h

=

∫
Ωn

1An

(
exp

(
1

2
logL1,n

f,h −
1

2
logL2,n

f,h

)
− 1

)2

dQn
f,h

≤
(

exp

(
1

2
rα1
n

)
− 1

)2

= O
(
r2α1
n

)
.(5.5)

An application of the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 gives the bound for
the second expectation in the right hand side of (5.4):

En
f1AcnΨ2

n ≤ 2En
f1AcnL

1,n
f,h + 2En

f1AcnL
2,n
f,h.(5.6)

We proceed to estimate En
f1AcnL

1,n
f,h. Setting Bn =

{
logL1,n

f,h ≤ −δ log rn
}
, where δ > 0

will be specified below, one gets

En
f1AcnL

1,n
f,h = En

f1Acn∩BnL
1,n
f,h + En

f1Acn∩BcnL
1,n
f,h

≤ r−δn Pn
f (Acn) + En

f1BcnL
1,n
f,h.(5.7)

Choosing δ small such that α2 = α1 − δ > α, we get,

sup
f,h

nδPn
f (Acn) = O

(
rα1−δ
n

)
= O (rα2

n ) .(5.8)

The second term on the right-hand side of (5.7) can be written as

En
f1BcnL

1,n
f,h = En

f

(
logL1,n

f,h > −δ log rn
)
L1,n
f,h

= P n
f,h

(
logL1,n

f,h > −δ log rn
)

= O (rα1
n ) .(5.9)

Inserting (5.8) and (5.9) in (5.7) we get

En
f1AcnL

1,n
f,h = O (rα2

n ) .(5.10)

An estimate for the second term on the right-hand side of (5.6) is proved in exactly
the same way. This gives En

f1AcnΨ2
n = O (rα2

n ) , which in turn, in conjunction with (5.5)
and (5.4), concludes the proof of Theorem 5.1.

5.2. Nonparametric experiments which admit a locally asymptotic stochas-
tic expansion. We shall show that the assumptions in Theorem 5.1 are satisfied if
the log-likelihood ratio in the experiment En admits a certain stochastic expansion in
terms of independent random variables.

Let T = [0, 1] and F ⊂ ΘT be some set of functions f (t) : T → Θ. Let En, n ≥ 1 be
a sequence of statistical experiments

En =
(
Ωn,An,

{
P n
f : f ∈ F

})
,

with parameter set F . For simplicity we assume that, for any n = 1, 2, ... the measures
P n
f : f ∈ F in the experiment En are equivalent, i.e. that P n

f � P n
g , for any f, g ∈ F .

Recall that H(β, L) is a Hölder ball of functions defined on T with values in Θ. The
parameters β and L are assumed to be absolute constants satisfying β > 1/2 and
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0 < L <∞. It will be convenient to define the neighborhoods of f ∈ F (shifted to the
origin) as follows: for any non-negative real number r,

Ff (r) = {rh : h ∈ H(β, L), f + rh ∈ F}.
For stating our definition this we need the following objects:

E1: A sequence of real numbers rn, n = 1, 2, ... which satisfies rn → 0, as n→∞.
E2: A function I (θ) : Θ → (0,∞), which will play the role of the Fisher infor-

mation in the experiment En.
E3: The triangular array of design points tni = i/n, i = 1, ..., n, n ≥ 1, on the

interval T = [0, 1].

Definition 5.1. The sequence of experiments En, n ≥ 1 is said to satisfy condition
LASE with rate rn and local Fisher information function I (·) , if, for any fixed n ≥ 1
and any fixed f ∈ F , on the probability space (Ωn,An, P n

f ) there is a sequence of
independent r.v.’s ξni (f) , i = 1, ..., n of mean 0 and variances

En
f ξ

2
ni (f) = I (f (tni)) , i = 1, ..., n,

such that the expansion

log
dP n

f+h

dP n
f

=
n∑
i=1

h (tni) ξni (f)− 1

2

n∑
i=1

h (tni)
2 I (f (tni)) + ρn (f, h) ,

holds true for any h ∈ Ff (rn), where the remainder ρn (f, h) satisfies

P n
fn (|ρn (fn, hn)| > a)→ 0,

for any two fixed sequences (fn)n≥1 and (hn)n≥1 subject to fn ∈ F , hn ∈ Ffn(rn) and
any real a > 0, as n→∞.

In the sequel we shall impose conditions (C1-C4) as formulated below.

C1: The sequence rn, n = 1, 2, ... has the parametric rate, i.e. is so that

rn = c
1√
n
.

C2: The remainder ρn (f, h) in the definition of condition LASE converges to 0
at a certain rate: for some α ∈ ( 1

2β
, 1) and any ε > 0,

sup
f

sup
h
P n
fn

(
|ρn (fn, hn)| ≥ εn−α/2

)
= O

(
n−α

)
,

where sup is taken over all possible f ∈ F and h ∈ Ff (rn).
C3: The r.v.’s ξni (f) , i = 1, ..., n in the definition of condition LASE satisfy a

strengthened version of the Lindeberg condition: for some α ∈ ( 1
2β
, 1) and any

ε > 0,

sup
f∈F

1

n

n∑
i=1

En
f (nα/2ξni (f))21

(∣∣nα/2ξni (f)
∣∣ ≥ ε

√
n
)

= O
(
n−α

)
.

C4: For n = 1, 2, ... the local Fisher information function I (θ) satisfies

0 < Imin ≤ I (θ) ≤ Imax <∞, θ ∈ Θ.
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Let Enf be the local experiment

Enf =
(
Ωn,An,

{
P n
f+h : h ∈ Ff (rn)

})
and let fn, n ≥ 1 denote any sequence of functions in F . Let H(·, ·) be the Hellinger
distance between probability measures, see (9.2). The next theorem states that, under a
strengthened version of condition LASE, the sequence of local experiments Enfn , n ≥ 1
can be approximated by a sequence of Gaussian shift experiments uniformly in all
sequences fn, n ≥ 1, using the distance H(·, ·).

Theorem 5.2. Assume that the sequence of experiments En, n = 1, 2, ... satisfies con-
dition LASE with rate rn and local Fisher information function I (θ) and conditions
(C1-C4) hold true. Let εi, i = 1, 2, ...be a sequence of i.i.d. standard normal r.v.’s
defined on a probability space (Ω0,A0,P). Let, for any fixed n ≥ 1 and fixed f ∈ Σ,

Gnf =
(
Rn,Bn,

{
Qn
f,h : h ∈ Ff (rn)

})
be the Gaussian shift experiment generated by n observations

Y n
i = h (i/n) +

1√
I (f (i/n))

εi, i = 1, ..., n,

with h ∈ Ff (rn). Then, for any fixed n ≥ 1 and f ∈ F , there are experiments

G̃nf =
(

Ω0,A0,
{
Q̃n
f,h : h ∈ Ff (rn)

})
,

Ẽnf =
(

Ω0,A0,
{
P̃ n
f,h : h ∈ Ff (rn)

})
such that

∆
(
Gnf , G̃nf

)
= ∆

(
Enf , Ẽnf

)
= 0

and for some α ∈ (1/2β, 1) ,

sup
f∈F

sup
h∈Ff (rn)

H2
(
P̃ n
f,h, Q̃

n
f,h

)
= O

(
r2α
n

)
,

as n→∞.

We give here some hints how to carry out the proof of Theorem 5.2. Starting with
the independent standard Gaussian sequence εi, i = 1, 2, ..., we construct a sequence

ξ̃n1, ..., ξ̃nn, ρ̃n (f, h) with the same joint distribution as ξn1, ..., ξnn, ρn (f, h) from the
expansion for the likelihood L1,n

f,h = dP n
f+h/dP

n
f . This will ensure that the ”new” likeli-

hood L̃1,n
f,h, as a process indexed by h ∈ Ff (rn), has the same law as L1,n

f,h, and thus, that
the corresponding experiments are exactly equivalent. The key point in this construc-
tion is to guarantee that the two length n sequences I1/2 (f (i/n)) εi, i = 1, ..., n and

ξ̃ni, i = 1, ..., n are as close as possible. For this we make use of a strong approximation
result for partial sums of independent r.v.’s indexed by functions, provided by Theorem
9.1 (see the Appendix). We note also that the new remainder ρ̃n (f, h) will satisfy the
same requirements as ρn (f, h) does, since both are equally distributed.
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5.3. Asymptotic expansion with bounded scores. Assume that the sequence of
experiments En, n = 1, 2, ... satisfies condition LASE. This means that, for f, h satis-
fying f ∈ F and h ∈ Ff (rn),

log
dP n

f+h

dP n
f

=
n∑
i=1

h (tni) ξni −
1

2

n∑
i=1

h (tni)
2 I (f (tni)) + ρn (f, h) ,(5.11)

where ξni = ξni(f), i = 1, ..., n is a sequence of independent r.v.’s of mean 0 and
variances En

f ξ
2
ni = I (f (tni)) . If the model is of location type

Xi = f (i/n) + ηi, i = 1, ..., n,

where the noise ηi has density p(x) then ξni in (5.11) stands for l(ηi) where l(x) =
p′(x)/p(x) is often called the score function. In a somewhat loose terminology, the
r.v.’s ξni may therefore be called ”scores”. We shall show that, under the conditions
(C1-C4), the above expansion can be modified so that the r.v.’s ξni are replaced by
some bounded r.v.’s ξ∗ni with the same mean and variances. More precisely, we prove
the following.

Lemma 5.3. Let conditions (C1-C4) hold true. Then there is a sequence of inde-
pendent r.v. ξ∗ni (f) , i = 1, ..., n of means 0 and variances En

f ξ
∗
ni (f)2 = I (f (tni)) ,

i = 1, ..., n, satisfying ∣∣r1−α
n ξ∗ni (f)

∣∣ ≤ c, i = 1, ..., n(5.12)

for some real number α ∈ (1/2β, 1) , and such that

log
dP n

f+h

dP n
f

=
n∑
i=1

h (tni) ξ
∗
ni (f)− 1

2

n∑
i=1

h (tni)
2 I (f (tni)) + ρ∗n (f, h) ,(5.13)

where, for any ε > 0,

sup
f∈F

sup
h∈Ff (rn)

P n
f (|ρ∗n (f, h)| ≥ εrαn) = O

(
r2α
n

)
.(5.14)

Proof. Let α ∈
(

1
2β
, 1
)

be the real number for which assumptions (C2) and (C3) hold

true. Since En
f ξni = 0, we have

ξni = ξ′ni + ξ′′ni = η′ni + η′′ni, i = 1, ..., n,(5.15)

where

ξ′ni = ξni1 (|rnξni| ≤ rαn) , ξ′′ni = ξni1 (|rnξni| > rαn)(5.16)

and

η′ni = ξ′ni − En
f ξ
′
ni, η′′ni = ξ′′ni − En

f ξ
′′
ni.(5.17)

Set

v2
ni = En

f ξ
2
ni − En

f (η′ni)
2(5.18)

and

pni =
1

2
x−2
n v2

ni, xn = c1r
α−1
n ,
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Since rn → 0 as n → ∞ and v2
ni ≤ En

f ξ
2
ni = I (f (tni)) ≤ Imax, the constant c1 can be

chosen large enough so that pni ≤ 1/2 for any n ≥ 1.
Without loss of generality one may assume that on the probability space

(
Ωn,An, P n

f

)
there is a sequence of independent r.v.’s η′′′ni, i = 1, ..., n, independent of the sequence
ξni, i = 1, ..., n, which take values −xn, 0, xn with probabilities pni, 1 − 2pni, pni
respectively. It is clear that the r.v.’s η′′′ni are such that∣∣r1−α

n η′′′ni
∣∣ ≤ c1, En

f η
′′′
ni = 0, En

f (η′′′ni)
2 = v2

ni.(5.19)

Set

ξ∗ni = η′ni + η′′′ni, i = 1, ..., n.(5.20)

From this definition it is clear that (5.12) holds true with c = 2 + c1. Since ξni and η′′′ni
are independent, taking into account (5.19) and (5.18), we get

En
f (ξ∗ni)

2 = En
f (η′ni)

2 + En
f (η′′′ni)

2 = En
f (η′ni)

2 + v2
ni = En

f ξ
2
ni = I (f (tni)) .

Set ρ∗n (f, h) = ρn (f, h) + ρ′n (f, h) , where

ρ′n (f, h) =
n∑
i=1

h (tni) (ξni − ξ∗ni) .

The lemma will be proved if we show (5.14). Because of the assumption (C2), it suffices
to prove that

sup
f∈F

sup
h∈Ff (rn)

P n
f

(
|ρ′n (f, h)| ≥ ε

2
rαn

)
= O

(
r2α
n

)
,(5.21)

for some α ∈
(

1
2β
, 1
)
. To prove (5.21) we note that, by (5.15) and (5.20) we have

ξni − ξ∗ni = η′′ni − η′′′ni and therefore ρ′n (f, h) can be represented as follows:

ρ′n (f, h) =
n∑
i=1

h (tni) η
′′
ni −

n∑
i=1

h (tni) η
′′′
ni.

From the last equality we get

P n
f

(
|ρ′n (f, h)| ≥ ε

2
rαn

)
≤ J (1)

n + J (2)
n ,(5.22)

where

J (1)
n = P n

f

(∣∣∣∣∣
n∑
i=1

h (tni) η
′′
ni

∣∣∣∣∣ ≥ ε

4
rαn

)
, J (2)

n = P n
f

(∣∣∣∣∣
n∑
i=1

h (tni) η
′′′
ni

∣∣∣∣∣ ≥ ε

4
rαn

)
.

By Chebyshev’s inequality we have

J (1)
n ≤ cr−2α

n

n∑
i=1

h (tni)
2 En

f (η′′ni)
2.
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Since En
f (η′′ni)

2 = En
f (ξ′′ni − En

f ξ
′′
ni)

2 ≤ En
f (ξ′′ni)

2 and ‖h‖∞ ≤ rn, making use of (5.16)
and of the strengthened version of the Lindeberg condition (C3), we obtain

J (1) ≤ c
n∑
i=1

En
f (r1−α

n ξni)
21
(∣∣r1−α

n ξni
∣∣ > 1

)
= O

(
r2α
n

)
.(5.23)

To handle the term J
(2)
n on the right-hand side of (5.22) we again invoke the Cheby-

shev inequality to obtain

J (2)
n ≤ cr−2α

n

n∑
i=1

h (tni)
2 En

f (η′′′ni)
2 = cr−2α

n

n∑
i=1

h (tni)
2 v2

ni.(5.24)

Since ξ2
ni = (ξ′ni)

2 + (ξ′′ni)
2 and En

f ξ
′
ni = −En

f ξ
′′
ni, we have

v2
ni = En

f ξ
2
ni − En

f (ξ′ni)
2 + (En

f ξ
′
ni)

2 = En
f (ξ′′ni)

2 + (En
f ξ
′′
ni)

2 ≤ 2En
f (ξ′′ni)

2,

which in turn implies, in the same manner as for J
(1)
n ,

J (2)
n ≤ cr−2α

n

n∑
i=1

h (tni)
2En

f (ξ′′ni)
2 = O

(
r2α
n

)
.(5.25)

Inserting (5.23) and (5.25) into (5.22) we obtain (5.21).

5.4. Construction of the likelihoods on the same probability space. We pro-
ceed to construct the local experiment Enf on the same measurable space with a Gauss-
ian experiment. For this let ε1, ε2... be an infinite sequence of i.i.d. standard normal
r.v.’s [defined on some probability space (Ω0,A0,P)]. Consider the finite sequence of
Gaussian observations

Y n
i = h (tni) + I−1/2 (f (tni)) εi, i = 1, ..., n,(5.26)

with f ∈ F , h ∈ Ff (rn). The statistical experiment generated by these is

Gnf =
(
Rn,Bn,

{
Qn
f,h : h ∈ Ff (rn)

})
and the likelihood L0,n

f,h = dQn
f,h/dQ

n
f,0 as a r.v. under Qn

f,0 has a representation

L̃0,n
f,h = exp

(
n∑
i=1

h (tni) ζni −
1

2

n∑
i=1

h2 (tni) I (f (tni))

)
.(5.27)

where ζni = I1/2 (f (tni)) εi, i = 1, ..., n. It is clear that ζn1, ..., ζnn is a sequence of
independent normal r.v.’s of means 0 and variances I (f (tni)) , on the probability space
(Ω0,A0,P) .

We shall construct a version of the likelihoods

L1,n
f,h =

dP n
f+h

dP n
f

, h ∈ Ff (rn)

of the experiment Enf on the probability space (Ω0,A0,P), obtaining thus an equivalent

experiment Ẽnf . For this we apply Theorem 9.1 with Xni = ξ∗ni, Nni = ζni, λn = r
1−1/(2β)
n

and x = λ−1
n log n. According to this theorem, there is a sequence of independent r.v.’s
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ξ̃ni, i = 1, ..., n on the probability space (Ω0,A0,P) , satisfying ξ̃ni
d
= ξ∗ni, for i = 1, ..., n,

and such that

sup
h

P

(∣∣∣∣∣
n∑
i=1

h (tni)
(
ξ̃ni − ζni

)∣∣∣∣∣ ≥ c1r
1/(2β)
n (log n)2

)
≤ c2

1

n
,(5.28)

where c1, c2 are absolute constants and the sup is taken over h ∈ Ff (rn). We recall
that r−1

n h ∈ H(β, L) ⊂ H(1/2, L).
In order to construct the log-likelihoods logL1,n

f,h of the experiment Enf it suffices to

construct a new ”remainder” ρ̃n = ρ̃n (f, h) on the probability space (Ω0,A0,P) , or on

some extension of it, such that the joint distribution of the sequence (ξ̃n1, ..., ξ̃nn, ρ̃n)
is the same as that of the original sequence (ξ∗n1, ..., ξ

∗
nn, ρ

∗
n). This can be done using

any kind of constructions, since the only property required from the r.v. ρ̃n is to
satisfy (5.14), with ρ̃n replacing ρ∗n, which follows obviously from the fact that (by
construction) L(ρ̃n) = L(ρ∗n). We shall describe such a possible construction using
some elementary arguments by enlarging the initial probability space, although it is
possible to give a more delicate one on the same probability space. Let us consider
the probability space S

∗= (Ω0,A0,P) ⊗
(
R,B,Pρ∗n|ξ∗n1,...,ξ

∗
nn

)
as an enlargement of the

initial space (Ω0,A0,P) , where Pρ∗n|ξ∗n1,...,ξ
∗
nn

is the conditional distribution of ρ∗n given
ξ∗n1, ..., ξ

∗
nn. Now, on the enlarged probability space S

∗ we define the r.v. ρ̃n (ω̃) = y,
for all ω̃ = (x1, ..., xn, y) ∈ S

∗, which has the desired properties. Without any loss of
generality we can assume that the construction is performed on the initial probability
space (Ω0,A0,P) . For more complicated constructions we refer to Berkes and Philipp
[1]. In any case, the construction is performed in such a way that the new remainder
ρ̃n = ρ̃n (f, h) satisfies

sup
f∈F

sup
h∈Ff (rn)

P (|ρ̃n (f, h)| ≥ 3rαn) = O
(
r2α
n

)
.(5.29)

Define the r.v.’s L̃nf (h) such that, for any h ∈ Ff (rn),

log L̃nf (h) =
n∑
i=1

h (tni) ξ̃ni −
1

2

n∑
i=1

h (tni)
2 I (f (tni)) + ρ̃n (f, h) .(5.30)

On the measurable space (Ω0,A0) consider the set of laws {P̃ n
f,h : h ∈ Ff (rn)}, where

P̃ n
f,0 = P and P̃ n

f,h is such that

dP̃ n
f,h

dP̃ n
f,0

= L̃1,n
f,h,

for any h ∈ Ff (rn). Set

Ẽnf =
(

Ω0,A0, {P̃ n
f,h : h ∈ Ff (rn)}

)
.

Since the quadratic terms in the expansions (5.13) and (5.30) are deterministic, the

equality in distribution of the two vectors (ξ∗n1, ..., ξ
∗
ni, ρ

∗
n) and (ξ̃n1, ..., ξ̃ni, ρ̃n) implies
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for any finite set S ⊂ Ff (rn)

L
(
(L1,n

f,h)h∈S|P
n
f

)
= L

(
(L̃1,n

f,h)h∈S|P̃
n
f,0

)
.(5.31)

From (5.31) it follows that, for any n = 1, 2, ... , the experiments Enf and Ẽnf are (exactly)

equivalent, i.e. ∆
(
Enf , Ẽnf

)
= 0. From the likelihood process L̃0,n

f,h, h ∈ Ff (rn) defined

on (Ω0,A0,P) (cf. (5.29)) we construct an equivalent version

G̃nf =
(

Ω0,A0,
{
Q̃n
f,h : h ∈ Ff (rn)

})
of Gnf in the same way.

5.5. Proof of Theorem 5.2. To prove Theorem 5.2 we only have to verify the as-
sumptions of Theorem 5.1. In our next lemma it is shown that condition (5.1) is
met.

Lemma 5.4. Assume that the sequence of experiments En satisfies condition LASE

and that conditions (C1-C4) hold true. Then the constructed experiments Ẽnf and G̃nf
are such that for some α ∈ ( 1

2β
, 1),

sup
f∈F

sup
h∈Ff (rn)

P

(∣∣∣∣∣log
dP̃ n

f,h

dP̃ n
f,0

− log
dQ̃n

f,h

dQ̃n
f,0

∣∣∣∣∣ > rαn

)
= O

(
r2α
n

)
.

Proof. The proof is based on inequality (5.28) and of the bound (5.14) in Lemma 5.3.
Being elementary, it is left to the reader.

Next we need to check condition (5.2) in Theorem 5.1.

Lemma 5.5. Assume that the sequence of experiments En satisfies condition LASE
and that conditions (C1-C4) hold true. Then there is a constant α ∈ (1/2β, 1) such
that, for any ε ∈ (0, 1),

sup
f∈F

sup
h∈Ff (rn)

P n
f+h

(
log

dP n
f+h

dP n
f

> −ε log rn

)
= O

(
r2α
n

)
, n→∞.

Proof. Consider the inverse likelihood ratio dP n
f /dP

n
f+h corresponding to the local ex-

periment Enf . Setting g = f + h ∈ F and using Lemma 5.3, we rewrite it as

log
dP n

f

dP n
f+h

= log
dP n

g−h

dP n
g

= −
n∑
i=1

h (tni) ξ
∗
ni (g)− 1

2

n∑
i=1

h (tni)
2 I (g (tni)) + ρ∗n (g, h) ,

(5.32)

where h ∈ Fg (rn) and ξ∗ni (g) , i = 1, ..., n are P n
g -independent r.v.’s of means 0 and

variances EPng ξ
∗
ni (g)2 = I (g (tni)) ≤ Imax, i = 1, ..., n. Moreover |r1−α

n ξ∗ni (f)| ≤ c, i =
1, ..., n. Because of conditions (C1) and (C4), we have

n∑
i=1

h (tni)
2 I(g(tni)) = O

(
nr2

n

)
= O (1) .(5.33)
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Choose α ∈
(

1
2β
, 1
)

such that conditions (C2-C3) hold true. With these notations, for

n large enough,

P n
g

(
log

dP n
g−h

dP n
g

≤ ε log rn

)
≤ J (1)

n + J (2)
n ,

where

J (1)
n = P n

g

(
−

n∑
i=1

h (tni) ξ
∗
ni (g) <

ε

2
log rn

)
,

J (2)
n = P n

g (ρn (g, h) ≥ rαn) .(5.34)

Since ‖h‖∞ ≤ rn, it follows that the r.v.’s h (tni) ξ
∗
ni (g) are bounded by rαn ≤ c1, for

some absolute constant c1. By Lemma 9.2 (see the Appendix),

En
f exp

(
−2

ε
h (tni) ξ

∗
ni (g)

)
≤ exp

(
c2h (tni)

2 En
f ξ
∗
ni (g)2) ,

for another absolute constant c2. Simple calculations yield

J (1)
n ≤ e−2 log rn

n∏
i=1

En
g exp

(
4ε−1h (tni) ξ

∗
ni (g)

)
≤ r−2

n exp

(
c2ε
−2

n∑
i=1

h (tni)
2 En

g ξ
∗
ni (g)2

)
.

Taking into account En
g ξ
∗
ni (g)2 = I (g (tni)) and (5.33) we get sup J

(1)
n = O (r2

n) =

O (r2α
n ) , where the supremum is taken over f ∈ F and h ∈ Ff (rn) . The bound

sup J
(2)
n = O (r2α

n ) , with the supremum over the same f and h, is straightforward, by

assumption (C2). Combining the bounds for J
(1)
n and J

(2)
n we obtain the lemma.

Obviously a similar result holds true for the constructed experiment Ẽn.

Remark 5.1. Assume that the sequence of experiments En satisfies condition LASE
and that conditions (C1-C4) hold true. Then there is a constant α ∈ (1/2β, 1) such
that, for any ε ∈ (0, 1),

sup
f∈F

sup
h∈Ff (rn)

P̃ n
f,h

(
log

dP̃ n
f,h

dP̃ n
f,0

≥ −ε log rn

)
= O

(
r2α
n

)
, n→∞.

We continue with a moderate deviations bound for the log-likelihood ratio of the
Gaussian experiment Gn required by the condition (5.3) of Theorem 5.1, which is
proved in the same way as the above Lemma 5.5.

Lemma 5.6. Assume that the sequence of experiments En satisfies condition LASE
and that conditions (C1-C4) hold true. Then there is a constant α ∈ (1/2β, 1) such
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that, for any ε ∈ (0, 1),

sup
f∈F

sup
h∈Ff (rn)

Qn
f,h

(
log

dQn
f,h

dQn
f,0

≥ −ε log rn

)
= O

(
r2α
n

)
, n→∞.

Proof. Consider the likelihood ratio corresponding to the local Gaussian experiment
Gnf :

L2,n
f,h =

dQn
f+h

dQn
f

= exp

(
n∑
i=1

h (tni) ζni −
1

2

n∑
i=1

h (tni)
2 I(f(tni))

)
,

where f ∈ F , h ∈ Ff (rn) and ζni, i = 1, ..., n are independent normal r.v.’s of means
0 and variances I (f (tni)) ≤ Imax respectively. Then, by Chebyshev’s inequality,

Qn
f

(
logL2,n

f,h ≥ −ε log rn
)
≤ r2

nEQnf,0 exp

(
2ε−1

n∑
i=1

h (tni) ζni − ε−1

n∑
i=1

h (tni)
2 I(f(tni))

)
.

Since ‖h‖∞ ≤ cn−1/2 and ζni, i = 1, ..., n are independent normal r.v.’s, we get

Qn
f

(
logL2,n

f,h ≥ 2ε log rn
)

= O
(
r−2
n

)
,

uniformly in f ∈ F and h ∈ Ff (rn) .

6. Application to nonparametrically driven models

We consider a particular case of the general setting of Section 5. Assume that F is
given by F = Σβ = H(β, L)∩ΘT , where T = [0, 1], and H(β, L) is a Hölder ball on T.
Consider the case where the experiment En (appearing in Section 5 in a general form)
is generated by a sequence of independent observations X1, ..., Xn where each r.v. Xi

has density p(x, f(tni)), f ∈ F , tni = i/n. The local experiment at f ∈ F then is

Enf = (Xn,X n, {P n
f,h : h ∈ Ff (rn)}),

P n
f,h = Pf(tn1)+h(tn1) × ...× Pf(tnn)+h(tnn)

and Pθ is the distribution on (X,X ) corresponding to the density p(x, θ), θ ∈ Θ. Let
I(θ) be the Fisher information corresponding to the density p(x, θ), as defined by (3.6).

Theorem 6.1. Assume that the density p(x, θ) satisfies conditions (R1-R3). Then the
sequence of experiments En, n ≥ 1 for F = Σβ satisfies LASE and conditions (C1-C4)

hold true with rate rn = cn−1/2, local Fisher information I(θ) and ξni(f) =
•
l(Xi, f(tni)),

i = 1, ..., n, where
•
l(x, θ) is the tangent vector defined by (3.4).

The remainder of section 6 will be devoted to the proof of this theorem.
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6.1. Stochastic expansion for the likelihood ratio. The following preliminary
stochastic expansion for the likelihood ratio will lead up to property LASE.

Proposition 6.2. Assume that the density p(x, θ) satisfies conditions (R1-R3). Then,
for any f ∈ F = Σβ and h ∈ Ff (n−1/2),

log
dP n

f+h

dP n
f

= 2Xn(f, h)− 4Vn(f, h) + ρn(f, h),

where

Xn(f, h) =
n∑
i=1

{
(
√
zni − 1)− En

f (
√
zni − 1)

}
,

Vn(f, h) =
1

2

n∑
i=1

En
f (
√
zni − 1)

2

and

zni =
p(Xi, f(tni) + h(tni))

p(Xi, f(tni))
.

Moreover, there is an α ∈ (1/2β, 1), such that the remainder ρn(f, h) satisfies

sup
f∈F

sup
h∈Ff (n−1/2)

P n
f

(
|ρn(f, h)| > n−α/2

)
= O

(
n−α

)
.

Proof. It is easy to see that

log
dP n

f+h

dP n
f

= log
n∏
i=1

zni =
n∑
i=1

log (1 + (
√
zni − 1)) ,

where zni is defined in Proposition 6.2. Note that, in view of the equalities

2(
√
x− 1) = x− 1− (

√
x− 1)2, En

fzni = 1

we have

2En
f (
√
zni − 1) = −En

f (
√
zni − 1)2.

By elementary transformations we obtain

log
dP n

f+n−1/2h

dP n
f

= Xn(f, h)− Yn(f, h)− 4Vn(f, h) + Ψn(f, h),

where Xn(f, h), Vn(f, h) are defined in Proposition 6.2 and

Yn(f, h) =
n∑
i=1

{
(
√
zni − 1)

2 − En
f (
√
zni − 1)

2
}
,

Ψn(f, h) =
n∑
i=1

{
log (1 + (

√
zni − 1))− 2 (

√
zni − 1)− (

√
zni − 1)

2
}
.

Now the result follows from Lemmas 6.3 and 6.4.
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Lemma 6.3. Assume that condition (R2) holds true. Then there is an α ∈ (1/2β, 1)
such that

sup
f∈F

sup
h∈Ff (n−1/2)

P n
f

(
|Yn(f, h)| > n−α/2

)
= O

(
n−α

)
.

Proof. Let δ ∈ (2β+1
2β−1

,∞) be the real number for which condition (R2) holds true (recall

that β ≥ 1
2
). Let α = δ−1

δ+1
, which clearly is in the interval ( 1

2β
, 1). Then there is an

α′ ∈ ( 1
2β
, 1) such that α′ < α. Set for i = 1, ..., n,

ξni =
√
zni − 1, ξ′ni = ξ2

ni1(|ξni| ≤ n−α/2), ξ′′ni = ξ2
ni1(|ξni| > n−α/2)(6.1)

and

η′ni = ξ′ni − En
f ξ
′
ni, η′′ni = ξ′′ni − En

f ξ
′′
ni.(6.2)

With the above notations, we write Yn as follows:

Yn =
n∑
i=1

η′ni +
n∑
i=1

η′′ni.(6.3)

For the first term on the right-hand side of (6.3) we have

I1 ≡ P n
f

(
n∑
i=1

η′ni >
1

2
n−α

′/2

)
≤ exp

(
−1

2
n(α−α′)/2

) n∏
i=1

En
f exp

(
nα/2η′ni

)
,(6.4)

where the r.v.’s nα/2ηni are bounded by 2n−α/2 ≤ 2. According to Lemma 9.2, with
λ = 1, one obtains

En
f exp

(
nα/2η′ni

)
≤ exp

(
cnαEn

f (η′ni)
2
)
, i = 1, ..., n.(6.5)

Using (6.2) and (6.1),

En
f (η′ni)

2 ≤ 2n−αEn
f (
√
zni − 1)2, i = 1, ..., n.(6.6)

Set for brevity
•
lni(f, h) =

•
lf(tni)(Xi, f(tni) + h(tni)), i = 1, ..., n,

where
•
lθ(x, u) is the extended tangent vector defined by (3.5) and f ∈ F , h ∈ Ff (n−1/2).

With these notations,

√
zni − 1 = h(tni)

•
lni(f, h), i = 1, ..., n,(6.7)

where n1/2h ∈ H(β, L). Condition (R2) and
∥∥n1/2h

∥∥
∞ ≤ L imply

En
f (
√
zni − 1)2 ≤ cn−1, i = 1, ..., n.(6.8)

Inserting these bounds into (6.6) and then invoking the bounds obtained in (6.5), we
obtain

n∏
i=1

En
f exp

(
nα/2η′ni

)
≤ exp (c1) ≤ c2.
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Then, since α > α′, from (6.4), we the estimate I1 = O(n−α
′
) follows. In the same way

we establish a bound for the lower tail probability.
Now consider the second term on the right-hand side of (6.3). For this we note that

by (6.7),
n∑
i=1

En
f |
√
zni − 1|2δ ≤ cn−δ

n∑
i=1

En
f |
•
lni(f, h)|2δ ≤ cn1−δ.(6.9)

By virtue of (6.1) and (6.9),
n∑
i=1

En
f ξ
′′
ni ≤ cnα(δ−1)

n∑
i=1

En
f |
√
zni − 1|2δ ≤ cnα(δ−1)n1−δ = cn−2α.

Then since 1
2
n−α

′/2 − cn−2α is positive for n large enough, we get

I2 ≡ P n
f

(∣∣∣∣∣
n∑
i=1

η′′ni

∣∣∣∣∣ > 1

2
n−α

′/2

)
≤ P n

f

(
n∑
i=1

ξ′′ni >
1

2
n−α

′/2 − cn−2α

)

≤ P n
f

(
max
1≤i≤n

|
√
zni − 1| > n−α/2

)
.

The last probability can be bounded, using (6.9), in the following way: for any absolute
constant c > 0,

P n
f

(
max
1≤i≤n

|
√
zni − 1| > cn−α/2

)
≤ c1n

αδ

n∑
i=1

En
f |
√
zni − 1|2δ ≤ c2n

αδn1−δ = c2n
−α.

(6.10)

This yields I2 = O(n−α
′
). The bounds for I1 (with the corresponding bound of the

lower tail) and for I2, in conjunction with (6.3), obviously imply the assertion.

Lemma 6.4. Assume that condition (R2) holds true. Then, there is an α ∈ (1/2β, 1),
such that

sup
f∈F

sup
h∈Ff (n−1/2)

P
(
|Ψn(f, h)| > n−α/2

)
= O

(
n−α

)
.

Proof. We keep the notations from Lemma 6.3. Additionally set for i = 1, ..., n,

ψni = log(1 + (
√
zni − 1))− 2(

√
zni − 1) + (

√
zni − 1)2.

Then we can represent Ψn(f, h) as follows: Ψn(f, h) = Ψ1 + Ψ2, where

Ψ1 =
n∑
i=1

ψni1
(
|
√
zni − 1| ≤ n−α/2

)
, Ψ2 =

n∑
i=1

ψni1
(
|
√
zni − 1| > n−α/2

)
.

Assume that n is large enough so that n−α/2 ≤ 1/2. Then a simple Taylor expansion
gives |ψni| ≤ c|√zni − 1|3, provided that |√zni − 1| ≤ n−α/2. This in turn implies

|Ψ1| ≤ c max
1≤i≤n

|
√
zni − 1|

n∑
i=1

(
√
zni − 1)2.
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Since by (6.8) one has En
f (
√
zni − 1)2 ≤ cn−1, we obtain

|Ψ1| ≤ c1 max
1≤i≤n

|
√
zni − 1| (|Yn|+ c2) .

Therefore

P

(
|Ψ1| ≥

1

2
n−α

′/2

)
≤ P

(
|Yn| > n−α

′/2
)

+ P

(
max
1≤i≤n

|
√
zni − 1| > cn−α

′/2

)
.

Now from Lemma 6.3 and (6.10) we obtain the bound

P
(
|Ψ1| ≥ n−α

′/2
)

= O(n−α
′
).(6.11)

As to Ψ2, we have{
|Ψ2| >

1

2
n−α

′/2

}
⊂
{

max
1≤i≤n

|
√
zni − 1| > cn−α

′/2

}
,

from which we deduce, by (6.10),

P

(
|Ψ2| >

1

2
n−α

′/2

)
≤ P

(
max
1≤i≤n

|
√
zni − 1| > cn−α

′/2

)
= O(n−α

′
).(6.12)

The result follows from (6.11) and (6.12).

6.2. Proof of Theorem 6.1. We split the proof into two lemmas, in such a way that
Theorem 6.1 follows immediately from Proposition 6.2 and these lemmas.

Set

Mn(f, h) =
n∑
i=1

h(tni)
•
lni(f),

where
•
lni(f) =

•
l(Xi, f(tni)) and

•
l(x, θ) is the tangent vector defined by (3.4).

Lemma 6.5. Assume that conditions (R1-R3) hold true. Then there is an α ∈
(1/2β, 1) such that for F = Σβ

sup
f∈F

sup
h∈Ff (n−1/2)

P n
f

(
|2Xn(f, h)−Mn(f, h)| > n−α/2

)
= O

(
n−α

)
.

Proof. Let δ1 ∈ ( 1
2β
, 1) and δ2 ∈ (2β+1

2β−1
,∞) be respectively the real numbers for which

conditions (R1) and (R2) hold true, where β ≥ 1
2
. Let α = min{δ1,

δ2−1
δ2+1
}, which clearly

is in the interval ( 1
2β
, 1). Then there is an α′ ∈ ( 1

2β
, 1) such that α′ < α. Denote for

i = 1, ..., n,

ξni = 2 (
√
zni − 1)− 2En

f (
√
zni − 1)− h(tni)

•
lni(f),(6.13)

ξ′ni = ξni1(|ξni| ≤ n−α/2), ξ′′ni = ξni1(|ξni| > n−α/2)(6.14)

and

η′ni = ξ′ni − En
f ξ
′
ni, η′′ni = ξ′′ni − En

f ξ
′′
ni.(6.15)
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With these notations

2Xn(f, h)−Mn(f, h) =
n∑
i=1

η′ni +
n∑
i=1

η′′ni.(6.16)

Consider the first term on the right-hand side of (6.16). Since the r.v.’s nα/2ηni are
bounded by 2, we have by Lemma 9.2 with λ = 1,

En
f exp

(
nα/2η′ni

)
≤ exp

(
cnαEn

f (η′ni)
2
)
, i = 1, ..., n.

Then

I1 ≡ P n
f

(
n∑
i=1

η′ni >
1

2
n−α

′/2

)
≤ exp

(
−1

2
n(α−α′)/2 + cnα

n∑
i=1

En
f (η′ni)

2

)
.(6.17)

From assumption (R1) we easily obtain
n∑
i=1

En
f (η′ni)

2 ≤ 2
n∑
i=1

En
f ξ

2
ni ≤ cn−2δ1 ≤ cn−2α,

which in conjunction with (6.17) implies I1 = O(n−α
′
). The bound for the lower tail

can be established analogously.
For an estimate of the second term in the right-hand side of (6.16), we note that

(6.13), (6.14), (6.15) imply

n∑
i=1

En
f |η′′ni|

2 ≤ cnα(δ−1)

(
n∑
i=1

En
f |
√
zni − 1|2δ +

c

nδ

n∑
i=1

En
f |
•
lni(f)|2δ

)
.

Now assumption (R1) and (6.9) imply
n∑
i=1

En
f |η′′ni|

2δ ≤ cnα(δ−1)−1−δ = cn−2α.

Thus we obtain

I2 ≡ P n
f

(
n∑
i=1

η′′ni >
1

2
n−α

′/2

)
≤ cnα

′
n∑
i=1

En
f |η′′ni|

2 ≤ cnα
′−2α ≤ cn−α

′
.

The bounds for I1 (with the corresponding bound of the lower tail) and for I2, in
conjunction with (6.16) imply the lemma.

Lemma 6.6. Assume that conditions (R1-R3) hold true. Then, there is an α ∈
(1/2β, 1), such that for F = Σβ

sup
f∈F

sup
h∈Ff (n−1/2)

∣∣∣∣∣Vn(f, h)− 1

8

n∑
i=1

h(tni)
2I(f(tni))

∣∣∣∣∣ ≤ n−α/2.

Proof. Let δ1 ∈ ( 1
2β
, 1) and δ2 ∈ (2β+1

2β−1
,∞), be respectively the real numbers for which

conditions (R1) and (R2) hold true, where β ≥ 1
2
. Let α = min{δ1,

δ2−1
δ2+1
}. Set

ξni =
√
zni − 1, ηni =

1

2
h(tni)

•
lni(f), i = 1, ..., n.
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Then, for i = 1, ..., n,∣∣En
f

(
ξ2
ni − η2

ni

)∣∣2 ≤ En
f (ξni − ηni)2En

f (ξni + ηni)
2.

In view of assumption (R1), we have En
f (ξni − ηni)2 ≤ cn−1−α, and assumption (R2)

implies En
f (ξni + ηni)

2 ≤ cn−1. Thus,∣∣En
f

(
ξ2
ni − η2

ni

)∣∣ ≤ cn−1−α/2, i = 1, ..., n.

Finally ∣∣∣∣∣Vn(f, h)− 1

8

n∑
i=1

h(tni)
2I(f(tni))

∣∣∣∣∣ =
1

2

n∑
i=1

∣∣En
f

(
ξ2
ni − η2

ni

)∣∣ ≤ cn−α/2.

7. Proof of the local result

7.1. Proof of Theorem 3.1. Let β > 1/2 and f ∈ F = Σβ. Recall that γn is
defined by (3.7). Let α ∈ (1/2β, 1) be the absolute constant in Theorem 6.1 and
d = α− 1/2β ≤ 1. If we set α′ = 1/2β + qd where the absolute constant q ∈ (0, 1) will
be specified later on, then α′ ∈ (1/2β, 1) and α′ < α. Set δn = γ2α′

n and Mn = [1/δn];
then clearly Mn = O

(
δ−1
n

)
. Set ti = i/n, i = 0, ..., n. Let ak = max{ti : ti ≤ k

Mn
},

k = 0, ...,Mn. Consider a partition of the unit interval [0, 1] into subintervals Ak =
(ak−1, ak] where k = 1, ...,Mn. To each interval Ak we attach the affine linear map
ak(t) : Ak → [0, 1] which transforms Ak into the unit interval [0, 1]. It is clear that
|ak(t)− ak(s)| ≤ cδ−1

n |t− s| , for t, s ∈ Ak. Denote by nk the number of elements in
the set {i : ti ∈ Ak}; it obviously satisfies nδn = O (nk) .

Consider the local experiment Enf defined by a sequence of independent r.v.’sX1, ..., Xn,

where each Xi has the density p(x, g(ti)) with g = f + h, h ∈ Σβ
f (γn). Since [0, 1] =∑Mn

k=1 Ak, we have in view of the independence of the Xi

Enf = En,1f ⊗ ...⊗ E
n,Mn

f ,

where the experiment En,kf is generated by those observations Xi for which ti ∈ Ak.

Set for brevity fk = f(a−1
k (·)), gk = g(a−1

k (·)) and hk = gk − fk. It is easy to see

that n
1/2
k hk ∈ H(β, L1), for some positive absolute constant L1. This means that hk ∈

Ffk(n
−1/2
k ). Consequently

En,kf =
(
Xnk ,X nk ,

{
P nk
fk+hk

: h ∈ Σβ
f (γn)

})
,

where P nk
s = Ps(1/nk)× ...×Ps(1), for any function s ∈ F , and Pθ is the distribution on

(X,X ) corresponding to the density p(x, θ). It is clear that En,kf is just a subexperiment
of

Enkfk =
(
Xnk ,X nk ,

{
P nk
fk+h : h ∈ Ffk(n

−1/2
k )

})
.
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Exactly in the same way we introduce the Gaussian counterparts of En,kf : if Gnf denotes
the Gaussian experiment introduced in Theorem 3.1 then

Gnf = Gn,1f ⊗ ...⊗ G
n,Mn

f ,

where the experiment Gn,kf is generated by those observations Yi (see Theorem 3.1) for
which ti ∈ Ak :

Gn,kf =
(
Rnk ,Bnk ,

{
Qnk
f,h : h ∈ Σβ

f (γn)
})

,

where Qnk
s,u = Qs(1/nk),u(1/nk) × ... × Qs(1),u(1), for any functions s, u ∈ F , and Qθ,µ is

the normal distribution with mean µ and variance I(θ)−1. It is clear that Gn,kf is just a
subexperiment of

Gnkfk =
(
Rnk ,Bnk ,

{
Qnk
fk,h

: h ∈ Ffk(n
−1/2
k )

})
.

According to Theorems 6.1 and 5.2, for any f ∈ F there is an experiment

Ẽnkf =
(

Ω0,A0,
{
P̃ nk
f,h : h ∈ Ff (n−1/2

k )
})

,

equivalent to Enkfk and an equivalent version G̃nkf of Gnkfk , defined on the same measurable

space (Ω0,A0) with measures Q̃nk
f,h, such that uniformly in f ∈ F and h ∈ Ff (n−1/2

k ),

H2
(
P̃ nk
f,h, Q̃

nk
f,h

)
= O

(
n−αk

)
(7.1)

for some α ∈ (1/2β, 1). Set

Ẽn,kf =
(
Rnk ,Bnk ,

{
P nk
fk,hk

: h ∈ Σβ
f (γn)

})
.

Ẽnf = Ẽn,1f ⊗ ...⊗ Ẽ
n,Mn

f .

and define G̃nf analogously. Since Ẽn,kf and En,kf are (exactly) equivalent, it follows that

∆
(
Enf , Ẽnf

)
= ∆

(
Gnf , G̃nf

)
= 0

which in turn implies

∆
(
Enf ,Gnf

)
= ∆

(
Ẽnf , G̃nf

)
.

In view of (9.1), (9.3), (9.5) and (7.1), we have

∆
(
Ẽnf , G̃nf

)
≤ 2

Mn∑
k=1

sup
h∈Σβf (γn)

H2
(
P̃ n,k
fk,hk

, Q̃n,k
fk,hk

)
= O

(
Mnn

−α
k

)
= O

(
δ−1
n (nδn)−α

)
.

Choosing q ≤ 1
4
, by an elementary calculation we obtain δ−1

n (nδn)−α = o (1) . Thus
Theorem 3.1 is proved.
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7.2. Homoscedastic form of the local result. In order to globalize the local result
in Theorem 3.1, we need to transform the heteroscedastic Gaussian approximation into
a homoscedastic one. This is done by means of any transformation Γ(θ) of the func-

tional parameter f which satisfies Γ′ (θ) =
√
I(θ), where I(θ) is the Fisher information

in the parametric model E . We shall derive the following corollary of Theorem 3.1.

Corollary 7.1. Let β > 1/2 and I (θ) be the Fisher information in the parametric
experiment E . Assume that the density p(x, θ) satisfies the regularity conditions (R1-
R3). Assume also that I(θ), as a function of θ, satisfies a Hölder condition with
exponent α ∈ (1/2β, 1). For any f ∈ Σβ, let Gnf be the local Gaussian experiment
generated by observations

Y n
i = Γ(g (i/n)) + εi, i = 1, ..., n,

with g = f+h, h ∈ Σβ
f (γn) , where ε1, ..., εn is a sequence of i.i.d. standard normal r.v.’s

(not depending on f). Then, uniformly in f ∈ Σ, the sequence of local experiments Enf ,
n = 1, 2, ... is asymptotically equivalent to the sequence of local Gaussian experiments
Gnf , n = 1, 2, ... :

sup
f∈Σβ

∆
(
Enf ,Gnf

)
→ 0, as n→∞.

Proof. It will be shown that the Gaussian experiments G1,n
f and G2,n

f are asymptotically

equivalent, where G1,n
f is generated by observations

Y n
i = g (i/n) + I(f(i/n))−1/2εi, i = 1, ..., n(7.2)

and G2,n
f is generated by observations

Y n
i = Γ(g (i/n)) + εi, i = 1, ..., n,(7.3)

with g = f + h, h ∈ Σβ
f (γn) and ε1, ..., εn being a sequence of i.i.d. standard normal

r.v.’s. Since Γ′(θ) =
√
I(θ) and I(θ) satisfies a Hölder condition with exponent α ∈

( 1
2β
, 1), a Taylor expansion yields

Γ(θ + u)− Γ(θ) = u
√
I(θ) + u

(√
I(θ + u)−

√
I(θ)

)
= u

√
I(θ) + o(|u|1+α).

Then, taking into account (3.7), we arrive at

Γ(g(i/n))− Γ(f(i/n)) = h(i/n)
√
I(f(i/n)) + o(n−1/2).

Set for brevity m1
i = Γ(g(i/n))−Γ(f(i/n)) and m2

i = h(i/n)
√
I(f(i/n)). Let Q1,n

f,h and

Q2,n
f+h be the probability measures induced by (7.2) and (7.3). Then, using (9.5) and

(9.6), the Hellinger distance between Q1,n
f,h and Q2,n

f+h can easily be seen to satisfy

1

2
H2
(
Q1,n
f,h, Q

2,n
f+h

)
= 1− exp

(
−1

8

n∑
i=1

(
m1
i −m2

i

)2

)
= o(1), n→∞.

The claim on Le Cam distance convergence now follows from (9.1) and (9.3).
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8. Proof of the global result

In this section we shall prove Theorem 3.2.
Let En and Gn be the global experiments defined in Theorem 3.2. Let f ∈ Σ (we

shall omit the superscript β from notation Σβ and Σβ
f (γn)) Denote by J ′ and J ′′ the

sets of odd and even numbers, respectively, in J = {1, ..., n} . Put

X ′,n =
∏
i∈J ′

X(i), X ′′,n =
∏
i∈J ′′

X(i), R′′,n =
∏
i∈J ′′

R(i), Sn =
n∏
i=1

Si,

where X(i) = X, R(i) = R, Si = X if i is odd and Si = R if i is even, i ∈ J. Consider the
following product (local) experiments corresponding to observations with even indices
i ∈ J :

E ′′,nf =
⊗
i∈J ′′
E (i)
f , G ′′,nf =

⊗
i∈J ′′
G(i)
f ,

where

E (i)
f =

(
X,X ,

{
Pg(i/n) : g = f + h, h ∈ Σf (γn)

})
,

G(i)
f =

(
R,B,

{
Qg(i/n) : g = f + h, h ∈ Σf (γn)

})
.

Along with this introduce the global experiments

E ′,n =
⊗
i∈J ′
E (i), Fn =

n⊗
i=1

F (i),

where,

F (i) =

{
E (i), if i is odd,
G(i), if i is even,

and

E (i) =
(
X,X ,

{
Pf(ti) : f ∈ Σ

})
, G(i) =

(
R,B,

{
Qf(ti) : f ∈ Σ

})
.

It is clear that

Fn =
(
Sn,B(Sn),

{
F n
f : f ∈ Σ

})
,

where F n
f = F

(1)
f × ...× F

(n)
f ,

F
(i)
f =

{
Pf(i/n), if i is odd,
Qf(i/n), if i is even,

for i ∈ J. We will show that the global experiments En and Fn are asymptotically
equivalent. Toward this end, we note that by Corollary 7.1 the local experiments E ′′,nf
and G ′′,nf are asymptotically equivalent uniformly in f ∈ Σ :

sup
f∈Σβ

∆
(
E ′′,nf ,G ′′,nf

)
= o (1) .(8.1)
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Let ‖·‖Vardenote the total variation norm for measures and let P ′′,ng , Q′′,ng be the product

measures corresponding to the local experiments E ′′,nf and G ′′,nf :

P ′′,ng =
⊗
i∈J ′′

Pg(ti), Q′′,ng =
⊗
i∈J ′′

Qg(ti).(8.2)

Then (8.1) implies that for any f ∈ Σ there is a Markov kernel Kn
f such that

sup
f∈Σ

sup
h∈Σf (γn)

∥∥Kn
f · P

′′,n
f+h −Q

′′,n
f+h

∥∥
Var

= o (1) .(8.3)

Let us establish that there is a Markov kernel Mn (not depending on f) such that

sup
f∈Σ

∥∥Mn · P n
f − F n

f

∥∥
Var

= o (1) .(8.4)

First note that any vector x ∈ Xn can be represented as (x′, x′′) where x′ and x′′ are
the corresponding vectors in X ′,n and X ′′,n. The same applies for s ∈ Sn : s = (x′, y′′),
where x′ ∈ X ′,n and y′′ ∈ R′′,n. For any x = (x′, x′′) ∈ Xn and B ∈ B(Sn) set

Mn(x,B) =

∫
R′′,n

1B ((x′, y′′))Kn
f̂n(x′)

(x′′, dy′′),

where f̂n(x′) is the preliminary estimator provided by Assumption (G1). It is easy to
see that(

Mn · P n
f

)
(B) =

∫
X′,n

∫
X′′,n

Mn ((x′, x′′), B)P ′′,nf (dx′′)P ′,nf (dx′)

=

∫
X′,n

∫
R′′,n

1B ((x′, y′′))
(
Kn
f̂n(x′)

· P ′′,nf

)
(dy′′)P ′,nf (dx′)(8.5)

and

F n
f (B) =

∫
X′,n

∫
X′′,n

1B ((x′, y′′))Q′′,nf (dy′′)P ′,nf (dx′),(8.6)

where P ′,nf is the measure in the experiment E ′,n defined by the analogy with P ′′,nf in
(8.2), but with J ′ replacing J ′′. By Assumption (G1),

sup
f∈Σ

P ′,nf (Acf ) = o (1) ,(8.7)

where Af =
{
x′ ∈ X ′,n :

∥∥∥f̂n(x′)− f
∥∥∥
∞
≤ cγn

}
. Then (8.5) and (8.6) imply∣∣(Mn · P n

f

)
(B)− F n

f (B)
∣∣ ≤ 2P ′,nf (Acf )

+

∫
Af

sup
f∈Σ

sup
h∈Σβf (γn)

∥∥Kn
f · P

′′,n
f+h −Q

′′,n
f+h

∥∥
Var

P ′,nf (dx′).

Using (8.3) and (8.7) we obtain (8.4). This implies that the one-sided deficiency
δ (En,Fn) is less that c2εn. The bound for δ (Fn, En) can be obtained in the same
way; for this we need a result analogous to condition (G1) in the Gaussian experiment
Gn. Since the function Γ is smooth and strictly monotone, the existence of a such
preliminary estimator in Gn follows from Korostelev ([10]). This proves that the Le
Cam distance between En and Fn goes to 0. In the same way we can show that Fn
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and Gn are asymptotically equivalent. As a result we obtain asymptotic equivalence of
the experiments En and Gn. Theorem 3.2 is proved.

9. Appendix

9.1. Komlós-Major-Tusnády approximation. Assume that on the probability space
(Ω′,F ′, P ′) we are given a sequence of independent r.v.’s X1, ..., Xn such that for all
i = 1, ..., n

E ′Xi = 0, cmin ≤ E ′X2
i ≤ cmax,

for some positive absolute constants cmin and cmax. Hereafter E′ denotes the expectation
under the measure P ′. Assume that the following condition, due to Sakhanenko, is
satisfied: there is a sequence λn, n = 1, 2, ... of real numbers, 0 < λn ≤ λmax, where
λmax is an absolute constant, such that for all i = 1, ...., n,

λnE
′ |Xi|3 exp (λn |Xi|) ≤ E ′X2

i .

Along with this, assume that on another probability space (Ω,F , P ) we are given a
sequence of independent normal r.v.’s N1, ..., Nn, such that, for any i = 1, ..., n,

ENi = 0, EN2
i = E ′X2

i .

Let H(1/2, L) be a Hölder ball with exponent 1/2 on the unit interval [0, 1], i.e. the
set of functions satisfying:

|f(x)− f(y)| ≤ L |x− y|1/2 , |f(x)| ≤ L, x, y ∈ [0, 1],

where L is an absolute constant.
In the sequel, the notation L(X) = L(Y ) for r.v.’s means equality of their distribu-

tions.
The following assertion is proved in Grama and Nussbaum [8].

Theorem 9.1. A sequence of independent r.v.’s X̃1, ..., X̃n can be constructed on the

probability space (Ω,F , P ) such that L(X̃i) = L(Xi), i = 1, ..., n, and

sup
f∈H(1/2,L)

P

(∣∣∣∣∣
n∑
i=1

f(i/n)
(
X̃i −Ni

)∣∣∣∣∣ > x(log n)2

)
≤ c0 exp (−c1λnx) , x ≥ 0,

where c0 and c1 are absolute constants.

This result is an analog of the functional strong approximation established by Koltchin-
skii [9] for the empirical processes.

Remark 9.1. Note that the r.v.’s X1, ..., Xn are not assumed to be identically dis-
tributed. We also do not assume any additional richness of the probability space
(Ω,F , P ) : the only assumption is that the normal r.v.’s N1, ..., Nn exist.
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9.2. Le Cam and Hellinger distances. We made use of the following facts.
a. Let E = (X,X , {Pθ : θ ∈ Θ}) and G = (Y,Y, {Qθ : θ ∈ Θ}) be two experiments

with the same parameter space Θ. Assume that there is some point θ0 ∈ Θ such that
Pθ � Pθ0 and Qθ � Qθ0 , θ ∈ Θ and that there are versions Λ1

θ and Λ2
θ of the likelihoods

dPθ/dPθ0 and dQθ/dQθ0 on a common probability space (Ω,A, P ) . Then the Le Cam
deficiency distance between E and G satisfies

∆ (E ,G) ≤ sup
θ∈Θ

1

2
EP
∣∣Λ1

θ − Λ2
θ

∣∣ .(9.1)

The proof of this assertion can be found in Le Cam and Yang [13], p. 16 (see also
Nussbaum [15]).

Let H(·, ·) denotes the Hellinger distance between probability measures: if P and
Q are probability measures on the measurable space (Ω,A) and P � ν and Q � ν,
where ν is a σ-finite measure on (Ω,A), then

H2(P,Q) =
1

2

∫
Ω

((
dP

dν

)1/2

−
(
dQ

dν

)1/2
)2

dν.(9.2)

Define the measures P̃θ and Q̃θ by setting dP̃θ = Λ1
θdP and dQ̃θ = Λ2

θdP. Using the
well-known relation of the L1 norm to H(·, ·) (see Strasser [17], 2.15)

1

2
EP
∣∣Λ1

θ − Λ2
θ

∣∣ ≤ √2H(P̃θ, Q̃θ).(9.3)

b. Let P1, ..., Pn and Q1, ..., Qn be probability measures on (Ω,A) . Set P n = P1 ×
...× Pn and Qn = Q1 × ...×Qn. Then

1−H2 (P n, Qn) =
n∏
i=1

(
1−H2 (Pi, Qi)

)
(9.4)

and (cf. Strasser [17], 2.17)

H2 (P n, Qn) ≤
n∑
i=1

H2 (Pi, Qi) .(9.5)

c. Let Φµ be the normal distribution with mean µ and variance 1. Then

H2(Φµ1
,Φµ2

) = 1− exp

(
−1

8
(µ1 − µ2)2

)
.(9.6)

9.3. An exponential inequality. We made use of the following well-known inequal-
ity.

Lemma 9.2. Let ξ be a r.v. such that Eξ = 0 and |ξ| ≤ a, for some positive constant
a. Then

E exp (λξ) ≤ exp
(
cλ2Eξ2

)
, |λ| ≤ 1,

where c = ea/2.
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Proof. Set µ (λ) = E exp (λξ) and ψ (λ) = log µ (λ) . A simple Taylor expansion yields

ψ (λ) = ψ (0) + λψ′ (0) +
λ2

2
ψ′′ (t) , |λ| ≤ 1,(9.7)

where |t| ≤ 1, ψ (0) = 0, ψ′ (0) = 0,

ψ′′ (t) =
µ′′ (t)

µ (t)
− µ′ (t)2

µ (t)2 ≤ µ′′ (t) ≤ eaEξ2.(9.8)

Inserting (9.8) in (9.7) we get ψ (λ) ≤ 1
2
eaEξ2.
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