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Abstract

We study extremal problems related to nonparametric maximum likelihood estimation (MLE) of a signal in white noise.
The aim is to reduce these to standard problems of optimal control which can be solved by iterative procedures. This
reduction requires a preliminary data smoothing; stability theorems are proved which justify such an operation on the data
as a perturbation of the originally sought nonparametric (nonlinear) MLE. After this, classical optimal control problems
appear; in the basic case of a signal with bounded 3rst derivative one obtains the well-known problem of the optimal
road pro3le. c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

Let us consider the model (cf. Ibragimov and Khasminskii, 1982)

da(t)= x(t) dt + � dw(t); 06 t6 1; a(0)= 0; (1.1)

where a(t) is observed, x(t) is an unknown signal, w(t) is a standard Wiener process and �¿ 0 is a small
parameter.
An extensive literature is devoted to various aspects of this model. We are concerned here with maxi-

mum likelihood estimation (MLE) of the unknown signal. Let � be the probability measure in the space
C[0; 1] generated by the process w(t). Then the likelihood function (cf. Ibragimov and Khasminskii, 1982) is
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equal to

dP(a(·)=�)
d�

=exp

{
1
�2

∫ 1

0
x(t) da(t)− 1

2�2

∫ 1

0
x2(t) dt

}
:

When it is known that x(·) belongs to a class K, then the maximum likelihood method of 3nding an
estimate for x(·) leads to the problem

I =
1
2

∫ 1

0
x2(t) dt −

∫ 1

0
x(t) da(t) → min

x(·)∈K
: (1.2)

A comprehensive theoretical analysis of this problem has been carried out by Tsirelson, 1982, 1985, 1986.
Necessary and suIcient conditions for existence, uniqueness and consistency of the MLE are given there.
The conditions are formulated in terms of some characteristics of the class K. In Tsirelson, 1982, 1985, 1986
a number of properties of the maximum likelihood estimator x̂(a(·)) are considered as well. For example,
probabilities of events ‖x̂(a(·))− x‖¿ r are studied there. However, it seems that the problem of constructing
estimators x̂(a(·)) has not been exhaustively treated in the statistical literature until now. For discrete (re-
gression) data, nonparametric MLE has been thoroughly studied by Nemirovskii et al. (1984, 1985) and the
methods developed there can be applied to model (1.1) after a suitable discretization. However, we prefer to
give a direct solution of problem (1.2) for some important classes K. By staying in the continuous framework,
we are able to utilize some tools of optimal control theory for construction of nonparametric estimators. It
seems that this aspect of nonparametric nonlinear MLE has escaped the attention of statisticians so far.
Suppose it is known that each function x(·) of the class K has a derivative x′(·) which is in L2[0; 1]. In

this case the functional (1.2) transforms to

I =
1
2

∫ 1

0
x2(t) dt +

∫ 1

0
a(t)x′(t) dt − a(1)x(1); (1.3)

and problem (1.2) is equivalent to a problem of optimal control

I =
∫ 1

0

(
1
2
x2 + a(t)u

)
dt − a(1)x(1) → min; x′ = u; (1.4)

in which restrictions on the control u and the phase variable x are present, given by the class K.
If the signal x(·) is of Sobolev type, we treat a class K of form

K=

{
x(·): ∃x′(·)= u(·)∈L2[0; 1];

1
2

∫ 1

0
(�x2(t) + u2(t)) dt6M; �¿ 0; M ¿ 0

}
; (1.5)

where � and M are known constants. In this class and in other Sobolev classes it is possible to obtain the
MLE x̂(t) for the signal x(t) up to a parameter which can be found from a transcendental equation (see
Milstein and Nussbaum, 2000).
If the signal x(·) has a bounded derivative of order n; we treat a class Kn of form

Kn = {x(·): ∃x(n−1)(t) which is an absolutely continuous function;

|x(n)(t)|6Mn; Mn ¿ 0}; (1.6)

where Mn is a known constant. For the class (1.6), we modify problem (1.4) by replacing the observed data
a(t) which have bad analytical properties with slightly modi3ed data Ma(t) such that there exists a piecewise
continuous derivative Ma′(t). In Section 2, we show that the MLE with these modi3ed data is close to the
originally sought MLE. The results of Section 2 have not only an auxiliary meaning but are also of independent
interest. They state stability of the maximum likelihood method with respect to certain Nuctuations in the data.
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After replacement of a(t) by Ma(t) problem (1.4) can be reduced to

I =
1
2

∫ 1

0
(x(t)− Ma′(t))2 dt → min

x(·)∈Kn

: (1.7)

Problem (1.7) is well-known and has already been investigated by methods of optimal control in Gitenjova
and Milstein (1967) and Boltyanskii (1961). We consider some iterative solution methods in Sections 3 and
4 and some generalizations in Section 5.
The preliminary data smoothing operation a(t) 
→ Ma(t) which we propose, to pave the way for an application

of optimal control theory, is similar in spirit to a discretization with respect to a regular grid ti = i=n. With
discrete data one could apply the nonparametric MLE theory of Nemirovskii et al. (1984, 1985). Our sensitivity
theorems in the next section provide some formal rationale for preliminary data smoothing. Also, they are
geared towards the subsequent application of continuous optimal control theory, which we believe furnishes
useful insights on nonparametric (and nonlinear) MLE. In particular, the “optimal road pro3le” extremal
problem described by Boltyanskii (1961) has a simple and appealing formulation (cf. Section 3), and to our
knowledge the link to nonparametric MLE has not been made.

2. Sensitivity theorems for signals with bounded derivative

Let us consider the class

K1 = {x(·): x(t) is absolutely continuous; |x′(t)|6M; M ¿ 0} (2.1)

and the minimization problem in this class

I =
1
2

∫ 1

0
x2(t) dt +

∫ 1

0
a(t)x′(t) dt − a(1)x(1) → min

x(·)∈K1

: (2.2)

It is possible to prove that there exists a solution of the problem.

Theorem 2.1. Let Ma(t) be a continuous function such that

Ma(0)= a(0)= 0; Ma(1)= a(1);
∫ 1

0
| Ma(s)− a(s)| ds6 �: (2.3)

Let x0(·) be a solution of the minimization problem (2:2) and Mx0(·) be a solution of the problem

MI =
1
2

∫ 1

0
x2(t) dt +

∫ 1

0
Ma(t)x′(t) dt − Ma(1) · x(1) → min

x(·)∈K1

: (2.4)

Then

06 I( Mx0(·))− I(x0(·))6 2�M; (2.5)

∫ 1

0
( Mx0(t)− x0(t))2 dt6 4�M; (2.6)

and if �6M=3;

max
06t61

| Mx0(t)− x0(t)|6 (24�M 2)1=3: (2.7)

Proof. Obviously

I( Mx0(·))− I(x0(·))¿ 0; MI(x0(·))− MI( Mx0(·))¿ 0:
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Furthermore

|I( Mx0(·))− MI( Mx0(·))|=
∣∣∣∣∣
∫ 1

0
(a(t)− Ma(t)) Mx′0(t) dt

∣∣∣∣∣6M�:

Analogously

| MI(x0(·))− I(x0(·))|6M�:

Therefore

06 I( Mx0(·))− I(x0(·))6 I( Mx0(·))− I(x0(·)) + MI(x0(·))− MI( Mx0(·))
6 |I( Mx0(·))− MI( Mx0(·))|+ | MI(x0(·))− I(x0(·))|6 2�M:

Thus the inequality (2.5) is proved.
For derivation of (2.6), let us note that

(1− �)x0(·) + � Mx0(·)∈K1; 06 �6 1;

and introduce the function f(�); 06 �6 1 (see (1.2))

f(�) = I((1− �)x0(·) + � Mx0(·))
=

1
2

∫ 1

0
((1− �)x0(s) + � Mx0(s))2 ds−

∫ 1

0
((1− �)x0(s) + � Mx0(s)) da(s);

which is a quadratic trinomial on �.
Clearly

f(0)= I(x0(·))6f(�); f′(0)¿ 0:

We have

f′(�)=
∫ 1

0
((1− �)x0(s) + � Mx0(s))( Mx0(s)− x0(s)) ds−

∫ 1

0
( Mx0(s)− x0(s)) da(s);

f′′(�)=
∫ 1

0
( Mx0(s)− x0(s))2 ds=const =C ¿ 0:

Further,

f′(�)=f′(0) +
∫ �

0
f′′(�) d�=f′(0) + C�;

f(�)= I(x0(·)) + f′(0)�+ C
�2

2
; f(1)= I( Mx0(·))= I(x0(·)) + f′(0) +

C
2
:

From here and (2.5)

f′(0) +
C
2
6 2�M

and, as f′(0)¿ 0; we obtain the inequality (2.6).
Now let us prove the inequality (2.7). Let

m= max
06t61

| Mx0(t)− x0(t)|= | Mx0(t∗)− x0(t∗)|:

We take x0(t∗)= x∗0 ; then

x∗0 ¡ Mx0(t∗)= x∗0 + m:
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Since |x′0(t)|6M and | Mx′0(t)|6M for 06 t6 1; it is clear that for 06 t6 t∗

x0(t)6 x∗0 −M (t − t∗); Mx0(t)¿ x∗0 + m+M (t − t∗)

and for t∗6 t6 1

x0(t)6 x∗0 +M (t − t∗); Mx0(t)¿ x∗0 + m−M (t − t∗):

Hence

4�M ¿
∫ 1

0
( Mx0(s)− x0(s))2 ds

¿
∫ t∗

0∨(t∗−m=2M)
(m+ 2M (s− t∗))2 ds+

∫ 1∧(t∗+m=2M)

t∗
(m− 2M (s− t∗))2 ds: (2.8)

We have to 3nd the largest m for which this inequality can be valid. Clearly one can determine this quantity
from (2.8) at t∗ =0.
We have

4�M¿
∫ 1∧m=2M

0
(m− 2Ms)2 ds=

{
m3=6M; m=2M6 1;

m(m− 2M) + 4M 2=3; m=2M ¿ 1:
(2.9)

But for �6M=3 the second case in (2.9) is impossible and therefore

m36 24�M 2:

Thus Theorem 2.1 is proved.

Consider the class of functions

K2 = {x(·): x′(t) is absolutely continuous and |x′′(t)|6M2; M2 ¿ 0}: (2.10)

The functional (1.2) in the class K2 can be rewritten as

I(x(·))= 1
2

∫ 1

0
x2(t) dt −

∫ 1

0

(∫ t

0
a(s) ds

)
x′′(t) dt + x′(1)

∫ 1

0
a(s) ds− a(1)x(1): (2.11)

It is possible to prove that there exists a solution of the minimization problem for the functional (2.11) in
the class K2.
Denote by MI(x(·)) the functional which is similar to I(x(·)) with Ma instead of a. The following theorem is

true (see proof in Milstein and Nussbaum, 2000).

Theorem 2.2. Let Ma(t) be a continuous function such that

Ma(0)= 0; Ma(1)= a(1);
∫ 1

0
Ma(s) ds=

∫ 1

0
a(s) ds; (2.12)

∫ 1

0

∣∣∣∣
∫ t

0
Ma(s) ds−

∫ t

0
a(s) ds

∣∣∣∣ dt6 �; (2.13)

where � is su;ciently small. Let x0(·) be a solution of the minimization problem for the functional I(x(·))
in the class K2 and let Mx0(·) be a solution of the minimization problem for the functional MI(x(·)) in the
same class.
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Then;

06 I( Mx0(·))− I(x0(·))6 2�M2; (2.14)

∫ 1

0
( Mx0(t)− x0(t))2 dt6 4�M2; (2.15)

|x0(t)|6M0; | Mx0(t)|6M0; |x′0(t)|6M1; | Mx′0(t)|6M1; 06 t6 1; (2.16)

where M0 and M1 are certain constants depending only on M2; |a(1)|; |
∫ 1
0 a(s) ds|; and ∫ 1

0 | ∫ 1
0 a(s) ds| dt.

Further; there exist positive constants K0; K1; K2 depending on M1 and M2 only such that∫ 1

0
( Mx′0(t)− x′0(t))

2 dt6K0�1=2; (2.17)

max
06t61

| Mx0(t)− x0(t)|6K1�1=3; (2.18)

max
06t61

| Mx′0(t)− x′0(t)|6K2�1=6: (2.19)

Remark 2.1. The principal results of Theorems 2.1 and 2.2 remain valid if the conditions Ma(1)= a(1) and∫ 1
0 Ma(s) ds=

∫ 1
0 a(s) ds in (2.3) and (2.12) are replaced by the conditions

| Ma(1)− a(1)|6 �1;

∣∣∣∣∣
∫ 1

0
Ma(s) ds−

∫ 1

0
a(s) ds

∣∣∣∣∣ dt6 �2

(see details in Milstein and Nussbaum, 2000).

3. Reduction of MLE to the problem of the optimal road pro&le

Let us return to the problem of 3nding the MLE x̂(t) in the class K1. This estimate can be found as a
solution of the minimization problem (1.2) with K=K1.
Consider also the following minimization problem:

MI =
1
2

∫ 1

0
x2(t) dt −

∫ 1

0
x(t) d Ma(t) → min

x(·)∈K1

: (3.1)

According to Theorem 2.1 if Ma(·) is close to a(·); then the solution Mx(t) of problem (3.1) is close to the
MLE x̂(t). There are extensive possibilities for a choice of the function Ma(t) such that conditions (2.3) are
satis3ed. For instance, the function Ma(t) can be easily found as a piecewise linear function, which has a
piecewise constant derivative.
Let Ma(t) in (3.1) satisfy (2.3) and be piecewise diQerentiable. Denote Ma′(t) by b(t). Then the functional

(3.1) transforms to the functional

MI =
1
2

∫ 1

0
(x − b(t))2 dt − 1

2

∫ 1

0
b2(t) dt;

and the following minimization problem appears (for the modi3ed functional we use the initial notation I
again without ambiguity):

I =
1
2

∫ 1

0
(x − b(t))2 dt → min

|x′|6M
: (3.2)
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Problem (3.2) is a problem of mean-square approximation by functions with bounded derivative. It can be
interpreted as a problem of building a road with pro3le x(t) which cannot have steep ascents and descents
and therefore |x′(t)|6M; 06 t6 1. The function b(t) is interpreted as the pro3le of the locality and the
integral I as the cost of building. The study of this problem in an optimal control formulation

I =
1
2

∫ 1

0
(x − b(t))2 dt → min

u: |u|6M
; (3.3)

x′ = u (3.4)

was initiated by Boltyanskii (1961). It has been investigated in more detail and in more general form in
Gitenjova and Milstein (1967). In particular the suIciency of Pontryagin’s maximum principle is proved when
in place of Eq. (3.4), one considers a general m-dimensional nonautonomous linear system with r-dimensional
control and instead of a functional with quadratic integrand one considers a functional with convex function.
Besides in Gitenjova and Milstein (1967) an iterative procedure is recommended for 3nding an optimal
solution. Both Boltyanskii and Gitenjova Yu and Milstein (1967) made an assumption that b(t) is piecewise
diQerentiable. However, this assumption is not essential; we are interested in the case where b(t) is only
piecewise continuous, since the simplest method of approximating a(t) is realized by means of piecewise
linear functions. As a result, b(t) will be piecewise constant. Therefore, but also for completeness of exposition
we develop in Milstein and Nussbaum (2000) the required results from Gitenjova and Milstein (1967) with
proofs, which are simpli3ed substantially in the case considered. Here, we restrict ourselves to an iterative
procedure which allows to obtain an approximate solution in a constructive manner.
Beforehand, let us remark that the solution to problem (3.3), (3.4) exists and is unique, which can be

proved by standard methods of optimal control.
Let us write down necessary conditions for the optimal solution of problem (3.3), (3.4) (see Alexeev

et al., 1979). Pontryagin’s function H has the form

H (t; x; u; p)=pu− �0
2
(x − b(t))2:

It is not diIcult to prove that �0 �=0 and hence we can put �0 = 1. The optimal solution u(t); x(t) satis3es
the system of diQerential equations

dx
dt

=
@H
@p

= u;
dp
dt

=− @H
@x

= x − b(t); (3.5)

the conditions of transversality

p(0)= 0; p(1)= 0; (3.6)

and the maximum condition

p(t) u(t)= max
|v|6M

p(t)v: (3.7)

SuIciency of the Pontryagin maximum principle (3.5)–(3.7) can be shown. So the solution of the problem
(3.5)–(3.7) is optimal for problem (3.3), (3.4).
This solution can be found by the following iterative procedure. As a 3rst approximation of the optimal con-

trol we take an arbitrary admissible control u1(t). The 3rst approximation of the trajectory x1(t) and the func-
tion p1(t) are found as the unique solution of the boundary value problem (3.5), (3.6) under u= u1(t). Namely

x(t) = x(0) +
∫ t

0
u(s) ds; p(t)=

∫ t

0

[
x(0) +

∫  

0
u(s) ds− b( )

]
d ;

x(0) =−
∫ 1

0

[∫  

0
u(s) ds− b( )

]
d ; (3.8)

where u(t)= u1(t); 06 t6 1.
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Let the kth approximation be constructed: uk(t); xk(t); pk(t). Knowing pk(t); we 3nd vk(t) from the
condition

pk(t)vk(t)= max
|v|6M

pk(t)v;

that is, in particular, one may put

vk(t)=M signpk(t)=




M; pk(t)¿ 0;

0; pk(t)= 0;

−M; pk(t)¡ 0:

If vk(t)= uk(t) a.s., then it is proved that uk(t) is the optimal control. Let vk(t) �= uk(t). Then we minimize
the integral (3.3) on the one-parameter set of controls of the form

u(t; �)= �uk(t) + (1− �)vk(t); 06 �6 1:

It amounts to 3nding values x0k ; �k , which realize the minimal value of the function

G(x0; �)=
1
2

∫ 1

0

(
x0 +

∫ t

0
u( ; �) d − b(t)

)2

dt

in the domain −∞¡x0 ¡+∞; 06 �6 1. The values x0k ; �k can be found by the following rule.
Calculate the functions #k(t) and $k(t):

#k(t)=
∫ t

0
(uk(s)− vk(s)) ds−

∫ 1

0

∫  

0
(uk(s)− vk(s)) ds d ;

$k(t)=
∫ 1

0
b( ) d +

∫ t

0
vk(s) ds−

∫ 1

0

∫  

0
vk(s) ds d :

Calculate the constant %k :

%k =

∫ 1
0 #k(t)(b(t)− $k(t)) dt∫ 1

0 #2k(t) dt
:

Finally,

x0k =−
∫ 1

0

[∫ t

0
u(s; �k) ds− b(t)

]
dt; �k =




%k if 0¡%k ¡ 1;

0 if %k 6 0;

1 if %k ¿ 1:

(3.9)

Then the ( k + 1)th approximation of the control is chosen in the form

uk+1(t)= �kuk(t) + (1− �k)vk(t); (3.10)

and xk+1(t) and pk+1(t) are found as the unique solution of the boundary value problem (3.5), (3.6) due to
formula (3.8), where u(t)= uk+1(t). In this manner we construct a sequence {un(t); xn(t); pn(t)}.

Let In be the value of the functional (3.2) at x(·)= xn(t). By construction, the sequence In is nonincreasing
and is bounded from below by the least value of the functional I : I1¿ I2¿ · · ·¿ In¿ · · ·¿ I0.
The following theorem is true (see the proof in Milstein and Nussbaum, 2000).

Theorem 4.1. The sequence xn(t) converges uniformly on [0; 1] to the optimal trajectory. The sequence un(t)
converges to the optimal control weakly.
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Remark 4.1. Since obviously uk(t) is a piecewise constant function, xk(t) is always a piecewise linear con-
tinuous function. Therefore, if b(t) is a piecewise constant or continuous piecewise linear function, pk(t)
is a quadratic spline (of defect 2 or 1). The knots of this spline are the switching points of uk(t) and the
nonregular points of the function b(t).

4. Inserting a parameter

In this section we present another approach to the constructive solution of the problem (3.3), (3.4). Let us
consider the following problem of optimal control:

I =
1
2

∫ 1

0
((x − b(t))2 + �u2) dt → min

|u|6M
;

dx
dt

= u; (4.1)

which depends on the parameter �¿ 0. For �=0 the problem coincides with (3.3), (3.4). Clearly the solution
of problem (4.1) for small positive � is close to the required solution of (3.3), (3.4).
Pontryagin’s function H of problem (3.3), (3.4) has the form

H (t; x; u; p)=pu− 1
2 (x − b(t))2 − 1

2�u
2:

The necessary conditions (it can be proved that they are suIcient as well) for the optimal solution under
�¿ 0 are

dx
dt

=
@H
@p

= u;
dp
dt

=− @H
@x

= x − b(t); p(0)=p(1)= 0; (4.2)

p(t)u(t)− 1
2�u

2(t)= max
|v|6M

(p(t)v− 1
2�v

2): (4.3)

Condition (4.3) gives the following expression for u:

u= u(p; �):=




−M; p¡− �M;

p=�; |p|6 �M;

M; p¿�M:

(4.4)

Therefore to 3nd the optimal solution we have to solve the boundary value problem
dx
dt

= u(p; �);
dp
dt

= x − b(t); p(0)=p(1)= 0: (4.5)

Below it is argued that for all suIciently large � the restriction |p|6 �M is ful3lled and consequently
problem (4.5) takes the form

dx
dt

=
p
�
;

dp
dt

= x − b(t); p(0)=p(1)= 0: (4.6)

Problem (4.6) has the following explicit solution:

x=
1√
�

(
sinh

1√
�

)−1

cosh
t√
�

∫ 1

0
cosh

1−  √
�

b( ) d − 1√
�

∫ t

0
sinh

t −  √
�

b( ) d ;

p=
(
sinh

1√
�

)−1

sinh
t√
�

∫ 1

0
cosh

1−  √
�

b( ) d −
∫ t

0
cosh

t −  √
�

b( ) d :

Now it can be veri3ed that the above mentioned restriction is in fact ful3lled if, for example,
√
� exp

(
− 1√

�

)
¿

B
M

; B := max
06s61

|b(s)|:
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Let us denote by x(t; �; x0); p(t; �; x0) the solution to the Cauchy problem
dx
dt

= u(p; �);
dp
dt

= x − b(t); x(0)= x0; p(0)= 0: (4.7)

To solve the boundary value problem (4.5) for a �¿ 0 it is necessary to 3nd the root x0 = x0(�) of the
equation

p(1; �; x0)= 0: (4.8)

The transcendental equation (4.8) can be solved easily for every � (for example, by the chord method) if
an initial approximation for x0(�) is known with suIcient accuracy.

Let x0(�) for some �= M� be known. Then x0( M�−T�) for a small T�¿ 0 can be found from the equation

p(1; M�−T�; x0)= 0

if we take x0( M�) as an initial approximation for x0( M� − T�). Thus, knowing the optimal solution for some
�1 ¿ 0 (fortunately, we do know it for some large �1 ¿ 0); we can 3nd it for �2 = �1−T�1 in a constructive
manner. That is, knowing x0(�1); we 3nd x0(�2). Analogously, knowing x0(�2); we 3nd x0(�2−T�2)= x0(�3)
and so on. With these ideas it is not diIcult to construct a numerical procedure for solving problem (4.1)
for a suIciently small �¿ 0 and consequently for approximate solution of the problem (3.3), (3.4).

5. Some generalizations

The problem of 3nding a maximum likelihood estimate x̂(t) in each class Kn (see (1.6)), n¿ 2; is solved
analogously. After substituting a(t) by a nearby Ma(t) such that there exists the piecewise continuous derivative
Ma′(t)= b(t); this problem is also reduced to the “problem of 3nding the optimal road pro3le.” For example,
in the case n=2, we obtain the problem of minimization of the functional

I =
1
2

∫ 1

0
(x1 − b(t))2 dt → min

|u|6M
;

dx1
dt

= x2;
dx2
dt

= u: (5.1)

Problem (5.1) can be solved with using Gitenjova and Milstein (1967) as problem (3.3), (3.4) was done
above, and due to Theorem 2.2 the optimal solution Mu(t); Mx1(t); Mx2(t) of the problem is such that Mx1(t) is
close to x̂(t).
The same approach is possible also in the case of stronger information on the unknown signal. For instance,

it may be known that the signal is a nondecreasing function with 3rst derivative bounded from above. Then

K∗
1 = {x(·): x(t) is absolutely continuous and 06 x′(t)6M};

and the optimal control problem takes the form

I =
1
2

∫ 1

0
(x − b(t))2 dt → min

06u6M
; x′ = u: (5.2)

Let us introduce a new control v and a new phase variable y:

v= u− M
2
; y= x − M

2
t:

Then problem (5.2) transforms to

I =
1
2

∫ 1

0
(y − c(t))2 dt → min

|v|6M=2
; y′ = v;

where c(t)= b(t)−Mt=2, which coincides with the problem (3.3), (3.4).
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Now consider the class

K∗
2 = {x(·): x′(t) is absolutely continuous and 06 x′′(t)6M}

which corresponds to information on the signal being a convex function with bounded second derivative. As
above it can be reduced to the problem

I =
1
2

∫ 1

0
(y1 − c(t))2 dt → min

|v|6M=2
;

dy1

dt
=y2;

dy2

dt
= v;

where

v= u− M
2
; y1 = x − Mt2

4
; c(t)= b(t)− Mt2

4
;

which coincides with the problem (5.1).
Analogously one treats the case where it is known that there exists absolutely continuous x(n−1)(t); and

06 x(n)(t)6M . Such a class appears if it is known that the signal does not have more than n pieces of
monotonicity (and, of course, if it is suIciently smooth and its nth derivative is subject to the bounds
indicated).
Another quite natural information on the signal would be

K= {x(·): A6 x(t)6B; x(n−1)(t) is absolutely continuous and 06 x(n)(t)6M};
i.e. besides the fact that the signal does not have more than n pieces of monotonicity it is known that it is
in a certain band. This problem can also be reduced to a typical optimal control problem but this time with
bounded phase variables. To 3nd a constructive solution of such a problem is a more complicated task.
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