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Abstract

We develop the exact constant of the risk asymptotics in the uniform norm

for density estimation. This constant has first been found for nonparametric

regression and for signal estimation in Gaussian white noise. Hölder classes for

arbitrary smoothness index β > 0 on the unit interval are considered. The

constant involves the value of an optimal recovery problem as in the white noise

case, but in addition it depends on the maximum of densities in the function

class.
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1 Introduction and Main Result

Recently in Korostelev (1993) an asymptotically minimax exact constant has been

found for loss in the uniform norm, for Gaussian nonparametric regression when the

parameter set is a Hölder function class. This risk bound represents an analog of the

now classical L2-minimax constant of Pinsker (1980) valid for a Sobolev function class.

Donoho (1994) extended Korostelev’s (1993) result to signal estimation in Gaussian

white noise and showed it to be related to nonstochastic optimal recovery.

Here we consider density estimation from i. i. d. data with a sup-norm loss. Consider

a sample X1, ..., Xn of i. i. d. observations having a probability density f = f(x) in

the interval 0 ≤ x ≤ 1 . Let β, L be some positive constants, and let Σ(β, L) be the

class of densities

Σ(β, L) = {g :

∫ 1

0

g = 1, g ≥ 0, and

|gbβc(x1)− gbβc(x2)| ≤ L|x1 − x2|β−bβc, 0 ≤ x1, x2 ≤ 1}

where bβc is the greatest integer strictly less than β. Assume that the density f

belongs a priori to Σ(β, L) . Consider an arbitrary estimator f̂n = f̂n(x) measurable

w.r.t. the observations X1, ..., Xn . We define the discrepancy of f̂n(x) and the true

density f(x) by the sup–norm ||f̂n − f ||∞ where

||f ||∞ = sup
0≤x≤1

|f(x)|.

Denote by P
(n)
f the probability distribution of the observations X1, ..., Xn , and by

E
(n)
f the expectation w.r.t. P

(n)
f . Let w(u), u ≥ 0, be a continuous increasing function

which admits a polynomial majorant w(u) ≤W0(1 + uγ) with some positive constants

W0, γ, and such that w(0) = 0. Introduce the minimax risk

rn = rn(w(·);β, L, b) = inf
f̂n

sup
f∈Σ(β,L,b)

E
(n)
f w(ψ−1

n ||f̂n − f ||∞) (1)
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where ψn = ((log n)/n)
β/(2β+1)

is the optimal rate of convergence (cf. Khasminskii

(1978), Stone (1982), Ibragimov and Khasminskii (1982)). The main goal of this paper

is to find the exact asymptotics of the risk (1). To do this we need two additional

definitions. First, note that the densities in
∑

(β, L) are uniformly bounded, i. e.

B∗ = B∗(β, L) = max
f∈Σ(β,L)

max
0≤x≤1

f(x) < +∞ . (2)

An argument for this based on imbedding theorems, as well as further information on

the value of B∗ is given in an appendix (section 4). Secondly, denote by Σ0(β, L) an

auxiliary class of functions on the whole real line:

Σ0(β, L) = {f : |f bβc(x1)− f bβc(x2)| ≤ L|x1 − x2|β−bβc, x1, x2 ∈ R1}.

Let ||g||2 denote the L2-norm of g . Define the constant

Aβ = max
{
g(0) | ||g||2 ≤ 1, g ∈ Σ0(β, 1)

}
. (3)

Theorem. For any β > 0, L > 0 and for any loss function w(u) the minimax risk

(1) satisfies:

lim
n→∞

rn = w (C)

where

C = C(β, L,B∗) = Aβ

(
2B∗L

1/β

2β + 1

)β/(2β+1)

,

and the constants B∗ = B∗(β, L) and Aβ are defined by (2) and (3) respectively.

The proof of the corresponding upper and lower asymptotic risk bounds is developed

in sections 2 and 3. A more concise argument based on asymptotic equivalence of

experiments in the Le Cam sense is possible (cf. Nussbaum (1996)), but only in the

case β > 1/2, and under an additional assumption that the densities are uniformly
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bounded away from 0. While asymptotic equivalence is known to fail for β ≤ 1/2 (cf.

Brown and Zhang (1998)), our method here yields the sup-norm constant for density

estimation for all β > 0. The proof via asymptotic equivalence can be found in the

technical report (Korostelev and Nussbaum (1995)).

2 Upper Asymptotic Bound

Let g be a solution of the extremal problem in (3), g ∈ Σ0(β, 1). The correctness of this

definition follows from Micchelli and Rivlin (1977), and, as shown by Leonov (1997), g

has a compact support. Consider also the solution g1 ∈ Σ0(β, 1) of the dual extremal

problem

min {‖g1‖2 | g1(0) = 1, g1 ∈ Σ0(β, 1)} . (4)

If g is the solution of (3) then g1(u) = A−1
β g(A

1/β
β u) (cf. section 2.2 of Donoho (1994));

hence ‖g1‖2 = A
−(2β+1)/2β
β . Since g is of compact support, so is g1; let S be a constant

such that g1(u) = 0 for |u| > S. Put K(u) = g1(u)/
∫
g1, u ∈ R1 and choose the

bandwidth hn = (Cψn/L)1/β. For an arbitrary small fixed ε > 0 define regular grid

points in the interval [0, 1] by

xk = εkhn, k = 0, . . . ,M,

where M = M(n, ε) = (εhn)−1 is assumed integer. Put M0 = [S/ε] + 1, and introduce

the kernel estimator f ∗n at the inner grid points

f ∗n(xk) = (nhn)−1

n∑
i=1

K((Xi − xk)/hn), k = M0, . . . ,M −M0.
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Lemma 1. There exists a constant p0 > 0 such that for any α > 0 the inequality

holds

sup
f∈Σ(β,L)

P
(n)
f ( max

M0≤k≤M−M0

|f ∗n(xk)− f(xk)| ≥ (1 + α)Cψn) ≤ p0M
−α.

Proof. Define the bias and stochastic terms by

bnk = E
(n)
f [f ∗n(xk)]− f(xk),

and

znk = f ∗n(xk)− E(n)
f [f ∗n(xk)].

For any α > 0 the following inequalities are true:

P
(n)
f ( max

M0≤k≤M−M0

(f ∗n(xk)− f(xk)) ≥ (1 + α)Cψn) =

P
(n)
f ( max

M0≤k≤M−M0

(znk + bnk) ≥ (1 + α)Cψn) ≤

P
(n)
f ( max

M0≤k≤M−M0

znk ≥ (1 + α)Cψn − max
M0≤k≤M−M0

|bnk|) ≤

M−M0∑
k=M0

P
(n)
f (znk ≥ (1 + α)Cψn − sup

f∈Σ0(β,L), f(0)=0

|
∫ ∞
−∞

h−1
n K(u/hn)f(u) du|) ≤

M−M0∑
k=M0

P
(n)
f (znk ≥ (1 + α)Cψn(1− sup

f∈Σ0(β,1), f(0)=0

|
∫ ∞
−∞

K(u)f(u) du|))

where the standard renormalization technique applies (see Donoho (1994)). Define

Kδ(u) = δ−2/(2β+1)g(δ−2/(2β+1)u)/

∫
g

for any δ > 0, where g is again the solution of (3). The optimal recovery identity

(Micchelli and Rivlin (1977), Donoho (1994)) implies that

sup
f∈Σ0(β,1)

sup
‖z‖2≤1

∣∣∣∣∫ ∞
−∞

Kδ(u)f(u) du− f(0) + δ

∫ ∞
−∞

Kδ(u)z(u)du

∣∣∣∣ = δ2β/(2β+1)Aβ,
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hence

sup
f∈Σ0(β,1), f(0)=0

∣∣∣∣∫ ∞
−∞

Kδ(u)f(u) du

∣∣∣∣+ δ ‖Kδ‖2 = δ2β/(2β+1)Aβ.

A choice δ = A
−(2β+1)/2β
β yields

Kδ(u) = A
1/β
β g(A

1/β
β u)/

∫
g = g1(u)/

∫
g1 = K(u)

and hence

1− sup
f∈Σ0(β,1), f(0)=0

|
∫ ∞
−∞

K(u)f(u) du| = A
−(2β+1)/2β
β ‖K‖2 .

By further calculation we obtain

√
nhn/(B∗‖K‖2

2)CψnA
−(2β+1)/2β
β ‖K‖2 = (

2

2β + 1
log n)1/2

and that for for any ε < 1 and any n, satisfying

log n > (2β + 1)(log ε−1 + β−1 log(L/C))

we have

(
2

2β + 1
log n)1/2 ≥

√
2 logM.

Thus, the latter sum of probabilities can be estimated from above by

M−M0∑
k=M0

P
(n)
f (
√
nhn/(B∗‖K‖2

2) znk ≥ (1 + α)
√

2 logM).

Note that √
nhn/(B∗‖K‖2

2) znk = n−1/2

n∑
i=1

ξik

where

ξik =
√
hn/(B∗‖K‖2

2) (h−1
n K((Xi − xk)/hn)− E(n)

f [h−1
n K((Xi − xk)/hn)]),

i = 1, . . . , n, k = M0, . . . ,M −M0.
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The random variables ξik, i = 1, . . . , n, are independent for any fixed k, and

E
(n)
f [ξik] = 0, V ar

(n)
f [ξik] = B−1

∗ f(xk) + on(1) ≤ 1 + on(1) (5)

where on(1) → 0 as n → ∞ uniformly in i, k, and f ∈ Σ(β, L). Moreover, for any

integer m, m ≥ 3, the following bounds hold:

E
(n)
f |ξik|

m ≤ (hn/(B∗‖K‖2
2))m/2(2B∗S 2mHm

∗ /h
m−1
n ) = 2B∗Shn(λ/

√
hn)m (6)

where H∗ = maxu∈R1 |K(u)| and λ = 2H∗/
√
B∗‖K‖2

2. The Chebyshev exponential

inequality, known as Chernoff’s upper bound, yields

P
(n)
f ( max

M0≤k≤M−M0

(f ∗n(xk)− f(xk)) ≥ (1 + α)Cψn) ≤

M−M0∑
k=M0

P
(n)
f (n−1/2

n∑
i=1

ξin ≥ (1 + α)
√

2 logM) ≤

M exp (− c(1 + α)
√

2 logM)(E
(n)
f [exp(cξin/

√
n)])n.

Using (5) and (6), we can estimate the moment generating function as follows:

E
(n)
f [exp(cξin/

√
n)] ≤

1 +
c2

2n
V ar

(n)
f [ξik] +

∑
m≥3

1

m!
(
c√
n

)mE
(n)
f |ξik|

m ≤

1 +
c2

2n
(1 + on(1)) +

2B∗Sλ
3c3

n
√
nhn

∑
m≥3

1

m!
(
λc√
nhn

)m−3 ≤

1 +
c2

2n
(1 + on(1) +

4B∗Sλ
3c√

nhn
exp(λc/

√
nhn))

≤ exp (
c2

2n
(1 + on(1))). (7)
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The latter inequality is true for any c = on(
√
nhn) as n → ∞. If we choose c =

√
2 logM , then (7) implies that

P
(n)
f ( max

M0≤k≤M−M0

(f ∗n(xk)− f(xk)) ≥ (1 + α)Cψn) ≤

M exp (− 2(1 + α) logM) exp ((1 + on(1)) logM) ≤

M exp (− (1 + α) logM) = M−α

for any n large enough. The probability of the random event

{ min
M0≤k≤M−M0

(f ∗n(xk)− f(xk)) ≤ −(1 + α)Cψn}

admits the same upper bound, and this proves the lemma. 2

To extend the definition of f ∗n(xk) to the grid points xk which are close to the end-

points of the interval [0,1], we take a kernel K0(u) with the support [0,1] satisfying the

orthogonality conditions∫ 1

0

K0 = 1, and

∫ 1

0

ujK0 = 0, j = 1, . . . , bβc.

Put

f ∗n(xk) = (nκhn)−1

n∑
i=1

K0((Xi − xk)/(κhn)), k = 0, . . . ,M0 − 1 (8)

where a small positive constant κ is chosen in Lemma 2 below. For the grid points

xk ∈ [1− Shn, 1] we define

f ∗n(xk) = (nκhn)−1

n∑
i=1

K0((xk −Xi)/(κhn)), k = M −M0 + 1, . . . ,M.

Put M = {0, . . . ,M0 − 1}
⋃
{M −M0 + 1, . . . ,M}.
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Lemma 2. There exist constants p0 and p1 such that for any n and for any α > 0 the

inequality holds

sup
f∈Σ(β,L)

P
(n)
f ( max

k∈M
|f ∗n(xk)− f(xk)| ≥ (1 + α)Cψn) ≤ p0M

−αp1 . (9)

Proof. To prove (9), it suffices to derive the upper bound for the probability

P
(n)
f ( max

0≤k<M0

(f ∗n(xk)− f(xk)) ≥ (1 + α)Cψn) ≤ p0M
−αp1 . (10)

The bias bnk of the estimator (8) at any point xk is O((κhn)β) as n→∞ (see Devroye

and Györfi (1985)). Choose κ so small that

|bnk| ≤ Cψn/2, k = 0, . . . ,M0 − 1.

Taking into account our choice of κ, and following the lines of the proof of Lemma 1,

for all n large enough we have the inequalities

P
(n)
f ( max

0≤k<M0

(f ∗n(xk)− f(xk)) ≥ (1 + α)Cψn) ≤

M0−1∑
k=0

P
(n)
f (znk ≥ (1 + α)Cψn − Cψn/2) ≤

M0−1∑
k=0

P
(n)
f (

√
nψ

1/β
n znk ≥ (1/2 + α)C

√
log n) ≤

M0−1∑
k=0

P
(n)
f (n−1/2

n∑
i=1

ξ′ik ≥ (1/2 + α)
√

logM)

where

ξ′ik =

√
ψ

1/β
n /C2(2β + 1)(

1

κhn
K0(

Xi − xk
κhn

)− E(n)
f [

1

κhn
K0(

Xi − xk
κhn

)]).

Similarly to (7) we obtain the inequality

E
(n)
f [exp(cξ′in/

√
n)] ≤ exp (

c2

2n
V ar

(n)
f [ξ′in](1 + on(1)))
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with the only difference that the variance V ar
(n)
f [ξ′in] ≤ σ2

0 is bounded by some constant

σ2
0 ≥ 0 which is not necessarily 1, as in (7). Note that M0 is independent of n. Applying

Chebyshev’s exponential inequality, we have that uniformly in f ∈ Σ(β, L)

P
(n)
f ( max

0≤k<M0

(f ∗n(xk)− f(xk)) ≥ (1 + α)Cψn) ≤

M0 exp (− c(1/2 + α)
√

logM) exp (
c2σ2

0

2
(1 + on(1))).

Under the choice c =
√

logM/σ2
0, the latter formula yields the upper bound

M0 exp (− α

2σ2
0

logM) ≤M0M
−α/(2σ2

0).

This completes the proof of (10), and the lemma follows. 2

The derivatives f (m)(x), m = 1, . . . , bβc, of a density f ∈ Σ(β, L), can be estimated

in the sup-norm with the minimax rate O(hβ−mn ) as n → ∞. We need the following

version of the upper bound.

Lemma 3. For any m, m = 1, . . . , bβc, there exists an estimator f
(m)
n and positive

constants p0, p1, and C1 such that for any n and for any α > 0 the inequality holds

sup
f∈Σ(β,L)

P
(n)
f ( max

0≤k≤M
|f (m)
n (xk)− f (m)(xk)| ≥ (1 + α)C1h

β−m
n ) ≤ p0M

−αp1 .

Proof. Note that the upper bound in this lemma is crude since C1 is not necessarily

optimal. Choose the kernel K0(u) as in Lemma 2, i.e. K0(u) has support in [0, 1]

and satisfies the orthogonality conditions. Assume that K0 has bβc + 1 continuous

derivatives. For a fixed m, m ≤ bβc, put

f (m)
n (xk) =

(−1)m

h1+m
n

n∑
i=1

K
(m)
0 (

Xi − xk
hn

) if 0 ≤ xk ≤ 1/2

and

f (m)
n (xk) =

1

h1+m
n

n∑
i=1

K
(m)
0 (

xk −Xi

hn
) if 1/2 < xk ≤ 1
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where K
(m)
0 is the mth derivative of K0. Standard arguments show that at each point

the bias term is bounded from above by C2h
β−m
n with a positive constant C2 uniformly

in f ∈ Σ(β, L) and xk ∈ [0, 1]. Take C1 > 2C2. Then

P
(n)
f ( max

0≤k≤M
|f (m)
n (xk)− f (m)(xk)| ≥ (1 + α)C1h

β−m
n )

≤ P
(n)
f ( max

0≤k≤M
|z(m)
nk | ≥ (1/2 + α)C1h

β−m
n )

where z
(m)
nk = f

(m)
n (xk)− E(n)

f [f
(m)
n (xk)] are zero-mean random variables.

Following the lines of the proof of Lemma 2, we find that for all n large enough the

latter probability is bounded from above by

2M exp(−c(1/2 + α)C1

√
logM) exp(

c2σ2
m

2
)

with an arbitrary positive c and a constant σ2
m > 0 independent of n. Choose C1 >√

8σ2
m, and put c = (1/2 + α)C1

√
logM/σ2

m. Direct calculations show that the latter

bound turns into

2M exp(− 1

2σ2
m

(1/2 + α)2C2
1 logM) ≤ 2M1−4(1/2+α)2 ≤ 2M−4α

which proves the lemma.

Proof of Theorem: upper risk bound. Take the estimators f ∗n and f
(m)
n as in

Lemmas 1-3. For any x ∈ [xk, xk+1) continue f ∗n as the polynomial approximation

f ∗n(x) = f ∗n(xk) +

bβc∑
m=1

1

m!
f (m)
n (xk)(x− xk)m, xk ≤ x < xk+1, k = 0, . . . ,M − 1.

Uniformly in f ∈ Σ(β, L) we have the inequality

‖f ∗n − f‖∞ ≤ L(εhn)β/bβc! + max
0≤k≤M

|f ∗n(xk)− f(xk)|+

bβc∑
m=1

1

m!
(εhn)m max

0≤k≤M
|f (m)
n (xk)− f (m)(xk)|
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where the first term in the right-hand side appears from the Taylor expansion of the

density functions f ∈ Σ(β, L). When the complementary events to those in Lemmas

1-3 hold, then

‖f ∗n − f‖∞ ≤ (1 + α)(C + C2ε)ψn

with a positive constant C2 independent of n, α and ε. Applying Lemmas 1-3, we have

sup
f∈Σ(β,L)

P
(n)
f (‖f ∗n − f‖∞ ≥ (1 + α)(C + C2ε)ψn) ≤ p2M

−αp3 (11)

where p2 = (1 + bβc)p0 and p3 = min[1; p1]. Take an arbitrary small α0, and put

αj = jα0, uj = (C + C2ε)(1 + αj), j = 1, 2, . . . .

Finally, for any continuous loss functions w(u) with the polynomial majorant, we obtain

from (11) that

sup
f∈Σ(β,L)

E
(n)
f w(ψ−1

n ‖f ∗n − f‖∞) ≤ w((1 + α0)(C + C2ε)) +W0

∞∑
j=1

(1 + uγj+1) p2M
−jα0p3 .

Since the latter sum is vanishing as n→∞, and α0, ε are arbitrary small , the upper

bound follows. 2

3 Lower Asymptotic Bound

We first formulate a lemma in a general framework. For each j = 1, . . . ,M let Qj,ϑ,

ϑ ∈ [−1, 1] be a dominated family of distributions on some measurable space (Xj,Fj).

Let R = [−1, 1]M , θ ∈ R and let Qθ = ⊗Mj=1Qj,θj , θ ∈ R be the family of product

measures indexed by θ = (θ1, . . . , θM). Define ‖θ‖M = max1≤j≤M |θj|.

Lemma 4. Let πj be discrete prior distributions with finite support on [−1, 1], and

consider the Bayes risks

rj,T (πj) = inf
ϑ̂j

∫
[−1,1]

Qj,ϑ

(∣∣∣ϑ̂j − ϑ∣∣∣ > T
)
πj(dϑ), j = 1, . . . ,M (12)
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where the infimum is taken over nonrandomized estimators ϑ̂j of ϑ depending only on

data from Xj. Let θ̂ denote nonrandomized estimators of θ depending on the whole data

vector x = (xj)j=1,...,M , xj ∈ Xj, let π = ⊗Mj=1πj and consider the Bayes risk

rT (π) = inf
θ̂

∫
Qθ

(∥∥∥θ̂ − θ∥∥∥
M
> T

)
π(dθ).

Then for any T > 0

rT (π) = 1−
M∏
j=1

(1− rj,T (πj)) .

Proof. The j-th Bayes risk rj,T (πj) with data xj from Xj can be found as follows. Let

Qj,xj be the posterior distribution for ϑ and Qj be the marginal distribution for xj;

then ∫
[−1,1]

Qj,ϑ

(∣∣∣ϑ̂j − ϑ∣∣∣ > T
)
πj(dϑ) = 1−

∫
gj,T (xj, ϑ̂j(xj))Qj(dxj)

where gj,T is the posterior gain

gj,T (xj, t) = Qj,xj (|t− ϑ| ≤ T ) .

If Sj is the finite support of πj then Qj,xj is concentrated on Sj ⊂ [−1, 1]. For any

t ∈ [−1, 1] we have

gj,T (xj, t) =
∑

ϑ∈Sj :|t−ϑ|≤T

Qj,xj({ϑ}).

This function of t takes only finitely many values, and a maximum in t is attained on

some closed interval t ∈ [tmin(xj), tmax(xj)]. For uniqueness, take ϑ̂∗j(xj) = tmax(xj) as

a Bayes estimator. We then have

max
t∈[−1,1]

gj,T (xj, t) = gj,T (xj, ϑ̂
∗
j(xj)), (13)

rj,T (πj) = 1−
∫
gj,T (xj, ϑ̂

∗
j(xj))Qj(dxj). (14)
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Consider now the global problem: we have

rT (π) = inf
θ̂

∫
Qθ

(∥∥∥θ̂ − θ∥∥∥
M
> T

)
π(dθ)

= inf
θ̂

∫ (
1−

∫ ( M∏
j=1

χ[−T,T ](θ̂j − θj)
)
Qθ(dx)

)
π(dθ)

= 1− sup
θ̂

∫
gT (x, θ̂(x))

M∏
j=1

Qj(dxj) (15)

where gT (x, u) is the posterior gain (for u = (uj)j=1,...,M):

gT (x, u) =
M∏
j=1

Qj,xj(|uj − ϑ| ≤ T ) =
M∏
j=1

gj,T (xj, uj).

Then (13) implies

max
u∈R

g(x, u) =
M∏
j=1

max
t∈[−1,1]

gj,T (xj, t) =
M∏
j=1

gj,T (xj, ϑ̂
∗
j(xj)).

Thus a Bayes estimator of θ is

θ̂∗(x) = (ϑ̂∗j(xj))j=1,...,M ,

and from (15) and (14) we obtain

rT (π) = 1−
∫
gT (x, θ̂∗(x))

M∏
j=1

Qj(dxj)

= 1−
M∏
j=1

∫
gj,T (xj, ϑ̂

∗
j(xj))Qj(dxj)

= 1−
M∏
j=1

(1− rj,T (πj)).

2

Back in our density problem, take a small value ε = ε(α) ∈ (0, 1); the final choice of ε

will be made below. Let f∗ ∈ Σ(β, L) be such that f
bβc
∗ (x) is constant in an interval

x ∈ [t1, t2], t2 − t1 ≤ ε , and f∗(x) ≥ B∗/(1 + ε) for x ∈ [t1, t2] (cf. lemma A. 3 below).
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Set f0 = f∗(t1); then f0 ≥ B∗/(1 + ε). Consider again the solution g1 ∈ Σ0(β, 1) of the

extremal problem (4); recall ‖g1‖2 = A
−(2β+1)/2β
β and that S is such such that g1(u) = 0

for |u| > S. Define

gε(u) = g1(u− S)− εg1(ε(u− 2S(1 + ε−1))), u ∈ R.

As is easily seen,
∫
gε = 0,

∫
g2
ε = (1 + ε) ‖g1‖2

2 and gε ∈ Σ0(β, 1) for ε sufficiently

small. Set ln = hn2S(1 + 1/ε) and redefine M = M(n, ε) from section 2 as M =

[n1/((2β+1) (1+ε))]. Introduce a family of functions

f(x; θ) = f(x; θ1, ..., θM) = f∗(x) + Lhβn

M∑
j=1

θjgε(h
−1
n (x− aj)), 0 ≤ x ≤ 1, (16)

where a1 = t1, aj+1 − aj = ln, j = 1, ...,M, θ = (θ1, ..., θM) ∈ R = [−1, 1]M . The

density f(x; θ) differs from f∗(x) only in the interval [t1, t1 + Mln] ⊆ [t1, t2] for n

large since Mhn → 0 as n→∞ for any fixed ε. Since f
bβc
∗ is constant on x ∈ [t1, t2],

we obtain that for ε small enough and n sufficiently large f(x; θ) ∈ Σ(β, L) for θ ∈ R .

Put for shortness P
(n)
f(·;θ) = P

(n)
θ and E

(n)
f(·;θ) = E

(n)
θ .

Define intervals Jj = [aj, aj + ln), j = 1, ...,M, and let Pj,θj be the conditional distri-

bution of X1 given that X1 ∈ Jj when θ obtains. Let κ(·, ·) be the Kullback-Leibler

information number: for laws P1, P2 such that P1 � P2

κ(P1, P2) =

∫
log

dP1

dP2

dP1.

Consider also

κ2
2(P1, P2) =

∫ (
log

dP1

dP2

)2

dP1,

κ∞(P1, P2) = es sup
P1

∣∣∣∣log
dP1

dP2

∣∣∣∣ .

15



Lemma 5. Let ϑ ∈ [0, 1] and consider the quantities κ = κ(P1, P2), κ2 = κ2(P1, P2)

and κ∞ = κ∞(P1, P2) for measures P1 = Pj,ϑ, P2 = Pj,−ϑ and j = 1, ...,M . Set

µ = 2(1 + ε)2/(2β + 1), n0 = nlnf0. (17)

Then uniformly over j = 1, ...,M , as n→∞

(i) κ = 2ϑ2µ0n
−1
0 log n (1 + o(1)) for some positive constant µ0 = µ0(β, L, ε), µ0 ≤ µ

(ii) κ2
2 = 2κ(1 + o(1))

(iv) κ2
∞ = O(n−1

0 log n).

Proof. Define

ηj = l−1
n

∫
Jj

f∗(x)dx.

The distribution Pj,ϑ has density

fj(x;ϑ) = (f∗(x) + ϑLhβngε(h
−1
n (x− aj)))/lnηj, x ∈ Jj.

Observe that f∗(x) = f0 + o(1) and ηj = f0 + o(1) uniformly in j and x. In the sequel

we use notation o∗(1), O∗(1) for quantities which are o(1) or O(1) as n→∞ uniformly

over x ∈ Jj and j = 1, ...,M . Recall f0 ≥ B∗/(1 + ε). Define further

zj(x) = Lhβngε(h
−1
n (x− aj))/f∗(x);

we then obtain

fj(x;ϑ) = l−1
n (1 + ϑzj(x))(1 + o∗(1)), x ∈ Jj. (18)

Now
∫
gε = 0 entails ∫

zj(x)f∗(x)dx = 0

and as a consequence∫
zj(x)fj(x;ϑ)dx = ϑl−1

n

(∫
z2
j (x)dx

)
(1 + o∗(1)). (19)
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Note the following relation: for 0 < z → 0

log
1 + z

1− z
= 2z +O(z3). (20)

Note also

z2
j (x) = O∗(h2β

n ) (21)

and the following equalities of order of magnitude (denoted �), which are immediate

consequences of our definitions:

h2β
n � (log n/n)2β/(2β+1) � n−1

0 log n. (22)

Proof of (i). We have

κ =

∫
log

1 + ϑzj(x)

1− ϑzj(x)
fj(x;ϑ)dx;

consequently, in view of (19) and (20)

κ = 2ϑ

∫
zj(x)fj(x;ϑ)dx+O(|zj(x)|3)

= 2ϑ2l−1
n

(∫
z2
j (x)dx

)
(1 + o∗(1)) +O∗((n−1

0 log n)3/2). (23)

Note that

l−1
n

∫
z2
j (x)dx = l−1

n f−2
0 L2h(2β+1)

n (1 + ε) ‖g1‖2
2 (1 + o∗(1)).

Recall ‖g1‖2
2 = A

−(2β+1)/β
β ; an evaluation of the r. h. s. above yields

l−1
n

∫
z2
j (x)dx = (B∗/f0(1 + ε))µn−1

0 log n(1 + o∗(1)). (24)

Set µ0 = (B∗/f0(1 + ε))µ; then µ0 depends on ε, β, B∗ = B∗(β, L) and f0 = f∗(t1),

and the function f∗ can be selected to depend only on β and L (cf. Lemma A.3). The

inequality f0 ≥ B∗/(1 + ε) now completes the proof of (i).
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Proof of (ii). We have

κ =

∫ (
log

1 + ϑzj(x)

1− ϑzj(x)

)2

fj(x;ϑ)dx

=

∫ (
2ϑzj(x) +O∗((n−1

0 log n)3/2)
)2
fj(x;ϑ)dx

= 4ϑ2

(∫
z2
j (x)fj(x;ϑ)dx

)
+O∗((n−1

0 log n)2)

= 4ϑ2l−1
n

(∫
z2
j (x)dx

)
(1 + o∗(1)) +O∗((n−1

0 log n)3/2)

so that (ii) follows from (23) and (24).

Proof of (iii). This is an immediate consequence of (18), (21) and (22).2

Let us state a result on large deviations for sums of i. i. d. random variables. Let

Z,Z1, Z2, . . . be a sequence of independent real random variables with common law Q.

Lemma 6. Assume

(i) EQZ = 0, VarQZ = 1

(ii) there exists a positive constant C such that |Z| ≤ C Q−a.s.

Let xn be a sequence such that xn →∞, xn = o(n1/2). Then for every δ > 0 we have

PrQ(n−1/2

n∑
i=1

Zi > xn) ≥ exp
(
−x2

n(1 + δ)/2
)

(1 + o(1)), n→∞

uniformly over all Q fulfilling (i) and (ii) for a given constant C.

Proof. For the moment generating function of Z we have an expansion

E exp(tZ) = 1 + t2/2 + φ

with a remainder term satisfying

|φ| ≤ |t|3C3eC/3!

uniformly over the class of distributions fulfilling (i) and (ii). Hence uniformly over Q

the following lower bound holds:

18



lim
n→∞

(x−2
n ) log PrQ((Z1 + ...+ Zn)/(xn

√
n) > 1) ≥ (−1/2)

(see Wentzell (1990), Theorem 4.4.1, or Freidlin and Wentzell (1984), Section 5.1,

Example 4.) Thus, for all n large uniformly over Q satisfying (i), (ii) we have

log PrQ((Z1 + ...+ Zn)/
√
n > xn) ≥ (−1/2− δ)x2

n

and the lemma follows. 2

For measures P1, P2 and P0 = P1 + P2 let Π(P1, P2) be the testing affinity between P1

and P2

Π(P1, P2) =

∫
min(dP1/dP0, dP2/dP0)dP0.

Let ν be natural and consider the ν-fold product measure P⊗νj,ϑ of Pj,ϑ with itself, for

fixed ϑ ∈ [0, 1] and for −ϑ, and j = 1, ...,M .

Lemma 7. Let ϑ ∈ [0, 1] assume that

n0(1− ε) ≤ ν ≤ n0(1 + ε).

Then if ε is sufficiently small,

Π(P⊗νj,ϑ , P
⊗ν
j,−ϑ) ≥ 2n−ϑ

2µ′(1 + o(1))

uniformly over j = 1, ...,M , where

µ′ = (1 + ε)6/(2β + 1).

Proof. It is well known that if P1 � P2 and P2 � P1 then

Π(P1, P2) = P1 (dP2/dP1 ≥ 1) + P2 (dP1/dP2 > 1) .
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Set P1 = P⊗νj,ϑ , P2 = P⊗νj,−ϑ and consider i. i. d. random variables λ1, . . . , λν , having the

law of

λ = log (dPj,−ϑ/dPj,ϑ)

under Pj,ϑ. Then

P1 (dP2/dP1 ≥ 1) = P⊗νj,ϑ

(
ν∑
i=1

λi ≥ 0

)
. (25)

Note that

Eλ = −κ(Pj,ϑ, Pj,−ϑ),

Varλ = κ2
2(Pj,ϑ, Pj,−ϑ)− κ2(Pj,ϑ, Pj,−ϑ)

= 2κ(Pj,ϑ, Pj,−ϑ)(1 + o∗(1))

according to lemma 5. Set λ∗i = (λi −Eλ)/(Varλ)1/2, i = 1, . . . , ν; then (25) takes the

form

P1 (dP2/dP1 ≥ 1) = P⊗νj,ϑ

(
ν−1/2

ν∑
i=1

λ∗i ≥ −ν1/2Eλ/(Varλ)1/2

)
.

We use lemma 6 for a lower bound to this large deviation probability. Note that

Varλ∗1 = 1, and

|λ∗1| = |λ− Eλ| /(Varλ)1/2 ≤ (κ2
2(Pj,ϑ, Pj,−ϑ))−1/22κ∞(Pj,ϑ, Pj,−ϑ)

which according to lemma 5 is uniformly bounded for all sufficiently large n. This

lemma also yields

−ν1/2Eλ/(Varλ)1/2 ≤ (1 + ε)1/2n
1/2
0 2−1/2(κ(Pj,ϑ, Pj,−ϑ))1/2(1 + o∗(1))

≤ (1 + ε)ϑµ1/2(log n)1/2 (26)

for sufficiently large n. Moreover since (cp. (22))

ν � n0 � n2β/(2β+1)(log n)1/(2β+1)
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it follows that the r. h. s. of (26) is of order (logν)1/2, hence o(ν1/2). Thus lemma 6 is

applicable for xn = (1 + ε)ϑµ1/2(log n)1/2: for every δ > 0

P1 (dP2/dP1 ≥ 1) ≥ exp

(
−1

2
x2
n(1 + δ)

)
(1 + o∗(1)).

Selecting δ = ε, we obtain we obtain

P1 (dP2/dP1 ≥ 1) ≥ n−ϑ
2(1+ε)4µ/2(1 + o∗(1))

= n−ϑ
2µ′(1 + o∗(1)).

For P2 (dP1/dP2 ≥ 1) this lower bound is proved analogously. 2

Define numbers

νj =
n∑
i=1

χJj(Xi), j = 1, ...,M. (27)

The joint distribution of ν = (ν1, ..., νM) under P
(n)
θ does not depend θ; call it P (n)ν .

Lemma 8. For the event

Nn =

{
sup

j=1,...,M
|νj/n0 − 1| < ε

}
where n0 is given by (17), we have

P (n)ν(Nn)→ 1.

Proof. Note that νj is a sum of i. i. d. Bernoulli random variables χJj(Xi), i = 1, . . . , n

with expectation
∫
Jj
f∗ and variance (

∫
Jj
f∗)(1 −

∫
Jj
f∗). Let nj = n

∫
Jj
f∗. Bennett’s

inequality (Shorack, Wellner (1986), Appendix A, p. 851) yields for any ε′ > 0

P (n)ν(|νj − nj| ≥ njε
′) ≤ exp(−ε′ n1/2

j Cε′) (28)

for a constant Cε′ . Observe l−1
n

∫
Jj
f∗ = f0 + o(1) uniformly in j, hence nj/n0 → 1

uniformly. Note also

|νj/n0 − 1| ≤ |νj/nj − 1| (nj/n0) + |nj/n0 − 1| .
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Select ε′ ≤ ε/3 and n sufficiently large such that |nj/n0 − 1| < ε′; then (28) and

M = [n1/((2β+1) (1+ε))] imply the assertion. 2

Proof of Theorem: lower risk bound. We omit those details which are similar

to the Gaussian case in Korostelev (1993). It suffices to prove that for an arbitrary

estimator f̂n and for any small α > 0

lim inf
n→∞

sup
f∈Σ(β,L,b)

P
(n)
f

(
||f̂n − f ||∞ > (1− α)Cψn

)
= 1.

Standard arguments show that this is implied by

lim inf
n→∞

sup
θ∈R

P
(n)
θ

(
||θ̂n − θ||M > 1− α

)
= 1 (29)

where θ̂n = (θ̂n1, ..., θ̂nM) is an arbitrary estimator of θ = (θ1, ..., θM), ||θ||M =

max1≤j≤M |θj| . For the intervals Jj = [aj, aj + ln) define conditional empirical dis-

tribution functions

F̄nj(t) = ν−1
j

n∑
i=1

χ[aj ,aj+tln)(Xi), t ∈ [0, 1], j = 1, ...,M,

where νj are defined in (27).

Though the random variables F̄nj under P
(n)
θ are dependent via the sample X1, ..., Xn ,

they are conditionally independent given the number of sample points in each Jj. Thus

for sets D1, . . . , DM in the appropriate sample space

P
(n)
θ

(
F̄n1 ∈ D1, ..., F̄nM ∈ DM | ν1 = n1, ..., νM = nM

)
= (30)

=
M∏
j=1

P
(n)
θ

(
F̄nj ∈ Dj | νj = nj

)
.

Let P
(n)
j,θj ,νj

be the conditional distribution of the process F̄nj given νj; define also a

conditional empirical for the complement of ∪Mj=1Jj in [0, 1] and let P
(n)
0,ν its conditional

distribution given ν = (ν1, ..., νM). Then P
(n)
θ,ν =

(⊗
M
j=1P

(n)
j,θj ,νj

)
⊗ P

(n)
0,ν represents
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the conditional distribution of the whole sample X1, ..., Xn given ν. Recall that P (n)ν

is the joint P
(n)
θ -distribution of ν, which is is independent of θ ∈ R . Put Cn ={

||θ̂n − θ||M > 1− α
}

. Consider a prior distribution π = ⊗Mj=1πj on R where each πj

has finite support in [−1, 1]. Then

inf
θ̂n

sup
θ∈R

P
(n)
θ (Cn) ≥ inf

θ̂n

∫
R

∫
Nn
P

(n)
θ,ν (Cn)P (n)ν(dν)π(dθ)

≥ P (n)ν(Nn) inf
ν∈Nn

inf
θ̂n

∫
P

(n)
θ,ν (Cn)π(dθ).

In view of lemma 8 it now suffices to prove

inf
ν∈Nn

inf
θ̂n

∫
P

(n)
θ,ν (Cn)π(dθ) ≥ 1 + o(1). (31)

Applying Lemma 4 we obtain

inf
θ̂n

∫
P

(n)
θ,ν (Cn) π(dθ) ≥ 1−

M∏
j=1

(1− rj,1−α(πj)) (32)

where rj,1−α(πj) is the Bayes risk (12) for Qj,θj = P
(n)
j,θj ,νj

, T = 1−α. Now let us estimate

this Bayes risk in each of the M (conditionally) independent problems, for ν ∈ Nn.

Note that each measure P
(n)
j,θj ,νj

can be construed as coming from an i. i. d. sample of

size νj governed by the conditional distribution of X1 given Jj; i. e. by Pj,θj . Consider

a test of the hypothesis θj = θ+
j = 1 − α/2 vs. θj = θ−j = −(1 − α/2). Let πj be

uniform on {θ+
j , θ

−
j }; then we have (cf. e. g. Strasser (1985), 14. 5. (4))

rj,1−α(πj) ≥
1

2
Π(P

(n)

j,θ+
j ,νj

, P
(n)

j,θ−j ,νj
).

Now apply lemma 7, noting that

Π(P
(n)

j,θ+
j ,νj

, P
(n)

j,θ−j ,νj
) = Π(P

⊗νj
j,θ+
j

, P
⊗νj
j,θ−j

)

and that on Nn we have n0(1− ε) ≤ νj ≤ n0(1 + ε). We get

rj,1−α(πj) ≥ n−(1−α/2)2µ′ (33)
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for all j = 1, . . . ,M if n is large enough. Hence for the r. h. s. in (32) we obtain a lower

bound

≥ 1−
M∏
j=1

(
1− n−(1−α/2)2µ′

)
≥ 1− exp

(
−Mn−(1−α/2)2µ′

)
. (34)

We get Mn−(1−α/2)2µ′ = (1 + o(1))nµ
′′

for an exponent

µ′′ = 1/(2β + 1)(1 + ε)− (1− α/2)2µ′

= 1/(2β + 1)(1 + ε)− (1− α/2)2(1 + ε)6/(2β + 1).

For given α > 0, ε can be chosen such that µ′′ > 0. In that case exp
(
−Mn−(1−α/2)2µ′

)
→

0 and (34) implies (31). 2

4 Appendix: Analytic Facts

The fact that densities of the class Σ(β, L) are uniformly bounded in sup-norm follows

from standard imbedding theorems.

Lemma A 1. For any L > 0 and β > 0

B∗(β, L) = max
f∈Σ(β,L)

max
0≤x≤1

f(x) < +∞ .

Proof. Apply Theorem 17.4 of Besov, Il’in and Nikol’skii (1979), using the fact that

f is bounded in L1-norm on [0, 1].2

For β ≤ 1 the value of B∗(β, L) can be found.

Lemma A 2. For any L > 0 and 0 < β ≤ 1

B∗(β, L) = ((β + 1)/β)β/(β+1) L1/(β+1) if L ≥ (β + 1)/β,

= 1 + L/(β + 1) if L ≤ (β + 1)/β.
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Proof. It can be shown that the extremal density is

f(x) = max((f(0)− Lxβ), 0), x ∈ [0, 1].

An easy calculation from
∫
f(x)dx = 1 yields f(0). 2

Lemma A 3. For any L > 0 and β > 0, and every ε ∈ (0, 1) there are t1, t2 ∈ [0, 1],

0 < t2 − t1 ≤ ε and a function f∗ ∈ Σ(β, L) such that for all x ∈ [t1, t2],

f∗(x) ≥ B∗(β, L)/(1 + ε), (35)

f bβc∗ (x) = f bβc∗ (t1).

Proof. Let f be a solution in f of the problem (2), i. e. ‖f‖∞ = B∗(β, L). Let ε̃ ∈ (0, ε)

and let t1, t2 ∈ [0, 1], t2 − t1 = ε̃ be such that f(x) ≥ B∗(β, L)/(1 + ε/2) for x ∈ [t1, t2].

Since f ∈ Σ(β, L) is continuous on [0, 1], such t1, t2 ∈ [0, 1] exist for sufficiently small

ε̃. Let m = bβc, γ = β −m and let t0 ∈ [t1, t2] be such that f (m)(t0) ≥ f (m)(x), for

x ∈ [t1, t2]. Since f (m) is continuous, such a t0 exists. Define a function g0 by

g0(x) = f (m)(t0)− f (m)(x), x ∈ [t1, t2]

= f (m)(t0)− f (m)(t2), x ∈ (t2, 1]

= f (m)(t0)− f (m)(t1), x ∈ [0, t1).

Note that g0(x) ≥ 0, x ∈ [0, 1] and

‖g0‖∞ ≤ L |t2 − t1|γ = L ε̃γ.

Let Q be the integral operator Qg(t) =
∫ t

0
g(u)du , t ∈ [0, 1] and define g̃ = Qmg0

(m-fold application of Q). Then g̃(x) ≥ 0, x ∈ [0, 1] and

‖g̃‖∞ ≤ ‖g0‖∞ ≤ L ε̃γ. (36)

25



Define f̃ = f + g̃. Since f̃ (m)(t) = f (m)(t0) on [t1, t2] while f̃ (m)(t)− f (m)(t) is constant

outside (t1, t2), it follows that

∣∣∣f̃ (m)(x1)− f̃ (m)(x2)
∣∣∣ ≤ L |x1 − x2|γ , x1, x2 ∈ [0, 1].

Furthermore, f̃ ≥ f and by (36)

∥∥∥f̃ − f∥∥∥
∞
≤ L ε̃γ.

Defining f∗ = f̃/
∫
f̃ , we see that f∗ is a density in Σ(β, L). Moreover, f∗(x) ≥

B∗(β, L)/(1 + ε/2)
∫
f̃ for x ∈ [t1, t2]. By selecting ε̃ sufficiently small, we achieve (35).
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