
Compressive Feature Learning

Hristo S. Paskov
Department of Computer Science

Stanford University
hpaskov@cs.stanford.edu

Robert West
Department of Computer Science

Stanford University
west@cs.stanford.edu

John C. Mitchell
Department of Computer Science

Stanford University
mitchell@cs.stanford.edu

Trevor J. Hastie
Department of Statistics

Stanford University
hastie@stanford.edu

Abstract

This paper addresses the problem of unsupervised feature learning for text data.
Our method is grounded in the principle of minimum description length and uses
a dictionary-based compression scheme to extract a succinct feature set. Specif-
ically, our method finds a set of word k-grams that minimizes the cost of re-
constructing the text losslessly. We formulate document compression as a bi-
nary optimization task and show how to solve it approximately via a sequence of
reweighted linear programs that are efficient to solve and parallelizable. As our
method is unsupervised, features may be extracted once and subsequently used in
a variety of tasks. We demonstrate the performance of these features over a range
of scenarios including unsupervised exploratory analysis and supervised text cate-
gorization. Our compressed feature space is two orders of magnitude smaller than
the full k-gram space and matches the text categorization accuracy achieved in the
full feature space. This dimensionality reduction not only results in faster training
times, but it can also help elucidate structure in unsupervised learning tasks and
reduce the amount of training data necessary for supervised learning.

1 Introduction

Machine learning algorithms rely critically on the features used to represent data; the feature set
provides the primary interface through which an algorithm can reason about the data at hand. A typ-
ical pitfall for many learning problems is that there are too many potential features to choose from.
Intelligent subselection is essential in these scenarios because it can discard noise from irrelevant
features, thereby requiring fewer training examples and preventing overfitting. Computationally,
a smaller feature set is almost always advantageous as it requires less time and space to train the
algorithm and make inferences [10, 9].

Various heuristics have been proposed for feature selection, one class of which work by evaluat-
ing each feature separately with respect to its discriminative power. Some examples are document
frequency, chi-square value, information gain, and mutual information [26, 9]. More sophisticated
methods attempt to achieve feature sparsity by optimizing objective functions containing an L1 reg-
ularization penalty [25, 27].

Unsupervised feature selection methods [19, 18, 29, 13] are particularly attractive. First, they do not
require labeled examples, which are often expensive to obtain (e.g., when humans have to provide
them) or might not be available in advance (e.g., in text classification, the topic to be retrieved might
be defined only at some later point). Second, they can be run a single time in an offline preprocessing

1

step, producing a reduced feature space that allows for subsequent rapid experimentation. Finally,
a good data representation obtained in an unsupervised way captures inherent structure and can be
used in a variety of machine learning tasks such as clustering, classification, or ranking.

In this work we present a novel unsupervised method for feature selection for text data based on ideas
from data compression and formulated as an optimization problem. As the universe of potential
features, we consider the set of all word k-grams.1 The basic intuition is that substrings appearing
frequently in a corpus represent a recurring theme in some of the documents, and hence pertain
to class representation. However, it is not immediately clear how to implement this intuition. For
instance, consider a corpus of NIPS papers. The bigram ‘supervised learning’ will appear often, but
so will the constituent unigrams ‘supervised’ and ‘learning’. So shall we use the bigram, the two
separate unigrams, or a combination, as features?

Our solution invokes the principle of minimum description length (MDL) [23]: First, we compress
the corpus using a dictionary-based lossless compression method. Then, the substrings that are used
to reconstruct each document serve as the feature set. We formulate the compression task as a nu-
merical optimization problem. The problem is non-convex, but we develop an efficient approximate
algorithm that is linear in the number of words in the corpus and highly parallelizable. In the ex-
ample, the bigram ‘supervised learning’ would appear often enough to be added to the dictionary;
‘supervised’ and ‘learning’ would also be chosen as features if they appear separately in combina-
tions other than ‘supervised learning’ (because the compression paradigm we choose is lossless).

We apply our method to two datasets and compare it to a canonical bag-of-k-grams representation.
Our method reduces the feature set size by two orders of magnitude without incurring a loss of
performance on several text categorization tasks. Moreover, it expedites training times and requires
significantly less labeled training data on some text categorization tasks.

2 Compression and Machine Learning

Our work draws on a deep connection between data compression and machine learning, exempli-
fied early on by the celebrated MDL principle [23]. More recently, researchers have experimented
with off-the-shelf compression algorithms as machine learning subroutines. Instances are Frank et
al.’s [7] compression-based approach to text categorization, as well as compression-based distance
measures, where the basic intuition is that, if two texts x and y are very similar, then the compressed
version of their concatenation xy should not be much longer than the compressed version of either
x or y separately. Such approaches have been shown to work well on a variety of tasks such as
language clustering [1], authorship attribution [1], time-series clustering [6, 11], anomaly detection
[11], and spam filtering [3].

Distance-based approaches are akin to kernel methods, and thus suffer from the problem that con-
structing the full kernel matrix for large datasets might be infeasible. Furthermore, Frank et al.
[7] deplore that “it is hard to see how efficient feature selection could be incorporated” into the
compression algorithm. But Sculley and Brodley [24] show that many compression-based distance
measures can be interpreted as operating in an implicit high-dimensional feature space, spanned by
the dictionary elements found during compression. We build on this observation to address Frank et
al.’s above-cited concern about the impossibility of feature selection for compression-based meth-
ods. Instead of using an off-the-shelf compression algorithm as a black-box kernel operating in
an implicit high-dimensional feature space, we develop an optimization-based compression scheme
whose explicit job it is to perform feature selection.

It is illuminating to discuss a related approach suggested (as future work) by Sculley and Brodley
[24], namely “to store substrings found by Lempel–Ziv schemes as explicit features”. This simplistic
approach suffers from a serious flaw that our method overcomes. Imagine we want to extract features
from an entire corpus. We would proceed by concatenating all documents in the corpus into a single
large document D, which we would compress using a Lempel–Ziv algorithm. The problem is that
the extracted substrings are dependent on the order in which we concatenate the documents to form
the input D. For the sake of concreteness, consider LZ77 [28], a prominent member of the Lempel–
Ziv family (but the argument applies equally to most standard compression algorithms). Starting
from the current cursor position, LZ77 scans D from left to right, consuming characters until it

1In the remainder of this paper, the term ‘k-grams’ includes sequences of up to (rather than exactly) k words.

2

m a n a m a n a

m a n

m a n a m a n a

m a n a

m a n a m a n a

m a n a m a n a

3 + (0 × 8) = 3 4 + (1 × 2) = 6 8 + (8 × 1) = 16

Document

Pointers

Dictionary

Cost

Min. dictionary cost Min. combined cost Min. pointer cost

Figure 1: Toy example of our optimization problem for text compression. Three different solutions
shown for representing the 8-word document D = manamana in terms of dictionary and pointers.
Dictionary cost: number of characters in dictionary. Pointer cost: λ× number of pointers. Costs
given as dictionary cost + pointer cost. Left: dictionary cost only (λ= 0). Right: expensive pointer
cost (λ= 8). Center: balance of dictionary and pointer costs (λ= 1).

has found the longest prefix matching a previously seen substring. It then outputs a pointer to that
previous instance—we interpret this substring as a feature—and continues with the remaining input
string (if no prefix matches, the single next character is output). This approach produces different
feature sets depending on the order in which documents are concatenated. Even in small instances
such as the 3-document collection {D1 = abcd,D2 = ceab,D3 = bce}, the order (D1,D2,D3) yields
the feature set {ab,bc}, whereas (D2,D3,D1) results in {ce,ab} (plus, trivially, the set of all single
characters).

As we will demonstrate in our experiments section, this instability has a real impact on performance
and is therefore undesirable. Our approach, like LZ77, seeks common substrings. However, our
formulation is not affected by the concatenation order of corpus documents and does not suffer from
LZ77’s instability issues.

3 Compressive Feature Learning

The MDL principle implies that a good feature representation for a document D = x1x2 . . .xn of
n words minimizes some description length of D. Our dictionary-based compression scheme ac-
complishes this by representing D as a dictionary—a subset of D’s substrings—and a sequence of
pointers indicating where copies of each dictionary element should be placed in order to fully recon-
struct the document. The compressed representation is chosen so as to minimize the cost of storing
each dictionary element in plaintext as well as all necessary pointers. This scheme achieves a shorter
description length whenever it can reuse dictionary elements at different locations in D.

For a concrete example, see Fig. 1, which shows three ways of representing a document D in terms
of a dictionary and pointers. These representations are obtained by using the same pointer storage
cost λ for each pointer and varying λ. The two extreme solutions focus on minimizing either the
dictionary cost (λ = 0) or the pointer cost (λ = 8) solely, while the middle solution (λ = 1) trades
off between minimizing a combination of the two. We are particularly interested in this tradeoff:
when all pointers have the same cost, the dictionary and pointer costs pull the solution in opposite
directions. Varying λ allows us to ‘interpolate’ between the two extremes of minimum dictionary
cost and minimum pointer cost. In other words, λ can be interpreted as tracing out a regularization
path that allows a more flexible representation of D.

To formalize our compression criterion, let S = {xi . . .xi+t−1 | 1≤ t ≤ k,1≤ i≤ n− t +1} be the
set of all unique k-grams in D, andP = {(s, l) | s = xl . . .xl+|s|−1 } be the set of all m= |P| (potential)
pointers. Without loss of generality, we assume that P is an ordered set, i.e., each i ∈ {1, . . . ,m}
corresponds to a unique pi ∈ P , and we define J(s) ⊂ {1, . . . ,m} to be the set of indices of all
pointers which share the same string s. Given a binary vector w ∈ {0,1}m, w reconstructs word x j if
for some wi = 1 the corresponding pointer pi = (s, l) satisfies l ≤ j < l + |s|. This notation uses wi
to indicate whether pointer pi should be used to reconstruct (part of) D by pasting a copy of string s
into location l. Finally, w reconstructs D if every x j is reconstructed by w.

3

Compressing D can be cast as a binary linear minimization problem over w; this bit vector tells us
which pointers to use in the compressed representation of D and it implicitly defines the dictionary
(a subset of S). In order to ensure that w reconstructs D, we require that Xw≥ 1. Here X ∈ {0,1}n×m

indicates which words each wi = 1 can reconstruct: the i-th column of X is zero everywhere except
for a contiguous sequence of ones corresponding to the words which wi = 1 reconstructs. Next, we
assume the pointer storage cost of setting wi = 1 is given by di ≥ 0 and that the cost of storing any
s ∈ S is c(s). Note that s must be stored in the dictionary if ‖wJ(s)‖∞ = 1, i.e., some pointer using s
is used in the compression of D. Putting everything together, our lossless compression criterion is

minimize
w

wT d +
∑
s∈S

c(s)‖wJ(s)‖∞ subject to Xw≥ 1, w ∈ {0,1}m. (1)

Finally, multiple documents can be compressed jointly by concatenating them in any order into a
large document and disallowing any pointers that span document boundaries. Since this objective is
invariant to the document concatenating order, it does not suffer from the same problems as LZ77
(cf. Section 2).

4 Optimization Algorithm

The binary constraint makes the problem in (1) non-convex. We solve it approximately via a series
of related convex problems P(1),P(2), . . . that converge to a good optimum. Each P(i) relaxes the
binary constraint to only require 0≤ w≤ 1 and solves a weighted optimization problem

minimize
w

wT d̃(i)+
∑
s∈S

c(s)‖D(i)
J(s)J(s)wJ(s)‖∞ subject to Xw≥ 1, 0≤ w≤ 1. (2)

Here, D(i) is an m×m diagonal matrix of positive weights and d̃(i) = D(i)d for brevity. We use an
iterative reweighting scheme that uses D(1) = I and D(i+1)

j j = max
{

1,(w(i)
j + ε)−1

}
, where w(i) is

the solution to P(i). This scheme is inspired by the iterative reweighting method of Candès et al. [5]
for solving problems involving L0 regularization. At a high level, reweighting can be motivated by
noting that (2) recovers the correct binary solution if ε is sufficiently small and we use as weights
a nearly binary solution to (1). Since we do not know the correct weights, we estimate them from
our best guess to the solution of (1). In turn, D(i+1) punishes coefficients that were small in w(i) and,
taken together with the constraint Xw≥ 1, pushes the solution to be binary.

ADMM Solution We demonstrate an efficient and parallel algorithm to solve (2) based on the
Alternating Directions Method of Multipliers (ADMM) [2]. Problem (2) is a linear program solvable
by a general purpose method in O(m3) time. However, if all potential dictionary elements are no
longer than k words in length, we can use problem structure to achieve a run time of O(k2n) per step
of ADMM, i.e., linear in the document length. This is helpful because k is relatively small in most
scenarios: long k-grams tend to appear only once and are not helpful for compression. Moreover,
they are rarely used in NLP applications since the relevant signal is captured by smaller fragments.

ADMM is an optimization framework that operates by splitting a problem into two subproblems that
are individually easier to solve. It alternates solving the subproblems until they both agree on the
solution, at which point the full optimization problem has been solved. More formally, the optimum
of a convex function h(w) = f (w)+ g(w) can be found by minimizing f (w)+ g(z) subject to the
constraint that w = z. ADMM acccomplishes this by operating on the augmented Lagrangian

Lρ(w,z,y) = f (w)+g(z)+ yT (w− z)+
ρ

2
‖w− z‖2

2. (3)

It minimizes Lρ with respect to w and z while maximizing with respect to dual variable y ∈ Rm in
order to enforce the condition w = z. This minimization is accomplished by, at each step, solving
for w, then z, then updating y according to [2]. These steps are repeated until convergence.

4

Dropping the D(i) superscripts for legibility, we can exploit problem structure by splitting (2) into

f (w) = wT d̃ +
∑
s∈S

c(s)‖DJ(s)J(s)wJ(s)‖∞ + I+(w), g(z) = I+(Xz−1) (4)

where I+(·) is 0 if its argument is non-negative and ∞ otherwise. We eliminated the w≤ 1 constraint
because it is unnecessary—any optimal solution will automatically satisfy it.

Minimizing w The dual of this problem is a quadratic knapsack problem solvable in linear ex-
pected time [4], we provide a similar algorithm that solves the primal formulation. We solve for
each wJ(s) separately since the optimization is separable in each block of variables. It can be shown
[21] that wJ(s) = 0 if ‖D−1

J(s)J(s)qJ(s)‖1 ≤ c(s), where qJ(s) = max
{
ρzJ(s)− d̃J(s)− yJ(s),0

}
and the

max operation is applied elementwise. Otherwise, wJ(s) is non-zero and the L∞ norm only affects
the maximal coordinates of DJ(s)J(s)wJ(s). For simplicity of exposition, we assume that the co-
efficients of wJ(s) are sorted in decreasing order according to DJ(s)J(s)qJ(s), i.e., [DJ(s)J(s)qJ(s)] j ≥
[DJ(s)J(s)qJ(s)] j+1. This is always possible by permuting coordinates. We show in [21] that, if
DJ(s)J(s)wJ(s) has r maximal coordinates, then

wJ(s) j = D−1
J(s) jJ(s) j

min

{
DJ(s) jJ(s) j qJ(s) j ,

∑r
v=1 D−1

J(s)vJ(s)v
qJ(s)v − c(s)∑r

v=1 D−2
J(s)vJ(s)v

}
. (5)

We can find r by searching for the smallest value of r for which exactly r coefficients in DJ(s)J(s)wJ(s)
are maximal when determined by the formula above. As discussed in [21], an algorithm similar to
the linear-time median-finding algorithm can be used to determine wJ(s) in linear expected time.

Minimizing z Solving for z is tantamount to projecting a weighted combination of w and y onto
the polyhderon given by Xz≥ 1 and is best solved by taking the dual. It can be shown [21] that the
dual optimization problem is

minimize
α

1
2
αT Hα−αT (ρ1−X(y+ρw)) subject to α≥ 0 (6)

where α ∈ Rn
+ is a dual variable enforcing Xz ≥ 1 and H = XXT . Strong duality obtains and z can

be recovered via z = ρ−1(y+ρw+XTα).

The matrix H has special structure when S is a set of k-grams no longer than k words. In this
case, [21] shows that H is a (k− 1)–banded positive definite matrix so we can find its Cholesky
decomposition in O(k2n). We then use an active-set Newton method [12] to solve (6) quickly in
approximately 5 Cholesky decompositions. A second important property of H is that, if N docu-
ments n1, . . . ,nN words long are compressed jointly and no k-gram spans two documents, then H is
block-diagonal with block i an ni×ni (k−1)–banded matrix. This allows us to solve (6) separately
for each document. Since the majority of the time is spent solving for z, this property allows us to
parallelize the algorithm and speed it up considerably.

5 Experiments

20 Newsgroups Dataset The majority of our experiments are performed on the 20 Newsgroups
dataset [15, 22], a collection of about 19K messages approximately evenly split among 20 different
newsgroups. Since each newsgroup discusses a different topic, some more closely related than
others, we investigate our compressed features’ ability to elucidate class structure in supervised and
unsupervised learning scenarios. We use the “by-date” 60%/40% training/testing split described in
[22] for all classification tasks. This split makes our results comparable to the existing literature
and makes the task more difficult by removing correlations from messages that are responses to one
another.

5

Feature Extraction and Training We compute a bag-of-k-grams representation from a com-
pressed document by counting the number of pointers that use each substring in the compressed
version of the document. This method retrieves the canonical bag-of-k-grams representation when
all pointers are used, i.e., w = 1. Our compression criterion therefore leads to a less redundant
representation. Note that we extract features for a document corpus by compressing all of its doc-
uments jointly and then splitting into testing and training sets. Since this process involves no label
information, it ensures that our estimate of testing error is unbiased.

All experiments were limited to using 5-grams as features, i.e., k = 5 for our compression algorithm.
Each substring’s dictionary cost was its word length and the pointer cost was uniformly set to 0 ≤
λ ≤ 5. We found that an overly large λ hurts accuracy more than an overly small value since the
former produces long, infrequent substrings, while the latter tends to a unigram representation. It is
also worthwhile to note that the storage cost (i.e., the value of the objective function) of the binary
solution was never more than 1.006 times the storage cost of the relaxed solution, indicating that we
consistently found a good local optimum.

Finally, all classification tasks use an Elastic-Net–regularized logistic regression classifier imple-
mented by glmnet [8]. Since this regularizer is a mix of L1 and L2 penalties, it is useful for feature
selection but can also be used as a simple L2 ridge penalty. Before training, we normalize each doc-
ument by its L1 norm and then normalize features by their standard deviation. We use this scheme
so as to prevent overly long documents from dominating the feature normalization.

AG GA Rand Alt Ours
0

0.02

0.04

0.06

0.08

M
is

c
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

LZ77 Order Sensitivity

Figure 2: Misclassification error and standard
error bars when classifying alt.atheism (A) vs.
comp.graphics (G) from 20 Newsgroups. The
four leftmost results are on features from running
LZ77 on documents ordered by class (AG, GA),
randomly (Rand), or by alternating classes (Alt);
the rightmost is on our compressed features.

LZ77 Comparison Our first experiment
demonstrates LZ77’s sensitivity to document
ordering on a simple binary classification task
of predicting whether a document is from the
alt.atheism (A) or comp.graphics (G) news-
group. Features were computed by concate-
nating documents in different orders: (1) by
class, i.e., all documents in A before those in
G, or G before A; (2) randomly; (3) by alter-
nating the class every other document. Fig. 5
shows the testing error compared to features
computed from our criterion. Error bars were
estimated by bootstrapping the testing set 100
times, and all regularization parameters were
chosen to minimize testing error while λ was
fixed at 0.03. As predicted in Section 2, doc-
ument ordering has a marked impact on per-
formance, with the by-class and random orders
performing significantly worse than the alter-
nating ordering. Moreover, order invariance
and the ability to tune the pointer cost lets our
criterion select a better set of 5-grams.

PCA Next, we investigate our features in a typical exploratory analysis scenario: a researcher
looking for interesting structure by plotting all pairs of the top 10 principal components of the
data. In particular, we verify PCA’s ability to recover binary class structure for the A and G news-
groups, as well as multiclass structure for the A, comp.sys.ibm.pc.hardware (PC), rec.motorcycles
(M), sci.space (S), and talk.politics.mideast (PM) newsgroups. Fig. 3 plots the pair of principal
components that best exemplifies class structure using (1) compressed features and (2) all 5-grams.
For the sake of fairness, the components were picked by training a logistic regression on every pair
of the top 10 principal components and selecting the pair with the lowest training error. In both the
binary and multiclass scenarios, PCA is inundated by millions of features when using all 5-grams
and cannot display good class structure. In contrast, compression reduces the feature set to tens of
thousands (by two orders of magnitude) and clearly shows class structure. The star pattern of the
five classes stands out even when class labels are hidden.

6

Figure 3: PCA plots for 20 Newsgroups. Left: alt.atheism (blue), comp.graphics (red). Right:
alt.atheism (blue), comp.sys.ibm.pc.hardware (green), rec.motorcycles (red), sci.space (cyan),
talk.politics.mideast (magenta). Top: compressed features (our method). Bottom: all 5-grams.

Table 1: Classification accuracy on the 20 Newsgroups and IMDb datasets
Method 20 Newsgroups IMDb

Discriminative RBM [16] 76.2 —
Bag-of-Words SVM [14, 20] 80.8 88.2

Naı̈ve Bayes [17] 81.8 —
Word Vectors [20] — 88.9

All 5-grams 82.8 90.6
Compressed (our method) 83.0 90.4

Classification Tasks Table 1 compares the performance of compressed features with all 5-grams
on two tasks: (1) categorizing posts from the 20 Newsgroups corpus into one of 20 classes; (2) cate-
gorizing movie reviews collected from IMDb [20] into one of two classes (there are 25,000 training
and 25,000 testing examples evenly split between the classes). For completeness, we include com-
parisons with previous work for 20 Newsgroups [16, 14, 17] and IMDb [20]. All regularization
parameters, including λ, were chosen through 10-fold cross validation on the training set. We also
did not L1-normalize documents in the binary task because it was found to be counterproductive on
the training set.

Our classification performance is state of the art in both tasks, with the compressed and all-5-gram
features tied in performance. Since both datasets feature copious amounts of labeled data, we expect
the 5-gram features to do well because of the power of the Elastic-Net regularizer. What is remark-
able is that the compression retains useful features without using any label information. There are
tens of millions of 5-grams, but compression reduces them to hundreds of thousands (by two orders
of magnitude). This has a particularly noticeable impact on training time for the 20 Newsgroups
dataset. Cross-validation takes 1 hour with compressed features and 8–16 hours for all 5-grams on
our reference computer depending on the sparsity of the resulting classifier.

Training-Set Size Our final experiment explores the impact of training-set size on binary-clas-
sification accuracy for the A vs. G and rec.sport.baseball (B) vs. rec.sport.hockey (H) newsgroups.
Fig. 4 plots testing error as the amount of training data varies, comparing compressed features to full

7

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Percent of Training Data

M
is

c
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

Error on A vs. G

Compressed

All 5-grams L
2

All 5-grams EN

(a)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Percent of Training Data

M
is

c
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

Error on B vs. H

Compressed

All 5-grams L
2

All 5-grams EN

(b)

Figure 4: Classification accuracy as the training set size varies for two classification tasks
from 20 Newsgroups: (a) alt.atheism (A) vs. comp.graphics (G); (b) rec.sport.baseball (B) vs.
rec.sport.hockey (H). To demonstrate the effects of feature selection, L2 indicates L2-regularization
while EN indicates elastic-net regularization.

5-grams; we explore the latter with and without feature selection enabled (i.e., Elastic Net vs. L2 reg-
ularizer). We resampled the training set 100 times for each training-set size and report the average
accuracy. All regularization parameters were chosen to minimize the testing error (so as to elimi-
nate effects from imperfect tuning) and λ = 0.03 in both tasks. For the A–G task, the compressed
features require substantially less data than the full 5-grams to come close to their best testing error.
The B–H task is harder and all three classifiers benefit from more training data, although the gap
between compressed features and all 5-grams is widest when less than half of the training data is
available. In all cases, the compressed features outperform the full 5-grams, indicating that that
latter may benefit from even more training data. In future work it will be interesting to investigate
the efficacy of compressed features on more intelligent sampling schemes such as active learning.

6 Discussion

We develop a feature selection method for text based on lossless data compression. It is unsupervised
and can thus be run as a task-independent, one-off preprocessing step on a corpus. Our method
achieves state-of-the-art classification accuracy on two benchmark datasets despite selecting features
without any knowledge of the class labels. In experiments comparing it to a full 5-gram model, our
method reduces the feature-set size by two orders of magnitude and requires only a fraction of the
time to train a classifier. It selects a compact feature set that can require significantly less training
data and reveals unsupervised problem structure (e.g., when using PCA).

Our compression scheme is more robust and less arbitrary compared to a setup which uses off-the-
shelf compression algorithms to extract features from a document corpus. At the same time, our
method has increased flexibility since the target k-gram length is a tunable parameter. Importantly,
the algorithm we present is based on iterative reweighting and ADMM and is fast enough—linear
in the input size when k is fixed, and highly parallelizable—to allow for computing a regularization
path of features by varying the pointer cost. Thus, we may adapt the compression to the data at hand
and select features that better elucidate its structure.

Finally, even though we focus on text data in this paper, our method is applicable to any sequential
data where the sequence elements are drawn from a finite set (such as the universe of words in the
case of text data). In future work we plan to compress click stream data from users browsing the
Web. We also plan to experiment with approximate text representations obtained by making our
criterion lossy.

Acknowledgments

We would like to thank Andrej Krevl, Jure Leskovec, and Julian McAuley for their thoughtful dis-
cussions and help with our paper.

8

References
[1] D. Benedetto, E. Caglioti, and V. Loreto. Language trees and zipping. PRL, 88(4):048702, 2002.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–
122, 2011.

[3] A. Bratko, B. Filipič, G. V. Cormack, T. R. Lynam, and B. Zupan. Spam filtering using statistical data
compression models. JMLR, 7:2673–2698, 2006.

[4] P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research Letters, 3(3):163–
166, 1984.

[5] E. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted `1 minimization. J Fourier Analysis
and Applications, 14(5-6):877–905, 2008.

[6] R. Cilibrasi and P. M. Vitányi. Clustering by compression. TIT, 51(4):1523–1545, 2005.

[7] E. Frank, C. Chui, and I. Witten. Text categorization using compression models. Technical Report 00/02,
University of Waikato, Department of Computer Science, 2000.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordi-
nate descent. J Stat Softw, 33(1):1–22, 2010.

[9] E. Gabrilovich and S. Markovitch. Text categorization with many redundant features: Using aggressive
feature selection to make SVMs competitive with C4.5. In ICML, 2004.

[10] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. JMLR, 3:1157–1182, 2003.

[11] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data mining. In KDD, 2004.

[12] D. Kim, S. Sra, and I. S. Dhillon. Tackling box-constrained optimization via a new projected quasi-newton
approach. SIAM Journal on Scientific Computing, 32(6):3548–3563, 2010.

[13] V. Kuleshov. Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration.
In ICML, 2013.

[14] M. Lan, C. Tan, and H. Low. Proposing a new term weighting scheme for text categorization. In AAAI,
2006.

[15] K. Lang. Newsweeder: Learning to filter netnews. In ICML, 1995.

[16] H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann machines. In
ICML, 2008.

[17] B. Li and C. Vogel. Improving multiclass text classification with error-correcting output coding and
sub-class partitions. In Can Conf Adv Art Int, 2010.

[18] H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. TKDE,
17(4):491–502, 2005.

[19] T. Liu, S. Liu, Z. Chen, and W. Ma. An evaluation on feature selection for text clustering. In ICML, 2003.

[20] A. Maas, R. Daly, P. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment
analysis. In ACL, 2011.

[21] H. S. Paskov, R. West, J. C. Mitchell, and T. J. Hastie. Supplementary material for Compressive Feature
Learning, 2013.

[22] J. Rennie. 20 Newsgroups dataset, 2008. http://qwone.com/˜jason/20Newsgroups (accessed
May 31, 2013).

[23] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[24] D. Sculley and C. E. Brodley. Compression and machine learning: A new perspective on feature space
vectors. In DCC, 2006.

[25] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58(1):267–288, 1996.

[26] Y. Yang and J. Pedersen. A comparative study on feature selection in text categorization. In ICML, 1997.

[27] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In NIPS, 2004.

[28] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. TIT, 23(3):337–343, 1977.

[29] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. JCGS, 15(2):265–286, 2006.

9

http://qwone.com/~jason/20Newsgroups

	Introduction
	Compression and Machine Learning
	Compressive Feature Learning
	Optimization Algorithm
	Experiments
	Discussion

