
Sobol’ indices and Shapley value∗

Art B. Owen

April 2014; Original: September 2013

Abstract

Global sensitivity analysis measures the importance of some input vari-
ables to a function f by looking at the impact on f of making large random
perturbations to subsets of those variables. Using measures like those of
Sobol’ we can attribute importance to input variables based on the extent
to which they help predict the target function f . There is a longstanding
literature in economics and game theory that considers how to attribute
the value of a team effort to individual members of that team. The pri-
mary result, known as Shapley value, is the unique method satisfying some
intuitively necessary criteria. In this paper we find the Shapley value of
individual variables when we take ‘variance explained’ as their combined
value. The result does not match either of the usual Sobol’ indices. It
is instead bracketed between them, for variance explained or indeed any
totally monotone game. Because those indices are comparatively easy
to compute, Sobol’ indices provide effectively computable bounds for the
Shapley value.

1 Introduction

An important task in uncertainty quantification is to measure the relative im-
portance of the various inputs to a black box function f . Importance can be
quantified via the effects of changing those inputs at random. This leads to
a global sensitivity analysis (Saltelli et al., 2008) in which statistical methods
based on an analysis of variance (ANOVA) decomposition measure variable im-
portance. The most commonly used measures are the Sobol’ indices (Sobol’,
1990, 1993).

A very similar problem has been studied for a long time in the economics and
game theory literatures. The motivation there is to find a fair way to attribute
the value created in a team effort to the individual members of that team. They
have studied the setting where one can measure the value that any subset of the
team would have created. In that case, the Shapley value (Shapley, 1953) is a
uniquely compelling choice; the only way to satisfy four very desirable criteria.
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The goal of this paper is to draw comparisons between the Sobol’ index
approach and the theory of Shapley value. For any subset of input variables we
define their value to be a measure of how well we can approximate f using only
those variables. That value can be quantified via variance which will lead us to
Sobol’ indices. There are two main versions of Sobol’ indices. We will see that
neither of them agrees with the Shapley value. But Sobol’ indices are easier to
compute than the Shapley value. We find that one Sobol’ index serves as an
upper bound to the Shapley value, while the other is a lower bound. Thus we
can use Sobol’ indices to bracket the Shapley value. Conversely, Shapley value
is a very reasonable midpoint between the two Sobol’ indices.

An outline of this paper is as follows. Section 2 gives motivation for variance-
based sensitivity measures, and introduces the ANOVA decomposition and
Sobol’ indices. Section 3 defines the Shapley value and gives expressions for it,
when the value of a set of variables is the variance explained by those variables.
Neither of Sobol’s two variance importance measures for singletons coincide with
Shapley value. One omits interaction effects while the other overcounts them
relative to Shapley. This is why the Shapley value is bracketed between the
two Sobol’ indices. Section 4 shows that Sobol’ indices satisfy three of the four
Shapley criteria. They can be expressed as Shapley values for some alternative
variance measures exhibited there. Section 5 has some final remarks.

The Shapley value has been used before for variable importance. Lipovetsky
and Conklin (2001) measure variable importance in linear regression with multi-
collinear predictor variables. They take R2 as the value for a set of predictors
and find Shapley value for each individual predictor. Lindeman et al. (1980)
and Kruskal (1987) averaged the increase in R2 from adding variable j over all
2d−1 subsets of other variables that the model could contain. Their measure
is equivalent to the Shapley value. Grömping (2007) surveys variable impor-
tance measures for linear regression. These R2-based measures do not cover the
present ANOVA context.

2 Global sensitivity, ANOVA and Sobol’ indices

The object of our interest is a function f that depends on d input quantities,
xj ∈ Xj for j = 1, . . . , d. This f typically represents some properties of a
product to be manufactured or a model of a complex system such as climate.
Generally f is not available in closed form. We assume that it can be computed
at any point x = (x1, . . . , xd) ∈ X ≡

∏d
j=1 Xj of interest to us. Some of the

models of interest are very computationally expensive, and then f may be a
fast surrogate function that approximates the original model. See Queipo et al.
(2005) for background and an example of computer experimentation.

An important variable xj is one that makes a big difference to f when we
change it. Usual sensitivity analysis considers local changes xj → xj + dxj and
can be studied via the gradient of f near any point x0 of interest. A global
sensitivity analysis considers larger changes to x and averages over points x0 of
interest. If we put a probability distribution Fj on each Xj we can then study the
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distribution of f(x) where x is random with distribution
∏d

j=1 Fj . Commonly
Fj is the uniform distribution on an interval which after rescaling could be [0, 1],
but Fj can be more general. If some parts of Xj are more important to study
than others, then we might choose Fj that puts more probability on the more
important parts. If random changes to xj make a small difference to f , then xj
is not important, and conversely when changes to xj greatly affect f , then xj
is important. It is usual to take xj independent. The alternative is much more
complicated. See Hooker (2007) or Chastaing et al. (2012) for some approaches
in that case.

Taking random x yields a random variable f(x) ∈ R that we assume sat-
isfies E(f(x)2) < ∞. We write µ = E(f(x)) and σ2 = E((f(x) − µ)2). The
ANOVA partitions the variance σ2 of f(x) among 2d − 1 non-empty subsets of
{1, . . . , d}. The set {1, . . . , d} is abbreviated to [d] and for u ⊆ [d] we write −u
for the set difference [d] − u. We frequently need to work with u ∪ {j} and it
is convenient to write it as simply u + j. The cardinality of u is denoted |u|.
If u = {j1, j2, . . . , j|u|} ⊆ [d] then we write xu for the tuple (uj1 , uj2 , . . . , uj|u|).
Similarly, dFu is the distribution of xu over its domain Xu. We take u ⊂ v to
indicate a proper subset, that is u ( u.

The ANOVA is a decomposition of the form

f(x) =
∑
u⊆[d]

fu(x)

where fu depends on x only through xj for indices j ∈ u. There are many
decompositions of this form. The ANOVA version is defined recursively by

fu(x) =

∫
X−u

(
f(x)−

∑
v⊂u

fv(x)
)

dF−u(x−u),

starting with f∅(x) which takes the value µ for all x. First we subtract effects
fv for any strict subsets of u so as not to attribute structure to set u when that
structure that has a simpler explanation. Then we average over x−u yielding a
function fu that depends on x through xu alone.

The ANOVA decomposition satisfies
∫
Xj
fu(x) dFj(xj) = 0 whenever j ∈ u.

From this it follows that E(fu(x)fv(x)) = 0 whenever u 6= v. Defining σ2
u =

var(fu(x)), orthogonality of effects leads to the ANOVA identity

σ2 = var(f(x)) =
∑
u⊆[d]

σ2
u.

More background on the ANOVA appears in Owen (2013).
Sobol’s variable importance indices for subset u are

τ2u =
∑
v⊆u

σ2
v , and τ2u =

∑
v:v∩u 6=∅

σ2
v .

They satisfy τ2u ≤ τ2u and τ2u = σ2−τ2−u. Normalized versions τ2u/σ
2 and τ2u/σ

2

are frequently used to quantify relative importance, but the normalization is not
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needed here. By identifying variable j with the singleton {j} we can interpret
τ2{j} and τ2{j} to be two different importance measures for xj .

Because τ2u = var(E(f(x) | xu)), it is the variance explained by xu and
is therefore the natural choice for the importance of the set u. When τ2u is
large, it means that the combined effect of all xj for j ∈ u makes an important
contribution to the variance of f(x). When τ2u is small, it means that the joint
effects of xj for j ∈ u make little difference even allowing for all interactions
between them and xk for k 6= u. Sometimes that means these variables are
so unimportant that they can be ‘frozen’ at a fixed value (Sobol’, 1996) thus
reducing the dimension of the function f .

3 Shapley value

Economists use an attribution method known as the Shapley value (Shapley,
1953). The presentation here follows that in Winter (2002). Let val(u) ∈ R be
the value attained in a game, by the subset u ⊆ {1, . . . , d} ≡ [d]. It is always
assumed that val(∅) = 0. The Shapley value for individual item j = 1, . . . , d is
φj = φj(val), defined below. Shapley value has several appealing properties.

1) (Efficiency)
∑d

j=1 φj = val([d]).
2) (Symmetry) If val(u+ i) = val(u+ j) for all u ⊆ [d]−{i, j}, then φi = φj .
3) (Dummy) If val(u+ i) = val(u) for all u ⊆ [d], then φi = 0.
4) (Additivity) If val and val′ have Shapley values φ and φ′ respectively then

the game with value val(u) + val′(u) has Shapley value φj +φ′j for j ∈ [d].

The Shapley value is the only attribution method with these four properties.
The Shapley value of an individual variable j is defined by the following formula

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1(
val(u+ j)− val(u)

)
.

Notice that multiplying val(·) by a scalar multiplies all of the φj by that same
scalar. We will refer to that property as ‘linearity’ below.

For variable importance we define the value of the set u to be the variance
explained by xj for j ∈ u, that is val(u) = τ2u. With this definition for value, we
have

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(τ2u+j − τ2u)

=
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1∑
v⊆u

σ2
v+j . (1)

Theorem 1. Let the value of a subset of variables be val(u) = τ2u, where τ2u
is derived from an ANOVA decomposition with variance components σ2

u. Then
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the Shapley value of variable j is

φj =
∑

u⊆[d],j∈u

σ2
u

|u|
.

Proof. Using linearity of the Shapley value, we can write

val(u) =
∑

v⊆[d],v 6=∅

val(v)(u)

where val(v)(u) = σ2
v1u=v. The Shapley value for val(v) has φ

(v)
j = 0 for j 6∈ v by

the dummy property. It has φ
(v)
j = σ2

v/|v| for j ∈ v because of symmetry and

the fact that φ
(v)
j sum to val(v)([d]) (efficiency). The conclusion then follows

from additivity of the Shapley value.

The defining properties of the Shapley value let us avoid a lengthy manipu-
lation of binomial coefficients that would follow from simplifying equation (1).

The Sobol’ indices for singletons are

τ2{j} = σ2
{j} and τ2{j} =

∑
y:j∈v

σ2
u.

Neither of these match the Shapley value because they do not sum to τ2[d] = σ2,
and so fail property one, efficiency. As we show next, the problem cannot be
fixed by simply rescaling them to have the desired sum.

The index τ2u does not take account of the contribution of variable j to
variance components σ2

u with j ∈ u and |u| > 1. The index τ2u includes multiple
counting of variance components: the contribution of σ2

u for |u| > 1 is counted
in τ2{j} for every j ∈ u. Neither of these issues can be fixed by re-scaling, that is,
by multiplying each φj by a constant. No rescaling will correct the zero-weight
given by τ2{j} to σ2

u when j ∈ u and |u| > 1. For τ2{j}, a different rescaling would

be required for each different cardinality |u|.
The Sobol’ indices bracket the Shapley value. We easily find that

τ2{j} ≤ φj ≤ τ
2
{j}. (2)

The bracketing property (2) holds because every σ2
u ≥ 0. These variance compo-

nents can be expressed in terms of τ2u via Mobius inversion, σ2
u =

∑
v⊆u(−1)|u−v|τ2v,

an inclusion-exclusion relationship.
In economic contexts, the analogue of σ2

u is

βu ≡
∑
v⊆u

(−1)|u−v|val(v).

This quantity can be negative. A bad player might subtract value from a team,
or we might simply find that val({1, 2}) < val({1}) + val({2}), in which case
β{1,2} < 0. This may happen even if val({1, 2}) > max(val({1}), val({2})). A
game with all βu ≥ 0 is “totally monotone game”. The bracketing inequality (2)
extends to any totally monotone game. For example, belief functions (Shafer,
1976) are totally monotone.
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4 The Shapley properties of Sobol’ indices

When val(u) = τ2u, the Sobol’ indices for singletons each satisfy three of the
four Shapley conditions from Section 1, as we show here. As we saw above they
do not satisfy the efficiency condition of summing to total value τ2[d] = σ2.

To verify the symmetry property, suppose that τ2u+i = τ2u+j holds for all
u ⊆ [d]− {i, j} where i 6= j. It then follows that∑

v⊆u

σ2
v+i =

∑
v⊆u

σ2
v+j

holds for all u ⊆ [d] − {i, j}. For u = ∅, we find that σ2
{i} = σ2

{j} so that

τ2{i} = τ2{j} and Sobol’s lower importance measure τ2, for i and j are then equal.

Proceeding by induction on |u| we find that σ2
u+i = σ2

u+j for all u ⊆ [d]−{i, j}.
Now

τ2{i} − τ
2
{j} =

∑
w:i∈w

σ2
w −

∑
w:j∈w

σ2
w.

A set w containing neither i nor j does not appear in the difference above and a
set containing them both cancels. If w contains i but not j then we get a term
σ2
w′+i in the left sum where w′ = w − {i}. But then the term σ2

w′+j appears in

the right sum and cancels it because σ2
w′+i = σ2

w′+j . An analogous cancellation
takes place for a set w containing j but not i. It follows that Sobol’s upper
importance measure satisfies τ2{i} = τ2{j} under this condition. That is, both
measures satisfy symmetry.

It is easy to see that both Sobol’ measures are linear in the value. Finally
suppose that τ2u+i = τ2u for some i and all u ⊆ [d]. It then follows that σ2

v = 0
whenever i ∈ v and so τ2{i} = 0 in this case. Because τ2{i} ≥ τ2{i} ≥ 0, this
argument establishes the dummy property for both measures.

The Sobol’ indices satisfy three of the four Shapley properties. We can
show that Sobol’ indices satisfy the Shapley properties but for a different value
function. Let

val(u) =
∑
j∈u

σ2
{j}, and val(u) =

∑
v⊆u

|v|σ2
v .

The first value function only counts singletons, or main effects, in the language
of ANOVA. The second value function weights variance components by their
cardinality. Liu and Owen (2006) show that

d∑
j=1

τ2{j} =
∑
u⊆[d]

|u|σ2
u.

It is easy to show that
∑d

j=1 τ
2
{j} = val([d]) and

∑d
j=1 τ

2
{j} = val([d]). To

conclude that the Sobol’ indices are Shapley values for these altered value func-
tions requires us to verify the other three properties. Linearity is immediate.
The remaining two properties follow from essentially the same arguments used
above.

6



5 Discussion

The Sobol’ indices for singletons either ignore interactions, or count them mul-
tiplicatively. A large τ2{j} tells us that variable j is important and a small τ2{j}
tells us that it is not. But outside of such cases, the Shapley value is a com-
pelling choice as a measure of the importance of an input variable, because it
shares the variance component σ2

u equally among all j ∈ u. The computational
disadvantage of Shapley values is that they are written in term of all 2d−1 vari-
ance components. Where kriging-based emulators are used (e.g., Sacks et al.
(1989) and Queipo et al. (2005) among others) the cost of computing Shapley
value becomes much more reasonable, at least for small d.

Liu and Owen (2006) present estimators for cardinality moment quantities
like

∑
u |u|kσ2

u where k is an integer between 1 and d inclusive. For the Shapley
value we need something like

∑
u:j∈u |u|−1σ2

u, that is a −1’st moment on sets
containing j. It is not clear that there is a shortcut to estimate this quantity
without estimating all 2d−1 ANOVA variances for subsets u containing j.

A great strength of Sobol’ indices is that they are quite easy to measure
directly. Specifically, suppose that z is independently sampled from the same
distribution as x and construct y by combining components xu and z−u. Then
the remarkable identity E(f(x)(f(y) − f(z))) = τ2u (Mauntz, 2002; Sobol’
et al., 2007) can be used to directly estimate τ2u using a single 2d-dimensional
quadrature or a Monte Carlo sample. Similarly, Sobol’ (1990) shows that
(1/2)E((f(x)−f(y))2) = τ2−u so any desired upper index can also be estimated
by a quadrature of dimension at most 2d.

The easy computation of Sobol’ indices suggests that they may sometimes
make a suitable substitute for Shapley value. We have shown that the Shapley
value for variable importance is bracketed between the two kinds of Sobol’ index.
This property extends from variance explained to any totally monotone game.
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