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Maxwell Construction: The Hidden Bridge between
lterative and Maximum a Posteriori Decoding

Cyril Méasson , Andrea Montanati and Rudiger Urbanké

Abstract— There is a fundamental relationship between belief balance between two areas representing the number of guesse
propagation and maximum a posteriori decoding. A decoding and the reduction in uncertainty, respectively. The arnglys
algorithm, which we call the Maxwell decoder, is introducedand gives also rise to a generalized Area Theorem, see also [12],

provides a constructive description of this relationship. Both, dit id It tive tool f . likeules
the algorithm itself and the analysis of the new decoder are and it provides an afternative tool for proving area-[Ikeuies.

reminiscent of the Maxwell construction in thermodynamics This The concept of a “BP decoder with guesses” itself is not

paper investigates in detail the case of transmission overhe new. In [13] the authors introduced such a decoder in order to

binary erasure channel, while the extension to general bing  improve the performance of the BP decoder. Our motivation

memoryless channels is discussed in a companion paper. though is quite different. Whereas, from a practical point

Index Terms— belief propagation, maximum a posteriori, max- of view, such enhancements work best for relatively small

imum likelihood, Maxwell construction, threshold, phase tansi- code lengths, or to clean up error floors, we are interested
tion, Area Theorem, EXIT curve, entropy in the asymptotic setting in which the unexpected relatigns
between the MAP decoder and the BP decoder emerges.

I. INTRODUCTION

T is a key result, and the starting point of iterative coding Préeliminaries

that belief propagation (BP) is optimal on trees. See, e.g.,Assume that transmission takes place over a binary erasure
[5]-[8]. However, trees with bounded state size appear motthannel with parametet, call it BEC({). More precisely,
be powerful enough models to allow transmission arbityarithe transmitted bitz; at time i, z; € X = {0,1}, is
close to capacity. For instance, it is known that in the sgtti erased with probabilitye. The channel output is the ran-
of standard binary Tanner graphs the error probability oeso dom variableY; which takes values i) 2 {0,%,1}. To
defined on trees is lower bounded by a constant which ordg concrete, we will exemplify all statements using Low-
depends on the channel and the rate of the code [9], [10]. Tbensity Parity-Check (LDPC) code ensembles [14]. However,
general wisdom is therefore to apply BP decoding to graptige results extend to other ensembles like, e.g., Genedaliz
with loops and to consider this type of decoding as a (typital LDPC or turbo codes, and we will state the results in a
strictly suboptimal attempt to perform maximum a posteriogeneral form. For an in-depth introduction to the analygis o
(MAP) bit decoding. One would therefore not expect any linkDPC ensembles see, e.g., [15]-[18]. For convenience of the
between the BP and the MAP decoder except for the obviousder, and to settle notation, let us briefly review some key
suboptimality of the BP decoder. statements. The degree distribution (dd) p@itx), p(x)) =

This contribution demonstrates that there is a fundamental’, \;x’~', 3> p;x’~!) represents the degree distribution
relationship between BP and MAP decoding which appearsdfi the graph from theedge perspective. We consider the
the limit of large blocklengths. This relationship is fushed ensemble LDPC\, p,n) of such graphs of length and we
by the so-called Maxwell (M) decoder. The M decoder conare interested in its asymptotic average performance (when
bines the BP decoder with a “guessing” device to perforthe blocklengthn — oc). This ensemble can equivalently
MAP decoding. It is possible to analyze the performangse described bye L (A(x),T(x)) = (Zj Aij,Zj I;x7),
of the M decoder in terms of the EXIT curve introducegyhich is the dd pair from theodeperspectivé An important
in [11]. This analysis leads to a precise characterizatibn gharacteristic of the ensemble LDPCp,n) is the design
how difficult it is to convert the BP decoder into a MAPgte ,» £ 1 _ [p/[A=1=N(1)/T'(1). We will write
decoder and this “gap” between the MAP and BP decoder has_ r(\ p) or r = r(A,T) whenever we regard the design

a pleasing graphical interpretation in terms of an areauth@e 5te as a function of the degree distribution pair.
EXIT curve! Further, the MAP threshold is determined by @ The BP threshold call it® — (X, p), is defined in
A
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system and not to its individual component codes. This wifffom the (l/fA)f; Mu)du, T(x) = (1/ [ p) [ p(u)du, A(x) = A’(x)/A’(1) and
original EXIT chart context presented in [11]. p(x) =T (x)/T7(1).



decoding whem — oo. In a similar manner we can define thevalue and continues then smoothly until it reaches one for
MAP threshold. This threshold was first found via the replica = 1. The area under the EXIT curve equals the rate of
method in [19]. Further, in [2] a simple counting argumerthe code, see [12]. Compare this to the equivalent function
leading to an upper bound for this threshold was given. Thé the BP decoder which is also shown in Hg. 1. The BP
argument is explained and sharpened in £&c. V. In this pa@XIT curve h® () 2 Jim, o %H(Xi | ®27) corresponds to
we develop the point of view taken in [1]. The referenceunning a BP decoder on a very large graph until the decoder
quantity is then the extrinsicentropy, in short EXIT. The has reached a fixed point. The extrinsic entropy of the bits at
EXIT curve associated to thé" variable is a function of the this fixed point gives the BP EXIT curve. This curve is given
channel entropy and it is defined &5 X; | Y[\ 1;1). Hereby, in parametric form by
X; represents thé" input bit and, forS C [n] £ {1,...,n}, %
Xs represents theS|-tuple of all bits indexed byS. For <m,/\(1 —p(1 —X))> : (1)
notational simplicity, let us writeX..; = X, (;; when a o B _
single bit is omitted and¥ = X, for the entire vector. The where x indicates the erasure probability of the var_|al?le-to-
uniformly averaged quantity 3" H(X; |Y.;) is called the check messages. To see this, note that when transmissem tak
EXIT function. Recall that if there is a uniform prior onplace over BEG{), then the BP decoder reaches a fixed point
the set of hypotheses then the maximum a posteriori and #h@hich is given by the solution of the density evolution (DE)
maximum likelihood decoding rule are identical. L&#** = equationeA(1—p(1—x)). We can therefore expressise(x) =
@Y (Y.;) denote the extrinsic MAP bit estimate (sometimesg—, ;- Now the average extrinsic probability that a bit is
called extrinsic information) associated to ti€ bit. This still erased at the fixed point is equalAd1l — p(1 —x)). Note
can be any sufficient statistics fot; given Y.,;. Since we thatthe BP EXIT curve is the trace of this parametric equatio
deal with binary variables, we can always think of it as th#®r x starting atx = 1 until x = x*. This is the critical point
conditional expectation?** (Y.;) £ E[X;|V.;]. Observe that and (x**) = ¢*. Summarizing, the BP EXIT curve is zero
H(X;|Yw) = H(X; | D). up to the BP threshole’” where it jumps to a non-zero value
and then continues smoothly until it reaches one &at1.

B. Overview of Results

Consider a dd paif), p) and the corresponding sequence of!
ensembles LDP@, A, p) of increasing length. Fig.[0 shows
the asymptotic EXIT curve for the regular dd pdk(z) =

22, p(x) = ).

@ (b)

Fig. 2. Balance of areas for the Maxwell decoder between theber of
guesses in (a) and the number of contradictions in (b). Tledark gray
areas are equal at the MAP threshold. These two areas differ the areas
indicated in Fig[L only by a common part.

EBP 6MAF’ 1 BP _MAP 1

(a) (b) In [1] it was pointed out that for the investigated cases the
! . following two curious relationships between these two esrv
Fig. 1. BP and MAP EXIT curves for the dd pdik(z) = 22, p(x) = ). - .
(a) BP EXIT curveh®(e): its parametric equation is stated [ (1). It is zerdhold: First, the BP and the MAP curve coincide abeV.
until €27 at which point it jumps. It further continues smoothly uitiiteaches  Second, the MAP curve can be constructed from the BP curve

one ate = 1. (b) MAP EXIT curvehM4P(¢). Note that the figure (b) includes ; ; ;
also the “spurious” branch of Eql(1). The spurious branchesponds to in the following way. If we draw the BP curve as parameterized

unstable fixed points. The MAP threshold is determined byotiiance of the N (@) not only forx € [x, 1] but also forx € (0,x*) we

two dark gray areas. get the curve shown in the right picture of Hig. 1. Notice that
N the branch fox € (0, x*") corresponds to unstable fixed points
Formally, this EXIT curve is h""(e) = under BP decoding. Moreover, the fraction of erased message

lim,, 00 % St H(X [ Yoi(e) = limp—oo %H(Xi | @¥*").  x decreases along this branch when the erasure probability is
Its main characteristics are as follows: the function isozeincreased and it satisfie$x) > ¢. Because of these peculiar
below the MAP threshold"*®, it jumps ate"*” to a non-zero features, it is usually considered as “spurious”. To detieem
. . e o

3The term extrinsic is used when the observation of the Htfits ignored, the MA.P thres_hold take a V.ertlc.al line at= ¢ and. Sh.lﬂ I
see [20], [21]. to the right until the area which lies to the left of this lineda

4The term EXIT , introduced in [11], stands for extrinsic (maf) informa- iS enclosed by the line and the BP EXIT curve is equal to the
tiorj trgnsfer. Rat_her t_han using mutual in_formation we dnteuse' entropies  grea which lies to the right of the line and is enclosed by the
which in our setting simply means one minus mutual infororatit is natural line and the BP EXIT curve (these areas are indicated in dark

to use entropy in the setting of the binary erasure channeéghe parameter X X . . ) )
e itself represents the channel entropy. gray in the picture). This unique point determines the MAP



threshold. The MAP EXIT curve is now the curve which ixamples illustrate this technique and lead to suggests the
zero to the left of the threshold and equals the iterativeeto  tightness of the bound.

the right of this threshold. In other words, the MAP threshol The same result is recovered through a counting argument
is determined by a balance between two areas. It turns a@ht, supplemented by a combinatorial calculation, inspiies

that there is an operational meaning to this balance camditi tightness of the bound.

We define the so-called Maxwell (M) decoder which performs Fina”y, we introduce the so-called M decoder which pro-

MAP decoding by combining BP decoding with guessing. Th@des a unified framework for understanding the connection
dark gray areas in in the right picture of F[g. 2 differ fronpetween the BP and the MAP decoder. A closer analysis of
the ones in Fig[l only by a common part. We can shoie performance of the M decoder will allow us to prove a
that the gray area on the left is connected to the numbefined upper bound on the MAP threshold and it will give
of “guesses” the M decoder has to venture, while the grai¢e to a pleasing interpretation of the MAP threshold a$ tha
area on the right represents the number of “confirmationgarameter in which two areas under the EBP EXIT curve are
regarding these guesses. The MAP threshold is determingdalance.
by the condition that the number of confirmations balances\ye conclude the paper by discussing some applications of
the number of guesses (i.e., that each guess is confirmegy method.
and therefore the two areas are equal: in other words, at the
MAP threshold (and below) there is just a single codeword
compatible with the channel received bits. Il. FINITE-LENGTH CODES AREA THEOREM AND

The EXIT curves CONCENTRATION
depicted in Fig.[l
are representative
for a large family of
degree distributions,

Let X be the transmitted codeword and ¥ebe the received
word. The conditional entropy? (X |Y') is of fundamental
importance if we consider the question whether reliable-com

eg., those of munication is possible. Let us see how this quantity appears
regular LDPC naturally in the context of decoding. To this end, we firsiatec
ensembles. But the original Area Theorem as introduced in [12].

more  complicated Theorem 1 (Area Theorem)et X be a binary vector of

BP _MAP

scenarios are €€ lengthn chosen with probability x (x) from a finite set. Let”

possible.  Fig. [B Eﬁéf'soligﬁ;n(g)agg? sﬂﬁlgsc"]fgr'iﬂ?e?g‘ln'\fkﬁep be the result of passing through BEGe). Let Q2 be a further

depicts a slightly discussed in Exampldd 7 alidl 10. Both curve®bservation ofX so thatpg | xy (w|z,y) = po| x(w|z). To
more general case have two jumps. The two jumps of the MAP emphasize that” depends on the channel parametese write

; : EXIT curve are both determined by a local

in which the BP | - < areas. Y (€). Then

EXIT curve and the )

MAP EXIT curve have two jumps. As can be seen from this H(X|Q) 1 . ‘

figure, the same kind of balance condition holds in this case n Jon > H(Xi | Yaile), Q)de. (2)

i€[n]
The reader familiar with the original statement in [12] will
have noticed that we have rephrased the theorem. First, we
expressed the result in terms of entropy instead of mutual

We start by considering the conditional entrofy.X' |Y), jnformation. Second, the observatiorisands? represent what
where X is the transmitted codeword and the received i, the original theorem were called the “extrinsic” infortiea

sequence, and we derive the so-called Area Theorem for-finitg 4 the “channel.” respectively.
length codes. When applying the Area Theorem to the binaryIn @) the integration ranges from zero (perfect channel)

erasure channel, the notion of EXIT curve enters expltmtlyo one (no information conveyed). The following is a trivial
Next, we show that when the codes are chosen randomly fr Mension

a suitable defined ensemble then the individual cond|t|0nal_|_heorem 2 (Area Theorem)et X be a binary vector of

entropies anq E.XIT curves concentrate around their. en_sem%lngthn chosen with probability x (x) from a finite set. Let”
averages. This is the first step towards the asymptotic zau?.,alyIoe the result of passing through BEG). Let 2 be a further

We continue by defining the three asymptotic EXIT curve . 1
of interest. These are the (MAP) EXIT curve, the Blgsbservatlon ofX' so thatpe|xy(w|z,y) = pajx(w|z).

EXIT curve, and the EBP EXIT curve (which holds extende;irhen

BP EXIT and includes the spurious branch). We show that * e

the Area Theorem remains valid in the asymptotic setting. As HX| };(E L9 _ / % Z H(X;|Yoi(e), Q)de.

an immediate consequence we will see that for some classes 0 i€ln]

of ensembles (roughly those for which the stability comditi  Proof of Theorenfl2iet Y(!) be the result of passing

determines the threshold) BP decoding coincides with MAfRrough BEC¢) andY'(?) be the result of passing through

decoding. BEC(e*). Let €2 be the additional observation of. Applying
We then present a key point of the paper, which is tHEheorem[L, withY = Y1) and with additional observa-

derivation of an upper-bound for the MAP threshold. Severtibn (Y(?,Q), we havepgye | xym (w,y® |z,yM)) =

locally and it determines the position of each jump.

C. Paper Outline



Poy® | x (W, y? | z), as required, so that we get Proof: Fori € [n], the entropy rule give$l (X |Y,Q) =
1 H(X;|Y,Q) + _H(Xw'|XuY79)_- We havepx | x,.v.o =

H(X|YP(e),Q) = / Z H(X: | Y D(e), Y@ (e*),Q)de. Px..|x,.v... Since the channel is memoryless ang x,y =
0 ien] pa|x- Therefore, H(X ;| X;,Y,Q) = H(X<i| Xi, Yoi, Q)

and 21X 1Y) _ OHX: 1Y) prom this the total derivate as

Now note that D Dei
1) @) i i stated in l'fB) follows immediately. |
H(Xi| Y7 (€), Y ("), Q) = e H(Xi | Yai(ee™), Q). Alternative proof of Theoreld Keeping in mind that
This is true since the bits N(?(E) andY @ (¢*) are erased transmission takes place over a binary erasure channel, we

independently (so t(h)at the respective erasure probaels;ilin"v”te
multiply) and sinceY (?)(¢*) contains the intrinsic observation _ _ _ v o v
of bit X;, which is erg\se)zd with probability*. If we now XY, ) = Z Py () H (X [Yi = pi, Yo, ).
substitute the right hand side of the last expression in our
previous integral and make the change of variables ¢-¢*, The terms corresponding tg; € {0,1} vanish because
TheorentR follows. B X, is then completely determined by the channel output.
Assume that we allow eaclX; to be passed through aThe remaining term yield$l (X; | Y, Q) = ¢, H(X; | Y, Q),
different channel BEG;). Rather than phrasing our resulthecausey, (x) = ¢;, and the occurrence at the channel output

specifically for the case of the BEE), let us state the areaof an erasure at positionis independent fronk’, Y., and(.
theorem right away in its general form as introduced in [4]. We can then write

this paper we will only be interesting in the consequences as
they pertain to transmission over the BEL The investigation dH(X|Y(e),Q) = Z w
of the general case is relegated to the companion paper [22]. i) e

In order to state this and subsequent results in a more
compact form we introduce the following definition. - Z H(Xi | Yei, )de;,

Definition 1 (Channel Smoothnessyonsider a family of i€ln]
memoryless channels with input and output alphab#&ts which, when we assume that = ¢ for all i € [n], gives
and ), respectively, and characterized by their transitiofiyeorenip. m
probability distribution functions (pdf'shy | x (y|«). If Yis A few remarks are in order. First, the additional degree of
discrete, we interprety | x (| ) as a pdf with respect to theoeqom afforded by allowing an extra observatioris useful
counting measure. [ is continuouspy | x (y|z) is a density \hen studying the dynamical behavior of certain iterative
with respect to Lebesgue measure. Assume that the familyqing schemes via EXIT chart arguments. (For example, in a
is parameterized by, wheree takes values in some intervaly, qie| concatenatiort;, typically represents the observation
I'C R. The channel is said to bEmoothwith respect to the o the systematic bits ané represents the fixed channel
parameter if the pdf's {py | x(y|z) : x € X,y € YV} are  gpservation of the parity bits.) For the purpose of this pape
differentiable functions ot € I. however, the additional observatidn is not needed since
Notice that, if a channel family is smooth, then several®asje are not concerned by componentwise EXIT charts. We
properties of the channel are likely to be d_ifferentigblerwi will therefore skipQ in the sequel. Second, as emphasized
respect to the channel parameter. A basic (but importaf{)ihe |ast step in the previous proof, we can assume at this
example is the channel conditional entrogy(Y|X) = ,oint more generally, that the individual channel pararet
E[-log{py| x (Y| X)}] given a reference measurgx () ., are not the same but that the individual channels are all
on X. Suppose thap/ is finite, and that, for any: € I, parametrized by a common parameterFor instance one

yi €{0,%,1}

dEi

py|x(ylr) >0 foranyz € X, y € Y. Then may think of a families{BEC(¢;)} where¢;(e) are smooth
dH(X]Y) 1 dpy|x functions ofe € [0, 1]. In the simplest case some parameter
de zZyPX () log Pyix (W]7) de (l#)- might be chosen to be constant. This degree of freedom allows

for an elegant proof of Theoreld 8.
In other words, differentiability ofH(Y'|X) follows from One of the main aims of this paper is to investigate
differentiability of py|x (y|z) and of —zlogz. In this paper the MAP performance of sparse graph codes in the limit
we consider families of binary erasure channels which ag large blocklengths. Our task is made much easier by
trivially smooth with respect to the parameter realizing that we can restrict our study to theeragesuch
Theorem 3 (General Area Theorem-[4])et X be a bi- performance. More precisely, & be chosen uniformly at
nary vector of lengttn chosen with probability x () from a random from LDPC\, p,n) and let Hg(X |Y) denote the
finite set. Let the channel frooY to Y be memoryless, where conditional entropy for the coda. We state the following
Y; is the result of passing; through a smooth channel withtheorems right away for general binary memoryless symmetri
parametek;, €; € I;. Let 2 be a further observation of so (BMS) channels.
thatpo | x v (w|z,y) = po|x(w|z). Then Theorem 4 (Concentration of Conditional Entropyet G
" OH(X,|Y,Q) be cho;en uniformly at ra_ndom from LDPGC ), p). Assume
dH(X |Y,Q) = Z 9. de;. (3) thatG is used to transmit over a BMS channel. By some
i=1 € abuse of notation, letly,,) = He(X |Y) be the associated



conditional entropy. Then for any > 0 gbip’t(YNi) denote the extrinsic estimate (conditional mean) of
_Be? X, produced by the BP decoder afteiterations. Denote by
Pr{|Hsn) = E [Hom)] | > ne} <26 , He W' = He(X;| @) the resulting (extrinsic) entropy of the
binary variableX;. Then, for all¢ > 0, there existsy > 0,

where B = 1/(2(zmax+ 1)2(1 — ) and whererpay is the SUCh that

maximal check-node degree. n ot ot B
Proof: The proof uses the standard technique of first con- Pr{‘Z(Hc,i — Ko [Hc,i D‘ > "5} < e%h (4)

structing a Doob’s martingale with bounded differences and :
then applying the Hoeffding-Azuma inequality. The compleii
proof can be found in [23] and it is reported in an adapte
and streamlined form in Appendik .
Let us now consider the concentration of the MAP
EXIT curve. For the BEC this curve is given equivalently
by 13" | Heny(Xi| Yai(e)) or by %Hé(n) (X|Y(e)). We A. (MAP) EXIT
choose the second representation and phrase the statementihe next definition and theorem define our main object of
terms of the derivative of the conditional entropy with resp study.
to the channel parameter Definition 2: Let C(n) be a sequence of code en-

Theorem 5 (Concentration of MAP EXIT CUrVd)et G be sembles of diverging b|ock|engtm and let G(n) be
chosen uniformly at random from LDRE, A, p) and let chosen uniformly at random fronC(n). Assume that
{BMS(€)}ecr denote a family of BMS channels ordered by; Ee [ H! (X|Y(e))| exists. Then this limit
physical degradation (with BM8') physically degraded with .~ ¢ Ln &=i=1 " c(n)
respect to BM&) whenevere’ > ¢) and smooth with respectensembles and we denote it by (¢). We define the MAP

(0 e Assume thalG is used to ransmit over the BM§ oo o1q0me 1o be the supremum of all valuessuch that
channel. Letf(,,) = He(X |Y') be the associated cond|t|onthMAP(€) —0

, L )
entropy. Denot(_a bﬁc(n) Fhe derivative offfg(n) W'.th. respect .Given a dd pair()\, p), consider the sequence of ensem-
to € (such a derivative exists because of the explicit caloutati bl . | . hat th
resented in Theorehh 3) and |&C I be an interval on which ©s {.LDPC()"p’n)}’?' It is ”at”r? to c_onjecture that the
b — associated asymptotic EXIT function exists. Note that from

limy o0 7 E [He(r)] exists and is differentiable with reSPeCt eorenih we know that if this limit exists, then individual
to e. Then, for anye € .J and¢ > 0 there exist amg > 0 de instances are closely concentrated around the ersembl
such that, fom large enough code instan Y T .
average. It is therefore meaningful to define in such a ggttin
Pf{|Hé(n) - E[Hé(n)ﬂ > ng} < g nac, the MAP threshold in terms of the ensemble average.
Unfortunately, naeneralproof of the existence of the MAP
Furthermore, iflim, .. 1E [Hg,)] is twice differentiable EXIT curve is known. But we will show how one can imost
with respect toe € J, there exists a strictly positive constantasescompute the asymptotic EXIT function explicitly for
A such thatae > A¢™. a given ensemble, thus proving existence of the limit in such
The proof is deferred once more to Appenfix . cases. See also [24] for a discussion on asymptotic thréshol
Notice the two extra hypothesis with respect to Thediem 4.1t is worth pointing out that we defined the MAP threshold
First, we assumed that the channel fam{BMS(¢)}.c; is to be the channel parameter at which the conditional entropy
ordered by physical degradation. This ensures ifais non- becomes sublinear. At this point the average conditional bi
negative. This condition is trivially satisfied for the fdyni entropy converges to zero, so that this point is the bit MAP
{BEC(€) }cc[0,1)- More generally, we can letbe any function threshold. We note that for some ensembles the block MAP
of the erasure probability differentiable and increasingnf threshold is strictly smaller than the bit MAP threshold.
zero to one. The second condition, namely the existence and heorem 7 (Asymptotic Area Theoren@onsider a
differentiability of the expected entropy per bit in the itm dd pair (\,p). Assume that the associated asymptotic
is instead crucial. As discussed in the previous sectios, (SEXIT function as defined in Definitond2 exists
e.g., Fig[l), the asymptotic EXIT curve may have jumps. Bipr all ¢ € [0,1]. Assume further that the limit
Theorem[® these jumps correspond to discontinuities in the = lim,,_, . EG[H(nX } exists. Then
derivative of the conditional entropy. At a junap, the value of
the EXIT curve may vary dramatically when passing from one Lo
element of the ensemble to the other. Some (a finite fraction) Tas= 0 R (€)de.
of the codes will perform well, and have an EXIT curve close  Proof: Let hg7 (¢) denote the EXIT function associated
to the asymptotic value at —0, while others (a finite fraction) to a particulaiG € LDPC(), p, n) with raterg,,). We have
may have an EXIT function close to the asymptotic value at

Proof: The proof is virtually identical to the ones given
[15], [17] where the probability of decoding error is
nsidered. |

IIl. ASYMPTOTIC SETTING

is called the asymptotic EXIT function of the family of

1 1
€« + 0 (0 is here a generic small positive number). / Eq {hg?;)(e)} de = Eq [/ Stm) (e)de}
Theorem 6 (Concentration of BP EXIT Curvd)et G be 0 0
chosen uniformly at random from LDRE, A, p). Assume that ) {H(X)} o (5)
G is used to transmit over a BMS channel and d€f" = U ] onose 7



The first equality is obtained by noticing that the function
hg?;)(e) is non-negative. We are therefore justified by Fubini
theorem to switch the order of integration. The second step e(x)
follows from the Area Theorem (the rate being equaﬂg—)).

On the other hand, the Dominated Convergence Theorenf

can be applied to the sequen{ézc [hMAP (e )” since it

G(n)
converges (as assumed in the hypothessh“t‘tﬁ?e and is | 3
trivially upper—bounded by 1. We therefore get ¢
1 00,11 2 1 0 &P 1
lim EG (@] de= [ tim e 17 (0)] e 5 7 x 5 ¢
= WM (e)de. ! , . _— _
0 Fig. 5. BP EXIT curve with two discontinuities/€2): (a) Channel entropy
) ) ) function x — e(x) (b) BP EXIT function e — h5P(¢). This example
which, combined with[{5), concludes the proof. B corresponds to the dd paft\, p) = (0.3 + 0.322 + 0.42'3, %), which

LemmalY gives a sufficient condition for the limits to has design rater ~ 0.48718. The BP threshold is®” ~ 0.48437 at
. N h der thi diti h . xBF ~ 0.09904. This is also the first discontinuity, i.es} = €7, x! = x®°
QXIS’[S. ote that un e'j this condition the asympFotlc VAL andx! & 0.22156. The second discontinuity occurs fer= e? = 0.51553
is equal to to the design ratg )\, p). Most dd pairs()\, p) atx?®~0.37016 (x* = 1).
encountered in practice fulfill this condition. This coraiit is

therefore not very restrictive. ) o )
to restrict the above parameterization to the unique union o

intervals o
B. BP EXIT Ié U [Kz’iz) U {1}7
Recall that the MAP EXIT curve can be expressed as i€[J]

MAP MAP __  MAP i . i
(f( | &} d)twhelre<1> 0K¢ ( Nl})/ IS g]ef p§>ster;|o|r ?ﬁ‘.t' which has the property thatx) is continuously and mono-
mate (conditional mean) given Y.;. Unfortunately this tonically increasing frome®” to one asx takes on increasing

guantity is not easy to evaluate. In fact, the main aim of th{?alues inZ and for alli € [J], x' — 0 or ¢(x') — 0. An
paper is to accomplish this task. Lo = '

et A related quantity which is example of such a partition is shown in FI§. 5. That such a
partition exists and is unique follows from the fact thét)
much easier to compute IS|s a differentiable function fox € [0,1] as can be verified by
th_e BP EXIT curve_shown in direct computatlon Set’/ = 1 and note that(1) = 1 > 0.
Fig. @ for the dd paifx*, x°). Definex’ as the largest nonnegative valuexof x” for which
The BP BEX”— corresch:nds 0 €¢'(x) = 0. If no such value exists thet(x) is monotonically
¢B£(X |()I) |s)'thve\zlhee;?r|r;l')slc esti increasing over the whole randg@ 1]. In this case/ = 1 and
Yoi . we setx’ = 0. Now proceed recursively. Assume that the
mate of X; delivered by the 0 a1 [x*+1 xT1) have been defined and that™ > 0.
BP decoder Here a fixed nUM-pofino 5i o the largest nonnegative valuexofk x**! such
‘ per of iterations, let us S that e(x) = e(x*1). Note that if such a value exists then
Fig. 4 BP EXIT functione — l;eucngrfsriségzip‘;yg]ﬁpetfgcﬂIy’ we must havee’(x) > 0. If no such value exists then we
hBP(e). : have already found the sought after partition and we stop.
oo. An exact expression for the Otherwise defing’ as the largest nonnegative valuexof x*
average asymptotic BP EXIT curve for LDPC ensembles 8 which ¢/(x) = 0. As before, if no such value exists then

eacs:|ly cc()jmp:lr;[edf V":l the E:E mgtthod f[ls'gh [1(?] i lati etx’ = 0 and stop. Without loss we can eliminate from the
onsider the fixed-point condition for the density evoln IOresultmg partition any interval of zero length. Létdenote

0 ‘ 1

equations, the number of remaining intervals of nonzero length. Ndte, i
el —p(1—x)) =x. the BP threshold happens at a discontinuous phase tramsitio
(jump), thenx® = x! and ®® = ¢(x!), otherwise, if the BP
Solving fore, we gete(x) = XT=a=) € (0,1]. Inwords, threshold is g|ven by the stability condition, the#f = x° =

for each non-zero fixed- pomﬁo%ensﬂy evolutlon there is aand¢®® = ¢(x"). See also Fidl8.
unique channel parameterAt this fixed-point the asymptotic ~ Corollary 1: Assume we are given a dd pai#, p) and
average BP EXIT function equalS(1 — p(1 —x)). If €(x) is that transmission takes place over the BEC. I®t = £
monotonically increasing ir over the whole rang@, 1], then Uiein [x!,%)U{1} be the partition associated td, p). Define
the BP EXIT curve is given in parametric form by €® = ¢(x'). Then the BP EXIT functiom:®(¢) is equal to
Al — (1 — ' 6) Zero forOl Se<e” and fore > ¢* it has the parametric
(), AL = p(1 =) © characterization
For some ensembles (e.g., regular cycle-code ensenplas) _ _
is indeed monotone increasing over the whole raftge], (e(x), A(L = p(1 = %)),
but for most ensembles this is not true. In this case we hawherex takes on all values id.



Fact 1 (Regular LDPC Ensembles “Jump” at Most Once)form by
Consider the regular dd pai\(z), p(x)) = (2271 277 1). cep
Then the function(x) £ sg—*r—7 has a unique minimum (e, h77) = (e(x), AQL = p(1 = %)),
in the range|0,1]. Let x* denote the location of this wheree(x) = m andx € [0, 1].
minimum. Thene(x) is strictly decreasing or{0,x*) and Theorem 8 (Area Theorem for EBP Decoding)ssume

strictly increasing on(x®, 1). Moreover,x* = 0 if and only we are given a dd paif), p) of design rate~. Then the EBP

if 1=2. EXIT curve satisfies
Proof: Note thate(1) = 1 and by direct calculation we 1
see that’(1) = 1. Therefore, eithee(x) takes on its minimum R (x)de(x) = 7.

value within the interval0, 1] for x = 0 or its minimum value
is in the interior of the regiof0, 1]. Computing explicitly the
derivative ofe(x), we see that the location of the minima of root
e(x) must be a root of¥/ (x) 21— (1 —x)* 1 — (1 —1)(r —
1)(1—x)*2x. FurthermoréV’(x) = —(r—1)(1—x)*3{(1—
2) —[(L—=1)(r — 1) — 1]x}. Notice thatiV(0) = 0, W'(0) =
—(r—1)(1—-2) < 0 andW (1) = 1. By the Intermediate Value
Theorem,W (x) vanishes at least once (A, 1). Suppose now
that W (x) vanishes more than once (i, 1), and consider leaves
the first two such zerog;, x,. It follows that W’(x) must
vanish at least twice: once (Iﬁ), Xl) and once ir‘(xl,XQ). On Fig. 7. Graph of a small tree code: computation tree of depih for the
L .. . regular (2,4) LDPC ensemble.
the other end, the above explicit expression implies tiatx)
vanishes just once if0, 1), atx = (1—2)/[(1—1)(x—1)—1].
ThereforelW (x) has exactly one root if0, 1). See also [25]. (i) The first proof applies only it(x) < 1 for x € (0, 1].
B This in turn happens only i'(0) > 0, i.e., if the ensemble
A dynamic interpretation of the convergence of the BP dé&as a non-trivial stability condition. We use the (Genefaba
coding when the number of iteratiots— oo is shown in Theorem for transmission over binary erasure channelsavher
Appendix M using component EXIT curves. It is furthewe allow the parameter of the channel to vary as a function
shown in Appendifdll and Theorefnll1 how to compute thef the bit position. First, let us assume that the ensemble is
area under the BP EXIT curve. The calculations show thét, r)-regular. Consider a variable node and the corresponding
this area is always larger or equal the design rate. Moreovesmputation tree of depth one as shown in . 7. Let us
some calculus reveals that, whenever the BP EXIT functidarther define two channel families. The first is the family
has discontinuities, then the area is strictly larger thiae t{BEC(x)}._,. The second one is the familyBEC(e(x))}L_,
design rater. wheree(x) £ s—A1=sy)- The two families are parametrized
by a common parametearwhich is the fixed-point of density
evolution: they are smooth sincéx) is differentiable with
respect tox. Let us now assume that the bit associated to
}E8P the root node is passed through a channel BES), while
the ones associated to the leaf nodes are passed through a
channel BECx). We can apply the General Area Theorem:
let X = (X1,...,X141xx—1)) be the transmitted codeword
chosen uniformly at random from the tree code ang) be
the result of passing’ through the respective erasure channels
parameterized by the common parametefhe General Area
Theorem states thaf (X |Y(x=1)) - H(X |Y(x=0)) =
H(X) is equal to the sum of the integrals of the individual
EXIT curves, where the integral extends fram= 0 to x = 1.
0 There are two types of individual EXIT curves, namely the one
Fig. 6. EBP EXIT function{(e(x), A(y(x)))},- associated to the root node, calbjboi(x) and thel(r—1) ones
associated to the leaf nodes, call they(x). To summarize,

Surprisingly, we can apply the Generalized Area The(t)r-]e General Area Theorem states

. . . 1 1
rem also to BP decoding if we consider tietendedBP _/ /
H(X)= h d 1(r—1 h dx.
EXIT (EBP) curve. Figlp shows this EBP EXIT curve for 1 %) = [ froot(x) de(x) +-1(x = 1) | hieat(x)cx

the running example, i.e., for the dd péi, y°). We will S€€ Note thatH(X) = 1+1(r—1)—1=1—1(r —2) since the
shortly that this EBP EXIT curve plays a central role in Oqumputation tree contains+ 1(r — 1) variable nodes and

investigation. First, let us give its formal definition. 1 1
S : check nodes. Moreovef, h dx= [ 1—p(l—x)dx =
Definition 3: Assume we are given a dd p&iA, p). The Yo Peaf(x)de = J, Pl —x)dx

EBP EXIT curve, denote it byi*, is given in parametric  5Recall that0 < e(x) < 1 for all x € [0, 1] by assumption.

Proof: We will g0|ve two proofs of this fact.

C. Extended BP EXIT Curve




(r — 1)/r since the message flowing from the root node tordinary graph by mapping the check nodes to vertices and
the check nodes is erased with probability(Recall that the variable nodes to edges. The average degree of such a
x = e(x)A(1 — p(1 —x)), where(\(x), p(x)) = (x*~1,x*~1). graph ise\ (0)p'(1) > 1 and therefore a finite fraction of its
Moreover, observe that the result could also be obtainedrtices belong to loops [26]. If a bit belongs to such a loop,
by applying the Area Theorem locally to the Single-Parityit is not determined by the received message: in particular
Check code). Collecting these observations and solving fB[X;|Y] = 1/2. In fact, there exist a codeword such that

fol hroot(x)de(x), we get x; = 1: just setz; = 1 if j belongs to some fixed loop
1 throughi and 0 otherwise. Since there is a finite fraction

/ Proot(x)de(x) =1 —1/r =, of such verticesh(e) > 0 (if the limit exist) and therefore

0 € > ", We reached a contradiction, therefet¢® < 5@ as

as claimed sincéio = h®°. The irregular case follows in claimed.

the same manner: we consider the ensemble of computatioNVhile € and 5" are simple quantities, the threshold
trees of depth one where the degree of the root note€l§” is not as easy to compute. In this section we will
chosen according to the node degree distributidm) and Prove anupper-boundon €**” in terms of the (extended) BP
each edge emanating from this root node is connected td=&IT curve. In the next sections, we will see that in fact this
check node whose degree is chosen according to the e@gend is tight for a large class of ensembles. The key to this
degree distributionp(z). As before, leaf nodes experiencdound is to associate the Area Theorem with the following
the channel BE(k), whereas the root node experiences thtuitive inequality.

channel BECc(x)). We apply the General Area Theorem to Lemma 1:Consider a dd pair(), p) and the associated
each such choice and average with the respective prolieilitEXIT functionsh®* and h**. Thenh"** < h®".

(i4) The second proof applies in all cases. Applying inte- Proof: Note that Lemmd]l expresses the natural state-
gration by parts twice we can write ment that BP processing is in general suboptimal. For a

L —— given lengthn, pick a code at random from LDR®, p, n).
/ hEP (x) e (x) = hEBP(X)e(X)|1 _ / dr (X)e(x)dx Call ®% the extrinsic BP estimate of bit and note that
0 =0 Jo dx o* = O¥(Y.,;), i.e., the extrinsic BP estimate is a well

@4 w L 1 d defined function of,;. The Data Processing Theorem asserts
=1-A(1) 0 zp'(1 - z)dx that H(X;|Y.;) < H(X;|®%(Y.;)). This is true for all codes

1 1 in LDPC(\, p, n). Therefore taking first the average over the
(xp(l - x)‘x:() +Jo p(1 - x)dx) ensemble and second the limit when the blocklength oo

LA (x)dx (assuming the limit of the MAP EXIT function exists), we get

Jo A®)
_ / 11y hMP(e) < h®(e). [ |
=1-A(1)/T'1Q) =, L -

Because of Lemméfl 1, it is of course not surprising that

where (a) follows since h®"(x) = A/(1)f01*f’<1*x> Mx)dx the integral under®™ is larger or equal than the asymptotic

andA’(1) =1/ fol . Similar computations will be performedrate of the code,s as pointed out in Sectidn1IAB. In most

several times throughout this paper. In this respect it fedga O the cases encountered in practicer= ras (see Section
to be able to refer to two basic facts related to this intégnat 1) the area under the MAP EXIT curve is thereforeand

which are summarized as Lemnial 14 and Lemimh 15 the area under the BP EXIT curve is strictly larger thaif
AppendixIITA m and only if the curve exhibits discontinuities (in the alzen

of discontinuities, the two curves coincide and the MAP/BP
threshold is given by the stability condition).
Examplel refines and illustrates this observation by show-
ing that the BP and MAP threshold might be equal even if
Assume that transmission takes places over BEGSiven  their respective EXIT functions are not pointwise equal.
a dd pair(), p), we trivially have the relations Example 1:Consider the dd pair(\,p) = (0.4z +
P < M < min (S (Staby ) 0.62°%, 2%) and the corresponding LDPC ensemble with design
rater = 0.5. Using a weight enumerator function, see, e.g.,
where 3" and 5 denote, respectively, the Shannon an8ection[Y¥, one can show that = rys = J h*. A quick
stability threshold. As we have discussed, it is straightfod look shows that the BP threshold is given by the stability
to compute:*>* by means of DE anef® < ¢"*" follows from the condition, i.e., it ise® ~ 0.4167 obtained forx ~ x° = 0.
sub-optimality of BP decoding. The inequaligy*® < ¢S" = When the parameter &’ ~ 0.04828, i.e., ate’ ~ 0.4691,
1 —r is a rephrasing of the Channel Coding Theorem. Finally discontinuity of the BP EXIT curve appears and the edge
P < S — 1 /(\(0)p'(1)) can be proved through theerasure probability “jumps” to x! ~ 0.3309. This situation is
following graph-theoretic argument. Assume, by contriic shown in Fig[B. Since the BP threshold is determined by the
thate"® > €S and lete be such thatS® < ¢ < ¢"°. Notice stability condition, as explained previously we haffe= €.
that ¢S < ¢ is equivalent tae)\'(0)p’(1) > 1. Consider now This is true despite the fact that the integral under the BP
the residual Tanner graph once the received variable nod§IT is larger thanr = 7,4
have been pruned, and focus on the subgraph of degree Recall that the Area Theorem asserts tbfd%l "P(e)de =
variable nodes. Such a Tanner graph can be identified withiag wherer,s is the asymptotic rate of the ensemble defined

=1

IV. AN UPPERBOUND FOR THEMAXIMUM A
POSTERIORITHRESHOLD



A

the polynomialy(x) = 1 — p(1 — x) and, forx € (0,1] the
function e(x) £ G- Assume thak(x) is increasing over
[x®",1]. Let x* be the unique root of the polynomial

i i A1
o |  P@ ANy -
8P : | (1)
in the interval[x®®, 1]. Thene"® = ¢(x*).
51 | Proof: Recall that ife(x) is increasing ovefx®, 1] then
z ! we have the parametric representationi8f(e) as given in
@). Using Lemmad14 anf[15 we can express the inte-
@) (b) gral f;MAP h®(e)de as a function ofe"*". More precisely, we
parametrizee"*” by x and express the integral as a function
Fig. 8. BP EXIT entropy curve with 1 discontinuity€1) for which the BP  Of x. Equating the result to(\, p) = 1 — A’(1)/I'(1) and
thresholde®” = M4 is given by the stability condition: (a) Channel entropysolving for x leads to the polynomial conditio®(x) = 0
i — i — hBP
function x — ¢(x) (b) BP EXIT functione — h8P(e). stated above. -
Example 5:The following table compares the thresholds

: o we @nd bounds for various ensembles. Herely) (z) = =,
in Theorem[Y. By definitionh"**(e) = 0 for e < ™. A () = T2 41t 3(3) () — 28570 430614707 $4081.58s
10 !

. 1 AP . 10000 '
Therefore we have in facfeMAp hM®(e)de = ras. Now note A D () — 7_71429952”'2857117, and AO) () = 92 4127

that the BP decoder is in general suboptimal so #ét(c) < The threshold of thé first ensemble is given by the sta-

h®(e). Further, in generatas > (A, p). Combining these bility condition. Its exact value is7/28 ~ 0.1786.
statements we see thatef*” is a real number irje®, 1] such )
BP MAP MAP S

that fglMAp h®(e)de = r(\, p) then fglMAp WP (e)de < rae We Alz) PS(“?)6 ¢ € € €
conclude that for such @*", e"* < e°. Let us summarize a A"(z) 2%~ 01786 01786 0.1786 0.3048
slightly strengthened version of this observation as a lamm Af)(l’) % 0.4236 0.4948 0.4948 0.5024
Lemma 2 (First Upper Bound oet*): Assume we are AV (2) z 0.4804 0.4935 0.4935 0.5000
)
)

[1-T(1—x)]+e(x)A(y(x)),

given a dd pair(), p). Let h®(¢) denote the associated BP /\E:(z l‘j 0.5955  0.6979 0.6979  0.7000
EXIT function and lete”® be the unique real number in * (z x 0.3440 0.3899 0.3899  0.4000

BP 1 BP — MAP —MAP
[*°, 1] such that [ h¥(c)de = r(), p). Thene™ < &, 0 polynomial P(x) provides in fact a fundamental char-

1 1+1 —MAP — — 1
If in addition e = ¢ then " = ¢, and in fact ,.iorzation of the MAP threshold and has some important

h*(€) = h*(e) for all € € [0, 1]. _ properties. These are more conveniently stated in terms of a
Proof: We have already discussed the first part of th'_»qightly more general concept

lemma. To see the second parteif” = ¢ then by [T) we " peginition 4: The trial entropy for the channel BEG)

have a lower and an upper bound that match and therefore Y& ciated to the dd paih, ) is the bi-variate polynomial
have equality. This can only happen if the two EXIT functions ’

are in fact identical (and ifas = (A, p)). ., LA D)x(1 — v) — A'(1) 1-T(1— A
Example 2:For the dd pair(A(z), p(z)) = (x,2%), we (%) _( )x( Y)_ INQ! | ( X_)] T eA)-
obtain 2" = 1/3 = ¢**. Therefore, for this case the MAPA few properties of the trial entropy are listed in the foliog.

EXIT function is equal to the BP EXIT function and in _

particular both decoders have equal thresholds. Lemma 4:Let (), p) be a dd pair and’(x,y) the corre-
Example 3:For the dd pair(\(z), p(z)) = (22,2°), we sponding trial entropy. Consider furthermore the DE eapunesti

obtaine"® — 102-Tv21 ., () 647426. Note that this dd pair has [OF the ensemblec,.., = eA(ye), yer1 = 1 = p(1 —x), ¢

rate 1/4 so that this upper bound on the threshold should H&Nd the iteration number. Then (in what follows we always

compared to the Shannon lindiy4 = 0.75. considerx, y € [0, 1])
Example 4:For the dd pair (A(z),p(z)) — 1) The fixed points of density evolution are stationary
(22, 2°) of our running example, we get points of the trial entropy. Vice versa, any stationary
e 7_m_\/m point of the trial entropy is a fixed point of density
e = [rror— — N evolution.
of e (-prmmEm T ) 2) Plx) = P.qo(x.3(2)).
. R 253 R 1 _ 3) Px=1)=Py1(x=1,y=1)=r(\p).
with ¢ = m andb = (55 + 30 v/51) . Numerically, 4) Leta £ (e, = e(x0),h"(x0)) and b = (¢, =
% ~~ (.4881508841915644. The Shannon threshold for this €(xp), h™"(xp)) be two points on the EBP EXIT curve
ensemble i€ 5. (with %, , € (0,1]) and definey,;, =1 — p(1 — x4p)-
For a dd pair which exhibits a single jump the computation of Then
this upper bound is made somewhat easier by the following b cop
lemma. Note that by FaEi 1 this lemma is applicable to regular h=(e(x)) de(x) = Pe, (x5, y0) = Pe, (%asYa) -
ensembles. Proof: @@ is proved by explicity computing the partial

Lemma 3:Assume we are given a dd pdih, p). Define derivatives ofP.(x,y) with respect tox andy: 0, P.(x,y) =
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N[ —y = p(1 —x)], OPc(x,y) = AN(1)[-x + eX(y)]. (since P(x) is a polynomial, X is finite). Equivalently, X is
Since A’(1) > 0, the stationarity condition®, P.(x,y) = 0 the set ofx, € (0,1] such thatfxl* hE(x) de(x) = r(A, p).
andd, P.(x,y) = 0 are equivalent to the fixed point conditionsThen ¢"** = min{e(x*); x € X'}.

for DE. @) and [[B) are elementary algebra. In order to prove

@), notice that we havé, P (x,y) = d;P(x,y) = 0 at any

point (x,y(x), e(x)) along the EBP EXIT curve. This follows V. COUNTING ARGUMENT

from the fact that points on the EBP EXIT curve are fixed

points of density evolution. Therefore We will now describe a counting argument which yields an

alternative proof of Lemmid 2. More interestingly, the arguntn
3—P€(x)(x,y(x)) = A(y(x)) %0() = hE(e(x)) %(X). can be strengthened to obtain an easy-to-evaluate sufficien
X X X condition for tightness of the upper-bound.
The thesis follows by integrating over. Equivalently, we  The basic idea is quite simple. Recall that we define the
could have used again Lemnfad 14 15. m MAP threshold as the maximum of all channel parameters for
Unfortunately, the upper-bound stated in Lemfha 2 is nethich the normalized conditional entropy converges to zero
always tight. In particular, this can happen if the EBRs the block length tends to infinity. For the binary erasure
EXIT curve exhibits multiple jumps (i.e., if(x) has more channel, the conditional entropy is equal to the logarithm
than one local maximum in the interved, 1]). We will state of the number of codewords which are compatible with the
a precise sufficient condition for tightness in the nextisect received word. Therefore, a first naive way of upper bounding
An improved upper bound is obtained as follows. the MAP threshold consists in lower bounding the expected
Theorem 9 (Improved Upper-Bound eff®): Assume we number of codewords in the residual graph, after elimimgatin
are given a dd paif), p). Let h*°(¢) denote the associatedthe received variables. If, for a given channel parametés, t
EBP EXIT function and lete"” = e(x*), h*"(x*)) be a point lower bound is exponential with a strictly positive expoten
on this curve. Assume thafxl* hE*(x)de(x) = 7()\,p) and then the corresponding conditional entropy is strictlyifes
that there exist na’ € (x*, 1] such thate(x’) = ¢(x*). Then and we are operating above the threshold. It turns out that
VAP < VAP, a much better result is obtained by considering the residual
The proof of this theorem will be given in Sectignl VI usinggraph after iterative decoding has been applied. In fags, th
the so-called Maxwell construction. Notice that in genersimple modification allows one to obtain matching upper and
there can be more than one valueecfatisfying the theorem lower bounds in a large number of cases.
hypotheses. We shall always use the sym#ydl to refer to Let G be chosen uniformly at random from the ensemble
the smallest such value. On the other hand, it is a consequetisaracterized b = (A, T"). Assume further that transmission
of the proof of theorem that there always exists at least otekes place over BEE) and that a BP decoder is applied to
such value. the received sequence. Denotedy) the residual graph after
As before, the following lemma simplifies the computatiodecoding has halted, and 8., = (Ag(), I'g(e)) its degree
of the upper bound by stating the following more expliciprofile (i.e., the fraction of nodes of any given degree). We
characterization. adopt here the convention of normalizing the dd paiG@f)
Lemma 5:Consider a dd paif), p). Let x* € (0,1] be a with respect to the number of variable nodes and check nodes
root of the polynomialP(x) defined in [B), such that therein theoriginal graph. Therefore) (1) < 1 is the number of
exist nox’ € (x*,1] with e(x') = e(x*). Thene"” < ¢(x*), variable nodes iG(e) divided byn. Analogouslyl's)(1) < 1

ande"" is the smallest among such upper bounds. is the number of check nodesdife) divided bynA’(1)/T(1).
Proof: Let x* be defined as in the statement. Then, by |t is shown in [16] that, conditioned on the degree profile
Lemmal3, points[12) [43) andl(4): of the residual graph@(e) is uniformly distributed. The
1 dd pairZg) itself is of course a random quantity because of
/ h¥(x) de(x) = P(1) — P(x™) = r(\, p) — P(x"). the channel randomness. However, it is is sharply condexitra

around its expected value. For increasing blocklengths thi
Therefore,fxl* hEP(x) de(x) = (), p) if and only if P(x*) = expected value converges B2 = (A, I'¢), which is given

0. m b
For a large family of dd pairs the upper bound stated in R
Theorem[D is indeed tight. Nevertheless, it is possible to Ae(z) = eA(zy), (8)

construct examples where we can not evaluate the bound atally () £ (1 — x4+ zx) —=T(1 —x) —zxI"(1 —x).  (9)
rootsx* of P(x) since for some of those roots there exists a

pointx’ € (x*, 1] with €(x") = €(x*). In these cases we expecHere, x andy denote the fraction of erased messages at the
the bound not to be tight. Indeed, we conjecture that theaexfixed point of the BP decoder. More precisetye [0,1] is the
condition on the roots oP(x) are not necessary and that theargest solution ok = eA(1—p(1—x)) andy = 1 —p(1 —x).
MAP threshold is in general given by the following statementhe precise concentration statement follows.

Conjectgre l:Consider a degree diStribUt_ion pal,p) and  erpe standard dd pair from the node perspective of the relsighah
the associated polynomidrt(x) defined as in[3). Left C when transmission takes place over BEC(s then simply given by

(0,1] be the set of positive roots @?(x) in the interval(0,1] (3. +<3})-
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Lemma 6:Let e € (0,1] be a continuity point ofk(¢) (we the exponentim,, ... + log, (E[Ng(enA’(1))]) is given by the

shall call such ar non-exceptiondl Then, for any¢ > 0, infimum with respect tas,v > 0 of
lim Pr{d(Zg),Zc) > &} =0. (10) (1)
n—00 {d(Ze0,=e) = ¢} Xl:Al log, (1+u')—A'(1)elog, u—|— m ZF logy g- (v

Here,d(-,-) denotes thd.; distance
— AN (1elogyv — A’( Yh(e). (14)

(=8) Z|A1 Al +Z|F —TIal. (11) We want to determine the exponent corresponding to the

The proof is deferred to Appendix 1. expected number of codewords, i.Bm, . = log, (E[Ng)),

Under the zero-codeword assumption, the set of codewotBere N = >, Ne(£). Since there is only a polynomial
compatible with the received bits coincides with the set gjumber of “types” (numberg) this exponent is equal to the
codewords of the residual graph. Their expected number cgtpremum of[(14) over all < e < 1. In summary, the sought
be computed through standard combinatorial tools. The kaffer exponent is given by a stationary point of the function
idea here is that, under suitable conditions on the dd p&ir @ated in [IW) with respect to, v ande.
the residual graph), the actual rate of codes from the (esid ~ Take the derivative with respecttoThis givese = uv/(1+
ensemble is close to the design rate. We state here a slightly. If we substitute this expression ferinto (I4), subtract
strengthened version of this result from [27]. the design rate(A,I'), and rearrange the terms somewhat we

Lemma 7:Let G be chosen uniformly at random from theget [I2). Next, if we take the derivative with respectit@and
ensemble LDPG:, Z) =LDPC(n, A, T'), let r¢ be its rate and solve forv we get get[(IB). In summaryi=(u) is a function

r £ 1—A/(1)/T’(1) be the design rate. Consider the functio§O that

Ue(u), log, E[Ng] = n{r(A,T) + sup P=(u)+wy},
u€[0,00)
B , (1+uv) N
Va(u) = — A'(1) log, [(1 Tu)1+ U)} wherew, = o(1). In particular, by explicit computation we
14w see thatUz(u = 1) = 0. A closer look shows that =
+ ZAI log, {W} 1 corresponds to the exponent of codewords of weigft.

Therefore, the condition that the global maximumf (u)
A’ 1—v\* is achieved at, = 1 is equivalent to the condition that the
Il 1 12
+ Z 082 [ + (1 + v ) ] - (12 expected weight enumerator is dominated by codewords of

\ -1 \ weight (close to):/2. Therefore
o 1 1ut
v (; 1+ u1> (zl: 1+ut ) ' (13) Pr{r¢ > r(A,T) + &} =Pr {NG > Qn(f_w")E[NG]}

i . i —Bn¢
Assume thatl=(u) takes on its global maximum in the range se ’

u € [0,00) atu = 1. Then there exist&? > 0 such that, for where the step follows from the Markov inequality i =
any{ > 0, andn > no(&, E), (log2)/2 andw, < &/2 for anyn > ny.
Pr{|rg — r(A,T)| > £} < e~ 1€ Finally, we observe that, sinog < 1
—Bn
Moreover, there exist’ > 0 such that, fom > ng(¢, E), Effrs —r(A D)l < & +e777¢,
and the second claim follows by choosigg= logn/Bn. H
E[jre —r(A,T)|| < C We would like to apply this result to the residual graph
Proof: The idea of the proof is the following. For anyG(e). Since the degree profile af(c) is a random variable,
parity-check ensemble we have > (A, T). If it is true that we need a preliminary observation on the “robustness” of the
the expected value of the rate (more precisely, the logarithypotheses in the Lemnia 7.
of the expected number of codewords divided by the length) isLemma 8:Let ¥=(-) be defined as in LemmBl 7. Then
close to the design rate, then we can use the Markov inegualit=(u) achieves its maximum over < [0, +o0) in [0, 1].
to show that most codes have rate close to the design rate. Moreover, there exists a constast> 0 such that, for any
Let us start by computing the exponent of the expectddo degree distribution pairs = (A,T') and= = (A,T), and
number of codewords. We know from [27]-[36] that th@nyu € [0,1],
expected number of codewords involvirdg edges is given

logn

o [W=(u) = We(u)| < AdE,E)(1-w)?.  (15)
y For the proof we refer to Appendix II.
iy RESIEOY S We turn now to the main result of this section.
Coef{Hl(l +ult) ™ I, ge ()" 7O Py Theorem 10:Let G be a code picked uniformly at random
E[Nc(E)] = Q) » from the ensemble LDP@, A,T) and let Hg(X|Y) be the
E

conditional entropy of the transmitted message when the cod
where ¢.(v) = ((1 + v)* + (1 — v)*)/2. Let n tend to is used for communicating over BEQ. Denote byP,(x,y)
infinity and definee = E/(nA’(1). From standard argumentsthe corresponding trial entropy. L&, = (A, T.) be the
presented in the cited papers it is known that, for a fixed typical degree distribution pair of the residual graph, see
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Egs. [B), [®), andV=_(z) be defined as in Lemmid 7, Eq. Now we can apply Lemmil 7 to get
@).

Assume that¥z_(u) achieves its global maximum as a E[HG(le —re| < ) Pre(E) [Efrg(] — r(2))|

function of u € [0,00) at w = 1, with ¥Z (1) < 0, and " EeN(€)
that e is non-exceptional. Then +Z Pr é ) Jr( é —re| +w(n, )
1 HGN(é)
_e/\/(g)

wherex € [0, 1] is the largest solution af = eA(1—p(1—x))
andy =1 —p(1 —x).

Proof: As above, we denote b§(e) the residual graph
after BP decoding and by its rate normalized to the orig- [7(E1) = 7(Z2)| < Bd(E1;22) .
inal blocklengthn. Notice thatH(X|Y') = nrg(): iterative Therefore,
decoding does not exclude any codeword compatible with the

wherew’(n, &) = w(n, &) + Clogn/n. Notice that there exist
B > 0 such that for any paiE;, =2

received bits. Furthermore, the design rate (always nazethl I l]E x|l < B
to n) for the dd pair of the residual graph is s | [Ho(X|Y)] = re| < BE.
A1) The claim follows by noticing thag can be chosen arbitrarily
(Zg(e)) = Age (1) — T Lo (1). small. -
S Theorem[ID allows to compute the exact MAP threshold

whenever the required conditions are verified. An explicit
We further introduce the notation for the design rate of the characterization is given below.

typical dd pair of the residual graph. Using Ed3. (8) ddd (9). Corollary 2: Consider transmission over BEG using ele-

we can find ments picked uniformly at random from the ensemflel’).
, Let x*,y* > 0 be the DE fixed-point achieved by the BP

re = N(1)p(1 — x)x — A/(l) [1-T(1 —x)]+eA(y) deCOdgr at a non-exceptignal erasure probabifiti.e., x*

(1) (0,1] is the largest solution ok* = e*\(1 — p(1 — x*))).

= P.(x,y), Assume thatP.-(x*,y*) = 0 and that¥z_, (u) < 0 for

u € [0, +00) together withWz (1) < 0. Let W C [0, +00)
where the last step follows from the fixed-point conditior=  be the set of points, 7 1 such that¥= . (u) = 0. If, for any
1—p(1—x). ueW, 0.9z, (u) < 0.¥=_. (1), thene™” = ¢*.

Since by assumptio=, (1) achieves its global maximum Proof: We claim that there e>_<|_st a > 0 such that the
atu = 1, with 92 (1) < 0, and U=, (1 ) — 0, there exists hypothesis of Theoref1L0 are verified for ang (e*, * +4).
a positive constans such thatlz, (u) < —&(1 — u)? for Before proving this claim, let us show that it implies thedise

any u € [0,1]. As a consequence of Lemrii 8, there exi&onsider any € (e*, " +0) and letx, y be the corresponding
density evolution fixed point. Then

a ¢ > 0 such that, for any dd paiE, with d(Z,Z.) < ¢,

Uz (u) < 5(1—u)/2forue[01] lim
Let Pr.(2) be the probability that the degree distribution n—oo n

pair of the residual grapli(e) is = = (A, T). Denote byE \oreover P.- (x(¢*), y(¢*)) = 0 by hypothesis and

expectation with respect to a uniformly random code in the d

(7, A,T) ensemble (her& = nA(1)). Denote by\ (¢) the —P.(x(€),y(€)) = Aly(e)) > 0.

set of dd pairE, such thati(=, =) < £. The above remarks de

imply that we can apply Lemnid 7 to any ensemble\,f(f), Therefore P.(x(¢),y(e)) > 0 for any e > ¢*. This implies

E[H(X|Y)] = P.(x(¢),y(¢)) Ve € (¢, ¢" +9).

Then P < ¢*. On the other hanl[H (X |Y)] is strictly increasing
with e. This implies
= 1
E[Hq(X[Y)] ZPre Efre (o) lim —E[H(X|Y)] =0, Veel0,e],
n—oo N
— Z Pr( é Efrgo)] +w(n, £). which in turn impliese"*® > ¢* and, thereforeg"” = ¢*.

Let us now prove the claim. By assumptiefi is non-
exceptional and therefore the residual dd @aiis continuous
The remainder can be estimated by noticing that) < 1 & €. This implies, via Lfm*mQB that, for any > 0, there
while the probability of= ¢ A (¢) is bounded by LemmAl 6. existd such that fore & [¢7, ¢" +4) and anyu € [0, 1],
Therefore Uz, (u) — V=, (u)] < (1 —u)?.

EEN ()

. _ Together with¥%Z (1) < 0, this implies that, ifd is small
lim w(n,§) =0. Ee .
n—o0 enough,u = 1 is a local maximum of¥'z_(u). It follows
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0 6MAF' 1 0 € MAP MAP,2 1

Fig. 9. (E)BP EXIT functionh®(e). Fig. 11.  (E)BP EXIT functionh®"(e).

from the hypotheses 0. W=.. (u), u € W, that it is also a corresponding BP EXIT curve is shown in detail in Fy. 5. A
global maximum. B further discussion of this ensemble can be found in Example

The conditions in the above corollary are relatively easy [lll. Let us again apply Theorell10. We start with = 1
verify. Let us demonstrate this by means of two examples.
Example 6 (Ensemble LDPE, #°)): Consider the(3, 6)-

regular LDPC ensemble. For convenience of the reader its EBP 0 0
EXIT curve is repeated in Fid 9. / /
Let us apply Theoreri 10. We start withy = 1 (point -3 - -5
A). The residual degree distribution at this point corresm / A /B / c \
of course to thg3,6)-ensemble itself. As shown in the left- . _al , _al ,
most picture in Fig[Tlo, the corresponding functidn: (u) : vtz = oz = o2
has only a single maximum at = 1 and one can verify 0 0
that UZ(1) < 0. Therefore, by LemmBl 7 we know that with
high probability the rate of a randomly chosen element from . 1\/ )
this ensemble is close to the design rate. Next, consider tﬁeOJ E g E 40 G
0 0 0 ~30 1 3 —20 132 —320 1 3
\ Fig. 12.  Function¥'z(u) for the dd pair formed by the residual ensemble
. . L inA B, C, E, Fand G.
4 4 4
/ A \ B C (point A). The residual degree distribution corresponds of

. S —% i 5 —3% . course to the ensemble itself. As the top left-most pictare i

Fig. 10.  Function¥'z= () for the dd pair formed by the residual ensemblel:l(‘g'.m:l ShOWS.’ the. hypothese§_ are fulfilled and we conclude
in A, B and C. again that with high probability the rate of a randomly
chosen element from this ensemble is close to the design
pointep = 0.52 (point B). Again, the conditions are verified,rate which is equal te ~ 0.4872. Now decrease smoothly.
and therefore the conditional entropy at this point is givehhe conditions of TheoreriJl0 stay fulfilled until we get
by equation[[d6). We getl (X |Y(eg)) ~ 0.02755. Finally, to e =~ 0.5313 (point B). At this point a second global
consider the “critical” pointec ~ 0.48815. As one can see maximum of the function?=(u) occurs. As the pictures in
from the right-most picture in Fid_10, this is the point athe bottom row of Fig[ll show, the hypotheses of Theorem
which a second global maximum appears. Just to the rigl are again fulfilled over the whole segment from E (the first
of the point the conditions of Theorefn]10 are still fulfilledthreshold of the BP decoder corresponding:to~ 0.5156)
whereas to the left of it they are violated. Further, at thi@ll G. In particular, at the point G, which corresponds to
point Eq. [I6) states thaf (X | Y (ec)) = 0. We conclude that e = €"™* ~ 0.4913, the trial entropy reaches zero, which
" = e & 0.48815, confirming our result from Exampld 4.shows that this is the MAP threshold.
Since the bound is tight at the MAP threshold it follows that We see that for this example Theordml 10 allows us to
A" = BB for all points “to the right” of the MAP threshold construct the MAP EXIT curve for the segment from A to
(this is true sincer"® < h® always, and the tightness ofB and the segment from E to G. Over both these segments
the bound at the MAP threshold shows that the area undee haveh"” = h®. In summary, we can determine the MAP
h® is exactly equal to the rate). We see that in this simpthreshold and we see that the balance condition applies “at
case Theorerf10 allows us to construct the complete MARe jump G” (the MAP threshold). But the straightforward
EXIT curve. application of Theorei 10 does not provide us with a means of
Example 7 (Ensemble LDPW, x%)): Consider determiningh"** between the points B and D. Intuitively”
the ensemble described in Figl 3. Its EPB EXIT curve ishould go from B to C (which correspondseo ~ 0.5156). At
repeated for the convenience of the reader in Eig. 11. Ttes point one would hope that a local balance conditionragai

Nl=
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applies and that the MAP EXIT curve jumps to the “lower f
branch” to point D. It should then continue smoothly unti th

point G (the MAP threshold) at which it finally jumps to zero.
As we will discuss in more detail in Examplgl10, after our
analysis of the M decoder, this is indeed true, aftf is as ;
shown in Fig[B.

Assuming Theorerfi10 applies, we know that at the MAR, a P. L

threshold the matrix corresponding to the residual graph be \_ r\
comes a full rank square matrix. What happens at the jump at ‘ .y
point C? At this point the matrix corresponding to the reaidu 03 ¢

graph takes, after some suitable swapping of columns and @) ()
rows, the form

oo
<
o

ol

U v Fig. 13. Maxwell construction in thermodynamics. (a) Puess/olume
( > , diagram for the liquid-vapor phase transition (b) Van deraWaurve (using
0o w reduced variables, given bgp + %)(3\/ — 1) = 8T at the reduced
. . . . temperaturel’ = 0.85 ) and the Maxwell construction. Consider the case
where W is a full rank square matrix of dimensionof a liquid-gas phase transition of water. If a small amouftliquid is
€c (A(YC) — A(YD))- The MAP decoder can therefore solveplaced in a completely empty (and hermetically closed)dacgntainer at

: ; . room temperature, the water evaporates. The vapor exegtsye on the
the part of the equation corresponding to the submaifix walls of the container. By gradually reducing the volume loé tontainer,

we increase the vapor pressureuntil it reaches aritical value P. (which
depends on the temperature). At this point the vapor cordessnto liquid
VI. MAXWELL CONSTRUCTION water. The pressure stays constant throughout this tranafimn. When there

. . . .is no space left for the vapor, the pressure starts to rism,agad as shown
The balance condition described in Secfiod I-B and SEC“W(a) it does so very quickly (since it is difficult to compsesvater). In

[Mis strongly reminiscent of the well-known “Maxwell con-many theoretical descriptions of this phenomenon, a nonetemic pressure-

struction” in the theory of phase transitions. This is dibgmt Vvolume curve is obtained like in (b) with the Van Der Waals mlodrhe
Maxwell construction allows to modify the “unphysical” paf this curve and

brieﬂy in Fig-m- to obtain a consistent result. We want to join the two dedngabranches of
the theoretical curve with a constant-pressure line, asrobd in experiments.
At which height should we placed the horizontal line? Theibatea of the
A. Maxwell Decoder Maxwell construction is that, at the critical pressupe, the vapor and the
) o ) ) liquid are in “equilibrium”. This means that we can transfoan infinitesimal
Inspired by the statistical mechanics analogy, we will eXuantity of vapor into liquid (or vice versa) without doingya“work” on the
plain the balance condition (shown on the right in F{Ib 19ystem. Because of this reason, the vapor beg_in_s i_ts t_rramfnbn into quu_i_d
hich determines the MAP threshold by analvzing a t P.. The work done on the system in an infinitesimal transforomaiis
whic . . y y_ 9 PdV, where d” represents the variation of the volume. Using this fact, it
decoder with guessing”. The state of the algorithm can lken be shown that the above equilibrium condition implies équality of
associated to a point moving a|0ng the EBP EXIT curve. THee areas of the two regions between the horizontal line la@atiginal non-
. . monotonous pressure-volume curve. See, e.g., [37].
evolution starts at the point of full entropy and ends at zero
entropy. The analysis of this algorithm is also most conve-
niently phrased in terms of the EBP EXIT curve and implies hi o K he decod lich
a proof of Theorenfll9. Because of this balance condition W@ IS position is not known yet, the decoder replicaiasy

term this decoding algorithm the Maxwell (M) decoder. Notéunn?ng copy of the decoding process, and it procegds by
that a similar algorithm is discussed in [13] although it i&MNiNg one copy of each process under the assumption that

motivated by some more practical concerns. x; = 0 and the other one.under the asgumption that 1. _
Analogously to the usual BP decoder for the erasure chan/t ¢an happen that during the decoding process a variable
nel, the M decoder admits two equivalent descriptions:eeith"®Ceives non-erased messages from several check nodes. In
as asequential(i.e., bit-by-bit in the spirit of [16]) or as SUch a case, these messages can be distinct and, therefore,
a message-passinglgorithm. While the former approach isinconsistent. Such an event is termectentradiction Any
more intuitive, the latter allows for a simpler analysis. WEUNNing copy of the decoding process which encounters a
shall first describe the M decoder as a sequential procedGf@tradiction terminates. The decoding process finisheg on
and sketch the main features of its behavior. In the nexicsect@!l bits have been determined. At this point, each surviving

we will turn to a message-passing setting and complete f@PY outputs the determined word. Each such word is by
analysis. construction a codeword which is compatible with the reegiv

Given the received word which was transmitted ovepformation. Vice versa, for each codeword which is compati

BEC(e), the decoder proceeds iteratively as does the stand8i@ With the received information, there will be a surviving
BP decoder. At each time step a parity-check equation {R2PY- In other words, the M decoder performs a complete

volving a single undetermined variable is chosen and used!if§ decodingof the received message. Fig.J14 shows the
determine the value of the variable. This value is substtutWorkings of the M decoder by means of a specific example.

in any parity-check equation involving the same variatdiat|

any time the iterative decoding process gets stuck in a nonZHere we describe the decoder as a ‘breadth-first’ searcleguoe: at each
bifurcation we explore in parallel all the available opBorOne can easily

empty stopping set, a_ positio’ne [n] iS. chosen .uniform_ly at construct an equivalent ‘depth-first’ search: first take mpglete sequence of
random. The decoder is saidgaessa bit. If the bit associated choices and, if no codeword is found, backtrack.
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z z2 — To TG
2 3 4 6 7 9 10 1 12 13 14 15 2 3 4 6 7 9 10 1 12 13 14 15 2 3 4 7 9 10 11 12 13 14 15

(iv) Decoding bit 11 from check 8 (v) Guessing bit 2 (vi) Guagshit 6
zotx Zotx ze+T12 z6+T12
2776 T2+a6 27 To+T6 wo ¥ watwg Y
2 136 ‘/1/‘42 % 2 T 8 2 1336 ‘/1/‘42 10 ‘/ﬁ 6 :::22 15

(vii) Decoding bit 28 {2 + x¢) from check 6 (viii) Decoding bit 194(s) from check 14 (ix) Guessing bit 12
To+T12
4 r2+x12 T S
e mep m w2 T o, = 2t
(x) Decoding bit 30 £¢ + x12 = z12) (xi) Decoding bit 24 £12) from check 3 (xii) Decoding bit 2322 + z12) from
from checks 11 and 15— zg =0 check 4
To+T12
1212 9 11:02 ‘/1/‘1122 13 90 131122 11:312
26 29 26
(xiii) Decoding bit 21 2 + x12) from check 7 (xiv) Decoding bit 2912 = z2 + z12) (xv) Decoding bit 26— z12 =0
from checks 2 and 9— x5 = 0 Final step!

Fig. 14. M decoder applied to a simple example(3a6) LDPC code of lengthn = 30. Assume that the all-zero codeword has been transmitted. At
the decoder, the received (i.e., known and equdl)tbits are removed from the bipartite graph. The remainireplgris shown in (i). The first phase is the
standard BP algorithm: in the first three steps, the decodmepds as the standard BP decoder and determines thg biisand 11, until it gets stuck in a
stopping set shown in (iv). The second phase is distincteéoMhdecoder: it is the guessing/contradiction phase. Thedircguesses the (randomly chosen)
bit 2: this means that it creates two simultaneously runningexpdne which proceeds under the assumption thet tikes the valué, the other which
assumes that this bit takes the vallieThe decoder then proceeds as the standard BP algorithmtirsyit gets stuck, it guesses a new bit and duplicates
the number of simultaneously running copies. This procesgirues until a contradiction occurs, e.g., at tie Qep (iz): the variable nodersq (either
x30 = 0 or 30 = 1 depending of which copy we are considering) is connectegvtocheck nodes of degree one. The incoming messages from tooes
arexg + x12 andxi2, respectively. Consistency now requires that+ x12 = =12, i.e., thatzg = 0, such that only the decoding copies corresponding to
xe¢ = 0 survive. Phases of guessing and phases of standard BP wigaodiht alternate. Decoding is successful (in the sengeathdAP decoder would
have succeeded) if only a single copy survives at the veryaérile decoding process. “Contradictions” can be seen asfitagations” or “conditions” in
this message-passing setting.

The corresponding instance of the decoding process istéepiacopies is doubled, while it is halved each time a contraglicti
in Fig. I3 from the perspective of the various simultaneowgcurs. Calltoy the time at which all transmitted bits have
copies. been determined and the list of decoded words is output

tout does not depend upon the particular copy of the process
Let us briefly describe how the analysis of the abow out P P P Py P

loorithm i lated he bal diti dth N consideration). Since the M decoder is a complete list
algorithm is related to the balance condition and the progfqqer ang since all output codewords have equal posterior

of TheoreniP. Instead of explaining the balance between Fobability,H(X|Y) _ fl(tout)- On the other hand'—ll(tout) is

areas as shr:nwn n F'.@ ; we cor?5|derz]r the balance Og,ﬁ ual to the total number of guesses minus the total number
two areas s own in Fidl 2. Note that these two areas d contradictions which occurred during the evolution oé th
from the previous ones only by a common term, so thg}

h dition for bal h q he ab %orithm. As we will see in greater detail in the next settio
the conc |t|o_n or balance stays unchanged. From tﬁe aDQKE total number of guesses dividedbgonverges to the area
description it follows that at any given timethere are2(*)

. _ P _ of the dark gray region in Fidl 2 (a), while the total number of
copies running, wher&/ (¢) is a natural number which evolves

TS 4 " contradictions divided by is asymptotically not larger than
with time. In fact, each time a bit is guessed, the number of
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the dark gray area in Fidl 2 (b). Therefore, as longeas
strictly larger than the value at which we have balance, call

this valuee", lim,,_, o, HHEE ()]
AP > MAP n

H1
> 0. This implies that 142

H1

Hor— H1—

xﬁ #Y \ L
We expect that the number of contradictions divided by %J /I
ME

n is indeed asymptotically equal to the dark gray area in
Fig.[@ (b). Although we are not able to prove this statement
in full generality, it follows from Theoreri10, whenever the [0) (ii)
hypotheses hold.

Fig. 16. Update rule for parity-check nodes (i) and variaibeles (ii).

:ﬁ ? ? check node iR = [r — 1]. Then
0, ifVieR, pu =0,
. e pr=qx if JER, p=x,
06066 g, fVYJER, pj#x* and3di e R, u;, =g

t  With respect to the BP decoder, the only new rule is the one
which leads top¥ = g. It is motivated as follows. Assume
Fig. 15. M decoder applied to the simple example shown in[Ey The all-

> X __
zero codeword is decoded. The initial phase coincides uéthdard message- that for all i € R we .havem B O\g and that at least _OI’]G
passing BP algorithm: a single copy of the process decodesat A ime. SUCh message ig. This means that the connected variables
After three steps, the BP decoder gets stuck in a stoppingnseseveral steps z;, ¢ € R, are either known, have been guessed themselves,
of gues_sing foII(_)W. During this phase the associated eyltridpt) increases. or can be expressed as a linear combination of guessed bits
After this guessing phase, the standard message passisg @smes. More d | h | is indeed eith itself
and more copies terminate due to inconsistent messagema@vrat variable (an at e?-St one SLfC value 'S. 'n. eed either a gue$5 itse
nodes. At the end only one copy survives. This shows thatetkisnple has or expressible as a linear combination of guesses). Sirece th
a unique MAP solution. variable connected to the outgoing edge is the sum of the
variables connected to the incoming edges, it follows thist t
variable is also expressible as a linear combination of gpges
. . o . .
B. Message-Passing Setting Therefore,;.y = g in this case. Operationally, we have—

) ) _ ) 1 lists ©4,...,0, 1 (at least one of which is non-empty)
We describe now a message-passing algorithm that is qWi4iering the check node. The outgoing I8 is obtained as

alent to the above sequential formulation. First note tha{e ynjon of the incoming lists, where indices which occur
because of the code linearity, the symmetries of the changgl eyen number of times in the incoming lists are eliminated.

and .the decoding algorithm, we can simplify our analysis byje jist@Y provides a resolution rule far; +- - - +z,_1, and
making th? all-zero codeword assumption, see [17_]- ~ therefore for the variable connected to the outgoing edge.
We assign a label:; to the variable node of index. In the above description and the definition of the message-
The label can take three possible valygs € {0,+g}. It passing rules we have ignored the possibility that the union
can be viewed as the output of some fictitious channel, agfl the incoming lists (at least one of which is non-empty)
|nd|ca_te_s_how the algor|_thm is going to treat that yanahﬂden is empty. This can happen if a complete cancellation occurs
The_ f|ct|t|ous_channel is memoryles_s: each va_nable ”Ode(@very index appears an even number of times in the incoming
assigned @ with probability1 —¢, ax with probabilitye(1—7) Jists). Fortunately, as we shall see, this assumption has no
and ag with probability ey. The parametety represents the ,fuence on the proof of Theoref 9.
fraction of guessesentured so far. (i) Update rule for a variable node of degreeAssume that

The new message-passing algorithm employs left-to-righfe index set for tha — 1 messages which enter the variable
messageg” and right-to-left messageg#’, all of which take g4e iss — [1—1]U{e}. Then

values in{0, *,g}. The meaning of th® message and the
message is the same as for the BP algorithmg Aessage 0, if el u,=0,
indicates that either the bit from which this message enesnat | x — if Vi€ L, p ==,
has been guessed or that the value of this bit can be expressed
as a linear combination of other bit values which have been
guessed. Operationally, we can think of the message g Once again, it should be enough to motivate the rule which
as being a shorthand for a non-empty list of indi¢@s = leads toy* = g. Recall thatg indicates that the bit is not
{j1,--.,Jx}. This list indicates that; is expressible as; = known but that it has either been guessed or that the bit is
xj, +-- -+, where{z;,,--- ,z;, } is a set of guessed bits.expressible as a linear combination of guessed bits. Ttwexef

This motivates the following update rules for the parityif none of the incoming messages i$)aand at least one is a
check and variable nodes shown in Higl 16. g, then the outgoing message ig.aOperationally, this means

(i) Update rule for a parity-check node of degteeAssume that the outgoing list is equal tone of the incoming non-
that the index set for thér — 1) messages which enter theempty lists. E.g., if the bit itself has been guessed (ig+

T1 T10 T11 T2 Te T28 T19 T12 T30 T24 T23 T21 T29 T26

g, fViel p#0and3jel, u =g
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g) and all other incoming messages ar¢hen the outgoing C. The Case of Tree Graphs and Some Simple Consequences

message ifi}. As for other message-passing algorithms, it is instrudtive
From the messages we can obtain estimates [n], of the  study the behavior of the M decoder on trees. In particular, w
transmitted bits (the;’s are node- rather than edge-quantitiesjill show that: (a) On a tree theequentiaM decoder guesses
In order to obtain these estimates we apply the same rulee3@ctly as many variables as there are degrees of freedom in
for the variable node update, see (ii) above, with incomingie system (implying that all these guesses are independent
messages correspondingaid of the neighboring check nodes.(b) on a tree the number dhdependengguesses ventured
In other words, for a degree variable node, we hav€ = by the (not necessarily sequential) M decoder by end of the
[1] U {e} instead ofL = [1 — 1] U {e}. decoding process is equal to the number of degrees of freedom
The consistency of the estimates implies a set of lineef the system and it can be computed inogal way; (c)
conditionson the guessed variables. Consider all the messagies same local counting formula gives in general (for Tanner
i entering a fixed variable node and the associated (possifhaphs that are not necessarily trees)ugper boundon the
empty) lists®; = {ji,--- ,ji}. Let £, p € {0,g,«} denote number of independent guesses which remain at the end of
the subsets of indiceswith p; = u. the decoding process.
1) If Lo # 0 and £, # 0, then, for anyi € £,, we have We have already explained that, for the purpose of analysi_s,
the condition we can make the all-zero codeword assumption. Therefore, in
the sequel we only have to consider linear systems of equeatio
L] mod 2. (17) vv_ith a zero rig_ht _side. We say that the M decodebisby-
bit (or sequentigl if any time the BP phase comes to a halt,
The total number of resulting conditions [i&,|. the decoder guessessagle unknown bit and then proceeds

2) If Lo = 0 and |Lg| > 2, then fixi € L,. For any by processing all consequences until no further progress is

I € £,\{i}, we have the condition achieved. |
Lemma 9 (Number Of Guesses of Sequential M Decoder):

Consider a binary linear system of equations with right side
equal to zero and degrees of freedom (i.ek, is equal to the
number of variables minus the rank of the system). Assume
) ) - that the Tanner graph associated to this system is a tre@. The
The algorithm stores in memory each new condition producgl, sequential M decoder ventures exadilguesses during
durlng its .executlon. Notlce that each conditions involvggq decoding process and all these guesses are independent.
uniquely bits; for which pi = g. It can happen that a Proof: Without loss of generality we can assume that
particular condition is either linearly dependent uporvimes  here are no check leaf nodes. In fact, whenever degree-one
ones or empty. The last case occurs if the corresponding ligheck nodes are present, the standard BP decoder can be run
are empty, which in turn may be the consequence of a previqys;i| all such nodes have been removed. For each variable
parity-check node update (see the description of the chegfde which is removed in this fashion, the rank of the system
node update rule above). Given a set of guesses, any subsefecreased by exactly one as well.
of them whose values can be chosen freely without violating\we claim that the resulting system of equations has full
any of the conditions produced by the M decoder, is said to bghk. To see this, assume to the contrary that there is a non-
independentOf course, the maximal number of independenlerg |inear combinations of equations that yields zero K.ato
guesses is equal to the number of guesses minus the NUMREFTanner graph corresponding to this subset of equatidins:
of linearly independent conditions. variable nodes have (even) degree at least two and all check
Conditionsare equivalent, in the present setting to what hayfydes have degree at least two (as argued above). It is well
been called contradictions in the description of of $ECAVI- known that a graph with minimum degree at least two contains
In fact, if one thinks of guessed bits as i.i.d. uniformlydam at |east one cycle, contradicting the hypothesis that thialin
in {0, 1} then each new, independent condition, cf. EGSl (1%raph was a tree.
([@3) is satisfied with probability /2. Consider therefore a Tanner graph which is a tree and all of
It is useful to estabilish the following convention for deits leaf nodes are variables. L&t i € [n], (r;, ¢ € [m]) denote
noting the successive message passing iterations. At'thethe degree of variable (check) noéleBy our remarks above,
iteration (witht = 0,1,...) we first update all the left-to- the corresponding system of equations has m degrees of
right messages and then all the right-to-left messages. Veedom. Therefore, it is clear that the M decoder has togjues
have therefore .- — w¥(t — 1) — p*(t) — p¥(t) — atleastn —m bits before it stops. We claim that it ventures
w*(t +1) — .... Notice that, as the number of iterationsxactlyn—m guesses, i.e., that on a tree the sequential guesses
increases, a given message can change its status accardirgydindependent
one of the transitionss — g, g — 0 or *+ — 0. Therefore At the start of the decoding process all messages are
the algorithms surely stops after a finite number of iteratio erasures. We will show that at the end of the decoding process
(at most twice the number of edges in the graph). We shafich edge carries exactly oganessage in one direction and
denote the fixed point ag*(c0), p¥(c0). At the ¢ iteration a x message in the other direction. This proves our claim:
the algorithm deliver an estimate;(¢), i € [n] of the i it implies that a variable node which has been guessed, and
transmitted bit. hence all of its outgoing messages carryg anessage, has

Tji @ =g+t x, mod 2. (18)

The total number of resulting conditions [i§,| — 1.
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no incomingg message. It is therefore not constrained blinary linear system of equations with right side equal to
any of the other guesses, i.e., it is independent. Cleatly, zero andk degrees of freedom (i.ek, is equal to the number
the end of the decoding process each edge has to cagry af variables minus the rank of the system). Assume that the
message irat least onedirection; otherwise the connected bifTanner graph associated to this system is a tree and that it
has not been determined yet, contradiction the assumptain tcontains no check nodes of degree one. Then the number of
the M decoder has halted. independenguesses ventured by the M decoder at the end of
the decoding process is equal ko Further, letG denote the
total number of guesses of the M decoder, denota‘hthe
number of incomings messages at variable nofléncluding,

if applicable, the guess of the bit itself), and By the subset

of all check nodes all of its incoming messages gr&hen

E=G-Y (15 -1)+ > (r;—1). (19)
iV i€Cy
Proof: By definition of the algorithm, at the end of the
decoding process all bits have been determined (i.e., gdess

\O \O or expressed in terms of guessed bits). This means that among
g g the guesses ventured by the M decoder there musk be
@ (b) independent such guesses. Now note that the final state of

Fig. 17. In (a) consider the messages flowing along edgessume that the the message_s IS mdep_endent_ of th_e order in WhICh the guesses
outgoingmessage (shown in a frame) switches as a consequence of a ne€ taken. It is convenient to imagine that we first ventuee th
_guehssed bit ftFOYEfirg)c t}&(-) ﬁ?szfg%v fé;lfﬁﬁ]fiSthartotzgecsoEzggiizﬁaesifwwgmk independent guesses and then apply the BP decoder. At the
l(;]dzi IeeSeriEcizl gven levels. is indica{ted in Ft)he figure, it thelfofvs that Eoth end of this phase all bits are known. Furt,her’ from Lenfiha 9
messages along edgeare g as well. The case of an edge exiting a variabléV€ Know that1? = 1 for all i € [n] andC, is the empty set.
node is shown in (b) and follows by essentially the same aegim Therefore, the stated counting formula is correct at thagest
Assume now we proceed in iterations, adding one guess at a
Let us show that it can not carryeamessage in both direc- time and propagating all its consequences. We will verigt th
tions. Initially all messages are The sequential M decoderthe counting formula stays valid. Assume therefore that the
proceeds in phases, guessing a bit and then determiningcallinting formula is correct at the start of an iteration add a
consequences of this guess during the BP phase until it gafsirther guess, lets say of variabld his extra guess increases
stuck again. Let us call one such guess followed by the BP by one and increases the number of guesses by one, keeping
phase ondteration. Let us agree that during the BP phasthe counting formula intact. Consider now the ensuing BP
the consequence of a newly guessed bit are compintedphase. Consider an edgeemanating from a variable node
order of increasing distanciEom the guessed bit. This meansj, the check node connected to it, calljitand all the edges
that we first process all edges directly connected to this lihd variable nodes connected to this check node. Assume that
(call this level zerg, then all edges at distance one (call thithe message fromto j is x (in the case that this message is
level ong and so on. Assume that when we process le¢yel alreadyg, the message does not change and there is nothing
t > 1, we encounter an edge whose outgoing (away from th@ prove). As a consequence the message fjotm i must
newly guessed bit) message switches frero g and whose be ag because of the argument above. Also, all the incoming
incoming message already g¢s We claim that then the samemessages intg but the one form must beg as well (otherwise
must have occurred at level- 1. This is quickly verified by the update rule would have been violated at ngddJpdate
checking explicitly both cases: an edge which goes fromadl the corresponding edge messages. If the messageifrom
check node to a variable node (odd leveldeft picture in to j does not change, then neither does any of the messages
Fig.[I1) and the case of an edge which goes from a varialdetgoing at the check node and the counting formula stays
node to a check node (even levejdeft picture in Fig[I¥). If valid. If, on the other hand, the outgoing message along edge
we apply this argument inductively, we see that the guessedlips to g then so do all the messages outgoing from the
variable node must have had an incoming message which wasck nodej. Assume that the check node has degree
g, contradicting the fact that the M decoder decided to guegben,C, now contains;j. This increases the right hand side
this bit. m of the counting formula by; — 1. On the other hand it also
What happens if we run the M decoder in a non-sequentiatreased? by one for alll € V which are connected to check
way, i.e., if we guess many/several bits each time we geedej, but for nodei (the corresponding message was already
stuck? In this case it can happen that some of the guessesaagp In total this decreases the right hand side of the counting
dependent. Nevertheless, the number of independent guedésemula byr; — 1. u
remaining at the end of the process is still equal to the dsgre Each part of the counting equatioh{19) has a pleasing
of freedom of the system of equations. More importantly, ointerpretation. As stated; is the total number of ventured
a tree this number of independent guesses can be compwedsses. If a variable node ha$ incoming g messages
in a local way. then these correspond & linear equations, each of which
Lemma 10 (Number of Independent Guess€s)nsider a determines the same bit. This gives rise(i¢ — 1) linear
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conditions which theG guesses have to fulfill. But not all Therefore, in general we only get a lower bound. Let us state
these conditions are linearly independent. Consider[Hglfl this explicitly.
a check node of degree has all of its incoming messages Lemma 11 (Lower Bound on Independent Guesses):
equal tog then ther equations which correspond to thke Consider a binary linear system of equations with right side
outgoing messages are identical, ire-; 1 of them are linearly equal to zero an@ degrees of freedom (i.ek, is equal to the
dependent. The last term in the counting form[Ia (19) tleeeef number of variables minus the rank of the system). Assume
corrects the over-counting of dependent conditions. that the Tanner graph associated to this system contains no
check nodes of degree one. L&t denote the number of
all guesses of the M decoder, denote Bythe number of

g1 incomingg messages at variable nodéincluding the guess
if this node has been guessed), anddythe subset of all
g3 check nodes all of whose incoming messagesgarghen
E>G-Y (15-1)+ ) (ri—1). (20)
g2 i€V i€Cy
time ¢ timet¢+ 1

D. Density Evolution Analysis
Fig. 18. Computation of the number of linearly independeonditions. .
To each of the incoming edges corresponds a list. To keeggtsimple and Let us now perform the usual DE anaIyS|s. I-%t‘ denote
without essential loss of generality, assume @at= {i}. The three outgoing the probability that a left-to-right message at time equal
!IStS are then®, = {2,3_}, O = {1,3}, and©3 = {1,2_}. Compare the tqg ur e {07 *,g}. and let yty denote the corresponding
incoming and outgoing list at node 1: we get the condition= z2 + 3. . f H
But exactly the same condition appears at n@dend node3. In general, a probablhty for a ”ght'to'left message.
check node of degree, all of its incoming messages age generates — 1 (i) At the check node side the DE relations read
linearly dependent conditions.

t t
Yo = p(XO)a
Example 8:Consider a code whose Tanner graph is a tree yi=1—p(x} + ng) =1—p(1—x),
and all leaves are variable nodes. Let the set of variables ¢ ¢ . ‘ + "
- Vg =1 —¥o — ¥i = p(xo + %) — p(x0)-
(checks) be indexed byn] ([m], and letl;, i € [n], (r; g o Jx S 0

i € [m]) be the degree of variable (check) nodeAssume (i) At the variable node side the DE relations are

that the M decoder guesses all leaf (variable) nodes and then 41 . .

proceeds by message passing. It is not very hard to see that X = 1—eAyg +v.),

in this setting the decoder proceeds with the messagenggassi = (1 = y)e(yh),

phase (starti_ng from the leaf nodes) until all variablesehav X;Jrl - 6/\(y; +35) = (1= y)eryh).

been determined and that no further guesses have to be made.

Further, at the end of the decoding procefismessages are According to our convention, the iteration counter is irsed

g. only in the variable node operation. Moreover, the variable
Let us determine the number of independent guesses at ¥ady<) andx; +x; (y: +yy) satisfy the same equations as the

end of the decoding process using the counting fornfilh (28/actions of erased messages in the standard BP decoder with

Note that for each leaf node we have = 2 (one guess and €rasure probabilities(1 — ) and~, respectively. This is an

one additional incoming message. For all internal variabldmmediate consequence of the update rules defined in section

nodes we have® = 1. Finally,C; = C. If we letn; denote the _ .

number leaf nodes, so th&t= n,, we get that the number of When the timet tends tooco, DE converges to the fixed-

independent guesses is equal to point probability distribution. To settle our notation, weite
(60, xE) — (%8°(6,7),x2(e,7), x5°(€,7)) and equiva-

me X 2-D= 3 WD P D ey or L (o). 5 (6),52(e,7) - Ob-

i€leaves i€[n]\leaves i€[m] t—oo 7 X
serve thatx2°(e, ) satisfies the equation = e(1 — y)\(1 —
- Z (L —1)+ Z (ri = 1) =n—m. p(1 — x)), while x°(e,7) = x5°(e) satisfies the equation
i€t i) (1-x)=eA(1—p(1 - (1-x))).
This is of course the expected result since the system hadNotice that the asymptotic state of the algorithm has the
exactlyn — m degrees of freedom. following structure. The variable nodes such thgto) = *

So far we have only considered sets of equations whaoser,; (o) = g, form a stopping set: in fact this is the largest
Tanner graph is a tree. What happens if we run the M decodtopping set contained in the set of variable nodes for which
on a general system of equations. For a general Tanner grgph= * or u$ = g. Further, the set of variable nodes such that
the above counting of the total number of independent gsessg(co) = * form a stopping set contained in the previous one:
is not necessarily tight. The counting of the total number dfis is the largest stopping set contained in the;get .
conditions generated by the M decoder is always correct. Butin the analysis below we shall repeatedly use the fol-
it can happen that besides the obvious over-counting atkchéawing trick. We shall compute expectations with respect to
nodes, there are other dependencies generated by loopssymptotic { = oo) incoming messages in a given node.
the graph which are not considered in the counting formull such computations, we shall treat such messages as i.i.d.



20

with distribution (xgo,xfo,xgo), (for left-to-right messages) observation oni is changed fromu{ = * to puf = g: the
or (ygo,yfo,ygo), (for right-to-left messages). As long ascounter of newly guessed variables is increased by one. By
(e,7) take non-exceptional values, i.e., at continuity points difearity of expectation, we get

(xgo(e,'y),x‘jo(e,'y),xgo(e,7)), cf. Sectior ¥, this is justified 1 _

as follows. First consider messages after a finite number of ~E[AG] = — > Pr(i is selectedlPr(v;(c0) = *)

iterationst. Forn large enough these are independent because i€[n]
the Tanner graph is locally a tree. But, (£,~) is non- Ay B o\ _ o0
exceptional the number of message which change between the 11—y (1= MAGZ) = A=) A7

¢ iteration and the asymptotic state is boundedibft) with  \otice that. in this computation we assumed— oo and
6(t) — 0 ast — oo. This argument is essentially the same as_, . afterwards.

the one of App[IL-A. Recall that, aftery is changed toy + A~y and thenAG
new guesses are introduced, the message passing M decoder
E. Guessing Strategy is started again until a new fixed point is reached.

In the analysis of the M decoder, we can chose the order
of guesses at our convenience. As long as the messagesisAnalysis: Confirmation Work

completely decoded and the final estimatesafeo) € {0, g} At each step of the above algorithm, it may happen that

for any biti, the algorithm realizes a complete list decodingseyerals messages are transmitted to the same variable node
. We s_hall adopt ”the following stratggy. we perforffbunds x;. Each of these lists corresponds to a distinct resolutite ru
decoding rouqu: Our progress will be mea}sured by thgy x;. Their convergence on the same node imposes some
parametery, Wh'Ch,'S initially set to zero and which adV"’mce%on-trivial condition on the variables which appear in the
by Ay =1/nrounasin €ach round. resolution rules. Here we estimate the number of independen

Sety = 0. Start with the messages received via BEC g ;o conditions by exploiting Lemnfalll above. Notice that
and apply BP decoding until the algorithm gets stuck. Thep LemmalIl we assumg¢ € {g.+}. In order to make

consider each of the bits not yet determined andi§et g  ontact with this assumption we could first run the classical
independently for each of them with probabilifyy/(1 — 71’ BP decoder until no further progress can be made. We could
(In the first round this probability is_e_qual t&v.) Sety = now directly apply Lemmd11 to theesidual graph. The
7+ Av.° Apply the M decoder until it gets stuck. This isgisadvantage of this strategy is that in this scheme it is not
repeatednrounas times untily = 1. If at any earlier phase g straightforward to relate the progress of the M decoder on
complete decoding is achieved, the algorithm is halted aggk residual graph to the original DE equations.
the current set of decoded codewords output. _ Alternatively we can apply Lemm&111 directly to the
The analysis becomes simpler (and the algorithm moggiginal graph if (i) we do not count contradictions genedat
efficient) if we take Ay — 0. We shall always think of at variable nodes which receive at least oneessage (either
this limit being taken aftem — oo. We will see that in from the channel or from the graph) and (i) we count towards
this limit the appearance of contradictions is sharply @mc he degree of a check node only those edges whose incoming
trated to those rounds which include a discontinuity of th‘%essages are not With these two conventions one can check
EXIT curve. In other words, we will see that the algorithmnat Lemm4 I holds for a general graph including degree-one
alternates between the following two phases which are wgleck nodes as well as variable nodes which are known.
separated: in the “guessing phase” the algorithm guesses gt (¢,7) be a non-exceptional point and denoterty the
small fraction of bits and the processes the consequendes Qunber of contradictions as estimated by the right-hane sid

theses consequences do not propagate too far and esgentiglip). The first term counts the number of conditions agsin
stay local; in the “contradiction phase” on the other harel thyt that node. We get

algorithm suddenly discovers many relationships (findsyman
contradictions) and the size of the residual graph changes b 1
a constant fraction which is independent of the step Aize E n Zmax(|£i7g| -1,0)p =

=%
F. Analysis: Guess Work (=) AEy {max(ng — 1,0)In,—0 }
1
Consider a non-exceptional poifit v) and leth AG be the
number of newly guessed variables wheis changed by an T ;AlEl {maX(”gv 0) Hnozo} g

amountA~y > 0. _ o _
The process can be described as follows. For eaghn], where I, is the indicator function for the eventl and
i is selected independently with probabilityy/(1 — ~). For Whereng, no, andn.. count the number of incoming, O,
each selected bit, we consider the present estimate prbvid@d 7 messages. Here the limits — oo and ¢ — oo
by the M decodery;(co) € {0,g, }. If vi(c0) = x, the ar€ understood anil; denotes expectation with respect the
multinomial variablesn,, ng, n, with sum1 and parameters

8Note thgt if a bit i; _first selected with probabilitya_nq then i_ndependently ¥, vy, y°. Note that we have the indicator functidmozo
selected with probabilityAy/(1—+), then the probability that it was selected . b ks ab hould | id d
at least once is equal t9 + A~v. This is the rational for our choice of SInce by our remarks above we should only consider nodes

parameters. “in the residual graph”, i.e., nodes which were not already
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determined in the BP phase as a consequence of the receivél the gradient off” being evaluated at’ = x> (¢, v+ A~).
bits. Throughout this section we shall adopt the shorthandsdirect calculation shows that the gradient vanishes & thi
Yo, ¥, ¥« for y5°, yg°, y2° (and analogous ones for left-to-rightpoint leading toE[AC] = O((Av)?).

messages). By computing these expectations we get In the second case, the inter¥a) v+ A~] includes a discon-
. tinuity point (a jump)y;. Let x;, = xit! = lime, |, (€, )
E {_ Zmax(|£i7g| -1, O)} = andx;_ =% = lim, 1., x*°(¢,7). We have
n
i€V

AC] = F(xj4,€,7) — F(xj—,€,7) + O(Av).
(1 =) {AN (¥« +ye)ye — Ay +3¢) + A(y)} EIACT= Pl &) = Pl &7) +0(47)

/
+e Ny +ygye- (21 Finishing the proof

We must now evaluate the correction term [0l (20). Consider consider now the guessing strategy explained in Section
a check node:. Assume that its “residual” degreei§. l.e., -] First the received message is decoded with the usual
r, counts the number of edges whose incoming messages isgative decoder. At this point = 0. Then each bit is selected
not zero. If the corresponding, outgoing messages are allindependently withA~/(1 — ~) and guessed if its valued

g (equivalently, ther; ingoing messages are g), then the was not determined (eventually in terms of former guesses)
same condition has been overcount¢d- 1 times. We denote at previous stages. The M decoder is then run until a fixed
the set of such check nodes @sand obtain point is reached. The number of new guesses at this stage is

1 AG, and the number of new conditions is upper bounded by
E {— Z(rjl - 1)} = AC,. This operation is repeated until(co) € {0, g} for each
" aec 1. Without loss of generality, we may imagine this to happen
/(1) . r B {max(ng 2 Ine=0 At this point each realization of the guesses compatiblb wit

_ ) ) .the conditions yields a codeword compatible with the resetiv
where E, denotes expectation with respect the mUIt'nom'%essage We have

variablesno, ng, n, With sumr and parametersg®, x>, x2°.

Once again, it is quite easy to compute the above expecsation . 1 B
One obtains Jim —Eg[Ho(X[Y)] > Zj E[AG,] ;E[ACV]

E {% Z(rfl — 1)} = /1}:8; {I"(1 — x4)xg— = /0 eA(y«(y,€))dy — Z AF; + O(Av),

a€eC i
—T(1=x)+T(1—x —x)}. (22) where the last sums runs over the jump positignandA F, <

By taking the difference of EqsLIR1) anid122), and after & (Xj+:€,%) — F'(xj—. €,7;) is the discontinuity off" at those

few algebraic manipulations, we finally get the desired ltesPositions. In order to finish the proof of Lemnik 9, notice
that H(X|Y") does not depend upalsy and we can therefore

E[C] = F(x,6,7), take the limit Ay — 0 discardingO(A~) terms. Moreover
where v« (7,€) = y(e(1 — 7)) (the last quantity being the fixed point
of DE for the usual BP decoder at erasure probabéjtyand
F(x,6,7) = N (1)[xa(1 = y.) — (2« +%5)(1 = 74 — yg)|—  therefore

—e(1=MA(y+ +yg) — Ay)]+ 1 ;
eN(y«(v,€))dy= [ A(y(e))de
M) (1 —x.) —T(1 — %, —xg)] - /0 a ! /0 7

!/
IN¢ is just the area under the BP EXIT curve (dark gray in Eg. 1,
Here we wused the shorthandx for the vector (a)). Finally, lete; = (1 — ~j)e and (x(¢+), y(e+)) and
(%5 Xg, X0, Y, Vg Vo) (x(¢j—),y(¢;—)) be the fixed point of DE for the usual iterative
Imagine now changing — ~v+A~ and computing the num- decoder just above and below the jump. Then
ber of new conditions on the newly guessed variables (whose
expected number was computed in the previous section). callAF = Pe(x(6—), y(6—) — P, (x(g+). y(6+)) ,
AC the upper bound on their number provided by Lenida 1ere P.(x,y) is the trial entropy, cf. Def[J4. Because
It is clear that, repeating the above derivation, we get of Lemmal®, AF} is just the area delimited by the EBP
E[AC] = F(x™(e,7 + Ay), 6,7+ Ay)— EXIT curve and a vertical line through the jump, (dark gray

in Fig., (b)).
- F(XOO(Ev’Y)v €7+ A’}/) )

Consider now two separate possibilities. In the first case Maxwell Decoder: lllustration and Implementation

x> (e,v") is continuous (and therefore analytic) in the interval The Maxwell decoder provides aimterpretation for the

/ 1 . . . .

7' € [v,7 + An]. By Taylor expansion we get balance of areas which we described in Sectibos IV and

_oF 0% (e,7) 5 M For many ensembles, e.g., th8,6)-regular ensemble,
E[AC] = _E(X 67+ AY)- By Ay +O0(A)7) - TheoremID gives a complete characterization of the MAP

1_
+

~—
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EXIT function and therefore a complete justification of the w10
Maxwell construction. In some other cases we are not quite 25
as lucky, see e.g. the ensemble discussed in Exdihple 7, and we 20
can only conjecture that the parts of the MAP EXIT function 15
which are not covered by Theorén 10 also follow the Maxwell 10
construction. Let us now review some typical case.

Example 9 (3,6) LDPC ensemble)Consider the 5
dd pair (\,p) = (22,2% and the corresponding LDPC 04 06 08 10

ensemble with design rate one-half. Its BP and MAP
EXIT functions are depicted in Fidd 1 together with théigt- 20. Mdefodetr appl}jet?] tOftftét,ﬁ) Ll?Fc’thensemzlet;_tEXZ:Céegﬁsx(/mrlJ_aotic
e H . ropy as a runction o e fraction o etermine Itse . Slelll

balance ACOI’Id_ItIOI’]S. FIgD]‘_g shows the evolution Of_ thfﬁrve) and empirical average entropy curves (gray cun@sjulations are
entropy H(¢), i.e., the logarithm of the number of runningshown forn = 780 (average ovet - 10* realizations),n = 3125 (average
copies as discussed in Figl15, as a function of the fracti@rer 16 - 10‘(3 reallzatlonS),rg = 1|2500 (a\)/erage over -(103 realizations),

H H H _ n = 50000 average ovei0° realizations),n = 200000 average ovei 50
of bits determined by the decodlng process for tBe6) realizations)
regular LDPC ensemble. Transmission takes place over

BEC( = 0.46), i.e., we fix the channel parameterso that

€ ~ 04294 < e < M &~ 0.4882. After transmission, Finally, in Example’ we have discussed how large parts of
a fraction1 — ¢ = 0.54 of bits is known. The classical the MAP EXIT curve can be constructed based on Theorem
BP algorithm proceeds until it gets stuck at the fixefl]. The MAP threshold is"** ~ 0.4913 (at x"* ~ 0.1434).
point (x° ~ 0.3789,y° ~ 0.9076) of DE. At this point According to the Maxwell costruction, the second MAP
(point A in the figure), a fractionl — eA(y“) ~ 0.6561 of giscontinuities occurs at"™2 ~ 0.5186 (at x"**2 ~ 0.2378,

bits has been determined. Now the guessing phase of the 2 0.4121) .

M decoder starts. It ends at point B, which corresponds torjg. [7] shows the evolution of the entropy(t) for e =

the BP thresholdx® ~ 0.2606,y* ~ 0.7790). The total (.5313. This corresponds to the poid in Fig. [, the first
fraction of guesses that the M decoder has to venture ggint at which the counting argument no longer applies. By
Jiee h(e(x))de(x) = P(x%,y°) — P(x*,y*). For our specific comparing the result of the simulations to the analytic eurv
example we hav® (x,y(x)) = —%—HOX?’—%—W;@‘"—%, corresponding to the Maxwell construction we can see that at
so that the total fraction of guesses is equa).ti201509. For least emperically the Maxwell construction seems to bedvali
a blocklength ofn = 34000 this corresponds to roughl§85 over the whole range.

guesses. At this point the BP decoding phase resumes. MoreH i
and more guesses are confirmed. Since we are operating n1072
below the MAP threshold, (essentially) all guesses arg;, 25
eventually confirmed and the M decoder comes to a halt. 630 20
510 15
. 340 10
H 170 5
0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
680 (2) (b)
510 Fig. 21. M decoder applied to the irregular “double-jump” RO ensemble
shown in Fig.[b: Asymptotic entropy as a function of the fimat of
340 determined bits at = 0.5313 (point B). (a) 15 channel and code realizations
of blocklengthn = 34000 are shown (dashed curves) together with the
170 analytic asymptotic curve (solid curve). (b) Convergendett® average
entropy curves (gray curves) to the analytic expected cysaeéid curve).
Simulations are shown fon = 780 (average overs - 10* realizations),

0.0 0.2 0.4 0.6 0.8 1.0 n = 3120 (average over6 - 103 realizations),n = 12480 (average over
4.103 realizations);n = 50017 (average ovet0? realizations) = 200500

Fig. 19. M decoder applied to th&, 6)-regular LDPC ensemble. Asymptotic (average ovee50 realizations)

entropy of the M decodeH (logarithm of the number of running copies) as
a function of the fraction of determined bits. 15 channel eode realizations
with € = 0.46 and blocklengthn = 34 - 103 are shown (dashed curves)
together with the analytic asymptotic curve (solid curvEje inserts show
how the entropy curve can be constructed from the EXIT cufte.fraction of
guesses is shown in the 2 left-most inserts while the fraatiocontradictions
is shown in the 2 right inserts.

VIl. SOME FURTHER EXAMPLES
A. Special Cases

Although (for sake of simplicity) we did not discuss this
Example 10 (Typical Double “Jump”)Consider the case in the previous sections, other curious (but frequeat)

dd pair (\,p) = (%,x"’) and the correspondingamples are those when the number of discontinuitié®f the

LDPC ensemble with design raie= % ~ 0.4872. Its BP BP EXIT curves is not equal to the number of discontinuities

EXIT function is depicted in Fig[5, its EBP EXIT curveJ"" of the MAP EXIT curve. Examplds11 ahdl12 show two
together with the balance conditions is shown in Hij. 3uch cases.



Example 11 {"™* < J®*): Consider the dd paif}, p)
1}10-'1-:1)60 31;10_’_17180
o — Bhoo

with rater = 5

~ 0.5502.

(@)

(b)

Fig. 22.  When the numbers of BP and MAP “jumps” (respectivel§®
and J“AP) are different: (@) BP EXIT function with/®" = 2 (b) MAP
EXIT function with J¥A? = 1 and Maxwell constriction.

The MAP EXIT curve has a single “jump” at*® ~ 0.4493

) and the corresponding LDPC ensembl®l construction only up to point A (at
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Unfortunately, Theorenf10 shows the tightness of the
0.5063, see
Fig.[24) . But it is quite natural to conjecture that the MAP
EXIT curve has two singularities, namely &t ~ 0.3986
(x"* &~ 0.0340) and ate™*2) ~ 0.4855 (x("*"2) ~ 0.1096) as
shown in Fig[2K. This is validated by the M decoder. Namely
the M decoder gives a residual entropy (as a fraction of the
blocklength) of% ~ 0.0121 ate = 0.44. This value is exactly
the value of the area (between= 0 ande = 0.44) under the
conjectured MAP EXIT curve. This shows that, between the
two conjectured MAP phase transitions, the M decoder fadlow
the part of the EBP EXIT function which is “hidden” from the
BP decoder. The Maxwell construction is conjectured to hold
in this case.

~
~

B. Difference Between MAP and BP Threshold

Letr < 1 be the design rate. Consider a sequence of degree
distribution pairs{(A(z), p(z)) = (2!, 277 1)}, with
fixed design rater. Ensembles associated to this sequence

(x"* ~ (.4425) whereas the BP EXIT curve has two suctfe regular LDPC code ensembles. We have seen in[act 1

singularities ate®® ~ 0.2941 (x* =~ 0.05738) and ¢®*"2) ~

that such ensembles have at most one jump and therefore

0.3254 (2 ~ 0.2117) as shown in FigCA2. As shown inWe €xpect our bound on the MAP threshold to be tight. It

— 30 3
20 3 3

Fig. 23.  Function¥'= (u)
at eMAP = 0.4493.

was shown already in [38], that if is increased then the
weight distribution of such ensembles converges to the éne o
Shannon’s random ensemble and, hence, the MAP threshold
of such ensembles converges to the Shannon limit. Using the
replica method, an explicit asymptotic expansion of the MAP
threshold was given in [39].

Let us give here an alternative proof of this fact using
our machinery. That the MAP threshold“"(1) converges

for the dd pair formed by the residual ensemblg, ho Shannon threshold is shown in FBEt 3. On the other

hand, as stated in Fadil 2, the BP threshoti(1) goes to

Fig. 23, Theoren 10 applies at the MAP threshold and §€owhenl — oo. This shows that the two thresholds can be
the whole MAP EXIT curve is determined by the countingrbitrarily far apart, and nevertheless the MAP EXIT curaa c
argument in this case. The Maxwell construction is therefobe constructed from the corresponding (E)BP EXIT curve!

confirmed in this case.

3Ex3¢';1r2n|oll4e 5%2 L% < JY"): Consider the dd paif),p) =
( x4+ 123- "

with design rater = 2L

=56 ~ 0.5495. The BP EXIT curve has

o
|
0 B8P 1 0 AP 1
@) (b)

Fig. 24.  When the numbers of BP and MAP “jumps” (respectivel§’
and J“AP) are different: (a) BP EXIT function with/®® = 1 (b) MAP
EXIT function with J¥A? = 2 and Maxwell construction.

a single “jump” ate® ~ 0.3531 (x*° = 0.3008).

EBP(2)

=€

This is illustrated in FiglA5 and the proofs are given in the
sequel.

,z?) and the corresponding LDPC ensemble

MAP
€

sc

Fig. 25. Regular BP EXIT entropy curves with design rate= 1. (a)
Channel entropy functiom — e (x) (b) EXIT curve h() () «— e« (h).
The depicted ensembles are, in decreasing ordef10& 200), the (35, 70),
the (12, 24), the (6, 12), the (4, 8), the (3, 6) and the(2, 4) regular ensemble.
While the BP threshold goes to 0, the bit MAP threshold goeldédShannon
limit 0.5.
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Lemma 12:For a fixed non-negative € (0,1], denoting ensemble in the asymptotic limit. The left (right) componei
M (x) L z , we gete®(x) — x. the pair(\(x),y(x)) gives the EXIT entropy outgoing from the
(=)o ) I left (right) nodes during the BP decoding. To be more precise

Proof: This limit is classically obtained with(1 — ; : N :
1) log[l — (1 — x)ﬁfl] ~—(1—1)1 - X)ﬁil which &t @ fixed channel parameterthe functionx(y) = eA(x) is

. A .
gives (1 — (1 — X)rlﬁl)lfl 1 - the EXIT entropy outgoing from the Ieft andx) = y(x,¢€) is
_ 100 L _ the EXIT entropy outgoing from the right. A few calculus
Fact2: Consider the sequencer™™', z7"")}1>9 With  or computations lead, in general, to an expression for tife ri
fixed rater < 1, then the BP threshole®(1) 2 0. component EXIT entropy (see, e.g, [40], [41]).

Proof: Consider first the BP threshold®(1) s Example 13 (GLDPC Codes)Generalized LDPC codes

ming{e® (x)}. Fix £ > 0 (very small). Clearly0 < ¢*°(1) < (see, e.g., [42]-[44]) are LDPC codeg whose che_ck nodes
6(1)(%), and, sinceg(l)(%) . % with LemmalIR, we can are replaced by some more complex linear constraints. Such

state 1—00 constraints are viewed as component codes which typically
1) § § § have minimum distancén, > 3: they are bit MAP decoded
o €N, V1=1o e (2) = 2 * 2 and the component EXIT entropy(x) has smallest degree

This gives that, for alll > 1, the statemenb < ¢(1) < ¢  dmin — 1 (see,A e.g., [41]). The EXIT entropy(x) is the
holds. This is true for any fixed meaninge®*(1) — 0. m functiony(x) = E; 37, yi(x), wherer is the length of
1—e0 a particular component code and where the expectation is
taken with respect to all such component codes. The distri-
bution A can be freely chosen but must satisfy the design
b rate constraintr = 1 — 1_-£y where [y is the rate of
that we can eventually us¢h) = % for h € (0,1]. the average component code (Area Theorem). For example,
bt consider GLDPC ensembles usif2§ — 1,27 —p—1, 3] binary
Lemma 13:For a fixedh € (0,1), we havee(h) = Hamming codes as component codes. Then, vién, > 3,
17(17;1%)% the BP EXIT entropy has at least one discontinuity at the BP

— 0. o
= 1—00 . threshold. It is given as,
Fgroof: The second term of the numerator goes to 1 since,

Instead of studying the parameterized EXIT quantity) £
(1—(1—x)*~1), it is often more convenient to work directly
with the inverse mapping — x(h) 21— [I — hi]=T such

1

log(1—h1) = 152 tlog(-L —1) = BEk L log(=Ek 4 o(4)) (e, h) = (m,/&(y(x))).
such that L [5" 1 log(=122 + (1)) — 0. The 7

TheorenB shows that, in generdf, # ¢"** (The BP threshold
' _ 1 being not given by the stability condition whenever the tigh
Fact 3: Consider again the sequenge’™ ', z T )by component code hagnin > 3). In the next table, the first
with fixed rater <1, thene"*(1) — ¢'=1—7>0. example used7,4,3] Hamming codes such that its design
Proof: First, the inequality) < e — €"(1) holds from rate isr = 1 with the pair(\,y) = (x,3x? + 4z — 15x* +
the Area Theorer.Second, 12x° — 3x%) whereas the second example uses|ilie11, 3]
sh wap MAP 1 1 Hamming code. It can be observed that this classical GLDPC
=) = (1-r) = (1) = AP < AW have relatively bad BP threshold compared to its MAP upper-
where, in short, A represents the closed area betwedsound. In the third example/min is no longer> 2 since
{€e(h)}er<c<1, the horizontal axife = ¢"*°} and the vertical we choose, in the node perspective, a mixture of 40 percent
axis {h = 1}. The areaA®) is the surface of the unit of [7,6,2] Single Parity-Check codes, 40 percent[0f4, 3]
square which lies undefe(h)}o<c<1. Now, consider the Hamming codes and 20 percent[®$, 11, 3] Hamming codes.
function é®(h) = min{e(h)™,1} < 1. The Dominated The BP EXIT function has however still a discontinuity at the
Convergence Theoréfhapplied to the sequené€&) gives that BP threshold.
lim; o0 A®) = 0, which concludes the proof. m )

lemma follows fromh™ ™ ~ h > 0. [ ]

y(x) EBP EMAP Esh
x 74,3 075645 0.85616 0.85714
C. Application to other Iterative Coding Schemes x [15,11,3] 0.46785 0.52780  0.53333

3x+7x8 ;
Although LDPC ensembles have been used to present 10 mixture - 0.70483  0.71301  0.72801

the discussed concepts, the picture is not limited to such

ensembles. Equivalent statements are expected to holdym la VI

generality. ) _
To give just one example, consider generalized LDPC We have shown that there is a.clos.e Connectpn petwgen

(GLDPC) ensembles: Part of our results can be direcﬁpe BP and the MAP decoder. While this connection is quite

applied like, e.g., LemmAl 3. Consider a GLDPC ensembfaeneral, we focused in this paper on communication over the
Equivalentl); to tr,1e dd paif), p), the pair (A(x), 7(x)) 4 binary erasure channel. In this case, the relation is fbeus

(A(x), 1—p(1—x)) suffices to describe the BP decoding of the 1icontrary to the left nodes which stay simple repetition sodbe right

) ) o ) nodes can be more complex linear codes. Therefg(®) often depends on

9An alternative way is to show it via the Shannon Coding There the edge type. For GLDPC ensembles, we consider the avevagalbtypes

100bserve thate(h) does not uniformly converge t6 on (0,1) since of node. For Turbo codes, one usually distinguish betwestesyatic versus
Jy €(hydh =17 #0. parity bits.

C ONCLUSION
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by the so-called Maxwell decoder which gives an operationdl Concentration of the Conditional Entropy
meaning to the various areas under the EBP EXIT curve asgjy 4, arbitrary order for then —
number of guesses and number of confirmations. UnfortHc')des, and leg,, ¢ €
nately, this paper falls slightly short on several accouwfts first ¢ parity-check e
proving this relationship in the most general case. Let
summarize what seem to be the most important issues thap; 1G,]. The martingale propert[Zis1|Zo, ..., 2] =

still need to be addressed. _ 7, follows by construction. In order to stress that is a
First, there is currently no direct proof which eStab“She@eterministiC) function of the random variabte, we will
the existence of the asymptotic MAP EXIT curve. Rathefyite Z, = Z(G;). Obviously, Z, = E[H,] is the expected
the existence follows from the explicit characterizatidntos  conditional entropy over the code ensemble, ahd= H, =

limit. This occurs via Theoreri10 in all those cases Whequ(XD/) is the conditional entropy for a random code

the conditions of the theorem are fulfilled. Although thesgs Theorem} follows therefore from the Hoeffding-Azuma
conditions apply to a large class of ensembles, it would *?r?equality, once we bound the differendés., ; — Z;|. This is
pleasing to show the existence of the limit in the generaécas);; aim in the remaining of this subsection.

A further point that needs some clarification is the restict  Assume, for the sake of definiteness, that parity-checks hav
we had to impose in the second proof of Theofdm 8. Recglben ordered by increasing degree. The firstof them have
that the argument on the computation tree via the Area T'"t?egreerl, the successivew, have degree., and so on, with
orem required that the underlying ensemble has a nonitrivig < r, < ... The (t + 1) parity-check will therefore
stability condition, since otherwise part of the EBP EXITw@ have a well defined degree, to be denoted-bgonsider two
lies “outside the unit box,” i.e., part of the curve corres@® reglizationsG,,; and G, of the first (¢ + 1) parity-checks
to “erasure probabilities above one.” While an analyticgaMe \hich differ uniquely in the(t + 1) check. LetG be a code
of Theoren(B is possible, it would be interesting (espegiallniformly distributed over LDPC\, p, n) whose restriction to
in view of generalizations) to have a conceptual proof valighe first(¢ + 1) parity-checks coincides wité, ;. Construct a
for unconditionally stable ensembles. new codes’ whose restriction to the firgt + 1) parity-checks

Without doubt the most important challenge is to asseg G}, ,, and which differs frome in at most(r + 1) parity-
the correctness of Conjectul® 1. This would yield an easyecks. This can be done by the ‘switching’ procedure of.[17]
and geometrically pleasing way of constructing the MARhis switching procedure results in a “pairing up” of graphs
EXIT curve from the EBP EXIT curve in the general case. In order to obtain the desired result, it is now enough to show

Finally, an interesting research direction consists irethal- that |He(X |Y) — He (X | Y)| < «, for somen-independent
ysis of more general combinatorial search problems througbnstant..

a suitable ‘Maxwell construction’. An example (extremely Let us focus on the variation in conditional entropy under
close to the topic of this paper) consists in the problem dfe addition of a single parity-check. Letbe a generic linear
satisfiability of random sparse linear systems (‘XORSAT¢ode and let+ 1, be the same code with the added constraint
considered in [45], [46]. The counting argument presentgdat x;, @ --- ® x;, = 0. Define the corresponding parity bit
in SectiorlY is indeed closely related to the approach ofe¢hes = z;, @ --- @ x,,, Then

papers. The ideas presented here can probably be used to - - -

analyze the behavior of simple resolution algorithms fog th He(X |Y) = He(X | X, Y) + He(X [Y) — He(X | X,Y)
problem (see [47] for a numerical exploration). = Ho(X | X =0,Y)+ Hg(X|Y)

= Ho1(X|Y) + He(X|Y).

(1 — r)n parity-check
[m], be a random variable describing the
quations. Furthermore, @gt be a trivial
§mpty) random variable. Define the Doob martingale=

ACKNOWLEDGMENT The second equality follows sindég(X | X,Y) = 0 and by

. . . using the channel symmetry. The third step is a consequence
The authors would like to thank Nicolas Macris, Changyatglf the definition ofG + 1. Since X is a bit, its entropy is
Di, Gerhard Kramer, and Tom Richardson for useful discuﬁ'etween() and1 and therefore '

sions.
A.M. has been partially supported by EVERGROW (i.p. |He(X |Y) — Hea (X |Y)| < 1. (23)
1935 in the complex systems initiative of the Future and

Emerging Technologies directorate of the IST Priority, EU Recall thatG and¢” differ in at most £ + 1) parity-checks,
Sixth Framework). wherer is upper bounded bymax the maximal check-node

degree. Equation{23) implie)d;(X |Y) — He (X |Y)] <
(r + 1) and, therefore, Theoref 4.
APPENDIX |

PROOFS FORCONCENTRATION THEOREMS B. Concentration of the Derivative of the Conditional Eipyo

Throughout this section, we use the shorthaHg = It is convenient to introduce the per-bit conditional en-
Hg(X|Y) to denote the conditional entropy under transmissidropy A, (¢) = LH(X|Y) and its expected valug, () £

over the BMS channeby, | x,,(-|-) using a codes chosen LEH:(X|Y) whenG is a random code drawn uniformly from
uniformly at random from LDPG, A\, p). the LDPG, p,n) ensemble.



Since the channel famil{BMS(¢)}.c; is smooth and
ordered by physical degradatidn, (¢) is differentiable convex
function ofe € 1. Therefore

Cl0(€) = e = A)] < (0) < KT

A e+ A)—

ha(€)],
(24)

for any A > 0 such thatle — A,e + A] € I. Because of
TheoreniH, we also have

[ (€) — A)—28] <

<

h (e — R (€) <

1 -
Z[hn(€+A) -

b=

ha(€) +2€]

with probability greater tharl — Ae—"B¢ (it follows from
the proof in the previous subsection thatand B can be
chosen uniformly ine). By averaging[[24) over the codg
and subtracting it from the last equation, we get

/ 7/ 1. -
[ (€) = hn(€)] < K [hn A)+2¢],

which, using the convexity ofi,,(¢), and fixing A = £1/2,
implies

[ (€) —

€+A) — 2hp(€) + hy(e—

R ()] < [, (€)= Iy, (e—€1/%)] 4 26172
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We claim that

tlggo d(EG(t) ) EG(e)) = 0, (25)
lim lim E[d(ZE.,Z)] = 0. (27)

t—o0 n—oo

Before proving those claims, let us show that they imply the
thesis. It follows from the triangular inequality above ttha
lim o0 limy, o0 Ed(Ee, Zg(e)) = 0. But d(Zc,Eg()) does
not depend upomn, therefore

This in turns imply the thesis via Markov inequality.

We must now prove the inequalitis125) [g1(27). The first
one is a trivial consequence of the convergence of DE to its
fixed point: lim;_ x: = %, lims— o y¢ = y, together with
the continuity of the expressionEl (8] (9) withy. Eq. [Z6)
follows from the general concentration analysis in [17].

In order to prove[(&7), consider a variable nodé the
residual graph and imagine changing the received symbil at
and update all the messages consequently. Consider the edge
whose distance fromis larger thart, and denote bWi(t) the
number of messages on such edges that change of value after

The functionsh,, are differentiable and convex and (by hythe received symbol athas been changed. It is clear that

pothesis) they converge to(e) = h"*(e) = lim, o ~EH,,

which is differentiable inJ. It is a standard result in convex

analysis (see [48]) that the derivativé$, converge toh’
uniformly in J. Therefore, there exists a sequernge— 0,
such that

[ (€) = Ry (€)] < [0 (e4-EV/2) — B/ (e=E€/%)] + 6, + 2612
Ae—nBE

with probability greater than — In order to com-

E[d(Z.,Z,)] < EW,")], (28)
The limitlim,, oo E[Wi( )] can be computed through a branch-
ing process analysis. The calculation is very similar todhe

in [49] and we do not reproduce it here. The final result is
that, as long as\'(y)p'(1 — x) < 1, there exist two positive
constants4, b with b < 1 such thal[E[Wi(t)] < Ab'. The proof

is finished by noticing that the conditian\’(y)p/(1 — x) < 1

plete the proof, it is sufficient to . (¢) be the largest value is satisfied wheneveris a continuity point ofx(c).

of &, such that[h/(e+£Y/2) — W/ (e—£1/2)] + 2612 < ¢/2.
Then the thesis holds witl, BE2(€)/2. In particular,
if h(e) is twice differentiable with respect te € .J, then
[ (e+€/2) — I (e—~€1/2)] < AEV2, andéE. (6) > A'€2.

APPENDIXII
PROOFS OFLEMMAS IN THE COUNTING ARGUMENT

A. Proof of Lemm#&l6

Let G(¢) denote the residual graph afteiterations of the
message passing decoder, @,y = (Agw), [er)) be the
corresponding degree distribution pair. Moreover, derinte
= = (A4, Ty) the typical degree distribution pair df(¢).
Explicitly

Ai(z) =
Ft(Z)

A(zx;),

=Tl —yi+zy) T —ye) —zyI'(1 —y1),

wherex,,y, denote the typical fractions of erased messages
aftert iterations of the decoder. These are obtained by solvi 5'

the density evolution equationsyi = eA(y¢), yiy1 = 1 —
p(1 — %) with initial conditionxy = yo = 1.
Notice that

d(Ee, Bae) < d(Ee, Er) + d(Et, Zory) + d(Zar) Ea(e)) -

B. Proof of Lemm&l8

Notice that the function: — v(u) defined in [IB) enjoys
the propertyv(1/u) 1/v(u) for any v > 0. Assume
ab absurdumthat = does not achieves its maximum in
the interval [0,1]. Therefore, there exist > 1 such that
Uz(u') < Uz(u) for any v’ € [0,1]. We will show that
U=(1/u) > U=(u) thus reaching a contradiction. In fact, some
algebra shows that

W=(1/u) = ~N'(1)log, [%]

+ Z Ay log, [LU)J

(5]

71 < 1 together with the

Age claim follows from0 <
monotonicity of the logarithm.
In order to prove the second claim, i.e., the regularityef
with respect to the dd pair Wﬁtél(l)( )+ (2)( )+ \11(3)( )
with \IJ (23) the three summands il(12). The estim&id (15)
can be proved for each of the three terms separately. Here,
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we limit ourselves to consideIl(El)(u), the derivation being Lemma 14:Given a dd pair (\,p) and any couple
nearly identical for the two other summands. Start by noici (x,, x,) € [0, 1]2. With the notationsi, = h(xq) = Ao y(xq4)

that, for anyu € [0, 1] and any dd pair , we have andh;, = h(x,), we can then write

1 Al )\1U1_1 hy Xp

- < <1 <1. 1

352 Tya sl Ligas [ ethran = 5 (sovto) = 5oyt~ [ vtie)

ha Xa
) . - Proof: This i imple int tion b t it h

Now fix two dd pair = and Z. Let v(u) and o(u) the been (r)(l)J(')serVe:(;:)S.%hs(:{r)nEe |2 eg.r?AL?[;w(x)_);,(e;'{sx(;;g}({:)e |. as
corresponding functions defined as [Inl(13). Notice that dx " Aoy(x) [ A IR

Lemma 15:Given a dd pair (\,p) and any interval
(xexp) C [0,1], x® < x, over which e(y) oot
S . . . . oy (x)
is increasing. Then, the functioh®(e) is continuous over
(€a, €5), Wheree, £ e(x,) ande, = €(x;), and

‘Z 1+Ul

(-t

< — max Z |AL — A1
<52 . /ﬂW@%zi{ngHMW—@fmkmw
< Sl — W) d(E,E) 5 A\ ) A
Using these inequalities, some calculus shows that — %y (xp) + X0 ¥(%a) + /Xb y(x)dx).
1> v(u),d(u) > 1 —21nax(l —u), Proof: This is proved by, first, integrating by parts and,

) d(E,Z). second, using Lemniali4. [

[o(u) = 9(u)] < 317, (1 -

max

Next notice that, if we sef (u,v) = log, [(“i} then,

N 1+u)(1+v) B. Area under the BP EXIT Curve
for any u, v, v € [0, 1], we have

Theorem 11 (Area Theorem for BP Decodin@iven a

|f (u,v)] < w , dd pair(), p) and the asymptotic BP EXIT entropy as defined
0g in Corollary[d, then
Flu) - Flu) < Sy g,
log 2 .
D hBP
Using these observations we obtain Z / 9

|\IJE(U) - qjé(”)' < max[f(wv)vf(u’f})] |A/(1) - A/(1)| WhereD A- B C with A ﬁ X-y( ) —ifly(gifl)’
+max([A (1), A (D] | f(u,v) — f(u,d)] B Ll Y ‘) A(y)dy, andC; — fY. S od

y(E 1)
< 21"“”‘(1 —u)YA (1) — ]\’(1)| Proof: Using Corollanyl, we can denvEﬂZQ) as shown
1ig2 above wheréa) comes from LemmB15 an@) uses the fact
+ B — )| — ) thate’ = (X' 1) = e(x%). [ |
log2 , ~ First, observe that Theorelnl11 quantifies the average sub-
<A (1-u)dEE), optimality of BP decoding compared to MAP decoding. The

area under the BP EXIT curve is trivially larger or equal than
the design rate since thB;’'s are non-negative. Moreover, it
seems to indicate that there performance loss occurs at each
phase transition.
Second, Theorefll1 has a pleasing geometric interpretation
APPENDIXIII which goes back to the asymptotic analysis and which is
AREA AND BP EXIT explained in appendixV.

A. Two Useful Tricks

We give here two lemmas which contain the two computa- APPENDIX IV
tional tricks which are used all along this paper. Lenlmh 14 DynAMIC INTERPRETATION OF THEAVERAGE GAP
and LemmdI5 will be again used in the next subsection of BETWEEN MAP AND BP DECODING
the appendix. Observe that the function— h = A(y(x))
is Composed by two functi0n§ and A which are Stricﬂy It is now well-known that the determination of Capacity—
increasing overf0, 1]. Therefore, the inverse function(h) achieving sequences on the erasure channel reduces toea curv
exists andh — x(h) 2 y~! o A~!(h) is a continuous and fitting problem, see, e.g., [S50], [40]. This was the motivati
strictly increasing bijection fronf0, 1] to [0, 1]. The values for the Area Theorem and - so far - its unique application. Let

e(x) S = can then equivalently be described &) A Us recqll this view. For th_e purpose of illustration, andhwiit
RERCIO) essential loss of generality, we focus on the case of (G)LDPC

oA
NoA-T (h). ensembles.

which confirms our thesis with constant; = (212 +
313 .x)/ log2. The variations of\IJ(g) and \11(53) are bounded

max

analogously.
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xi

[XY(X)} ) + (fol y(x)dx — 37, éil y(x)dx)

xi—1

W [A-1+]y, 1 L
= \ + ﬂ Z: [xy(x)} . € L Ay)dy — - y(x)dx (29)
i=1 y( )
! ! ! ! ensemble. The additive gdp(e®)—r to the Shannon threshold
is indeed represented by the entire white aPeauch that
: C(EBP)_TZGSh_EBPZE’
0 10 10 10 1 JA

€e=035<e®” €=043<eB” €=0.58<eB” €=0.61 <P

where LA = A’(1) is the average left degree. In words,
the areaD is the area between the left EXIT curve —
A~1(x/€®) (at the BP threshold) and the right EXIT curve
x — 1 — p(1 — x) which is bounded away by the unit
square. This statement is presented, e.g., in [40]. We will n
A. EXIT Chart refine this statement by applying the Area Theorem to the

Fig.[28 summarizes the DE analysis of the BP decoding WIT curve of the_ LDPC ensemble previous s_tatement (i.g.,
showing the convergence of the recursive sequence fornt&ind the basic principle of our method). We will see that, in
the edge entropy(x;}; (i.e., the edge erasure probability).Short' the are® can be itself divided into two parts where the

Such a representation (which emphasizes two compon&Hparea below™ represents the average gap between MAP
EXIT functions, one associated to the left nodes and oABd BP decoding. The determination of LDPC codes for which

associated to the right nodes) is called EXIT chartin [L1jsT BP decoding is MAP reduces then again to a curve-fitting
representation is (asymptotically) exact for the binagsere Problem belowx®.

channel (since it is DE) whereas it is only approximate in the

general case. B. Geometric Interpretation at the Component Level

Fig. shows a geometric representation of Theden 11.
In (a) one see that the additive gap between BP threshold and

Fig. 26. lterative decoding trajectory for the ensemble CDR, x3, x*) (in
the limit whenn — o0): increasing values of the channel parameter

Tvzessy Shannon threshold is represented by the total area between
&Ex) 21 _p(1-x) the component EXIT functions. Further, the part of this area
' which corresponds to the average gap between MAP and BP
/ decoding isD; as defined in Theoref1l1.
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