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Quasi-regression is introduced for approximation of functions on the unit
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for problems requiring a large number of function evaluations. This paper
describes how to implement quasi-regression and shows how to estimate the
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1. INTRODUCTION

We consider the problem of approximating a function f : [0, 1]s → Rq

by another function f̂ : [0, 1]s → Rq. A good approximation f̂ should be
close to f in some norm (such as L2), and it must possess at least one
advantage over f : it may be faster to compute, it may be smoother and
hence more amenable to optimization, or it may have a form, such as an
anova decomposition, which yields insight into f . We suppose that the
function f can be evaluated at any point x ∈ [0, 1]s, and that f̂ is to be
based on n function values f(x1), . . . , f(xn).

We are motivated here by problems arising in computer experiments
[4, 8, 16]. In such applications, a function f describes the performance of
a product such as an aircraft or semiconductor as a function of s variables
x = (x1, x2, . . . , xs) chosen to describe how it is manufactured. In semi-
conductor applications f may describe how fast and how stably a transistor

1



2 AN AND OWEN

will switch, while in aerospace, f may describe lift and drag of a plane. In
both industries extensive simulation and experimentation are carried out
on computer models, before moving on to physical experimentation. While
it is common to have two or more responses, we will approximate them
separately, and so we take q = 1.

The time to compute f may range from fractions of a second to sev-
eral hours. The dimension s can vary significantly. The authors know of
examples with s = 3 and others with s ≥ 80. The chore of extracting
information from a computer model may be likened to that of extracting
information from a large data base, though such function mining differs
from data mining in that one has more control over the variables.

To fix ideas, we consider the borehole function of Morris, Mitchell and
Ylvisaker [9] defined by

2πTu [Hu −Hl]

log
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log( r
rw

)r2
wKw

+ Tu
Tl

] . (1)

This function is a model for the flow rate of water from an upper to a lower
aquifer. The aquifers are separated by an impermeable rock layer but there
is a borehole through that layer connecting them. The inputs r and rw are
radii of the borehole and the surrounding basin respectively, Tu and Tl are
transmissivities of the aquifers, Hu and Hl are their potentiometric heads,
L is the length of the borehole and Kw is a conductivity. Thus there are 8
input variables, that after appropriate scaling, yield x ∈ [0, 1]8.

As Diaconis [5] points out, knowing a formula for a function does not
mean that we fully understand it. For example, looking at equation (1)
does not easily let us know which are the most important input variables,
or whether the function is nearly additive, or even linear, in the input
variables. In fact, the answer must clearly depend on the ranges over which
the raw input variables vary. But given those ranges it may still require
numerical investigation to answer questions about the input variables.

The functions that motivate us may be similarly smooth to the borehole
function, because they model physical phenomena. They are not ordinarily
as fast to evaluate as the borehole function, as their computation may
have numerical optimizations or solutions of partial differential equations
embedded in them. Sometimes the functions are only piecewise continuous,
even though they model a continuous physical process. The reason is that a
small change in x could result in an optimization taking a different number
of steps, or in a different finite element grid being generated, or a different
number of terms in a series approximation being used. Such effects, called
“numerical noise”, are common in computer experiments, and can raise
difficulties for methods that assume very smooth functions.
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For the borehole function, we might seek an approximation that gives in-
sight into the relative effects of the input variables. For functions computed
by PDE’s a fast function f̂ might be desired so as to allow a numerical ex-
ploration of the tradeoff between two quantities such as lift and drag. For
functions with numerical noise, a smooth approximation may be desired for
optimization. Once a potential optimum x∗ is located for f̂ , the original
function f can be investigated in the neighborhood of x∗.

Statistical methods have something to offer in approximation problems,
especially for larger s. The reason is that any feasible sample x1, . . . , xn is
necessarily very sparse when s is large. The error in approximation depends
on the value of f at points not sampled, and the language of probability is
very well suited to describing how the function might behave where it was
not sampled.

Section 2 provides the notation underlying statistically motivated ap-
proaches to approximation. The present state of the art consists primarily
of kriging methods. They originated in geostatistics; see for example, Jour-
nel and Huijbregts [7]. The value and elegance of kriging for computer ex-
periments was shown by Currin, Mitchell, Morris and Ylvisaker [4] and by
Sacks, Welch, Mitchell and Wynn [16]. Kriging allows one to incorporate
derivative information on the function, and the mathematical framework
supports a notion of optimal designs. Section 2 also presents regression
and quasi-regression methods.

Kriging becomes awkward numerically when n increases, eventually be-
coming infeasible, as shown in Section 3. For large s, it is reasonable to
expect that large n will be required. Section 3 also presents regression and
quasi-regression methods for approximation. Quasi-regression requires less
time and space than regression. Section 4 describes some issues in imple-
menting quasi-regression. Section 5 describes how we select out the low
order elements in a tensor product of univariate bases. Section 6 presents
4 example functions, purposely split into two where quasi-regression is suc-
cessful and two where it fails. The method can still provide useful informa-
tion regarding functions for which it fails to generate a good approximation.
Section 7 presents our conclusions, makes a brief qualitative comparison of
our approach to some more standard ones, and outlines some plans for
future work.

Regression methods were described only briefly, and not implemented,
by Koehler and Owen [8]. Owen [12] describes quasi-regression for Latin
hypercube samples and Efromovich [6] proposes a version using orthogonal
series of functions on [0, 1]. Owen [13] uses quasi-regression to assess how
nearly linear some high dimensional functions are.
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2. NOTATION

The statistical approaches to approximation begin with an equation

f(x) =
p∑
j=1

zj(x)βj + η(x). (2)

Here zj(x) are basis functions chosen to satisfy:

z1(x) = 1, ∀x ∈ [0, 1]s (3)∫
zj(x)dx = 0, j ≥ 1 (4)∫

zj(x)zk(x)dx = 1, if j = k (5)∫
zj(x)zk(x)dx = 0, if j 6= k, (6)

where all integrals are understood to be over x ∈ [0, 1]s. The βj are
scalar coefficients described below, and η(x) is an error function defined
by subtraction in (2). In our examples we take the s dimensional basis
functions to be tensor products of univariate basis functions, and we use low
order orthogonal polynomials for the latter. The theoretical presentation
does not assume that these particular basis functions have been chosen.
Alternatives such as sinusoids, wavelets, and orthogonalized B-splines may
be more appropriate for some settings.

We write zi = (z1(xi), . . . , zp(xi)) for the row vector of all p basis func-
tions evaluated at the i’th input point, and Z for the n by p matrix with
i’th row zi. Similarly Yi = f(xi) and Y denotes the column vector with
i’th entry Yi.

The kriging approach typically begins with a model in which η(x) is
the realization of a stationary Gaussian process under which E(η(x)) = 0
for all x, and E(η(x)η(x′)) = σ2Γ(x − x′), for a correlation function Γ.
The coefficients βj are also jointly normally distributed independently of
η. Now suppose that x0 ∈ [0, 1]s and we wish to predict a value for f(x0).
Under the kriging model, the function values f(x0), f(x1), . . . , f(xn) have
a n + 1 dimensional multivariate normal distribution. The natural way
to predict f(x0) is by the conditional expectation f̂(x0) = E(f(x0) |
f(x1), . . . , f(xn)). Under mild continuity conditions on Γ (to eliminate
the “nugget effect”), the function f̂(x) smoothly interpolates the given
data.
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In the limit as the prior variance of every βj tends to infinity, the kriging
estimator yields the interpolator

f̂(x0) = z0β̂ + vT0 V
−1(Y − Zβ̂), (7)

where V is the n by n matrix with i, j element Γ(xi−xj), v0 is the column
vector with i’th element Γ(xi − x0), and β̂ = (ZTV −1Z)−1ZTV −1Y .

The usual practice in computer experiments is to take p = 1. The cor-
relation function Γ is typically taken to be a tensor product of univariate
correlation functions. The function Γ is commonly a member of a para-
metric family {Γθ | θ ∈ Θ ⊆ Rt} with t = O(s). The parameter θ is then
chosen on the basis of the sample function values.

The regression based approaches to computer experiments described
here, are defined through the least squares values for β,

β∗ = arg min
β

∫
(f(x) − z(x)β)2dx. (8)

Elementary manipulations give

β∗ =
[∫

z(x)T z(x)dx
]−1 ∫

z(x)T f(x)dx (9)

=
∫
z(x)T f(x)dx, (10)

by orthogonality of the basis functions. Notice in particular that

β∗1 =
∫
f(x)dx

is simply the integral of f over [0, 1]s.
The regression approach is to take a simple independent Monte Carlo

sample x1, . . . , xn ∼ U [0, 1]s, and estimate the integrals in (9) by their
sample values. This results in

β̂ = (ZTZ)−1ZTY (11)

and the approximation is f̂(x) = z(x)T β̂.
The quasi-regression approach exploits the known value

∫
z(x)T z(x)dx =

I, estimating β∗ by a sample version of equation (10),

β̃ =
1
n
ZTY (12)
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and approximating by f̃(x) = z(x)T β̃. The name quasi-regression is adopted
for this because a similar “ignore the denominator” rule leads to quasi-
interpolation. See Chui and Diamond [3].

In both regression and quasi-regression, small estimated coefficients βi
might be set to zero in order to speed up evaluation.

Regression and quasi-regression estimate β∗ and use 0 for η(x). Kriging,
by contrast, uses a very flexible approximation to η(x) and a minimal model
for zβ.

In the regression approaches, β∗ is estimated via numerical integration.
The global accuracy of such an approximation may also be expressed in
terms of numerical integration as

∫
(f(x)− z(x)β)2dx.

For a fixed value of n and p, Owen [13] gives an analysis that suggests
regression with n observations should ordinarily have approximately the
accuracy of quasi-regression with λn observations with λ ordinarily larger
than 1. But regression requires O(p) times as much time and O(p) times as
much space as quasi-regression. For a given computational budget, quasi-
regression can use either a larger value of n or a larger value of p than
regression. This is why we choose to focus on quasi-regression. We also
expect that improvements in quasi-regression described in Section 7 will
reduce the advantages regression might enjoy at fixed sample sizes n.

3. COMPLEXITY

The time to fit the kriging model includes components proportional to
n3 and to p3, arising from the need to solve systems of n and p equations
respectively. This is the general rule, though there are special settings and
approximations that can reduce the effort. See Ritter [15] for references.

In computer experiments, it is typical that p = 1, and the O(n3) portion
of the cost dominates the fitting. This cost grows much more quickly than
the cost of obtaining f(x1), . . . , f(xn). Koehler and Owen [8] present the
following example. Suppose that a computer experiment takes one hour to
compute f(x1), . . . , f(xn), and then one minute is spent on the computer
algebra to construct the kriging approximation. The minute might be spent
evaluating candidates for the covariance function σ2Γ. If it emerges that
more data is required, then the user might decide to run the experiment
for 24 hours. The algebra would then scale to 243 minutes, or 9.6 days.
The result is that for large n, the algebra takes over the computations.
Kriging also faces numerical problems in that the matrix V becomes badly
conditioned with increasing n.

Kriging is well established in applications with functions f that are slow
to evaluate and are defined over small to moderate dimensions. In such
cases n must be small, and a small n has a chance of being effective. We
are motivated by problems with faster functions f not necessarily defined
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on small dimensions. Faster functions allow sample sizes in the range 105 ≤
n ≤ 107 (or larger) and such large sample sizes may be required when s is
not small. In such cases kriging becomes infeasible.

The costs for fitting regression are only O(np2) and those for fitting
quasi-regression are O(np). Problems with large p will ordinarily require
large n, so it is natural to consider p and n increasing together. But as long
as p = o(n), the rate favors regression and quasi-regression over kriging,
for large problems.

While in most cases estimation time is the dominant cost, regression has
more favorable space complexity than kriging, and quasi-regression is more
favorable still. Regression and quasi-regression also have an advantage in
prediction complexity.

TABLE 1.

Time and space complexity of kriging, regression, and quasi-regression,
assuming n data points, p basis functions and r nonzero coefficients.

Estimation Complexity Time T Space S Footprint T × S

Kriging O(n3 + p3) O(n2 + p2) O(n5 + p5)

Regression O(np2 + p3) O(p2) O(np4 + p5)

Quasi-Regression O(np) O(p) O(np2)

Prediction Complexity Time T Space S Footprint T × S

Kriging O(n+ r) O(n+ r) O(n2 + r2)

Regression O(r) O(r) O(r2)

Quasi-Regression O(r) O(r) O(r2)

Table 1 shows the time and space complexity for estimation and pre-
diction of these three statistical methods. In specialized settings, the cost
may be proportional to how long an amount of memory is held. This is
described by the “footprint” column in Table 1.

4. IMPLEMENTATION

This section describes some implementation details in quasi-regression.
Let

β̃
(n)
j =

1
n

n∑
i=1

zj(xi)f(xi) (13)
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be the quasi-regression estimate of β∗j based on x1, . . . , xn, and let β̃(n) be

the row vector with j’th element β̃(n)
j . The quantity

S
(n)
j =

1
n

n∑
i=1

(
zj(xi)f(xi)− β̃(n)

j

)2

(14)

can be used to estimate the sampling uncertainty in β̃(n)
j . If

∫
f(x)zj(x)2dx <

∞, then the expected value of S(n)
j /(n− 1) is equal to the variance of β̃(n)

j

under ordinary Monte Carlo sampling.
Both of these quantities can be updated simultaneously via

β̃
(n)
j ≡ β̃

(n−1)
j +

1
n

[
zj(xi)f(xi)− β̃(n−1)

j

]
(15)

S
(n)
j ≡ S

(n−1)
j +

n− 1
n

[
zj(xi)f(xi)− β̃(n−1)

j

]2
. (16)

The significance of updating formulas (15) and (16) is that they require
only a single pass over the data, and are numerically stable, as described
by Chan, Golub, and Leveque [2].

Given a vector β not necessarily equal to β∗, the accuracy of z(x)β as
an approximation to f(x) may be judged through the integral

∫
(f(x) −

z(x)β)2dx. We estimate the accuracy of our approximation via

Errn,B =
1
B

n−B∑
i=n−B+1

(f(xi)− z(xi)β̃(i−1))2. (17)

Because xi is independent of β̃(i−1),

E
(

(f(xi)− z(xi)β̃(i−1))2 | β̃(i−1)
)

=
∫

(f(x)− z(x)β̃(i−1))2dx

providing an unbiased estimate of the accuracy of z(x)β̃(i−1). The accuracy
of z(x)β̃(i−1) changes as i increases, and the quantity Errn,B estimates the
average accuracy over the most recent block of B observations.

It is natural to normalize Errn,B by an estimate of
∫

(f(x) − β∗1)2dx.
Letting f̄ = β̃

(n)
1 = (1/n)

∑n
i=1 f(xi), the quantity

Lofn,B =
Errn,B

(1/n)
∑n
i=1(f(xi)− f̄)2

(18)

describes the fraction of the variance in f(x) not explained by the quasi-
regression model. This fraction can, in unfavorable cases, exceed 1.0. When
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this happens, the interpretation is that a simple model predicting the func-
tion by its global average is more accurate than f̃(x) = z(x)β̃.

5. TENSOR PRODUCT BASES

We construct our basis functions over [0, 1]s by taking tensor products of
univariate basis functions. Let φ0(z) = 1 for all z ∈ [0, 1]. For integers j ≥
1, let φj(z) satisfy

∫ 1

0
φj(z)dz = 0,

∫ 1

0
φ2
j (z)dz = 1, and

∫ 1

0
φj(z)φk(z)dz =

0, for j 6= k. An s dimensional tensor product basis function over x =
(x1, . . . , xs) ∈ [0, 1]s is then

Φr1,... ,rs(x) =
s∏
j=1

φrj (x
j). (19)

It is easy to see that Φ0,0,... ,0(x) = z1(x) = 1, and that any finite set
of functions Φr1,... ,rs including Φ0,0,... ,0 can serve to define the functions
zj(x) described in Section 2. The sets that we choose to work with are
defined by vectors r = (r1, . . . , rs) of nonnegative integers satisfying all of

s∑
j=1

rj ≤ d (20)

s∑
j=1

1rj 6=0 ≤ w (21)

max
1≤j≤s

rj ≤ m. (22)

We refer to these as the degree, rank, and order of (r1, . . . , rs) respectively.
The bounds d, w, and m can be varied to suit the problem at hand.

The univariate basis functions we have chosen to work with are orthog-
onal polynomials on z ∈ [0, 1]. Using the shorthand u = u(z) ≡ z − 1/2,
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the first few polynomials are:

φ0(z) = 1

φ1(z) =
√

12u

φ2(z) =
√

180
[
u2 − 1

12

]
φ3(z) =

√
2800

[
u3 − 3

20
u

]
φ4(z) = 210

[
u4 − 3

14
u2 +

3
560

]
φ5(z) = 252

√
11
[
u5 − 5

18
u3 +

5
336

u

]
φ6(z) = 924

√
13
[
u6 − 15

44
u4 +

5
176

u2 − 5
14784

]
.

These are essentially the Legendre polynomials, except that the latter are
defined over [−1, 1] instead of [0, 1].

6. EXAMPLES

This section considers 4 example functions: The borehole function of
equation (1), a robot arm function widely used in neural network papers, a
9 dimensional function with 2 spikes, and a function from Chemical Vapor
Deposition (CVD).

6.1. Borehole function
The borehole function of equation (1) was investigated over the following

ranges:

rw ∈ [0.05, 0.15] m
r ∈ [100, 50000] m
Tu ∈ [63070, 115600] m3/yr
Tl ∈ [63.1, 116] m3/yr
Hu ∈ [990, 1110] m
Hl ∈ [700, 820] m
L ∈ [1120, 1680] m

Kw ∈ [9855, 12045] m/yr.

The first set of basis functions we considered for this model have degree,
rank and order d = 4, w = 2, and m = 4. For s = 8 this results in p = 201
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basis functions. Figure 1 shows LofB,n versus n, for B = 100. A simple
model using the input variables one or two at a time explains roughly 99%
of the variance of this function. Because the LofB,n still appears to be
decreasing at n = 10000 it is possible that even more than 99% of the
variance is explained by this model.

0.001

0.01

0.1

1

10

100 1000 10000

FIG. 1. Lack of fit is plotted versus sample size for the borehole function. The
model used degree d = 4, rank w = 2 and order m = 4. There are p = 201 basis
functions over s = 8 dimensions.

Figure 2 shows the same information as Figure 1, except that w has
been increased from 2 to 3. This increases p from 201 to 425. The lack of
fit has increased from about 1% to about 3.4%, but is still decreasing by
n = 10000. The eventual lack of fit has to be smaller for this basis than
for the one with rank 2, though for finite n, sampling fluctuations in β̃ will
increase the lack of fit, and the effect is worse for this example because p
is larger.

Figure 3 shows the same information, except that now the degree is
increased to d = 6. This basis has p = 1517 basis functions. With this
many basis functions the lack of fit is still decreasing at n = 100000.

Using quasi-regression, we can infer that the borehole function is very
nearly a sum of its input variables one or two at at time. Each of the three
example runs gives a usable model that approximates the borehole function
with small errors. The gain from using 1517 basis functions and 100000
observations to fit them, instead of using the smaller model from Figure 1
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FIG. 2. Lack of fit is plotted versus sample size for the borehole function. The
model used degree d = 4, rank w = 3 and order m = 4. There are p = 425 basis
functions over s = 8 dimensions.

is small enough, that one might prefer the original approximation, or an
even smaller one, in practice.

6.2. Robot arm function
A function commonly used in the neural network literature is the robot

arm function. Consider a robot arm with 4 segments. The shoulder of the
arm is fixed at the origin in the (u, v)-plane. The segments of this arm have
lengths L1, L2, L3, and L4. The first segment is at angle θ1 with respect
to the horizontal coordinate axis of the plane. Angles describe the rotation
of For k = 2, 3, 4, segment k makes angle θk with segment k − 1. The end
of the robot arm is at

u =
4∑
j=1

Lj cos

(
j∑

k=1

θk

)

v =
4∑
j=1

Lj sin

(
j∑

k=1

θk

)
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FIG. 3. Lack of fit is plotted versus sample size for the borehole function. The
model used degree d = 4, rank w = 2 and order m = 4. There are p = 1517 basis
functions over s = 8 dimensions.

and the response f is the distance (u2 + v2)1/2 from the end of the arm to
the origin expressed as a function of 8 variables θj ranging over [0, 2π] and
Lj ranging over [0, 1].

Figure 4 shows the lack of fit for this function, using d = 4, w = 3,
and m = 4, which for s = 8 gives p = 425 basis functions. The lack of
fit decreases to about 29.5% by n = 10000 and does not decrease much
further as n increases to 100000. Unlike the borehole function, the robot
arm function is not well approximated by a low order polynomial. We know
by Taylor’s theorem that over a small domain the robot arm function would
be well approximated by a low order polynomial, so this result may also
be interpreted as a statement that the chosen domain is too large for such
a local approximation.

Figure 5 shows lack of fit versus n for a larger basis with d = 12, w = 3,
and m = 4, which for s = 8 gives p = 4065 basis functions. While the
lack of fit is still decreasing by n = 100000, it is still as large as 19.2%,
suggesting that simply adding basis functions has not helped much.

Polynomial basis functions do not seem to be well suited for the robot
arm function, over such a large range. Some failures of this type are in-
evitable for a high dimensional approximation method, but at least the
quasi-regression method gives a clear indication of such a failure having
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FIG. 4. Lack of fit is plotted versus sample size for the robot arm function. The
model used degree d = 4, rank w = 3 and order m = 4. There are p = 425 basis
functions over s = 8 dimensions.

happened. This could lead an investigator to try a different basis. Perhaps
one based on trigonometric polynomials (at least for the θj , if not the Lj)
would work better.

6.3. Chemical vapor deposition
Our next example is for a problem in Chemical Vapor Deposition (CVD)

brought to our attention by Juan Meza and Charles Tong of Sandia Na-
tional Laboratory. CVD is used to deposit a chemical on the surface of a
silicon wafer for use in making integrated circuits. The wafers are heated in
an oven, and the vapor is allowed to pass over them. The rate of deposition
depends on the temperature of the wafers. Other things being equal it is
best to have nearly uniform wafer temperature, in order to get a chemical
layer of nearly uniform thickness. A computer code implements a model
for the temperature field within the oven as a function of the locations and
settings of the heating elements. The response function f is a measure
of the uniformity of the surface temperatures of the wafers. The code is
available in versions ranging from s = 3 to s = 24 depending on how much
detail is used. The s = 3 dimensional version takes about 1 second to
execute on a modern workstation.
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FIG. 5. Lack of fit is plotted versus sample size for the robot arm function. The
model used degree d = 12, rank w = 3 and order m = 4. There are p = 4065 basis
functions over s = 8 dimensions.

Figure 6 plots lack of fit versus n for a basis with d = 4, w = 2, and
m = 4, leading to p = 31 basis functions. The lack of fit decreases to about
0.06% by n = 50000 and does not appear to be decreasing much at that
point.

Figure 7 shows the results for a larger model having d = 12, w = 3, and
m = 4, leading to p = 125. The result is only a small improvement in the
lack of fit. It is possible to save the 50000 function evaluations and simply
regenerate the random inputs xi, so that evaluating a second model need
not take another 50000 seconds (almost 14 hours). For many purposes the
simple approximation using only 31 basis functions is a sufficiently accu-
rate approximation to the original function. This represents a substantial
speed-up of the function, and may be fast enough to support interactive
visualization. The original function, while fast, would not be fast enough
to have 100 evaluations take place at the click of a mouse.

6.4. Spiky function
Our final example is another negative one. The function is taken from

the dissertation of Zhou [17] who considers numerical integration of spiky
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FIG. 6. Lack of fit is plotted versus sample size for the CVD function. The model
used degree d = 4, rank w = 2 and order m = 4. There are p = 31 basis functions over
s = 3 dimensions.

functions. This spike function is

f(x) =
10s

2

(
ϕ(10(x− 1/3)) + ϕ(10(x− 2/3))

)
, (23)

where ϕ(x) = (2π)−s/2 exp(−.5‖x‖2) with the operation 10(x− 1/3) inter-
preted component-wise on x, and ‖ · ‖ denoting the Euclidean norm. This
function is a sum of two narrow Gaussian probability densities centered at
(1/3, . . . , 1/3) and at (2/3, . . . , 2/3). We chose to investigate it in s = 9
dimensions. Truncating the function to the unit cube makes its integral
slightly smaller than 1.

There is no reason to expect this function to be approximately a low
order polynomial. Figure 8 shows the lack of fit using d = 4, w = 2 and
m = 4 (with p = 253), and Figure 9 shows the lack of fit using d = 6, w = 3
and m = 4 (with p = 2185). In both cases the lack of fit fails to become
small, and is in fact larger than 1. The spikes in f(x) show themselves as
spikes in the lack of fit curve. The reason is that each point in the lack
of fit curve is an average of B = 100 squared error estimates, normalized
by the function variance. Most of the blocks of function values include no
spikes, and produce small error values. But many of the blocks do in fact
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FIG. 7. Lack of fit is plotted versus sample size for the CVD function. The model
used degree d = 12, rank w = 2 and order m = 4. There are p = 125 basis functions
over s = 3 dimensions.

contain points x in a spike, and these ones produce very large values of
Lof.

7. DISCUSSION

We have found that quasi-regression is workable on some realistic prob-
lems, and for sample sizes n that would make kriging infeasible. Our view
is that this makes quasi-regression a worthwhile addition to the computer
experimenter’s toolbox. We have not compared quasi-regression with krig-
ing on problems where both are feasible. We do not expect quasi-regression
to perform well in settings where only a few dozen observations can be ob-
tained. In such settings regression is more suitable, and kriging may be
more effective still.

Quasi-regression also provides a direct measure of its accuracy, helping
the user to decide whether the approximation is good enough. By watching
the trajectory of the lack of fit, one can infer whether increasing n is likely
to be worthwhile. The trajectory can also give an indication of whether
the target function is spiky, and hence likely to be require quite different
techniques.
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FIG. 8. Lack of fit is plotted versus sample size for the spiky function. The model
used degree d = 4, rank w = 2 and order m = 4. There are p = 253 basis functions over
s = 9 dimensions.

Our approach has been very different from the usual one in approxima-
tion theory. We have chosen to focus on example target functions individ-
ually, instead of on function classes, such as balls in Hilbert spaces. The
study of high dimensional numerical integration gained greatly from just
such a study of specific example functions, as in Paskov and Traub [14]
and Caflisch, Morokoff and Owen [1] and others, and we hope the same
will happen for approximation.

Asymptotic theory for function classes suggests that the smoother the
class containing f , the better the rate of convergence attainable for it. The
constant in front of this rate is usually determined by the radius of the
ball of functions. Generally, the functions considered in this paper are very
smooth. The CVD function might be an exception; it is not available in
closed form and it may have numerical noise. The robot arm function is an
exception, only near points where L1 = L2 = L3 = L4 = 0, but there is no
reason to expect that raising the minimum value of the Lj slightly would
make quasi-regression perform well. The performance differences seen on
these functions seem to be more a matter of the leading constants than of
the rates.

Our work continues on quasi-regression. The method was designed with
the idea that simple Monte Carlo points could be replaced by quasi-Monte
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FIG. 9. Lack of fit is plotted versus sample size for the spiky function. The model
used degree d = 6, rank w = 3 and order m = 4. There are p = 2185 basis functions
over s = 9 dimensions.

Carlo (Niederreiter [10]) or by randomized quasi-Monte Carlo (Owen [11])
points. There is room for more sophisticated statistical estimation of βj ,
such as shrinking β̃j towards zero if Sj is large, and using ordinary regres-
sion for some but not all of the βj . The dissertation of An (in progress) con-
siders extended quasi-regression which replaces f(xi) by f(xi)−

∑
k∈Kj β

(i−1)zki
in (13) where j 6∈ Kj . Extended quasi-regression can reduce the variance
of the estimated coefficients.
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