
Single Nugget Kriging

Minyong R. Lee† Art B. Owen†

July 15, 2015

Abstract

We propose a method with better predictions at extreme values than

the standard method of Kriging. We construct our predictor in two ways:

by penalizing the mean squared error through conditional bias and by

penalizing the conditional likelihood at the target function value. Our

prediction exhibits robustness to the model mismatch in the covariance

parameters, a desirable feature for computer simulations with a restricted

number of data points. Applications on several functions show that our

predictor is robust to the non-Gaussianity of the function.

1 Introduction

In many fields of engineering and science, computer experiments have become
an essential tool in studying physical processes such as the subsurface of the
earth, aerodynamic forces on bridge decks, and channel network flow. These
experiments can be thought of as functions: given a set of input variables in a
fixed domain the computer experiment returns the output, which can be a single
value, a vector, or even a function. These experiments are usually determinis-
tic, that is if we run the experiment with the same set of input variables, the
output is identical. For more discussions of problems and examples in computer
experiments, see Sacks et al. [14] and Koehler and Owen [7].

Kriging is a popular way to build metamodels in computer experiments.
The method was initially proposed by D.G. Krige [8], and improved by G.
Matheron [11]. Kriging exactly interpolates the experimental data and produces
predictions at unobserved inputs. The method also generates credible intervals
which represent the uncertainty of the prediction. Stein [16] and Switzer [17]
give summaries and in-depth discussions of Kriging.

However, there are several limitations of Kriging. First of all, the Kriging
prediction depends on the covariance hyperparameters that are usually unknown
and need to be estimated. The variability of the predicted process highly de-
pends on the hyperparameters, and the likelihood of the hyperparameters are
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usually computationally expensive to compute and could have many local max-
ima. There have been several approaches to stabilize the estimation of the
hyperparameters, such as Covariance Tapering by Kaufman et al. [6] and Pe-
nalized Kriging by Li and Sudjianto [9]. We would like to find a predictor that
is less affected by the hyperparameters.

Secondly, the Kriging prediction depends on the mean function that we
need to specify before looking at the data. In Kriging, there is a “regression
effect”, in which the predictions are pulled towards the mean function. This
comes from minimizing the overall mean squared prediction error, and may
give bad predictions at extreme function values. Conditional Bias-Penalized
Kriging (CBPK) by Seo [15] suggests minimizing the mean squared error plus
the squared conditional bias to improve the performance at the extreme values.
Furthermore, if there is a model mismatch, for instance if the mean function
is assumed to be zero but actually it is a linear combination of input values,
the predictions can be poor. Limit Kriging by Joseph [4] and Blind Kriging by
Joseph [5] mitigate this problem.

In this paper, we propose a new prediction method which we call Single
Nugget Kriging (SiNK). In section 2, we briefly introduce Kriging. In section 3,
we discuss conditioning the likelihood at the target, a fundamental idea of the
SiNK. In section 4, we define SiNK, and show that it gives smaller mean squared
prediction error than usual Kriging when the function value is far from the mean
function. In other words, SiNK is robust to misspecifying the mean function or
covariance hyperparameters. In section 5, we compare the performance of SiNK
to the performance of usual Kriging and Limit Kriging in several numerical
experiments.

2 Kriging

Kriging, or Gaussian Process Regression, treats the deterministic function f(x)
as a realization of a one-dimensional random field

Y (x) = m(x) + Z(x)

where x ∈ R
d, m(x) is a deterministic mean function, and Z(x) is a stationary

Gaussian process with mean zero and covariance function K(·, ·).
There are three widely used Kriging models based on the mean function.

When the mean function is a known function, it is called Simple Kriging, and
when the function is an unknown constant β, it is called Ordinary Kriging.
When the mean function is a linear combination of known functions f0, . . . , fp
but coefficients β0, . . . , βp are unknown, namely m(x) =

∑p
k=0 βkfk(x), it is

called Universal Kriging.
For the covariance function, stationary covariance functions that are tensor

products of one-dimensional kernels are popular. Let Cθ : R → [−1, 1] be a
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covariance kernel with length-scale parameter θ. Let

K(x,y) = σ2C(h) = σ2
d
∏

j=1

Cθj (|hj |) = σ2
d
∏

j=1

C1

( |hj |
θj

)

where h = x− y and σ2 and (θ1, . . . , θd) are estimated from the data. Matérn
covariance kernels [10] are defined as

Cν,θ(d) =
(
√
2ν d

θ )
ν

Γ(ν)2ν−1
Kν

(√
2ν

d

θ

)

where Kν(·) is the modified Bessel function of the second kind. Matérn covari-
ance kernels are one of the most commonly used kernels in practice because the
smoothness of its process, defined in terms of its mean square differentiability,
can be parametrized through ν.

For high dimensional functions, isotropic covariances

K(x,y) = σ2Cθ(‖h‖) = σ2C1

(‖h‖
θ

)

are often used, where ‖·‖ is the Euclidean norm. If there is a measurement error
or noise in the function, then adding a nugget effect handles the discontinuity
in the function, namely

K(x,y) = σ2C(h) = σ2
d
∏

j=1

Cθj (|hj |) + τ2I0(h)

where τ2 > 0 is a parameter and I0 is the indicator function of the set {0} ⊂ R
d.

Throughout the paper, we only consider deterministic computer experiments
and we will use the model with a known (or estimated) constant mean β for
simplicity. The simplification of the mean function to a constant does not affect
predictive performance in general; see Sacks et al. [14]. We assume that the
hyperparameters of the covariance function are known (or estimated from the
data), and we will focus on the prediction at a new point x0.

Now suppose we observe y = (Y (x1), . . . , Y (xn)), and let K = (Kij) be the
n× n covariance matrix of y, k(x0,x0) be the variance of Y (x0), and k(x0) be
the covariance vector between y and Y (x0). In a matrix form,

Var

[(

Y (x0)
y

)]

=

(

k(x0,x0) k(x0)
T

k(x0) K

)

.

Let 1 be the n-length vector of all ones. Then,

Y (x0)
∣

∣ Y (X) = y ∼ N(m, s2)

where

m = β + k(x0)
TK−1(y − β1), and

s2 = k(x0,x0)− k(x0)
TK−1k(x0).
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That is, the conditional distribution of Y (x0) given y is N(m, s2). The Simple
Kriging predictor is defined by the conditional mean

ŶK(x0) = E[Y (x0)
∣

∣y] = β + k(x0)
TK−1(y − β1).

The Kriging predictor is also the Best Linear Unbiased Predictor(BLUP)
that minimizes the mean squared prediction error (MSPE). Specifically, for
Simple Kriging, the linear unbiased predictor Ŷ (x0) = β + λT (y − β1) that
minimizes

E[(Y (x0)− Ŷ (x0))
2]

with respect to λ is the Simple Kriging predictor.

3 Conditional likelihood at the target and con-

ditional bias

In this section, we investigate the idea of maximizing the conditional likelihood
given the target function value, which is the supporting idea of the SiNK. We
also define a class of predictors by generalizing CBPK.

3.1 Conditional likelihood at the target

Let’s formulate the prediction problem as an estimation problem. Instead of
conditioning by the observed function values, we condition by the unknown
function value at the target point and compute the likelihood. We easily find
that

Y (X)
∣

∣ Y (x0) = y0 ∼ N(m̃, K̃), where (1a)

m̃ = β1+ k(x0,x0)
−1(y0 − β)k(x0) and (1b)

K̃ = K − k(x0,x0)
−1k(x0)k(x0)

T . (1c)

Now the conditional mean is a vector and the conditional variance is a matrix.
The conditional log likelihood is

l(y0) = −1

2
(y − m̃)T K̃−1(y − m̃) + constant. (2)

Note that the maximizer of the conditional likelihood with respect to y0 with
penalty −(y0 − β)2/(2k(x0,x0)), which is the maximum a posteriori estimate
of y0 with the prior distribution y0 ∼ N(β, k(x0,x0)), is the Simple Kriging
predictor. However, the maximizer of the conditional likelihood without penalty
(CMLE) is

ŶCMLE(x0) = β +
k(x0,x0)

k(x0)TK−1k(x0)
k(x0)

TK−1(y − β1).
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The derivation is in the appendix, section A. Let us define

ρ = ρ(x0) =

√

k(x0)TK−1k(x0)

k(x0,x0)
.

Then ρ(x0)
2 is the variance explained by conditioning divided by the marginal

variance of y0. The quantity ρ(x0) always lies in [0, 1], and can be understood
as the correlation between the target function value and the data. The CMLE
is obtained by inflating the residual term of the Simple Kriging predictor by
1/ρ(x0)

2.

3.2 Conditional Bias

The CMLE is also unbiased in the sense that E[ŶCMLE(x0)] = β. In addition,
ŶCMLE(x0) is conditionally unbiased, namely

E[ŶCMLE(x0)
∣

∣Y (x0) = y0] = y0.

However, for Simple Kriging, we have

E[ŶK(x0)
∣

∣Y (x0) = y0] = β + (y0 − β)
k(x0)

TK−1k(x0)

k(x0,x0)

= β + ρ(x0)
2(y0 − β) 6= y0

so that ŶK(x0) is conditionally biased. We can expect that for a given y0 which
is far from the prior mean, the performance of standard Kriging could be worse
than the performance of CMLE.

3.3 Conditional Bias-Penalized Kriging

Conditional Bias-Penalized Kriging (CBPK) is defined as the linear unbiased
predictor Ŷ (x0) = β+ λT (y− β1) that minimizes the MSPE plus a multiple of
squared conditional bias (CB)

E[(y0 − Ŷ (x0))
2] + δE[(y0 − E[Ŷ (x0)

∣

∣y0])
2] (for some δ ≥ 0) (3)

with respect to λ. Seo [15] suggests that we use δ = 1, which leads to the
predictor

ŶCBPK(x0) = β +
2k(x0,x0)

k(x0,x0) + k(x0)TK−1k(x0)
k(x0)

TK−1(y − β1)

= β +
2

1 + ρ(x0)2
k(x0)

TK−1(y − β1).

We observe that it is again a predictor with an inflated residual term. Dif-
ferent choices of δ in (3) will lead to different predictors. If δ = 0, (3) is the
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objective for Simple Kriging, and thus the minimizer ŶCBPK(x0) is the Sim-
ple Kriging predictor. If δ → ∞, the minimizing predictor is the CMLE. This
matches with the fact that the CMLE is conditionally unbiased.

The main question when using a CBPK is: which ratio between MSPE and
CB should we use? We seek an automatic way to choose δ instead of simply
using δ = 1 or applying a cross-validation-style approach. We suggest varying
the ratio spatially, in other words, using an appropriate function of x0 as δ in
the following section. For any nonnegative δ, the generalized CBPK predictor
for a constant mean model of the form

Ŷ (x0) = β + w(x0)k(x0)
TK−1(y − β1)

where w(x0) ∈ [1, 1/ρ(x0)
2]. For every nonnegative δ, there is a corresponding

w(x0) ∈ [1, 1/ρ(x0)
2]. See appendix section B for details.

4 Single Nugget Kriging

In this section, we define the Single Nugget Kriging and discuss its properties.

4.1 Definition of SiNK

Definition 4.1. The Single Nugget Kriging (SiNK) predictor is defined as

ŶSiNK(x0) = β +
1

ρ(x0)
k(x0)

TK−1(y − β1)

= β +

√

k(x0,x0)

k(x0)TK−1k(x0)
k(x0)

TK−1(y − β1)

which is the maximizer of the conditional likelihood given Y (x0) = y0 with
penalty

pen(y0) = − (y0 − β)2

2k(x0,x0)

ρ(x0)

(1 + ρ(x0))
.

That is, the implicit prior distribution on y0 is y0 ∼ N(β, k(x0,x0)(1+1/ρ(x0)).

SiNK is defined as the maximum a posteriori estimator with a prior distri-
bution on Y (x0). We inflate the prior variance only at x0 by the amount of
uncertainty measured by ρ, to reduce the dependency on the prior. It is equiv-
alent to assuming an independent Gaussian noise only on Y (x0), so we call the
method Single Nugget Kriging.

Remark. The SiNK predictor is the CBPK predictor with δ = 1/ρ(x0); it is the
linear unbiased predictor Ŷ (x0) = β+λT (y−β1) where λ is the solution of the
optimization problem

minimize
λ

E[(y0 − Ŷ (x0))
2] +

1

ρ(x0)
E[(y0 − E[Ŷ (x0)

∣

∣y0])
2].
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Verifications of Definition 4.1 and Remark 4.1 are in appendix sections C
and B respectively. As mentioned in section 3, the ratio δ is now a function
of x0. The conditional bias penalty is larger when we have less information on
the target function value. Penalizing by the conditional bias by an appropriate
multiple of the conditional bias squared will improve performance at extreme
values. The rationale of using δ = 1/ρ(x0) will be discussed in section 4.3.

4.2 One-point case

To illustrate the difference among the predictors, we consider the case when
there is only one observation. Let Y0 and Y1 be two output values from a
function. We observe Y1 = y1 and want to predict Y0. The model in this case
consists of

E

[(

Y0

Y1

)]

=

(

β
β

)

and Var

[(

Y0

Y1

)]

= σ2

(

1 ρ
ρ 1

)

where ρ > 0. The Simple Kriging predictor and the CMLE are

ŶK = β + ρ(y1 − β) and

ŶCMLE = β +
1

ρ
(y1 − β). (4)

If we have ρ close to zero, which is the case when we have little information
on Y0, then both predictors have problems. The Simple Kriging predictor will
depend mostly on the prior mean β, and the CMLE predictor will have a large
variance if the true function value is far from the prior mean. However, the
SiNK predictor is

ŶSiNK = β +
ρ

ρ
(y1 − β) = y1

which does not depend on any parameters. If one wants to rely more on the
data than the prior mean β, SiNK is preferable to Simple Kriging. Intuitively,
not only when n = 1 but also when n > 1, SiNK will be more robust to the
misspecified mean and covariance than usual Kriging.

4.3 Properties

The main feature of SiNK is its stability which will be represented as bound-
edness and localness in this section. The natural question that arises may be
the uniqueness of a predictor with these properties. Theorem 4.3 shows that
the SiNK predictor is the unique predictor with both of these properties, in the
class of generalized CBPK predictors with MSPE-CB ratio δ as a function of
ρ(x0).

The following proposition shows that if the covariance function is stationary,
then the SiNK predictor is bounded. This is not the case for the CMLE because
it is unbounded as ρ(x0) approaches 0. For instance, in the one-point case (4),
ŶCMLE diverges as ρ → 0.
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Proposition 4.1 (Boundedness).

|ŶSiNK(x0)− β| ≤
√

k(x0,x0)
√

(y − β1)TK−1(y − β1) (5)

Thus, if the covariance function is stationary, then

sup
x0∈Rd

|ŶSiNK(x0)| < ∞. (6)

Proof. By the Cauchy-Schwartz inequality,

|ŶSiNK(x0)− β| = 1

ρ(x0)
|k(x0)

TK−1(y − β1)|

≤ 1

ρ(x0)

√

k(x0)TK−1k(x0)
√

(y − β1)TK−1(y − β1)

=
√

k(x0,x0)
√

(y − β1)TK−1(y − β1)

and equality holds when K−1/2k(x0) and K−1/2(y − β1) are parallel. If the
covariance function is stationary, then the right hand side of (5) does not depend
on x0, thus (6) holds.

For a predictor with inflated residual of Simple Kriging predictor to be
bounded, the maximum amount of inflation is order of 1/ρ(x0). Roughly speak-
ing, SiNK is the predictor with maximum inflation of the residual term that
satisfies boundedness.

Now let Jk be a set of points that have different distances from observations
in k’th coordinate, namely

Jk := {x0

∣

∣ |(x0 − xj)k| 6= |(x0 − xl)k| for all j 6= l, j, l ∈ {1, 2, . . . , n}} (7)

where k ∈ {1, 2, · · · , d}. In Proposition 4.2 and Theorem 4.3, we assume that
the new point x0 is in Jk to break the ties; we remove a measure zero set to
simplify the argument. Also, let us define the neighborhood of an observation
xj for j ∈ {1, 2, . . . , n} as

B(xj) := {x0

∣

∣ K(x0,xj) > K(x0,xl) ∀l 6= j, l ∈ {1, 2, . . . , n}}. (8)

That is, if x0 ∈ B(xj), then xj is the closest observation to x0 in terms of
covariance.

Proposition 4.2 (Localness). Suppose that the covariance function is a tensor

product of stationary kernels with length scale parameter θ = (θ1, . . . , θd). Then

lim
θk→0

sup
x0∈B(xj)∩Jk

|Ŷ (x0)− Y (xj)| = 0

where Jk and B(xj) are sets of points defined in (7) and (8) respectively.
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Proposition 4.2 shows that as θk → 0, if xj is the closest observation (in

k’th coordinate) to x0, then the SiNK predictor Ŷ (x0) converges to Y (xj). In
the following theorem, we show that the SiNK predictor is the only predictor
that satisfies localness, in the class of generalized CBPK predictors. Note that
as θk → 0, the Simple Kriging predictor converges to the prior mean β.

Theorem 4.3 (Uniqueness). Consider a conditional biased penalized kriging

predictor

Ŷ (x0) = β + w(x0)k(x0)
TK−1(y − β1)

such that the covariance function is a tensor product of stationary kernels with

length scale parameter θ = (θ1, . . . , θd), and w(x0) ∈ [1, 1/ρ(x0)
2] is a contin-

uous function of ρ(x0). Suppose that x1, . . . ,xn ∈ Jk (7). If there exists a

k ∈ {1, 2, . . . , d} such that

lim
θk→0

sup
x0∈B(xj)∩Jk

|Ŷ (x0)− Y (xj)| = 0 (9)

holds where Jk and B(xj) are sets of points defined in (7) and (8) respectively,

then w(ρ(x0)) = 1/ρ(x0), i.e. Ŷ (x0) is the SiNK predictor.

The proof of Proposition 4.2 and Theorem 4.3 is given in the appendix, sec-
tion D. Restricting w(x0) to be a function of ρ(x0) enables us to guarantee that
w(x0) ∈ [1, 1/ρ(x0)

2]. For example, w(x0) = 1/ρ(x0) is always in [1, 1/ρ(x0)
2].

Another example for necessity of this condition is Limit Kriging (Joseph [4])
where the predictor has w(x0) = 1/(k(x0)

TK−11). The Limit Kriging pre-
dictor has the localness property, but is not guaranteed to be a CBPK with
nonnegative ratio δ, which means we cannot guarantee better performance at
extreme values.

Figure 1 illustrates the property of SiNK and the difference to Ordinary
Kriging. The function used in this figure is the 2-dimensional Zakharov function
in [0, 1]2, which is

f(x) =
d
∑

i=1

x2
i +

( d
∑

i=1

0.5ixi

)2

+

( d
∑

i=1

0.5ixi

)4

(10)

where d = 2, and the input points are 4 midpoints of the edges of a unit square.
We fitted Ordinary Kriging and SiNK with an estimated constant mean and
tensor product Matérn 5/2 covariance. For θ1 = θ2 = 1, the predictions are
quite similar because ρ(x0) ≈ 1 for all x0 ∈ [0, 1]2. However, when θ1 = θ2
are close to zero, we observe significant differences between the two predictions.
We also observe the localness property of SiNK. The ρ(x0) are close to zero for
most of the plotted points, and thus the Ordinary Kriging predictor is close to
the estimated constant mean for points far from the observations. The SiNK
predictor uses the function value of the observation that is the closest to the
target point.
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(a) θ = 1. (b) θ = 0.05.

Figure 1: Illustration of the difference between Ordinary Kriging and SiNK.
Gray points are the true function values, black points are the observed function
values, cyan points are the Ordinary Kriging prediction, brown points are the
SiNK prediction.

The localness property of SiNK is also related to the fact that the SiNK
prediction at x0 only depends on the ratios of the correlations with observed
function values. For instance, suppose that we predict at another point x′

0 with
covariance vector k(x′

0) = ck(x0), where c is in (0, 1). Then

ŶSiNK(x
′
0) = β +

k(x′
0)

TK−1(y − β1)
√

k(x′
0)

TK−1k(x′
0)

= ŶSiNK(x0).

Thus, the SiNK prediction at x′
0 is the same as the prediction at x0. However,

the Simple Kriging prediction is shrunk to β by a factor of c. Thus, even if x′
0

is far away from inputs, only the ratios of the correlation determine the SiNK
prediction. In other words, SiNK does not automatically converge to the prior
mean β as k(x0) → 0, for instance if one of the θj → 0.

In practice, even though the prediction is theoretically well bounded, divid-
ing by ρ(x0) can be numerically unstable when ρ is close to zero. A practical
fix is to use

ŶSiNK,ǫ(x0) = β +
1

max(ρ(x0), ǫ)
k(x0)

TK−1(y − β1) (11)

for a small ǫ. We use ǫ = 10−3 in our numerical work. A larger ǫ would protect
from bad estimators of length-scale parameters that we did not encounter in
our numerical experiments.

4.4 Mean squared prediction error at extreme values

Since the Simple Kriging predictor is the BLUP, the SiNK predictor has larger
MSPE than the Simple Kriging predictor. However, Propositon 4.4 tells us that
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SiNK will be only slightly inferior; the ratio of MSPEs is bounded.

Proposition 4.4.

E[(ŶSiNK(x0)− Y (x0))
2] =

2

1 + ρ(x0)
E[(ŶK(x0)− Y (x0))

2]

That is, the RMSPE of SiNK is at most
√
2 times larger than the RMSPE of

Kriging.

Proof. From the conditional distribution of y given Y (x0) = y0 ((1)),

E[ (ŶK(x0)− Y (x0))
2
∣

∣Y (x0) = y0 ]

= k(x0)
TK−1k(x0)−

(k(x0)
TK−1k(x0))

2

k(x0,x0)
+ (y0 − β)2

(

1− k(x0)
TK−1k(x0)

k(x0,x0)

)2

and

E[ (ŶSiNK(x0)− Y (x0))
2
∣

∣Y (x0) = y0 ]

= k(x0,x0)− k(x0)
TK−1k(x0) + (y0 − β)2

(

1−
√

k(x0)TK−1k(x0)

k(x0,x0)

)2

(12)

Now since y0 ∼ N(β, k(x0,x0)),

E[(ŶK(x0)− Y (x0))
2] = k(x0,x0)− k(x0)

TK−1k(x0)

and finally

E[(ŶSiNK(x0)− Y (x0))
2] = 2k(x0,x0)− 2

√

k(x0,x0)k(x0)TK−1k(x0)

=
2

1 + ρ(x0)
E[(ŶK(x0)− Y (x0))

2].

by the definition of ρ(x0).

Here we show that SiNK has improved performance at extreme values. This
can be represented in two ways; conditioning on a single extreme value of Y (x0)
and conditioning on a region of extreme Y (x0) values.

Proposition 4.5. If

∣

∣

∣

∣

y0 − β
√

k(x0,x0)

∣

∣

∣

∣

≥
√

(1 + ρ(x0))2

(1 + ρ(x0))2 − 1

holds, then

E[ (ŶSiNK(x0)− Y (x0))
2
∣

∣Y (x0) = y0 ] ≤ E[ (ŶK(x0)− Y (x0))
2
∣

∣Y (x0) = y0 ].

Proof. Directly follows from (12).
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Proposition 4.6. Let φ(·) and Φ(·) be the density function and distribution

function of the standard normal distribution respectively. Let Z(x0) = |(Y (x0)−
β)/(

√

k(x0,x0))|. For M > 0, if ρ(x0) ≥ −1 +
√

1 + (1− Φ(M))/(Mφ(M)),
then

E

[

(ŶSiNK(x0)− Y (x0))
2
∣

∣Z(x0) ≥ M
]

≤ E

[

(ŶK(x0)− Y (x0))
2
∣

∣Z(x0) ≥ M
]

.

Proof. Let ρ = ρ(x0). From (12),

E[(ŶK(x0)− Y (x0))
2
∣

∣Z(x0)] = k(x0,x0)(ρ
2 − ρ4 + Z(x0)

2(1 − ρ2)2) and

E[(ŶSiNK(x0)− Y (x0))
2
∣

∣Z(x0)] = k(x0,x0)(1 − ρ2 + Z(x0)
2(1 − ρ)2).

Using

E[Z(x0)
2
∣

∣Z(x0) > M ] =
1

1− Φ(M)

∫ ∞

M

z2φ(z)dz =
Mφ(M) + 1− Φ(M)

1− Φ(M)

we get the inequality for ρ ≥ −1 +
√

1 + (1− Φ(M))/(Mφ(M)).

Figure 2 shows the relation between ρ(x0) and the critical z-score or the
threshold M for z-score. The ratio of the region-conditional mean squared
prediction error

CMSPESiNK

CMSPEK
=

E

[

(ŶSiNK(x0)− Y (x0))
2
∣

∣Z(x0) ≥ M
]

E

[

(ŶK(x0)− Y (x0))2
∣

∣Z(x0) ≥ M
] (13)

decreases as the threshold M increases.

5 Numerical experiments

For numerical simulations, we used the DiceKriging package in R by O. Roustant
et al. [13]. We fit the constant mean model for Ordinary Kriging and SiNK, with

the maximum likelihood estimator of the constant mean β̂ = (1TK−11)−11TK−1y.
For the covariance function, we used tensor products of Matérn ν = 5/2 kernels
with maximum likelihood estimators of the length-scale parameters θ1, . . . , θd,
unless specified otherwise. We used ǫ = 10−3 in equation (11).

To measure the performance of a predictor, we computed the empirical in-
tegrated squared error (EISE)

1

nT

nT
∑

j=1

(Ŷ (xtest,j)− Y (xtest,j))
2.

with an independent set of nT test points.
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Figure 2: Relation between ρ(x0) and z-score.

5.1 Gaussian process

We generated a realization of a 7 dimensional Gaussian process with zero mean
and Matérn covariance with length-scale hyperparameters θ = (1, 1, 1, 1, 1, 1, 1)
and stationary variance k(x,x) = σ2 = 1. The observations were 100 points
i.i.d. uniform in [0, 1]7 and the test points were 2000 points i.i.d. uniform in
[0, 1]7.

To emulate the real world situation where the hyperparameters are unknown,
we estimated the hyperparameters by maximizing the likelihood. The estimated
mean was β̂ = 0.143, the estimated length-scale hyperparameters were θ̂ =
(1.29, 0.92, 1.18, 1.41, 0.95, 0.76, 1.32), and the estimated stationary variance was
σ̂2 = 0.94. The performance comparison between SiNK and Ordinary Kriging
is in Table 1. We observe that SiNK had slightly inferior EISE, but showed
better performance at extreme values.

Table 1: Performance comparison of Ordinary Kriging and SiNK for a realiza-
tion of Gaussian process and piston function. Extreme values are the function
values with |z-score| > 2.

Function Gaussian Process Piston Function
Number of observations 100 14
R2 Ordinary Kriging 0.818 0.674

R2 SiNK 0.814 0.711
Overall EISE Ratio (SiNK/Ordinary) 1.020 0.887

Extreme values EISE Ratio (SiNK/Ordinary) 0.820 0.814
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Figure 3: Ordinary Kriging and SiNK for a realization of 7-dimensional Gaussian
process. Rank is the order of the true function values of the test points.

Figure 3 shows the prediction at test points with extreme function values.
We first sort the test points by the true function values and see the 1% largest
and smallest function values. We observe that SiNK reduces the conditional
bias by inflating the residual term. Differences are small but consistently in the
right direction.

5.2 Piston function

We examined the performance of SiNK in a computer experiment; the piston
simulation function. The piston simulation function in Zacks [19] models the
circular motion of a piston within a cylinder. The response C is the time it
takes to complete one cycle, in seconds. The formula of the function is

C(x) = 2π

√

M

k + S2 P0V0

T0

Ta

V 2

where

V =
S

2k

(

√

A2 + 4k
P0V0

T0
Ta −A

)

and A = P0S + 19.62M − kV0

S
.

The description of the input variables is in Table 2.

In computer experiments, the design of inputs is also very important, because
each experiment is expensive, and a clever design could reduce the approxima-
tion error. Here we adopted Randomized QMC design (Faure sequence base
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Table 2: Input variables x for the piston function.
M ∈ [30, 60] piston weight (kg)
S ∈ [0.005, 0.020] piston surface area (m2)
V0 ∈ [0.002, 0.010] initial gas volume (m3)
k ∈ [1000, 5000] spring coefficient (N/m)
P0 ∈ [90000, 110000] atmospheric pressure (N/m2)
Ta ∈ [290, 296] ambient temperature (K)
T0 ∈ [340, 360] filling gas temperature (K)
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Figure 4: Ordinary Kriging and SiNK for the piston function. Rank is the order
of the true function values of the test points.

7) for observations and test points. In Table 1, we see that in this case SiNK
performs better not only at extreme values but also overall. This result possibly
comes from non-Gaussianity of piston function; more specifically, the reduction
of conditional bias may have had a large effect in the test error in this case.

Again, in Figure 4 the SiNK predictions are better at the test points with ex-
treme function values than the Ordinary Kriging predictions, and the difference
is significant at the test points with 1% smallest function values. The inflation
of the residual is consistently in the right direction, and larger than that of the
Gaussian process example.

5.3 Other functions

We fit Ordinary Kriging, Limit Kriging and SiNK for several deterministic func-
tions and compared the performances. The test function codes are from Bing-
ham’s website (Bingham [2]). Table 3 shows the dimension of the function, the
number of observed points and test points, covariance type, R2, overall EISE
ratio, and EISE ratio at extreme values for each function. The training points
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Table 3: Performance comparison among Ordinary Kriging, Limit Kriging and SiNK.
Matérn covariance with ν = 5/2 and estimated length-scale parameters are used. NaN
is the case where no function values had |z-score| > 2.

Function Borehole Welch Piston Friedman Robot Arm
Dimension 8 20 7 5 8

Number of training, test points 32, 5000 320, 5000 49, 5000 50, 5000 512, 5000
R2 (Ordinary Kriging) 0.934 0.948 0.962 0.967 0.854
R2 (Limit Kriging) 0.942 0.961 0.968 0.968 0.858

R2 (SiNK) 0.946 0.961 0.967 0.968 0.855
Overall EISE Ratio (Limit/Ordinary) 0.884 0.744 0.843 0.977 0.970
Overall EISE Ratio (SiNK/Ordinary) 0.819 0.750 0.876 0.991 0.992

Extreme values EISE Ratio (Limit/Ordinary) 0.876 0.630 0.828 NaN 0.866
Extreme values EISE Ratio (SiNK/Ordinary) 0.803 0.489 0.834 NaN 0.681

and test points are independent and uniformly distributed in the domain of
inputs. The number of training points for fitting each function was chosen so
that the R2 of Ordinary Kriging is roughly 0.95, except for fitting the Robot
Arm function which is a comparably difficult function to fit with our prediction
methods.

We see that for the 5 functions that we consider, SiNK performed better than
Ordinary Kriging in terms of EISE, and the EISE ratios are even smaller for
extreme values. Small R2 gains are relevant because large 1−R2 improvements
are captured by the EISE ratios. For instance, for the Welch function, the
SiNK predictions at points with extreme function values (function values such
that |z-score| > 2) have roughly half EISE of the EISE of Ordinary Kriging
predictions. In addition, we observe that the performance of Limit Kriging
and SiNK is very similar in terms of overall EISE. Limit Kriging also shows
improved performance at extreme values compared to Ordinary Kriging, but
the improvement is smaller or no different than the improvement of SiNK. For
the Friedman function, there was not a test point function value which had
|z-score| larger than 2. This was due to the large estimate of the stationary
variance σ2 = k(x,x). A suspicious estimate of the stationary variance can be
found occasionally in practice, but it is not a problem for the prediction because
all three predictors that we are comparing do not depend on the estimate of σ2.
See appendix section E for details of the functions used in Table 3.

6 Discussion

We have presented an alternative to Kriging with improved predictions at the
extreme values. We first found a link between conditional likelihood at the
target and CBPK, and used it to define SiNK. In addition, we showed that
SiNK has a boundedness and a localness property. In numerical experiments,
we observed that SiNK generally performs better not only at extreme values
but also in terms of overall integrated squared error. This result is possibly due
to the non-Gaussianity of the functions used in the examples.
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Appendix

A Derivation of the CMLE

For simplicity, let ρ = ρ(x0) =
√

k(x0)TK−1k(x0)
k(x0,x0)

. By the Woodbury formula,

K̃−1 = (K − k(x0)k(x0,x0)
−1k(x0)

T )−1

= K−1 +
K−1k(x0)k(x0)

TK−1

k(x0,x0)− k(x0)TK−1k(x0)
.

Therefore

k(x0)
T K̃−1 = k(x0)

TK−1 +
k(x0)

TK−1k(x0)k(x0)
TK−1

k(x0,x0)− k(x0)TK−1k(x0)
=

1

1− ρ2
k(x0)

TK−1.

(14)

Thus, differentiating the conditional log likelihood (2) with respect to y0,

∂l(y0)

∂y0
=

1

k(x0,x0)
(y − m̃)T K̃−1k(x0) =

1

(1 − ρ2)k(x0,x0)
(y − m̃)TK−1k(x0)

from (14). Solving ∂l(y0)/∂y0 = 0 leads to

ŷ0 = β +
1

ρ2
k(x0)

TK−1(y − β1).
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B Generalization of CBPK and Remark 4.1

Without loss of generality, let β = 0. Expanding (3), we get

E[(y0 − λTy)2] + δE[(y0 − E[λTy|y0])2]
= k(x0,x0)− 2λTk(x0) + λTKλ+ δE[(y0 − λT m̃)2]

= k(x0,x0)− 2λTk(x0) + λTKλ+ δ

(

1− λTk(x0)

k(x0,x0)

)2

k(x0,x0).

This is a quadratic form of λ, and the minimizing λ can be computed as in (14)
by the Woodbury formula. We get

λ̂ =

(

K +
δ

k(x0,x0)
k(x0)k(x0)

T

)−1

(k(x0) + δk(x0))

=
δ + 1

δρ2 + 1
K−1k(x0).

For δ ≥ 0, w(x0) = (δ + 1)/(δρ2 + 1) ∈ [1, 1/ρ2), and lim
δ→∞

w(x0) = 1/ρ2. For

δ = 1/ρ, w(x0) = 1/ρ which produces the SiNK predictor.

C Definition of SiNK

The logarithm of the posterior probability (up to a constant) is

log p(y0|y) = −1

2
(y − m̃)T K̃−1(y − m̃)− ρ

2(1 + ρ)

(y0 − β)2

k(x0,x0)

Differentiating with respect to y0, we get

∂ log p(y0|y)
∂y0

=
1

k(x0,x0)
(y − m̃)T K̃−1k(x0)−

ρ

1 + ρ

(y0 − β)

k(x0,x0)

=
1

(1− ρ2)k(x0,x0)
(y − m̃)TK−1k(x0)−

ρ

1 + ρ

(y0 − β)

k(x0,x0)

from (14). Solving ∂ log p(y0|y)/∂y0 = 0 leads to

ŷ0 = β +
1

ρ
k(x0)

TK−1(y − β1).

D Proof of Theorem 4.3 and Proposition 4.2

Proof. Let the stationary variance K(x,x) = σ2. Now for a target point x0 ∈
B(xj) ∩ Jk, for l 6= j,

lim
θk→0

K(x0,xl)

K(x0,xj)
= lim

θk→0

d
∏

i=1

Cθi(|(xl − x0)i|)
Cθi(|(xj − x0)i|)

= lim
θk→0

d
∏

i=1

C1

(

|(xl−x0)i|
θi

)

C1

(

|(xj−x0)i|
θi

) = 0
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Thus we obtain

lim
θk→0

1

K(x0,xj)
k(x0) = ej

where ej is the j-th unit vector. Noting that xj ∈ B(xj) ∩ Jk, we have

lim
θk→0

1

σ2
K = In

where In is the n× n identity matrix. Thus,

lim
θk→0

ρ2

K(x0,xj)2
= lim

θk→0

k(x0)
TK−1k(x0)

σ2K(x0,xj)2
=

1

σ4
and

lim
θk→0

σ2k(x0)
TK−1(y − β1)

K(x0,xj)
= yj − β.

Now note that

Ŷ (x0) = β + w(ρ)k(x0)
TK−1(y − β1)

= β + w(ρ)ρ
K(x0,xj)

ρσ2

σ2k(x0)
TK−1(y − β1)

K(x0,xj)
.

Thus, to satisfy (9),

lim
θk→0

w(ρ)ρ = 1 (15)

is the condition that needs to hold. For the SiNK predictor, w(ρ) = 1/ρ, so the
condition holds, and therefore SiNK has the localness property and Proposition
4.2 holds.

The limit range of ρ as θk → 0 needs to be determined. Note that for fixed
x0 ∈ B(xj) ∩ Jk, ρ → 0 as θk → 0. Now for any δ ∈ (0, 1], let ǫ = C−1

1 (δ)
and x0 = xj + ǫθkek. For all sufficiently small and positive θk, we have x0 ∈
B(xj) ∩ Jk. Then

lim
θk→0

K(x0,xj)

σ2
= lim

θk→0

d
∏

i=1

Cθi((xj − x0)i) = lim
θk→0

Cθk(ǫθk) = C1(ǫ) = δ

Thus, lim
θk→0

ρ = δ for our selection of x0. For (15) to hold, since w is a continuous

function of ρ, w(δ)δ = 1 must hold for all δ ∈ (0, 1]. To put it differently, if (9)
holds, then it is the SiNK predictor.

E Test Functions

E.1 Borehole Function

(Morris et al. [12])

f(x) =
2πTu(Hu −Hl)

log(r/rw)
(

1.5 + 2LTu

log(r/rw)r2wKw
+ Tu

Tl

)
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The ranges of the eight variables are rw : (0.05, 0.15), r = (100, 50000), Tu

= (63070, 115600), Hu = (990, 1110), Tl = (63.1, 116), Hl = (700, 820), L =
(1120, 1680), and Kw = (9855,12045).

E.2 Welch

(Welch et al. [18])

f(x) =
5x12

1 + x1
+ 5(x4 − x20)

2 + x5 + 40x3
19 − 5x19

+ 0.05x2 + 0.08x3 − 0.03x6 + 0.03x7 − 0.09x9 − 0.01x10 − 0.07x11 + 0.25x2
13

− 0.04x14 + 0.06x15 − 0.01x17 − 0.03x18, x ∈ [−0.5, 0.5]20.

E.3 Friedman

(Friedman et al. [3])

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, x ∈ [0, 1]5.

E.4 Robot Arm

(An and Owen [1])

f(x) = (u2 + v2)0.5,where

u =

4
∑

i=1

Li cos
(

i
∑

j=1

θj

)

,

v =
4
∑

i=1

Li sin
(

i
∑

j=1

θj

)

,

x = (θ1, . . . , θ4, L1, . . . , L4) ∈ [0, 2π]4 × [0, 1]4.


