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We congratulate Gerber and Chopin for a very interesting paper with much
promise for applications. SQMC is similar to array-RQMC (L’Ecuyer et al.,
2008), in using T sets of N points in [0, 1]d instead of one point set of dimension
dT . The trick is in connecting the N output states generated by time t to N
QMC vectors used to generate step t+ 1. The Hilbert curve yields the missing
‘sorting hat’ making it possible to prove consistency and even a convergence
rate, despite the lack of smoothness in matching output to input.

We looked (He and Owen, 2014) into the related, much simpler problem of
piping a one dimensional RQMC point set through the Hilbert function in order
to get a d dimensional point set. We showed that the mean squared error rate is
O(n−1−2/d) for Lipshitz continuous integrands of dimension d ≥ 3. Dimension
has an adverse effect and we predict the same for SQMC. Although that rate
is unpleasant for large d, it is known to be best possible (Novak, 1988). QMC
often involves tricks to reduce effective dimension (Caflisch et al., 1997). Some
of those methods might pay off for SQMC.

We would like to note one escape route from having to write the simulation as
an explicit function of uniform variables. Usually the problem is how to handle
acceptance-rejection sampling. That can be done with uniform variables but
requires an indefinitely large number of them. One can use RQMC for the first
few attempts (maybe just one) and then paste in independent uniform random
numbers for any needed followup sampling. Hörmann et al. (2004) include many
acceptance-rejection schemes with acceptance rate above 1 − ε for any ε > 0.
That ε might spoil the convergence rate but still leave us with a big reduction
in the error constant.

We were concerned that the choice of ψ could be critical. Suppose for in-
stance that the outputs at step t have much heavier distribution than logistic.
Then the Hilbert curve will only encounter points in or near the 2d corners of
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[0, 1]d. Conversely, if those outputs have a much smaller variance than the logis-
tic the curve will find those points mostly near the center (1/2, 1/2, . . . , 1/2) of
the cube. We have observed just such anomalies in a two dimensional stochastic
volatility example, but interestingly, the anomalies had no material effect on the
variance of our estimates.
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