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Abstract

We show in an idealized model that the narrow sense (linear) heritabil-
ity from d autosomal SNPs can be estimated without bias from n indepen-
dently sampled individuals, by a method of moments strategy based on
quasi-regression. The variance of this estimator is below C1/n+C2d

2/n3

for constants Cj <∞, uniformly in n > 2 and d > 1. In particular d� n
is allowed, and heritability can be consistently estimated in some limits
where the effects of individual SNPs cannot be consistently estimated due
to non-sparsity. Furthermore, when the C2d

2/n3 term dominates, then
doubling the sample size reduces the variance by almost eight–fold.

The idealization is that the model assumes complete linkage equilib-
rium, although it does allow for an arbitrary pattern of regression coef-
ficients. In particular the coefficients need not be sparse or Gaussianly
distributed, nor independent of the minor allele frequency.

The method and the rate of convergence extend to additive heritability.
For a full quadratic model encompassing pairwise interactions with d∗ =
2d + d(d− 1)/2 coefficients the error variance is O(d4/n3).

1 Introduction

A missing heritability problem has emerged in genome wide association studies
(Manolio et al., 2009). A phenotype known to be largely heritable, for example
height, may be found to have only a few significantly predictive SNPs and those
few may explain in total only a small portion of the known heritability.

A typical dataset setup has measurements of d SNPs on n subjects where
frequently d� n. Multiple linear regression of the phenotype on SNPs is a useful
way to study their effects. Even when d� n, it is still possible to estimate the
needed regression coefficients, if the true coefficient vector is sparse. See for
example Zhao and Yu (2006). When that coefficient vector is not sparse, then
it is not possible to estimate it accurately (Candès and Davenport, 2011).
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2 Notation and models

In this paper, the meaning of a(n, d) = O(b(n, d)) is that there is some constant
C <∞ for which |a(n, d)| 6 C × b(n, d) holds for all n > 2 and all d > 1. That
is, we use non-asymptotic order bounds.

Let yi be a phenotype for subject i. We assume that the population average
of this phenotype has been subtracted from yi so that E(yi) = 0. We will suppose
that the phenotype is bounded, |yi| 6 c < ∞. Boundedness is not necessary,
but we prefer to write c3 instead of, for example, E(y12)1/4. Conversely, we find
E(y2) more informative than c2, so we do not use the bound everywhere.

Let x̃ij be a genetic measure for SNP j on subject i. For an autosomal SNP,
x̃ij might be 1 if subject i has one or more copies of the minor allele and zero
otherwise. Alternatively, x̃ij ∈ {0, 1, 2} might be the number of copies of minor

allele j in subject i. Let xij = (x̃ij −E(x̃ij))/
√

Var(x̃ij) so that E(xij) = 0 and
Var(xij) = 1 in the relevant population.

We assume additionally that the components x1, . . . , xd of x are independent
of each other. This neglects linkage disequilibrium (LD). LD only affects a
small fraction of the O(d2) SNP pairs, but we expect it could be a significant
consideration in aggregate because there are so many such pairs.

The k’th moment of xj is µjk = E(xkj ). We will need µj4 for each SNP. If

SNP j has minor allele frequency εj > 0, then µ4j = O(ε−1j ). The variable xj is

bounded. In the motivating examples, |xj | 6 cj where cj = O(ε
−1/2
j ).

In most work, we assume that εj > ε0 holds for some ε0 > 0. Then µ4j

are uniformly bounded. Some intermediate expressions use the average µ̄4 =
(1/d)

∑d
j=1 µj4. These allow us to consider a limit in which alleles with smaller

MAF become eligible for use as n increases. For example, if εj > n−1/2 then
µ4j 6 n1/2, and if we only assume εj > m/n (perhaps the smallest reasonable
MAFs to use) for some m > 0, then µ4j = O(n).

The Euclidean norm of x is denoted ‖x‖. We easily find that E(‖x‖2) = d
and E(‖x‖4) = d2 + d(µ̄4 − 1), so Var(‖x‖) = d(µ̄4 − 1). As a result ‖x‖/d =

1 +Op(d
−1/2µ̄

1/2
4 ). In particular

E

(
n∑
i=1

(‖xi‖2
d
− 1
)2)

=
n

d
(µ̄4 − 1),

and so if d� n, then ‖xi‖2 ≈ d is a good approximation and one that underlies
some of our methods.

We consider several models for heritability. The linear model is

yi =

d∑
j=1

xijβj + εi, i = 1, . . . , n (1)

where εi is a random error uncorrelated with xi = (xi1, . . . , xid) having mean
0 and variance σ2. Effects of the environment, interactions among the SNPs
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and interactions between SNPs and the environment are subsumed into εi. The
pairs (xi, yi) are independent.

Interest naturally centers on the vector β = (β1, . . . , βd). Estimation of β
is difficult because usually n � d. If β is sparse, then it can still be estimated
using compressed sensing methods. But β might not be sparse and then there
are lower bounds (Candès and Davenport, 2011) on its estimation error.

To study linear heritability we are interested in σ2
L =

∑d
j=1 β

2
j = ‖β‖2. If

β is not sparse enough to allow an accurate estimate β̂ of β, then we cannot
rely on ‖β̂‖2 to be a good estimate of σ2

L. Accordingly, we turn our attention to
strategies for estimating

∑
j β

2
j directly without requiring an accurate estimate

of β.
Our starting point is the bias corrected quasi-regression estimator of σ2

L

from Owen (2000) given below. That algorithm is able to estimate σ2
L in an

asymptotic regime where n/d2/3 → ∞, without assuming sparsity of β. That
is, the sample size n can be sublinear in d. We choose an asymptotic regime with
n and d growing together not because more SNPs will be found, but because
the usual fixed d and n → ∞ framework is not a good description for a finite
data set with n� d.

In addition to the linear model, we may also be interested in an additive
model which contains x2j terms. If xj only takes 2 levels, then the centered value

x2j − 1 is linearly dependent on xj , and we gain nothing from incorporating it
into the linear model. When SNPs are recorded at 3 levels, this additive model
allows one to investigate dominance effects. Let

zj =
x2j − µj3xj − 1√
µj4 − µ2

j3 − 1
. (2)

Then E(zj) = 0, E(z2j ) = 1 and E(xjzj) = 0. The additive model for heritabil-
ity is

yi =

d∑
j=1

xijβj +

d∑
j=1

zijγj + εi, i = 1, . . . , n, (3)

where εi contains an error uncorrelated with the xij and the zij , and does not
ordinarily take the same numerical value in models (1), (3) and others that we
consider.

We are also interested in the squares model

yi =

d∑
j=1

zijγj + εi, i = 1, . . . , n, (4)

the pure interaction model

yi =

d−1∑
j=1

d∑
k=j+1

xijxikβjk + εi, i = 1, . . . , n, (5)
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and the quadratic model

yi =

d∑
j=1

xijβjk +

d∑
j=1

zijγj +

d−1∑
j=1

d∑
k=j+1

xijxikβjk + εi, i = 1, . . . , n. (6)

Some of these are of direct biological interest and others play a role in our proofs.
Corresponding to the model parameters above are the sums of squares

σ2
L =

∑
j

β2
j , σ2

S =
∑
j

γ2j , and σ2
I =

∑
j<k

β2
jk,

along with combinations σ2
A = σ2

L + σ2
S and σ2

Q = σ2
A + σ2

I . These sums of
squares take the same value in any model for which all their parts are defined.
The following inequality

max(σ2
L, σ

2
S, σ

2
I ) 6 σ2

Q 6 E(y2) (7)

will be useful in bounding some error terms. For instance, even though σ2
I

is the sum of d(d − 1)/2 nonnegative contributions, that sum is O(1). Also,
introducing artificial phenotypes like y2 − E(y2), and applying a version of (7)
for them, yields further bounds that we use.

3 Quasi-regression for linear heritability

We begin with estimation of σ2
L, for linear heritability. For d� n it is infeasible

to estimate βj by least squares. The quasi-regression estimator of βj is

β̃j =
1

n

n∑
i=1

xijyi.

We easily find that E(β̃j) = βj . The naive estimator of σ2
L is

σ̂2
L =

d∑
j=1

β̃2
j .

Proposition 1 gives the bias of σ̂2
L.

Proposition 1.

E(σ̂2
L) =

n− 1

n
σ2
L +

1

n
E
(
‖x‖2y2

)
.

Proof. First

nE(β̃2
j ) =

1

n
E
(∑

i

∑
i′

xijxi′jyiyi′
)

= E
(
x2jy

2) + (n− 1)E(xjy)2

= E
(
x2jy

2) + (n− 1)β2
j .

Summing over j yields the result.
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Because E(‖x‖2) = d, the bias in σ̂2
L is of order d/n, which is severe when

d� n. But this bias is easily removed. Let

B̂L =
1

n2

n∑
i=1

‖xi‖2y2i . (8)

We can obtain a bias corrected estimate

σ̂2
L,BC =

n

n− 1

(
σ̂2
L − B̂L

)
, (9)

because

E
(
σ̂2
L,BC

)
=

n

n− 1

(n− 1

n
σ2
L +

1

n
E
(
‖x‖2y2

))
− 1

n− 1
E(‖x‖2y2) = σ2

L.

A simple approximation to the bias adjustment can be obtained via the
concentration of measure approximation ‖xi‖2 ≈ d. Letting,

B̃L =
d

n2

n∑
i=1

y2i

the resulting estimate is

σ̂2
L,BC,CM =

n

n− 1

(
σ̂2
L − B̃L

)
. (10)

Proposition 2. Suppose that the phenotype y satisfies the bound |y| 6 c. Then

E
(
(B̃L − B̂L)2

)
6 c4 µ̄4

d

n2
.

Proof. First B̃L − B̂L = n−2
∑n
i=1(d− ‖xi‖)y2i . Therefore

E
(
(B̃L − B̂L)2

)
=

1

n3
E
(
(d− ‖x‖2)2y4

)
+
n− 1

n3
E
(
(d− ‖x‖2)y2

)2
6 c4µ̄4

d

n3
+ c4

1

n2
E
(
(d− ‖x‖2)2

)
6 c4µ̄4

d

n3
+ c4

n− 1

n3
dµ̄4.

Proposition 2 shows that the concentration of measure approximation changes

our estimate of σ2
L by an amount with root mean square (RMS) O(d1/2n−1µ̄

1/2
4 ),

where c is assumed to be constant in n and d for the phenotype of interest. In an
asymptotic regime with µ̄4 bounded we find that the concentration of measure
approximation makes a vanishing RMS effect on our estimate if d = o(n2). Sim-
ulations in Owen (2000) showed very little difference between approximations
with and without the concentration of measure approximation.
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Theorem 1. Let σ̂2
L be the naive quasi-regression variance estimate and assume

that the phenotype satisfies the bound |y| 6 c. Then

E
(
(σ̂2

L,BC − σ2
L)2
)

= Var(σ̂2
L,BC) = O

( 1

n
+
d2

n3

)
.

Proof. It suffices to show that Var(σ̂2
L − B̂L) = O

(
n−1 + d2n−3

)
. A lengthy

derivation (see Lemma 3 of the appendix) yields

Var(σ̂2
L) 6

4

n
c2σ2

L +
1

n2

(
4σLc

3
(
d2 + dµ̄4

)1/2
+ 2(dµ̄4 + 2)E(y4)

)
+

1

n3
c4(d2 + dµ̄4)

= O(n−1 + dn−2 + d2n−3) = O(n−1 + d2n−3).

Next

Var(B̂L) =
1

n3

(
E(‖x‖4y4)− E

(
‖x‖2y2

)2)
6
c4

n3
(d2 + dµ̄4).

Thus Var(B̂L) = O(d2n−3) and Var(σ̂2
L) = O(n−1 + d2n−3), so Var(σ̂2

L− B̂L) 6
Var(σ̂2

L) + Var(B̂L) + 2(Var(σ̂2
L)Var(B̂L))1/2 = O(n−1 + d2n−3).

When d � n, the dominant term in the bound for Var(σ̂2
L,BC) is 4c4d2n−3.

In that case, doubling n reduces the variance by nearly a factor of eight.
The concentration of measure approximation is accurate to withinO(d1/2n−1).

The standard deviation of σ̂2
L,BC is O(n−1/2 + dn−3/2). As a result, the bias

introduced by concentration of measure is of order
√
n/d +

√
d/n3 standard

errors. It is thus negligible for the values of n and d used in many genome-wide
association studies. Both σ̂2

L,BC and σ̂2
L,BC,CM require O(nd) computation but

the latter has a smaller implicit constant.

4 Additive and quadratic heritability

The additive model predicts y by a linear combination of xj and zj for j =
1, . . . , d. Because x1, . . . , xd are independent, it follows that the entire list
x1, . . . , xd, z1, . . . , zd consists of 2d mutually uncorrelated predictors. The anal-
ysis of the additive model is similar to that of the linear model, except that
there are twice as many predictors and the fourth moments of zj are larger than
those of xj .

The quadratic model incorporates predictors xjxk for j < k. For distinct
pairs j < k and j′ < k′ with j 6= j′ or k 6= k′ the predictors xjxk and xj′xk′ are
uncorrelated. Similarly xjxk is uncorrelated with all of the xj′ and zj′ whether
or not j = j′ or k = k′. The big difference in the quadratic model is that there
are now more than d2/2 coefficients to estimate instead of O(d) coefficients.

For the additive model, we estimate

β̃j =
1

n

n∑
i=1

xijyi, and γ̃j =
1

n

n∑
i=1

zijyi,
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and the naive estimate of σ2
A is

σ̂2
A =

d∑
j=1

(β̃2
j + γ̃2j ).

Proposition 3.

E(σ̂2
A) =

n− 1

n
σ2
A +

1

n
E
(
(‖x‖2 + ‖z‖2)y2

)
.

Proof. The same argument used in Proposition 3 applies here.

Letting

B̂A =
1

n2

n∑
i=1

(‖xi‖2 + ‖zi‖2)y2i and B̃A =
2d

n2

n∑
i=1

y2i ,

we obtain estimates

σ̂2
A,BC =

n

n− 1

(
σ̂2
A − B̂A

)
and

σ̂2
A,BC,CM =

n

n− 1

(
σ̂2
A − B̃A

)
.

As in the linear case we find that E
(
σ̂2
A,BC

)
= σ2

A. Also from “A = S + L” we
get

E
(
(B̃A − B̂A)2) 6 c4

(
µ̄4(x) + µ̄4(z) + 2

√
µ̄4(x)µ̄4(z)

) d
n2

where µ̄4(x) and µ̄4(z) are average fourth moments of xj and zj respectively.

Theorem 2. Let σ̂2
A be the naive quasi-regression variance estimate of σ2

A and
assume that the phenotype satisfies the bound |y| 6 c. Then

Var(σ̂2
A,BC) = O

( 1

n
+
d2

n3

)
.

Proof. The additive variance explained is σ2
A = σ2

L +σ2
S, and the estimate parti-

tions accordingly, as σ̂2
A,BC = σ̂2

L,BC + σ̂2
S,BC. We can apply Theorem 1 to both

parts, letting zj take the role of xj in the second application.

For the quadratic model, we incorporate estimates

β̃jk =
1

n

n∑
i=1

xijxikyi

for 1 6 j < k 6 d. The naive estimate of σ2
Q is

σ̂2
Q =

d∑
j=1

(β̃2
j + γ̃2j ) +

∑
j<k

β̃2
jk.

7



Proposition 4.

E(σ̂2
Q) =

n− 1

n
σ2
Q +

1

n
E
(
(‖x‖2 + ‖z‖2 + ‖x‖4)y2

)
.

Proof. Recall that σ2
Q = σ2

L + σ2
S + σ2

I . To take account of the σ2
I component,

write for j < k,

nE
(
β̃2
jk

)
=

1

n

∑
i

∑
i′

E
(
xijxikxi′jxi′kyiyi′

)
= E

(
x2jx

2
ky

2) + (n− 1)β2
jk.

Summing over 1 6 j < k 6 d, yields∑
j<k

E
(
β̃2
jk

)
=

1

n
E(‖x‖4y2) +

n− 1

n
σ2
I .

Once again, we get a bias correction and a concentration of measure approx-
imation:

B̂Q =
1

n2

n∑
i=1

(‖xi‖4 + ‖xi‖2 + ‖zi‖2)y2i and

B̃Q =
d2 + (2 + µ̄4)d

n2

n∑
i=1

y2i .

The bias is now of much larger order d2, consistent with there being more than
d2/2 parameters to estimate.

Using these expressions, we obtain estimates

σ̂2
Q,BC =

n

n− 1

(
σ̂2
Q − B̂Q

)
and

σ̂2
Q,BC,CM =

n

n− 1

(
σ̂2
Q − B̃Q

)
.

Here E
(
σ̂2
Q,BC

)
= σ2

Q.
In the model equation “Q = L + S + I” we have already seen how the linear

and square parts have an accurate concentration of measure approximation. It
remains to consider B̃I − B̂I.

Proposition 5. For the interaction model, the bias adjustments satisfy

E
(
(B̃I − B̂I)

2
)

= O
( d3
n2

)
.

Proof.

E
(
(B̃I − B̂I)

2
)

=
1

n4
E
(( n∑

i=1

(d2 + dµ̄4 − ‖xi‖4)y2i

)2)
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=
1

n3
E
(

(d2 + dµ̄4 − ‖x‖4)2y4
)

+
n− 1

n3
E
(

(d2 + dµ̄4 − ‖x‖4)y2
)2

=
c4

n2
Var(‖x‖4)

= O
( d3
n2

)
.

Theorem 3. Let σ̂2
Q be the naive quasi-regression variance estimate of σ2

Q and
assume that the phenotype satisfies the bound |y| 6 c. Then

Var(σ̂2
Q,BC) = O

( 1

n
+
d4

n3

)
.

Proof. The error from the additive parts is already seen to be O(1/n+ d2/n3).
Therefore it suffices to show that Var(σ̂2

I,BC) = O(1/n+ d4/n3). This is exactly
what we would expect from a linear model with d∗ = d(d − 1)/2 independent
predictors. But the predictors in the interaction model, while uncorrelated, are
not independent.

We can follow the argument for the linear case using d∗ predictors of the
form xjxk for j < k in Lemma 3, replacing each xk by xrxs for r < s and then
each xj by xjxk for j < k and each x by x∗ = (x1x2, x1x3, . . . , xd−1xd) ∈ Rd∗ .
We then use E(xjxky) = βjk and replace εL by εI = y −

∑
j<k xjxkβjk.

The analogy holds in a straightforward way except for the term which be-
comes

n− 1

n3

∑
j<k

∑
r<s

E
(
xjxkxrxsy

2
)2

which now involves four way sums over components of x. We need this to be
O(d∗/n2) = O(d2/n2). If we use the artificial phenotype y2−E(y2) and consider
a pure quartic model with d(d − 1)(d − 2)(d − 3)/24 predictors xjxkxrxs with
j, k, r, and s all distinct, then the terms with no ties among j, k, r, s sum to at
most E(y2)2. What remains are the terms where {j, k} ∩ {r, s} 6= ∅. There are
O(d2) such terms and they are uniformly bounded.

Thus while it is possible to estimate the interaction inheritance and hence
the quadratic inheritance with n � d2, we still need n of larger order than d.
Practically, this implies that we may be able to investigate interactions among
strategically chosen subsets of SNPs but perhaps not the entire interaction at
practical sample sizes.

The concentration of measure approximation for the interaction inheritance
is ‖x‖4 ≈ d2 + dµ̄4. The root mean square change from this shortcut is d3/2/n,
while the standard deviation of the estimate is O(n−1/2 + d2n−3/2). Suppose
that n is just barely large enough to allow estimation of σ2

I , perhaps n ∝ d4/3+ε.
Then the RMS difference between σ̂2

I,BC and σ̂2
I,BC,CM is of order d3/2n−1 =

d1/6−ε which diverges. As a result, the concentration of measure shortcut is not
recommended for the interaction or quadratic model.
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Appendix

Here we prove some basic Lemmas used in the main Theorem. The following
basic properties of ‖x‖2 are used below:

E
(
‖x‖2

)
= d, E

(
‖x‖4

)
= d2 + dµ̄4

E
(
(‖x‖2 − d)2

)
= dµ̄4, and E

(
(‖x‖2 − d)r

)
= O(dr−1), integer r > 3.

Lemma 1 uses the artificial phenotype y2−E(y2) to bound a quantity which
appears in Var(σ̂2

L).

Lemma 1. ∑
j

∑
k

E
(
xjxky

2
)2

6 (dµ̄4 + 2)E(y4).

Proof. We write∑
j

∑
k

E
(
xjxky

2
)2

=
∑
j

∑
k 6=j

E
(
xjxky

2
)2

+
∑
j

E
(
x2jy

2
)2
.

For the first term, consider an artificial phenotype y2 − E(y2). Then∑
j

∑
k 6=j

E
(
xjxky

2
)2

= 2
∑
j<k

E
(
xjxk(y2 − E(y2))

)2
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6 2E
(
(y2 − E(y2))2

)
6 2E(y4),

because of inequality (7) applied to the interaction model for this artificial phe-
notype. Next ∑

j

E(x2jy
2)2 6

∑
j

E(x4j )E(y4) 6 E(y4)dµ̄4.

Lemma 2.
E
(
(y − ε)‖x‖2y3

)
6 σLc

3
(
d2 + dµ̄4

)1/2
.

Proof. Using Cauchy-Schwarz, boundedness of y, and the above results on ‖x‖:

E
(
(y − ε)‖x‖2y3

)
6 E

(
(y − ε)2

)1/2E(‖x‖4y6)1/2
6 σLc

3
(
d2 + dµ̄4

)1/2
.

Lemma 3 is the main lemma.

Lemma 3. Under the conditions of Theorem 1

Var(σ̂2
L) 6

4

n
c2σ2

L+
1

n2

(
4σLc

3
(
d2+dµ̄4

)1/2
+2(dµ̄4+2)E(y4)

)
+

1

n3
c4(d2+dµ̄4).

Proof. First,

Var
(
σ̂2
L

)
=
∑
j

∑
k

E
(
β̃2
j β̃

2
k

)
−
(
E
(∑

j

β̃2
j

))2
We simplify some expressions below using E

(
xjy
)

= βj and εL ≡ y −
∑
j xjβj .

For each pair j, k ∈ {1, 2, . . . , d},

E(β̃2
j β̃

2
k) = E

(( 1

n

∑
i

xijyi

)2( 1

n

∑
i

xikyi

)2)
=

1

n4

∑
i

∑
i′

∑
i′′

∑
i′′′

E
(
xijxi′jxi′′kxi′′′kyiyi′yi′′yi′′′

)
=

(n− 1)(n− 2)(n− 3)

n3
E(xjy)2E(xky)2

+
(n− 1)(n− 2)

n3

(
E(xjy)2E(x2ky

2) + E(x2jy
2)E(xky)2 + 4E(xjxky

2)E(xjy)E(xky)
)

+
n− 1

n3

(
2E
(
xjy
)
E
(
xjx

2
ky

3
)

+ 2E
(
xky

)
E
(
xkx

2
jy

3
)

+ E
(
x2jy

2
)
E
(
x2ky

2
)

+ 2E
(
xjxky

2
)2)

+
1

n3
E
(
x2jx

2
ky

4
)
.
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Summing over j and k,∑
j

∑
k

E(β̃2
j β̃

2
k) =

(n− 1)(n− 2)(n− 3)

n3
σ4
L

+
(n− 1)(n− 2)

n3

(
2σ2

LE
(
‖x‖2y2

)
+ 4E

(
(y − εL)2y2

))
+
n− 1

n3

(
4E
(
(y − εL)‖x‖2y3

)
+ E(‖x‖2y2)2 + 2

∑
j

∑
k

E(xjxky
2)2
)

+
1

n3
E
(
‖x‖4y4

)
.

Next E(β̃2
j ) = E(x2jy

2)/n+ (n− 1)β2
j /n. Therefore(

E
(∑

j

β̃j
2
))2

=
1

n2

∑
j

∑
k

E
(
x2jy

2
)
E
(
x2ky

2
)

+
(n− 1)2

n2

∑
j

∑
k

β2
j β

2
k + 2

n− 1

n2

∑
j

∑
k

E
(
x2jy

2
)
β2
k

=
1

n2
E
(
‖x‖2y2)2 +

(n− 1)2

n2
σ4
L + 2

n− 1

n2
E
(
‖x‖2y2

)
σ2
L.

Subtracting,

Var(σ̂2
L) =

( (n− 1)(n− 2)(n− 3)

n3
− (n− 1)2

n2

)
σ4
L

+ 2
( (n− 1)(n− 2)

n3
− n− 1

n2

)
E
(
‖x‖2y2

)
σ2
L

+
(n− 1

n3
− 1

n2

)
E
(
‖x‖2y2)2

+ 4
(n− 1)(n− 2)

n3
E
(
(y − εL)2y2

)
+
n− 1

n3

(
4E
(
(y − εL)‖x‖2y3

)
+ 2

∑
j

∑
k

E(xjxky
2)2
)

+
1

n3
E
(
‖x‖4y4

)
.

The first three terms above are less than or equal to zero. Therefore

Var(σ̂2
L) 6 4

(n− 1)(n− 2)

n3
E
(
(y − εL)2y2

)
+
n− 1

n3

(
4E
(
(y − εL)‖x‖2y3

)
+ 2

∑
j

∑
k

E(xjxky
2)2
)

+
1

n3
E
(
‖x‖4y4

)
.
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We can simplify this bound using E
(
(y − εL)2y2

)
6 c2σ2

L, Lemmas 1 and 2,

and E
(
‖x‖4y4) 6 c4(d2 + dµ̄4), yielding

Var(σ̂2
L) 6 4

(n− 1)(n− 2)

n3
c2σ2

L

+
n− 1

n3

(
4σLc

3
(
d2 + dµ̄4

)1/2
+ 2(dµ̄4 + 2)E(y4)

)
+

1

n3
c4(d2 + dµ̄4)

6
4

n
c2σ2

L +
1

n2

(
4σLc

3
(
d2 + dµ̄4

)1/2
+ 2(dµ̄4 + 2)E(y4)

)
+

1

n3
c4(d2 + dµ̄4).
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