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Abstract

This paper introduces some notions of effective dimension for weighted
function spaces. A space has low effective dimension if the smallest ball
in it that contains a function of variance 1, has no functions with large
values of certain ANOVA mean squares. For a Sobolev space of periodic
functions defined by product weights we get explicit formulas describing
effective dimension in terms of those weights. In particular, for a space
with product weights it is possible to compute truncation and superposi-
tion dimensions directly from the weight sequence. For weights γj = γ1j

−q

with q > 1, and γj 6 1, the result is a low superposition dimension though
high truncation dimensions are possible.

1 Introduction

Quadrature of high dimensional functions is a fundamental numerical task with
implications for every branch of science and engineering. Of particular promi-
nence recently are quasi-Monte Carlo rules which approximate µ =

∫
[0,1]d

f(x) dx

by an equal weight rule (1/n)
∑n
i=1 f(xi) for carefully chosen points xi ∈ [0, 1]d.

See Niederreiter (1992) for an introduction and Dick and Pillichshammer (2010)
for recent developments.

It has been known since Bakhvalov (1959) that there is a curse of dimen-
sionality for quadrature. For any quadrature rule of the form

∑
i wif(xi) with

wi ∈ R and xi ∈ [0, 1]d, there is a function with all r’th order partial deriva-
tives below 1 in absolute value that has a quadrature error above kn−r/d where
k = k(r, d) > 0. For randomized rules, such as Monte Carlo methods, the root
mean squared error has a lower bound proportional to n−1/2−r/d.

Despite the curse of dimension, good results are often observed for high
dimensional quadrature problems. For instance Paskov and Traub (1995) report
successful results from quasi-Monte Carlo sampling on some 360 dimensional
problems.

There have been several explanations proposed for such results. One is
the notion of effective dimension (Caflisch et al., 1997), which is based on the
ANOVA decomposition of L2[0, 1]d. A function is of low effective dimension
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if it is dominated by its low dimensional ANOVA components as described in
Section 2. A function of effective dimension s < d might only depend strongly
on the first s components of x (truncation sense) or alternatively it may be
nearly a sum of interaction functions that each depend on s or fewer of the
components in x (superposition sense). Integrals and equal weight quadrature
rules are both linear in f , and when a rule is accurate on all of the important
low dimensional parts of f , it is not surprising to find that it is accurate on f
itself.

A second approach is to model the integrands as members of certain weighted
Sobolev spaces. Using weighted function spaces, in which higher order inter-
actions (Hickernell, 1996), or successive dimensions (Sloan and Woźniakowski,
1998) are relatively less important, it is possible to study the tractability of high
dimensional integration. If the importance of higher order terms decays quickly
enough then there is no curse of dimensionality and quadrature is said to be
tractable for those spaces.

This paper looks at a model for such Sobolev spaces due to Sloan and
Woźniakowski (1998) and introduces notions of effective dimension for a space.
Let B be the unit ball in one such space. That space is said to be of low effective
dimension (truncation sense) if f ∈ B precludes f from having any significant
dependence on components after the s+1’st. Similarly, if membership in B rules
out significantly large interactions among s+ 1 or more inputs to the function,
then the ball is effectively of dimension s in the superposition sense.

The superposition and truncation dimensions can be computed explicitly
from the weights defining the space. The main finding is that in those cases
where quadrature is tractable, the spaces themselves are of low superposition
dimension though possibly high truncation dimension. In some cases of interest
the superposition dimension is 1.

The mathematical approach used is to bound the ANOVA variance com-
ponents by multiples of the mean squared partial derivatives that define the
Sobolev norms. Our starting point is an observation by Sobol’ (1963). Let
f be a function on [0, 1] with first derivative f ′ in L2[0, 1] and whose integral∫ 1

0
f(x) dx is 0. Then the variance σ2 =

∫ 1

0
f(x)2 dx of f(X) for X ∼ U[0, 1]

satisfies

σ2 6
1

π2

∫ 1

0

|f ′(x)|2 dx. (1)

The bound (1) is attained by scalar multiples of f(x) = cos(πx).
Equation (1) allows us to bound the variance of a function by a multiple

of the seminorm
∫ 1

0
|f ′(x)|2 dx. It is not possible to get an upper bound on∫ 1

0
|f ′(x)|2 dx as a multiple of σ2 in this setting. We will generalize (1) to

bound variance components of functions in terms of the weights defining their
function classes. Sobol’ points to calculus of variations for the result (1). We
will find it easier to generalize his observation via Fourier series. By working
with periodic functions f we are able to interchange differentiation with the
taking of Fourier series.
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An outline of this paper is as follows. Section 2 introduces our notation, de-
scribing a certain weighted Hilbert space with product weights, and the ANOVA
decomposition of L2[0, 1]d. Section 3 presents bounds on ratios of variances to
function norms, derived via a Fourier series representation. Section 4 defines ef-
fective dimension for function spaces in terms of the bounds from Section 3 and
computes effective dimensions for some specific function spaces. Those spaces
have product weights γj = γ1j

−α. If α > 1, as is required for tractability, and
γ1 6 1, as is required to make higher order effects less important than their strict
sub-effects, then the space necessarily has a low effective dimension. Section 5
has conclusions.

We finish up this introduction by surveying related literature.
Equation (1) and the results here are Poincaré inequalities. Sobol’ and

Kucherenko (2009, 2010) generalize equation (1) to some multidimensional prob-
lems motivated by global sensitivity analysis. They bound certain sums of
ANOVA variances by some practically estimable quantities involving integrals
of squared first order partial derivatives of a multidimensional function. The
bounds presented here are different, being derived through higher order mixed
partial derivatives. Lamboni et al. (2012) independently obtain similar inequali-
ties for Sobol’ indices. That problem requires only first order partial derivatives,
and their techniques require Boltzmann distributions for the inputs to f .

A notion of effective dimension for Sobolev spaces was previously considered
by Wang and Fang (2003). They define what they call a typical function in the
space, which takes the form of a product of one dimensional functions involving
the second Bernoulli polynomial. They express the effective dimension of their
typical function in terms of the weights which define the space and they compute
some examples.

The approach taken here is uniform over a ball in the Sobolev space and does
not rely on typical functions. The ball in this Sobolev space includes functions
that are not products and may not resemble typical functions especially when
their norm is small. The latter functions need not have low effective dimen-
sion in the sense of Caflisch et al. (1997), yet their good quadrature outcomes
are covered by results in Sloan and Woźniakowski (2002). These functions are
covered by the present notion in which the space as a whole has low effective
dimension.

This article makes use of some recent results in quasi-Monte Carlo integra-
tion, particularly the approach via lattice rules, and some related notions of
complexity and tractability. An excellent survey appears in Kuo et al. (2012).
A comprehensive treatment is available in Novak and Woźniakowski (2010).

2 Notation

We consider real-valued periodic functions on the domain [0, 1]d for 1 6 d <∞.
A typical point in the domain is x = (x1, x2, . . . , xd). The components of x
have indices in the set 1:d ≡ {1, 2, . . . , d}. Let u ⊆ 1:d. If u = {j1, j2, . . . , jr}
then xu is the point (xj1 , . . . , xjr ). We use −u for the complement 1:d − u.
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The cardinality of u is |u|. For u 6= ∅, the highest indexed element in u is
due ≡ max{j | j ∈ u}. The point z = xu:y−u is the one with zj = xj for j ∈ u
and zj = yj for j 6∈ u.

Given weights γ1 > γ2 > · · · > γd > 0, we define an inner product between
functions f and g via

〈f, g〉Wd,γ
=
∑
u⊆1:d

γ−1u

∫
∂|u|f(x)

∂xu

∂|u|ḡ(x)

∂xu
dx, (2)

where

γu =
∏
j∈u

γj . (3)

Integrals with no explicit domain are over [0, 1]d. We use ‖f‖Wd,γ
for
√
〈f, f̄〉Wd,γ

.

Though the functions we study are real-valued, some of the expressions for them
contain complex numbers and so we use complex conjugates in the definition of
the inner product.

The inner product (2) with the product weights (3) defines the first Hilbert
space described in Sloan and Woźniakowski (2002) (called there Wd,γ,1). It is
often useful to replace the product weights (3) by more general quantities.

The function classes we consider take the form

Wd,γ = {f : [0, 1]d → R | ‖f‖Wd,γ
<∞}. (4)

We study subsets of the form

B(d, γ, ρ) = {f ∈Wd,γ | ‖f‖2Wd,γ
6 ρ2}

where ρ > 0 is the radius of the ball B(d, γ, ρ).
Let Pd be the set of real-valued functions on [0, 1]d whose partial derivatives

taken at most once with respect to each of the d components of x have a
continuous 1-periodic extension from [0, 1]d to Rd. We work with the subspace
Wd,γ ∩ Pd and the ball B(d, γ, ρ) ∩ Pd.

We will also make use of the ANOVA decomposition of L2[0, 1]d. For a
derivation and some history see Liu and Owen (2006). If f ∈ L2[0, 1]d we may
write

f(x) =
∑
u⊆1:d

fu(x) (5)

where the function fu(x) only depends on x through xu, that is, fu(x) =

fu(xu:y−u) for all y ∈ [0, 1]d. The decomposition satisfies
∫ 1

0
fu(x) dxj = 0

whenever j ∈ u. It follows that the orthogonality
∫
fu(x)gv(x) dx = 0 holds for

f, g ∈ L2[0, 1]d when u 6= v. The variance of f satisfies

σ2(f) =
∑
u⊆1:d

σ2(fu) =
∑
u6=∅

∫
fu(x)2 dx. (6)

We use σ2
u as a shorthand for σ2(fu). For the empty set, f∅(x) =

∫
f(x) dx (a

constant function) and σ2
∅ = 0.
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3 Bounds on ratios of norms

Given d and γ we would like to know how important some subset of variables
might be. We formulate this concept by finding the smallest radius ρ > 0 such
that the f ∈ B(d, γ, ρ) contains a function of variance 1. Then we maximize
σ2
u(f) over functions f ∈ B(d, γ, ρ). If that quantity takes a small value, such

as 0.01 or 0.0001, then we infer that the joint effect of components xj for j ∈ u
is not important in the space Wd,γ .

Variance is one of many measures of a function’s magnitude. It is relevant
here because we are interested in the improvement that quasi-Monte Carlo sam-
pling offers over plain Monte Carlo sampling. When a portion of the variance is
trivially small, it does not make an important contribution to the Monte Carlo
error, and there is little scope for more sophisticated quadrature methods, such
as quasi-Monte Carlo, to make an improvement. By contrast, larger variance
components point to places where quasi-Monte Carlo might make a material
improvement over Monte Carlo.

Instead of measuring the contribution of σ2
u, we might look at the superset

importance Υ2
u =

∑
v⊇u σ

2
v (Liu and Owen, 2006) or more generally a measure

like
∑
v∈V σ

2
v where V is a non-empty subset of non-empty subsets of 1:d. For

instance VS = {v | |v| > s} and VT = {v | dve > s} are appropriate collections
to study superposition and truncation dimension respectively. In the weighted
spaces we study, the maximum of

∑
v∈V σ

2
v over the ball B(d, γ, ρ) reduces to

the maximum of σ2
u over that ball, for some least penalized subset u ∈ V. For

superposition this set is u = 1:(s + 1), while for truncation it is u = {s + 1}.
More details are given near Definitions 1 and 2 below.

The elements of Wd,γ have Fourier representation

f(x) =
∑
k∈Zd

λk exp(2πikTx) (7)

where

λk =

∫
f(x) exp(−2πikTx) dx. (8)

The partial derivative of f ∈ Wd,γ ∩ Pd taken once with respect to each com-
ponent variable is in L2[0, 1]d, and hence has a Fourier representation that
converges almost everywhere.

For f given by (7)

Var(f) =
∑

k∈Zd−{0}

|λk|2.

Next we find the squared norm of f .

Proposition 1. Let f ∈ Wd,γ ∩ Pd have representation (7), where the space
Wd,γ is defined through the product weights (3). Then

‖f‖2Wd,γ
=
∑
k∈Zd

|λk|2
d∏
j=1

(
1 +

4π2k2j
γj

)
.
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Proof. First for u ⊆ 1:d,

∂|u|f(x)

∂xu
=
∑
k∈Zd

νk exp(2πikTx),

where νk = λk(2πi)|u|
∏
j∈u kj . Then

‖f‖2Wd,γ
=
∑
u

∏
j∈u

γ−1j

∫ ∑
k∈Zd

∑
k′∈Zd

νk exp(2πikTx)νk′ exp(−2πik′
T
x) dx

=
∑
u

∏
j∈u

γ−1j
∑
k∈Zd

|νk|2

=
∑
k∈Zd

|λk|2
∑
u

(4π2)|u|
∏
j∈u

γ−1j
∏
j∈u

k2j

=
∑
k∈Zd

|λk|2
d∏
j=1

(1 + 4π2k2j/γj).

Corollary 1. For dimension d > 1, weights γ1, . . . , γd, and space Wd,γ de-
fined through product weights (3), the smallest radius ρ > 0 for which B(d, γ, ρ)
contains a function f with Var(f) = 1 has ρ2 = 1 + 4π2/γ1.

Proof. We choose λk to minimize
∑

k∈Zd |λk|2
∏d
j=1(1 + 4π2k2j/γj) subject to∑

k∈Zd−{0} |λk|2 = 1. We accomplish this by taking λk = 0 unless k =

(±1, 0, . . . , 0) and then choosing |λ(−1,0,...,0)|2 + |λ(1,0,...,0)|2 = 1. Any such
function has ‖f‖2Wd,γ

= 1 + 4π2/γ1.

Proposition 2. Let u be a non-empty subset of 1:d. For dimension d > 1,
weights γ1, . . . , γd, and space Wd,γ defined through product weights (3),

sup
f∈B(d,γ,ρ)∩Pd

σ2
u(f) = ρ2

∏
j∈u

(1 + 4π2/γj)
−1.

Proof. The ANOVA component fu is∑
ku∈(Z−{0})|u|

λku:0−u exp(2πikT
uxu)

which has variance
σ2
u =

∑
ku∈(Z−{0})|u|

|λku:0−u |2.

We maximize σ2
u subject to f ∈ B(d, γ, ρ) ∩Pd by taking λku:0−u = 0 unless all

elements of ku are ±1. For such a function

‖f‖2Wd,γ
=

(∏
j∈u

(1 + 4π2/γj)

) ∑
ku∈{−1,1}|u|

|λku:0−u |2, and
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σ2
u =

∑
ku∈{−1,1}|u|

|λku:0−u |2.

That is σ2
u = ‖f‖2Wd,γ

∏
j∈u(1 + 4π2/γj)

−1.

Corollary 2. For dimension d > 1, weights γ1, . . . , γd, and space Wd,γ defined
through product weights (3), let ρ be the smallest radius for which Wd,γ contains
a function f with Var(f) = 1. Let u be a nonempty subset of 1:d. Then

sup
f∈B(d,γ,ρ)∩Pd

σ2
u =

1 + 4π2/γ1∏
j∈u(1 + 4π2/γj)

.

Proof. Combine Proposition 2 with ρ2 from Corollary 1.

4 Effective dimension

In this section we define notions of effective dimension for weighted spaces. To
motivate our results we considered balls just large enough to contain a func-
tion of unit variance. But because both the variance and the norm squared
are homogeneous of degree 2 we can simply use the unit ball in Wd,γ in our
definitions.

Definition 1. Let W be a product weighted subspace (4) of L2[0, 1]d with norm
‖ · ‖W and let B be the unit ball in W . The space W is said to be of effective
dimension s ∈ {1, 2, . . . , d− 1} in the superposition sense (at level ε ∈ (0, 1)) if

supf∈B
∑
|u|>s σ

2
u(f)

supf∈B σ
2(f)

6 ε.

For product weights, this definition yields the same answer if we replace∑
|u|>s by sup|u|>s, because

sup
f∈B

∑
|u|>s

σ2
u = sup

f∈B

∑
‖k‖0>s

|λk|2

and that supremum is attained (non-uniquely) by a function f with only one
nonzero λk where k has exactly s+1 nonzero elements all of which are ±1. The
same reduction happens using sup|u|>s in the numerator. Using supu makes for
simpler computations.

Definition 2. Let W be a product weighted subspace (4) of L2[0, 1]d with norm
‖ · ‖W and let B be the unit ball in W . The space W is said to be of effective
dimension s ∈ {1, 2, . . . , d− 1} in the truncation sense (at level ε ∈ (0, 1)) if

supf∈B
∑
due>s σ

2
u(f)

supf∈B σ
2(f)

6 ε.
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Similarly to the superposition case, we can replace supf∈B
∑
due>s in the

numerator by supf∈B supdue>s which makes computations easier.
For periodic functions and product weights, the weighted space has effective

dimension s in the superposition sense if

1 + 4π2/γ1∏s+1
j=1(1 + 4π2/γj)

=
1∏s+1

j=2(1 + 4π2/γj)
6 ε. (9)

The periodic weighted space defined through product weights has effective di-
mension s in the truncation sense if

1 + 4π2/γ1
1 + 4π2/γs+1

6 ε.

Effective dimension s in the truncation space implies effective dimension s in
the superposition sense, at the same level ε.

These notions of effective dimension are different from the ones in Caflisch
et al. (1997). The definitions there apply to a single function which then has low
effective dimension if it is dominated by its own low order or low index ANOVA
terms,

∑
|u|>s σ

2
u 6 ε

∑
u σ

2
u, or,

∑
due>s σ

2
u 6 ε

∑
u σ

2
u, respectively. Here a

space has low effective dimension if in any ball, the variance of one function
dominates the high index or high order parts of every function in that ball.

A quadrature problem is tractable if the effort to attain accuracy ε (one way
to measure accuracy is described below) is at most polynomial in ε−1 and the
dimension d. It is strongly tractable if the complexity bound is independent of
d. The problem of quadrature is known to be strongly tractable in the weighted
function space of this paper, if

∞∑
j=1

γj <∞ (10)

holds for a sequence of quadrature problems with increasing dimension d. In this
case, the sample size n required to reduce the initial error (that of an n = 0 rule)
by a factor ε > 0 grows as ε−2 uniformly in dimension. This is essentially the
Monte Carlo rate, and the original proof (Sloan and Woźniakowski, 1998) was
non-constructive. An improved but non-constructive rate with error O(n−1+δ)
for arbitrary δ > 0 was obtained by Hickernell and Woźniakowski (2000) under
the condition that

∞∑
j=1

γ
1/2
j <∞. (11)

There are now constructive coordinate-by-coordinate algorithms (Sloan et al.,
2002) that find lattice rules attaining the better rate, as shown by both Kuo
(2003) and Dick (2004) when (11) holds. Fast search algorithms based on the
FFT are available (Nuyens and Cools, 2006a,b).
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Truncation dimensions Superposition dimensions
ε q = 1.01 q = 2 q = 3 q = 1.01 q = 2 q = 3
0.01 97 10 4 2 1 1
0.0001 9,357 101 21 3 2 2

Table 1: Superposition and truncation dimensions of some periodic weighted
spaces. The weights are γj = j−q and the threshold is ε ∈ {0.01, 0.0001}.

Truncation dimensions Superposition dimensions
ε q = 1 q = 2 q = 1 q = 2
0.01 161 5 5 2

Table 2: Superposition and truncation dimensions from Wang and Fang (2003)
for dimension d = 500 and threshold ε = 0.01, with γj = j−q.

We can illustrate effective dimension with some examples for γj . Suppose
for example that γj = Aj−q where q > 1. Then the truncation dimension is the
first s for which

s >

(
4π2 +A(1− ε)

4π2ε

)1/q

− 1 > ε−1/q − 1.

For instance, with ε = 0.01 the space must have truncation dimension of about
100 or more if q is close to its lower bound of 1. When q = 2 (almost large enough
for the better rate), then the truncation dimension must be larger than 9 but
will only be much larger than that if A� 1. This example reinforces the insight
that it is not just the rate of weight decay that matters, but also the constant of
proportionality. If weights are too small, then high index components may be
ignored in component-by-component constructions of lattice rules. Anecdotally
those algorithms sometimes choose lattices that duplicate components in their
generating vector, producing quadrature points xi ∈ [0, 1]d with xij = xik for
some j 6= k and all i.

The effective dimension in the superposition sense is the first s > 1 for which
(9) holds. It is easy to compute given a sequence of weights. Table 1 reports
the effective dimension at levels ε = 0.01 and ε = 0.0001 for some spaces with
product weights. We choose A = 1 here in order to keep all γj 6 1 so that
γu 6 γv whenever u ⊇ v.

The definition based on typical functions in Wang and Fang (2003) leads
to qualitatively similar but not identical answers. The present approach gives
one number for the infinite sequence of weights. Their approach gives an an-
swer which depends on the nominal dimension d. At their highest investigated
dimension, d = 500, they obtain effective dimensions in Table 2.
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5 Discussion

This paper develops an approach to measure effective dimension for a space
of integrands. A space of periodic functions with product weights was used
for illustration, but the analysis should be applicable to other spaces. In the
particular weighted spaces investigated, integration was tractable. Some of those
spaces had high truncation dimension, but all had low superposition dimension.
It is possible to construct weighted spaces in which the superposition dimension
is higher, and the O(n−1+δ) rate still holds. For example with γj = 100×j−2.01,
the superposition dimension rises to s = 4 at level ε = 0.01, but the first 9 γj
are larger than one, and γ{1,2,...,9} becomes the most important interaction. It
remains to see how such large weights affect the constants in the complexity
bounds for integration.

Several alternatives to product weights have been proposed. Among these
are finite order weights (Sloan et al., 2004) where the coefficient γu in the inner
product (2) vanishes for |u| > s. Such a space will necessarily have superposition
dimension at most s. More recently, the product and order dependent (POD)
weights were studied by Kuo et al. (2012). The POD weights take the form
γu = α(|u|)

∏
j∈u γj for some function α acting on the cardinality (order) of u

alone. Having the extra flexibility to choose α(|u|) may allow researchers to find
tractable spaces with higher effective dimensions.
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