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Abstract

In this paper we study a bootstrap strategy for estimating the vari-
ance of a mean taken over large multifactor crossed random effects data
sets. We apply bootstrap reweighting independently to the levels of each
factor, giving each observation the product of its factor weights. No ex-
act bootstrap exists for this problem (McCullagh, 2000). We show that
the proposed bootstrap is mildly conservative, under sufficient conditions
that allow very unbalanced and heteroscedastic inputs. Earlier results for
a resampling bootstrap only apply to two factors and are not suitable to
online computation. The proposed reweighting approach can be imple-
mented in parallel and online settings. The results for this method apply
to any number of factors. The method is illustrated using a 3 factor data
set of comment lengths from Facebook.

Keywords: Bayesian pigeonhole bootstrap, online bagging, online bootstrap,
relational data, tensor data, unbalanced random effects

1 Introduction

In IID sampling, the bootstrap provides reliable variance estimates and confi-
dence intervals under very weak assumptions on the mechanism generating our
data. But many data sets have no IID structure for us to draw on. For example,
with the famous Netflix data (Bennett and Lanning, 2007) multiple ratings from
the same viewer should be modeled as dependent. Similarly multiple ratings on
the same movie are dependent. Neither rows nor columns are IID, and a crossed
random effects model with interactions is a more reasonable structure. Large
crossed data sets of two or even more factors are commonplace in electronic
commerce and we might expect them to appear in other settings where data
collection is automated.

The crossed random effects setting is challenging for inference. Methods
in Searle et al. (1992) apply for Gaussian random effects models, but for large
unbalanced cases, the necessary linear algebra becomes prohibitively expensive.
We might therefore turn to resampling. But McCullagh (2000) proved that
there does not exist a bootstrap algorithm which will correctly estimate the
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variance of the overall average of a crossed random effects model, even in the
case of perfectly balanced data (no missing values).

Large sparse data sets with crossed random effects commonly arise. There
can easily be more than two factors. For example, at an online bookstore,
customer C might arrive from IP address I, enter query Q, read review R
about book B, buy that book with credit card K at time T , and have it
shipped to address A. The data logs then have a sparse table of observed
(C, I,Q,R,B,K, T,A) values. Crossed random effects with various interactions
are a natural model for such data sets.

These data sets may be extremely sparse and unbalanced. The Netflix data
have about 1% of observations present and the number of ratings per movie has
an enormous range as does the number of ratings per customer. When there
are more than 2 factors, the data may be much sparser still.

There does exist an approximate bootstrap method which is easy to apply
in the two factor case. In it, one takes bootstrap samples of the row entities
and, independently, of the column entities. If, for example, row i is sampled A
times and column j is sampled B times then the ij observation will appear AB
times in the bootstrap sample. This bootstrap has been used in item-response
theory by Brennan et al. (1987) and Wiley (2001) to study variance components
in educational test data. They noticed that bootstrap methods were biased.

After proving the non-existence of an unbiased bootstrap, McCullagh (2000)
shows that bootstrapping rows and columns independently, gives a mildly con-
servative variance estimate for balanced crossed random effects data with ho-
moscedastic errors. Owen (2007) shows that this bootstrap remains conservative
(and usually mildly so) for sparse and unbalanced crossed random effects. That
framework allows every row and column (e.g. customer and movie) and even
every interaction to have its own variance. Resampling is then reliable and it
spares the user from having to estimate all of those variances.

Methods that reweight data via IID random weights (Rubin, 1981; Newton
and Raftery, 1994) are an appealing alternative to resampling, which amounts
to using multinomial weights. First, it is simpler to apply reweighting to large
scale parallelized computations, as researchers in online bootstrapping (Oza,
2001; Lee and Clyde, 2004) do. The reason is that large data sets are stored
in a distributed fashion and then multinomial sampling brings substantial com-
munication and synchronization costs. Second, resampling simplifies variance
expressions by avoiding the negative dependence from the multinomial distribu-
tion. This makes it easier to develop expressions for problems with more than
two factors. Many statistics of interest can be extended to weighted samples.
For those that cannot, weights that take the form of nonnegative integers can
be implemented by counting multiple copies of the corresponding observations.

Using notation and approximations defined below, the main facts are as
follows. For r = 2 factors, the random effects variance of a sample mean takes
the form (ν{1}σ

2
{1} + ν{2}σ

2
{2} + σ2

{1,2})/N for N observations. The subscripted

ν quantities are easily computable from the data while the subscripted σ2’s
are variance components. Naive bootstrapping produces an estimate close to
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(σ2
{1} + σ2

{2} + σ2
{1,2})/N which is grossly inadequate because it turns out that

often 1 � ν{j} � N . Resampling both rows and columns leads to a variance
estimate close to ((ν{1} + 2)σ2

{1} + (ν{2} + 2)σ2
{2} + 3σ2

{1,2})/N , which is mildly
conservative when ν{j} � 1 and the σ’s are of comparable magnitude. It is up
to three times as large as it should be in the event that σ2

{j} � σ2
{1,2}. For the

Netflix data, a naive bootstrap variance can be too small by as much as roughly
56,200, a far more serious error than overestimating by a factor of 3.

Our main contributions are:
1) showing that the same stylized facts hold for reweighting r = 2 factors,
2) generalizing the reweighting results to r ≥ 2 factors, and
3) analyzing the heteroscedastic random effects case.

As an example, the 3σ2
{1,2} from r = 2 becomes (2r − 1)σ2

{1,2,...,r} and we find
expressions for all 2r − 1 coefficients. Under reasonable conditions, for which
we note exceptions, this bootstrap magnifies a k-factor variance component by
roughly 2k − 1. Under simply described conditions, the k = 1 terms dominate
the variance and then the variance magnification becomes negligible.

An outline of the paper is as follows. Section 2 introduces our notation for
the random effects model and some observation counts and then defines the
random effects variance that we seek to estimate. Section 3 considers naive
bootstrap methods that simply resample or reweight the observations as if they
were IID. They seriously underestimate the true variance unless the only nonzero
variance component is that of the highest order interaction. Reweighting has a
slight advantage because it allows one to step up the sampling variance to com-
pensate for cases where the naive bootstrap variance is only a modest underesti-
mate. Section 4 introduces a factorial reweighting bootstrap strategy. For data
with r = 2 factors the reweighting results closely match the resampling results
from Owen (2007). This section includes an interpretable approximation to the
exact bootstrap variance. Section 6 considers the heteroscedastic case, where ev-
ery variance component at every combination of its factors has its own variance
parameter. When the main effects are dominant, then the proposed bootstrap
closely matches the desired variance even in the heteroscedastic setting. Sec-
tion 7 describes repeated observations and factors nested inside the ones being
reweighted. Section 9 has a numerical example from Facebook. In that dataset,
UK-based users make longer comments than do US-based users, when posting
from mobile devices. The reverse holds for comments made at Facebook’s stan-
dard interface to the web. The differences are small, but statistically significant,
even after taking account of a three factor structure (commenter, sharer, and
URL). Section 8 briefly sketches how reliable variance estimation for a mean
extends to other problems. The proofs appear in an Appendix.

2 Notation and random effects model

The random variables of interest take the form Xi1,i2,··· ,ir ∈ Rd for integers
ij ≥ 1 and j = 1, . . . , r. To simplify notation, we write Xi for i = (i1, . . . , ir).
We work with dimension d = 1. The generalization to d ≥ 1 is straightforward.
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We have in mind applications where each value of ij corresponds to one level
of a categorical variable with many potential values. In internet applications,
index values ij might represent users, URLs, IP addresses, ads, query strings
and so on. There may be no a priori upper bound on the number of distinct
levels for ij .

The data are composed of N of these random variables, where 1 ≤ N <∞.
The binary variable Zi takes the value 1 when observation Xi is present and
Zi = 0 when Xi is absent. We work conditionally on Zi so that they are
nonrandom. In practice the pattern of missingness in Zi may be important. We
avoid modeling Zi in order to focus on estimating variance, apart from some
brief remarks in Section 8.

The letters u and v denote subsets of [r] ≡ {1, . . . , r} throughout. The
summation

∑
u is taken over all 2r subsets of [r], and other summations, such

as
∑
v⊇u denote sums over the first named set (here v) subject to the indicated

condition with the other set(s) (here u) held fixed. The index iu extracts the
components ij for j ∈ u. Then iu = i′u means that ij = i′j for all j ∈ u.

Our r-fold crossed random effects model is

Xi = µ+
∑
u 6=∅

εi,u (1)

where µ ∈ R and εi,u are mean 0 random variables that depend on i only through
iu. We have εi,u = εi′,u if iu = i′u and εi,u independent of εi′,u otherwise. The
covariance of εi,u and εi′,u′ is

Cov(εi,u, εi′,u′) = E(εi,uεi′,u′) = σ2
u1u=u′1iu=i′u (2)

for σ2
u <∞.

The sample mean of X is the ratio

X̄ =
∑
i

XiZi

/∑
i

Zi, (3)

where the sums are over all index values i. The denominator in (3) is the
total number N of observations. Our goal is to estimate the variance of X̄ by
resampling methods.

2.1 Partial duplicate observations

We will need to keep track of the extent to which different observations have
the same index values, in order to properly reflect correlations among the Xi.

For each i and u ⊆ [r], the number

Ni,u =
∑
i′

Zi′1iu=i′u

counts how many observations match Xi for all indices j ∈ u. If Zi = 1 then
Ni,u ≥ 1 because Xi matches itself. By convention Ni,∅ = N and Ni,[r] = 1.
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The quantity

νu =
1

N

∑
i

ZiNi,u ≥ 1

is the average number of matches in the subset u for observations in the data
set, and ν[r] = 1.

The most important of the νu are for singletons u = {j}. The value ν{j} has
a quadratic dependence on the pattern of duplication in the data. To see this,
write n`j =

∑
i Zi1ij=` for the number of times that variable j is equal to ` in

the data. Then ν{j} = N−1
∑∞
`=1 n

2
`,j because each Ni,{j} = nij ,j appears nij ,j

times in the summation defining ν{j}.
If u ⊆ v then νu ≥ νv. In some applications νu � νv for proper subsets u (

v. For those applications, multiple matches are very unusual. In other settings
two factors, say i1 and i2 might be highly though not perfectly dependent (e.g.,
customer ID and phone number) and then ν{1,2} might be only slightly smaller
than ν{1} or ν{2}. We return to this issue in Section 5.

The specific pair of data values i and i′ match in components

Mii′ = {j ∈ [r] | ij = i′j}.

For the motivating data, most of the Mii′ are empty and most of the rest have
cardinality |Mii′ | = 1. We have |Mii′ | = r if and only if i = i′. Although Mii′

is defined for all pairs i and i′ we only use it when ZiZi′ = 1, that is when both
Xi and Xi′ have been observed, and the term ’most’ above refers to these pairs.

For each i and k = 0, 1, . . . , r, the number

Ni,k =
∑
i′

Zi′1|Mii′ |=k

counts how many observations match Xi in exactly k places.

2.2 Random effects variance of X̄

Here we record the true variance of X̄, using the random effects model. This is
the quantity we hope to estimate by bootstrapping.

Theorem 1. In the random effects model (1)

Var(X̄) =
1

N

∑
u 6=∅

νuσ
2
u. (4)

The contributions of the variance components σ2
u are proportional to the

duplication indices νu. For large sparse data sets we often find that 1� νu � N
when 0 < |u| < r.

Our bootstrap approximations to this variance are centered around a quan-
tity (1/N)

∑
u6=∅ γuσ

2
u for gain coefficients γu that depend on the data config-

uration and the particular bootstrap method. Ideally we want γu = νu. More
realistically, some bootstrap methods are able to get γu ≥ νu with γu just barely
larger than νu for the singletons u = {j} which we expect to dominate Var(X̄).
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3 Naive bootstrap methods

There are two main ways to bootstrap: resampling (Efron, 1979) and reweight-
ing (Rubin, 1981), with the distinction being that the former uses a multinomial
distribution on the data while the latter applies independent random weights
to the observations.

Naive bootstrap methods simply resample or reweight the N observations
without regard to their factorial structure. That is they use the same bootstrap
one might use for IID samples. Here we show that naive bootstrap resampling
and reweighting have very similar and very unsatisfactory performance.

3.1 Naive resampling

In the naive bootstrap, all N observations are resampled without replacement.
The naive bootstrap variance of X̄ converges to 1/N times the plugin variance
of the N observed Xi as the number of resampled data sets tends to infinity.
We write

VarNB(X̄) =
1

N2

∑
i

Zi(Xi − X̄)2 (5)

for this limiting value.

Theorem 2. Under the random effects model (1), the expected value of the
naive bootstrap variance of X̄ is

ERE(VarNB(X̄)) =
1

N

∑
u6=∅

σ2
u

(
1− νu

N

)
. (6)

When r > 1, the naive bootstrap severely underestimates the coefficients of
σ2
{j}. For the Netflix data,

Var(X̄)
.
=

1

N
(56,200σ2

movies + 646σ2
raters + σ2

interaction), while

VarNB(X̄) ≤ 1

N
(σ2

movies + σ2
raters + σ2

interaction),

where N
.
= 100,000,000.

Theorem 2 generalizes Lemma 2 of Owen (2007) which treats naive bootstrap
sampling for r = 2. We note that Owen (2007, p. 391) has an error: it gives the
coefficient of σ2

{1,2} as 1/N where it should be 1/(N − 1).

3.2 Naive reweighting

In the naive Bayesian bootstrap, all N observations are given random weights
which are then normalized. Observation i gets weight Wi ∼ G independently
sampled. We assume that G has mean 1 and variance τ2 < ∞. Typically
τ2 = 1.
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The original Bayesian bootstrap (Rubin, 1981) had Wi ∼ Exp(1) but other
distributions are useful too. Taking Wi ∼ Poi(1) gives a result very similar
to the usual bootstrap, and it has integer weights. Independent Bin(N, 1/N)
weights would provide a more exact match, but for large N there is no practical
difference between Bin(N, 1/N) and Poi(1). See Oza (2001) and Lee and Clyde
(2004) for uses of Poisson weights in data mining.

Taking Wi ∼ U{0, 2} = (δ0 + δ2)/2 also has integer values. The algorithm
goes ’double or nothing’ independently on all N observations. The nonzero
integer values are all equal, so these weights correspond to using a random
unweighted subset of the data. Double-or-nothing weighting is then a version of
half-sampling methods (McCarthy, 1969) without the constraint on the sum of
weights, just as Poisson weighting removes a sum constraint from the original
bootstrap.

The choice of weights makes a small difference to the bootstrap performance.
See Section 3.3.

Each bootstrap resampled mean takes the form

X̄∗ = T ∗/N∗

where T ∗ =
∑

iWiZiXi and N∗ =
∑

iWiZi. The bootstrap mean T ∗/N∗ is a
ratio estimator of X̄. The asymptotic formula for the variance is

ṼarNBB(X̄∗) =
1

N2
ENBB

((
T ∗ − X̄N∗

)2)
.

The tilde on VarNBB is a reminder that this formula is a delta method approxi-
mation: it is the variance of a Taylor approximation to X̄∗. Because N is usually
very large in the target applications, we consider ṼarNBB to be a reliable proxy
for VarNBB.

Theorem 3. In the random effects model (1)

ERE

(
ṼarNBB(X̄∗)

)
=
τ2

N

∑
u6=∅

σ2
u

(
1− νu

N

)
. (7)

The naive Bayesian bootstrap using τ2 = 1 has the same average variance as
the naive bootstrap. In large data sets we may find that νu � τ2(1−νu/N) and
then the Bayesian bootstrap greatly underestimates the true variance. When
maxu6=∅ νu is not too large, then Theorem 3 offers a way to counter this problem.
We can take τ2 = maxu 6=∅ νu and get conservative variance estimates from the
naive Bayesian bootstrap. The largest νu comes from u = {j} for some j ∈ [r]
and it is an easy quantity to compute.

3.3 Bootstrap stability

Any distribution on weights with E(W ) = 1 and Var(W ) = τ2 will have the

same value for ERE(ṼarNBB(X̄∗)). Other things being equal, we prefer a more
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stable bootstrap. By stability we mean efficiency with respect to bootstrap
sampling, as distinct from statistical efficiency with respect to sampling of the
original data Xi. We find that the stability of reweighting depends on the
kurtosis κ = E((W − 1)4)/τ4 − 3 of the weights. The dependence is quite weak
unless the Xi have a high sample kurtosis κx = (1/N)

∑
i Zi(Xi − X̄)4/σ4 − 3

where σ2 = (1/N)
∑

i Zi(Xi − X̄)2.
If we hold the observations Xi fixed and implement the bootstrap, doing

some number B of replicates, we will estimate the quantity

ṼarNBB(X̄∗) =
1

N2

∑
i

∑
i′

ZiZi′ENBB(WiWi′)YiYi′

where Yi = Xi − X̄.
To estimate this variance we may use

̂̃
VarNBB(X̄∗) =

1

BN2

B∑
b=1

∑
i

∑
i′

ZiZi′Wi,bWi′,bYiYi′

=
1

B

B∑
b=1

(
1

N

∑
i

ZiWi,b(Xi − X̄)

)2
(8)

where Wi,b are independent identically distributed random weights and b =
1, . . . , B indexes the bootstrap replications. The hat in (8) represents estimation
from B bootstrap samples. It is possible to use (8) with B = 1. That such a
“unistrap” is possible, reflects the use of a delta method approximation.

Equation (8) is not the usual estimator. The more usual variance estimate
is

s2NBB(X̄∗) =
1

B − 1

B∑
b=1

(X̄∗b − X̄∗• )2 (9)

where

X̄∗b =
1

N

∑
i

ZiWi,bXi, and X̄∗• =
1

B

B∑
b=1

X̄∗b . (10)

Theorem 4. Let W and Wi,b be IID random variables with mean 1 variance
τ2 and kurtosis κw <∞. Then holding Yi = Xi − X̄ fixed,

VarNBB(
̂̃
VarNBB(X̄∗)) =

σ4τ4

BN2

(
2 +

κ(κx + 3)

N

)
where σ2 = (1/N)

∑
i ZiY

2
i , and κx = (1/N)

∑
i ZiY

4
i /σ

4 − 3. A delta method
approximation gives

VarNBB(s2NBB)
.
=
σ4τ4

BN2

(
2B

B − 1
+
κ(κx + 3)

N

)
.
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Lee and Clyde (2004), following Oza (2001) view the Poisson version as a
lossy online approximation to the bootstrap. Lee and Clyde (2004) prefer expo-
nential weights because it is an exact online version of the Bayesian bootstrap.
We find here that there are only small differences between weighting schemes,
but double-or-nothing weights having the smallest possible kurtosis κ = −2 have
the best stability. The Poi(1) distribution has κ = 1 and the Exp(1) distribution

has κ = 6. When κ(κx + 3) � N , then
̂̃
VarNBB(X̄∗) with B reweightings has

approximately the variance of s2NBB(X̄∗) with B + 1 reweightings.

4 Factorial reweighting

Our proposal here is to apply a product of independent random weights to the
data. Observation i is given weight Wi ≥ 0. The weights take the form

Wi =

r∏
j=1

Wj,ij (11)

where Wj,ij are independent random variables for j ∈ [r] and ij ≥ 1. We assume
that E(Wj,ij ) = 1 and Var(Wj,ij ) = τ2j <∞. The usual choice has all τ2j equal

to a common τ2 which in turn is usually equal to 1.
The reweighted mean X̄∗ is once again a ratio estimate with delta method

approximation

ṼarPW(X̄∗) =
1

N2
EPW

((
T ∗ − X̄N∗

)2)
(12)

where T ∗ =
∑

i ZiWiXi and N∗ =
∑

i ZiWi for Wi given by (11). The sub-
script PW refers to random weights taking the product form.

The bootstrap variance depends on precise details of the overlaps among
different observations. We will derive some approximations to this variance
below. For the exact variance we need to introduce some additional quantities:

ρk =
1

N2

∑
i

∑
i′

ZiZi′1|Mii′ |=k,

νk,u =
1

N

∑
i

∑
i′

ZiZi′1|Mii′ |=k1iu=i′u , and,

ν̃k,u =
1

N2

∑
i

∑
i′

∑
i′′

ZiZi′Zi′′1|Mii′ |=k1iu=i′′′u

=
1

N2

∑
i

ZiNi,uNi,k

for k = 0, 1, . . . , r and u ⊆ [r]. In words, ρk gives the fraction of data pairs that
match in exactly k positions, while νk,u/N gives the fraction of data pairs that
match in exactly k positions including all j ∈ u. The third quantity, ν̃k,u, is N
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times the fraction of data triples (i, i′, i′′) in which i matches i′ in precisely k
places while also matching i′′ for all j ∈ u.

These new quantities satisfy the identities

r∑
k=0

ρk = 1, and

r∑
k=0

νk,u =

r∑
k=0

ν̃k,u = νu.

Also it is clear that νk,u = 0 when |u| > k.

Theorem 5. In the random effects model (1)

ERE

(
ṼarPW(X̄∗)

)
=

1

N

∑
u6=∅

γuσ
2
u, (13)

where

γu =

r∑
k=0

(1 + τ2)k(νk,u − 2ν̃k,u + ρkνu). (14)

The quantities γu are ’gain coefficients’ which multiply σ2
u/N . Ideally they

should equal νu and then the bootstrap variance would match the desired one.
Where they differ from νu, the bootstrap variance is biased. Typically the bias is
positive, making this bootstrap conservative. Sometimes the bias is very small.

The special case r = 1 is interesting because it corresponds to IID sam-
pling. Then the only variance component is σ2

{1} which we abbreviate to σ2 and

equation (13) simplifies to

τ2σ2

N

(
1− 1

N

)
=

τ2σ2

N − 1
.

In this instance there is a (trivial) negative bias if τ2 = 1.
Independently reweighting rows and columns is similar to independently

resampling them. That strategy of bootstrapping rows and columns has been
given several names in the literature. Brennan et al. (1987) called it “boot-
p,i” because for educational testing data, it resamples both people and items.
McCullagh (2000, page 294) calls the method “Boot-II”. There is also another
“Boot-II” for the one way layout in that paper. Noting a similarity to Cornfield
and Tukey’s pigeonhole model for analysis of variance, Owen (2007) calls this
approach the “pigeonhole bootstrap”. Reweighting with a product of Rubin’s
(1981) exponential weights is thus a “Bayesian pigeonhole bootstrap”.

5 Interpretable approximations

Theorem 5 gives exact finite sample formulas for the gain coefficients γu, but
they are unwieldy. Here we make some approximations to γu in order to get
more interpretable results.
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First we introduce the quantity

ε = max
i

max
u 6=∅

Ni,u

N
= max

i
max
1≤j≤r

Ni,{j}

N
,

which measures the largest proportional duplication of indices. Though 1 ≥
ε ≥ 1/N , we anticipate that ε will usually be small. For the Netflix data,
ε = 232,944/100,480,507

.
= 0.00232 stemming from one movie having 232,944

ratings.
Although we suppose that ε is small below, it is worth pointing out that

exceptions do arise, even for some very large data sets. For example if the ob-
served data form a complete N1×N2×· · ·×Nr sample, then ε = max1≤j≤r 1/Nj .
If one factor takes only a modest number of levels, then ε is large. A second
context where ε is large arises when one of the factors is greatly dominated by
one of its levels, as for example, we might find in internet data where one factor
is the country of the web user.

A second parameter to aid interpretability is

η = max
∅(u(v

νv
νu
.

By construction η ≤ 1, and we ordinarily expect η to be small. Of the indices
which match for j ∈ u only a relatively small number should also match for
j ∈ v − u too, because each additional match in large data sets represents a
coincidence. For the Netflix data

η = max{ν{1,2}/ν{1}, ν{1,2}/ν{2}} = 1/646
.
= 0.00155.

While η is often small, there are exceptions. If two factors are very dependent
then η need not be small. For example people’s names and phone numbers
may be such variables: many or even most phone numbers are used by a small
number of people (often one) and many people use only a small number of phone
numbers. Then the fraction of data pairs matching on both of these variables
will not be much smaller than the fraction matching on one of them.

In simplifying expressions we use O(η) and O(ε). These describe limits as
η (respectively ε) converge to 0. The implied constants may depend on r. In
some expressions we have retained explicit constants.

Theorem 6. In the random effects model (1), the gain coefficient (14) for
u 6= ∅ in the product reweighted bootstrap is

γu = νu[(1 + τ2)|u| − 1 + Θuε] +
∑
v)u

(1 + τ2)|v|(τ2)|v−u|νv (15)

where |Θu| ≤ (1 + τ2)((1 + τ2)r − 1)/τ2. For τ2 = 1,

γu = νu[2|u| − 1 + Θuε] +
∑
v)u

2|v|νv,

where |Θu| ≤ 2r+1 − 2.
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For r = 2 using ν{1,2} = 1 and the usual choice τ2 = 1, we find that

γ{j} = ν{j}(1 + Θ{j}ε) + 2, j = 1, 2, and

γ{1,2} = ν{1,2}(3 + Θ{1,2}ε)

where each |Θ| ≤ 6. The Bayesian pigeonhole bootstrap variance closely matches
the ordinary pigeonhole bootstrap variance. In the extreme setting where
σ2
{1} = σ2

{2} = 0 < σ2
{1,2} the resulting bootstrap variance is about three times

as high as it should be. In a limit as minj ν{j} →∞ and ε→ 0,

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

→ 1 (16)

holds for fixed σ2
{j} > 0, j = 1, 2. For r = 3, with ν{1,2,3} = 1 and τ2 = 1

γ{1} ≈ ν{1} + 4ν{1,2} + 4ν{1,3} + 8

γ{1,2} ≈ 3ν{1,2} + 8, and

γ{1,2,3} ≈ 7,

where ≈ reflects an additive error of size νuΘuε for |Θu| ≤ 14. In the ex-
treme case where the only nonzero variance coefficient is σ2

[3] then the product
reweighted bootstrap variance is about 7 times as large as it should be. On the
other hand, when the main effect variances σ2

{j} are positive and νv/νu → 0 for

v ( u, then (16) holds. More generally, we have Theorem 7.

Theorem 7. For the random effects model (1) and the product reweighted boot-
strap with τ2 = 1, the gain coefficient for nonempty u ⊆ [r] satisfies

2|u| − 1− (2r+1 − 2)ε <
γu
νu
≤ 2|u|(1 + 2η)|v−u| − 1 + (2r+1 − 2)ε.

If there exist m and M with 0 < m ≤ σ2
u ≤M <∞ for all u 6= ∅, then

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

= 1 +O(η + ε).

The first claim of Theorem 7 can be summarized as

γu
νu

= (2|u| − 1)(1 +O(η)) +O(ε) ≈ 2|u| − 1,

and the second as ERE

(
ṼarPW(X̄∗)

)
/Var(X̄) ≈ 1, where the implied constants

on r. They generally grow exponentially in r but the interesting values of r are
small integers from 2 to 6 or so. The main effects dominate when η is small and
they are properly accounted for when ε is small.

12



6 The heteroscedastic model

In the r-fold crossed random effects model (1), the term εi,u has the same
variance for all i. This model may not be realistic. For instance, the Netflix data
includes some customers whose ratings have very small variance and others with
a very large variance. Similarly, but to a lesser extent, movies also differ in the
variance of their ratings. Unequal variances have the potential to bias inferences,
especially in unbalanced cases, because the entities with more observations on
them might have systematically higher variance than the others do.

A more realistic model is the heteroscedastic r-fold crossed random
effects model, with

Xi = µ+
∑
u 6=∅

εi,u (17)

where µ ∈ R and εi,u are independent random variables with mean 0 and
variance σ2

i,u. There are more variance parameters than observations, we do
not need to estimate them. Owen (2007) gives conditions under which the
pigeonhole bootstrap with r = 2 produces a variance estimate with relative
error tending to zero in the heteroscedastic setting. Here we investigate product
reweighting with general r for model (17).

We need some new quantities. For u 6= ∅, define

νi,u =
1

N

∑
i′

Zi′1iu=i′u =
Ni,u

N
,

νi,k =
1

N

∑
i′

Zi′1|Mii′ |=k =
Ni,k

N
, and

νi,k,u =
1

N

∑
i′

Zi′1|Mii′ |=k1iu=i′u .

We also will use

νuσ2
u =

1

N

∑
i

Ziνi,uσ
2
i,u, and

νk =
1

N

∑
i

Ziνi,k.

Next, we parallel the development from the ordinary random effects model (1).
Theorem 8 gives the exact variance of X̄ for heteroscedastic random effects,
Theorem 9 gives the gain coefficients under product reweighting, Theorem 10
provides interpretable bounds for the gains in terms of ε. Finally Theorem 11
gives conditions under which the product reweighted bootstrap has a negligible
bias.

Theorem 8. In the heteroscedastic random effect model (17)

Var(X̄) =
1

N

∑
u6=∅

∑
i

νi,uσ
2
i,u. (18)

13



Theorem 9. In the heteroscedastic random effects model (17)

ERE

(
ṼarPW(X̄∗)

)
=

1

N

∑
u 6=∅

∑
i

γi,uσ
2
i,u, (19)

where

γi,u =

r∑
k=0

(1 + τ2)k(νi,k,u − 2νi,kνi,u + νkνi,u). (20)

Theorem 10. In the heteroscedastic random effects model (17), the gain coef-
ficient γi,u of (20) for Zi = 1 and u 6= ∅, in the product reweighted bootstrap
is

γi,u = νi,u[(1 + τ2)|u| − 1 + Θuε] +
∑
v)u

(1 + τ2)|v|(τ2)|v−u|νi,v

where |Θu| ≤ (1 + τ2)((1 + τ2)r − 1)/τ2. For τ2 = 1

γi,u = νi,u[2|u| − 1 + Θuε] +
∑
v)u

2|v|νi,v

where |Θu| ≤ 2r+1 − 2.

Theorem 10 establishes that our bootstrap is conservative in the heteroscedas-
tic case. With τ2 = 1 we have

γi,u
νi,u
≥ 2|u| − 1− (2r+1 − 2)ε.

For the homoscedastic random effects model, the main effects dominate when
η = max∅(u(v νv/νu is small and the variance components are all within the
interval [m,M ] for 0 < m ≤ M > ∞. In the heteroscedastic case we might
reasonably require every σ2

i,u ∈ [m,M ]. The analysis we used for Theorem 7
also requires the quantities

ηi =

max∅(u(v
νi,v
νi,u

Zi = 1

0 Zi = 0

to be small.
For r = 2 the only subsets u and v which appear in ηi are u = {j} and

v = {1, 2}. Furthermore νi,{1,2} = 1/N and so

max
i
ηi = max

j∈{1,2}
max

i

Ni,{j}

N
= ε.

Then using the same argument we used to prove the second part of Theorem 7
we get

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

= 1 +O(ε), for r = 2.

14



The case for r > 2 is more complicated. There may be observations i with
large values for νi,v/νi,u where ∅ ( u ( v. We still get a good approximation
from the product reweighted bootstrap because even though the individual ηi
need not always be small, sums of νi,v over i are small compared to correspond-
ing sums of νi,u for ∅ ( u ( v.

Theorem 11. For the heteroscedastic random effects model (17), assume that
there exist m and M with 0 < m ≤ σ2

i,u ≤M <∞. Then the product reweighted

bootstrap with τ2 = 1, satisfies

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

= 1 +O(η + ε).

7 Nested random effects

The r-fold crossed random effects model (1) excludes replicated observations
by definition: there can be only one Xi for any combination i of factors. If
two X’s are observed to share all index values ij , we can incorporate them by
introducing an r + 1’st index ir+1 which breaks the ties. Conditionally on the
effects of the first r indices, distinct replicates are independent. That is σ2

u = 0
when r + 1 ∈ u but u 6= {1, 2, . . . , r + 1}. The replicate index ir+1 is a factor
that is nested within the first r factors.

More generally, we could have s additional indices corresponding to factors
crossed with each other, but nested within our r outer factors. Then the index
i ∈ {1, 2, . . . }r+s uniquely identifies a data point. Ordinary replication has
s = 1. The nesting structure means that

σ2
u = 0, if u ∩ {r + 1, . . . , r + s} 6= ∅ and u ∩ [r] 6= [r]. (21)

In words, the effect εi,u is 0 if the factors in u include any of the inner factors
without including all of the outer factors.

When one factor is nested within another, such as replicates within subjects,
it is a common practice to resample or reweight the outer factor only. For
example, the resampled data set might contain resampled subjects retaining
the repeated measurements from each of them.

In the nested setting, the variance of X̄ under and r + s factor version of
the random effects model (1) is still (1/N)

∑
u6=∅ νuσ

2
u although many of the σ2

u

terms are zero.
For i ∈ [r + s] let bic = (i1, . . . , ir) be the indices of its inner factors. We

can study these nested models by introducing the variables

Tbic =
∑
i′

Zi′1bi′c=bicXi′ , and

Mbic =
∑
i′

Zi′1bi′c=bic,

15



so that the sample mean

X̄ =
1

N

∑
i

ZiXi =

∑
bic Tbic∑
bicMbic

is an r-factor ratio estimator.
When the numbers Mbic of replicates for each outer factor vary, we obtain

a heteroscedastic random effects model in the first r variables.

8 Extensions

We have used the variance of a sample mean as a way to identify a suitable
bootstrap method. A bootstrap method that under-estimates the variance of a
mean cannot be expected to work well on other problems. One that is properly
calibrated or conservative for the variance of a scalar sample mean will also
work in some other settings.

The bootstrap is usually used to get confidence intervals, not variance es-
timates. For an asymptotically unbiased statistic that satisfies a central limit
theorem, a properly calibrated variance yields asymptotically correct bootstrap
percentile confidence intervals. An overestimated variance yields conservative
percentile intervals.

When Xi ∈ Rd for d > 1 we may simply replace the variances σ2
u or σ2

i,u by
variance-covariance matrices Σu or Σi,u respectively in the variance formulas.
This follows by considering the variance of φTXi for vectors φ ∈ Rd.

Bootstrap correctness extends from means to other statistics. See Hall (1992)
and Mammen (1992). The extension to smooth functions g(X̄) of means is via
Taylor expansion, when g has a Jacobian matrix with full rank at E(X̄).

Similarly, the extension from means to maximum likelihood estimates fol-
lows by considering estimating equations. We leave out regularity conditions,
but note that for a model relating Yi to Xi via (Xi, Yi) ∼ f(Xi, Yi;β) with
parameter β ∈ Rp, we could test β = β0 by testing whether

∂f(Xi, Yi;β)/∂β |β=β0

f(Xi, Yi;β0)

has mean 0. In practice it is usually more convenient to form a histogram of
resampled β̂∗ values.

We have worked conditionally on the observed values holding Zi fixed. Miss-
ingness can introduce a bias and one might seek to adjust for it. Any model
for those Xi with Zi = 0 requires assumptions that cannot be tested within
the data set. If we can model the missingness and estimate parameters based
on the data at hand by a parametric model, then we can use the bootstrap to
judge the sampling variance of our parameter estimates. The bootstrap will not
correct for any bias resulting from an incorrect model of missingness.
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9 Example: loquacity of Facebook comments

We present an analysis of national differences in comment length on Facebook.
In particular, Facebook users can share links with their friends. Their friends,
and the posting user, can comment on the link. We compare the length of these
comments produced by users in the United States using the site in American
English (US users) and those produced by users in the United Kingdom using
the site in British English (UK users). We restrict the analysis to US and
UK users commenting on links shared by US and UK users. We additionally
consider two different modes by which users can comment: the standard web
interface to Facebook (web) and an application for some touchscreen mobile
phones (mobile).

We treat the logarithm of the number of characters in a comment as the
outcome in the following random effects model:

Xcmi = µcm +
∑
u 6=∅

εi,u

where µcm is the mean log characters for country c in mode m. Here the mem-
bers of i are indexes for the user sharing the link (sharer), the user commenting
on the link (commenter), and the canonicalized URL being shared (URL). By
definition, no comments have 0 characters, and so each X in our data set is well
defined.

The data consist of Xcmi for a sample of comments by US and UK who are
using Facebook in American and British English, respectively, during a short
period in 2011. This sample includes 18,134,419 comments by 8,078,531 com-
menters on 2,085,639 URLs shared by 3,904,715 sharers. We examine whether
these US and UK users post comments of different lengths for both of the modes.
The duplication coefficients for this data are

νsh
.
= 17.71, νcom

.
= 7.71, νurl

.
= 26,854.92

νsh,com
.
= 5.92, νsh,url

.
= 12.91, νcom,url

.
= 5.19, and

νsh,com,url
.
= 4.88.

The coefficient for URLs is conspicuously large, indicating that a naive bootstrap
would be very unreliable.

The sample mean for a country and mode is

µ̂cm =

∑
i ZcmiXcmi∑

i Zcmi
.

We regard µ̂cm as an estimate of µcm conditional on the observed combinations
of sharers, commenters, and URLs.

The four sample means for both countries and both modes suggest that
the US users write longer comments than UK users when commenting on the
web (µ̂US, web = 3.62, µ̂UK, web = 3.55), while UK users write longer comments
than US users when commenting via the selected mobile interface (µ̂US, mobile =
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Figure 1: Difference between the logged number of characters in comments
by US and UK users for three different bootstrap reweightings with R = 50.
Each data point in the plotted ECDF is the difference in means from a single
bootstrap reweighting. US users post longer comments than UK users on the
web, but this difference is reversed for the mobile interface studied.

3.5, µ̂UK, mobile = 3.57). Many differences between US and UK users likely
contribute to this observed differences. Before searching for causes of these two
differences, a data analyst would likely want to quantify the evidence for the
existence and size of these differences. We test whether these two pairs of means
are likely to be observed given the null hypothesis of no difference in comment
length between the countries within each mode.

Using software for Hive (Thusoo et al., 2009), a Hadoop-based map–reduce
data warehousing and parallel computing environment, we can compute each
of these four means for a number of bootstrap reweightings of the data, while
visiting each observation only once. When visiting an observation, the hashed
identifiers for the factor levels for that observation are each used as seeds to
random number generators. This allows all nodes to use the same U{0, 2} draw
in computing the product weight for all observations that share a particular
factor level. Note that users can be both sharers and commenters. Since users
can comment on their own shared links, some observations could have the same
factor level identifier for both the sharer and commenter levels. We use different
portions of the hashed identifier so that the weights for these two roles are not
dependent. For each reweighting, we compute four reweighted sample means

µ̂∗cm =

∑
i ZcmiWcmiXcmi∑

i ZcmiWcmi
,

corresponding to c ∈ {US,UK} and m ∈ {web,mobile}.
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Mean log characters for US minus mean log characters for UK
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Figure 2: Confidence intervals for the difference between the logged number
of characters in comments by US and UK users for three different bootstrap
reweightings with R = 50. Confidence intervals span the 2.5% and 97.5% quan-
tiles of the normal with variance computed from the bootstrap reweightings.
While all three analyses reject the null hypothesis, the one- and two-factor anal-
yses may substantially overstate confidence about the size of the true difference,
especially in the case of comments posted via the web interface.

For comparison, we conduct this analysis reweighting one, two, and all three
of the factors. Figure 1 presents R = 50 bootstrapped differences in the two
pairs of means when reweighting commenters, commenters and sharers, and all
three factors. Inspection of these ECDFs confirms that the observed differences
cannot be attributed to chance, even when accounting for the random main
and interaction effects of commenters, sharers, and URLs. The bootstrapped
differences in means are strikingly more dispersed for the three-factor analysis.
Figure 2 shows 95% confidence intervals for the two differences computed as
quantiles of the normal distribution with variance computed from the bootstrap
reweightings. This highlights the substantial overstatement of certainty that can
come from neglecting the presence of additional random effects. In this case,
the three analyses would all reject the null hypothesis, but would produce quite
different confidence intervals.

For the approximations developed in Section 5 to apply, we require that ε
and η be small – that no single level of any random effect make up a large
portion of the observations and that the number of observations matching on v
is small compared to the number matching on u factors for all ∅ ( u ( v. We
find that ε = 686,990/18,134,419

.
= 0.0379, as one URL had 686,990 comments

in this sample. We also found that η
.
= 0.767. Because η is not very small it is

possible that the variance estimates are conservative.
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Appendix: proofs

This appendix contains theorem proofs and a few lemmas. The theorems are
restated to make it easier to follow the steps. Equation numbers that appear in
the theorem statements from the article are preserved in this appendix.

Proof of Theorem 1

Theorem 1. In the random effects model (1)

Var(X̄) =
1

N

∑
u 6=∅

νuσ
2
u.

Proof. The numerator of X̄ in (3) is
∑

i ZiXi = Nµ+
∑

i

∑
u6=∅ Ziεiu . There-

fore the variance of X̄ under the random effects model is

Var(X̄) =
1

N2
E
(∑

i

∑
i′

ZiZi′

∑
u 6=∅

∑
u′ 6=∅

εi,uεi′,u′
)

=
1

N2

∑
u 6=∅

σ2
u

∑
i

∑
i′

ZiZi′1iu=i′u

=
1

N2

∑
u 6=∅

σ2
u

∑
i

ZiNi,u

=
1

N

∑
u6=∅

νuσ
2
u.

Proof of Theorems 2, 3, and 4.

Here we prove the theorems about naive bootstrap sampling. Theorem 2 is
about naive resampling and Theorem 3 handles naive reweighting. Theorem 4
is about bootstrap stability.

Theorem 2. Under the random effects model (1), the expected value of the
naive bootstrap variance of X̄ is

ERE(VarNB(X̄)) =
1

N

∑
u6=∅

σ2
u

(
1− νu

N

)
. (6)
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Proof. A U -statistic decomposition of the sample variance is

VarNB(X̄) =
1

2N3

∑
i

∑
i′

ZiZi′(Xi −Xi′)
2

=
1

2N3

∑
i

∑
i′

ZiZi′

(∑
u 6=∅

εi,u − εi′,u
)2

.

Under the random effects model

ERE

(
VarNB(X̄)

)
=

1

2N3

∑
i

∑
i′

ZiZi′

∑
u6=∅

2σ2
u(1− 1iu=i′u)

=
1

N

∑
u 6=∅

σ2
u

(
1− νu

N

)
.

To prove Theorem 3, we begin with a lemma on the covariance of pairs of
observations under the random effects model.

Lemma 1. Let Xi follow the random effects model (1) and let Yi = Xi − X̄.
Then

ERE(XiXi′) = µ2 +
∑
u6=∅

σ2
u1iu=i′u (22)

and

ERE(YiYi′) =
∑
u6=∅

σ2
u

(
1iu=i′u −

Ni,u

N
−
Ni′,u

N
+
νu
N

)
. (23)

Proof. Equation (22) follows directly from the random effects model definition.
Expanding YiYi′ yields

XiXi′ −
1

N

∑
i′′

Zi′′XiXi′′ −
1

N

∑
i′′

Zi′′Xi′Xi′′ +
1

N2

∑
i′′

∑
i′′′

Zi′′Zi′′′Xi′′Xi′′′ .

Because µ cancels from Yi we may assume that µ = 0 while proving (23). Now

ERE

( 1

N

∑
i′

Zi′XiXi′

)
=

1

N

∑
u6=∅

σ2
u

∑
i′

Zi′1iu=i′u =
1

N

∑
u 6=∅

σ2
uNi,u.

Therefore

ERE(YiYi′) =
∑
u6=∅

σ2
u

(
1iu=i′u −

Ni,u

N
−
Ni′,u

N
+

1

N2

∑
i′′

Zi′′Ni′′,u

)
which reduces to (23).
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Theorem 3. In the random effects model (1)

ERE

(
ṼarNBB(X̄∗)

)
=
τ2

N

∑
u6=∅

σ2
u

(
1− νu

N

)
. (7)

Proof. Let Yi = Xi − X̄ and T ∗y =
∑

iWiZiYi. Then

ERE

(
ṼarNBB(X̄∗)

)
=

1

N2
ERE

(
ENBB

((
T ∗ − X̄N∗

)2))
=

1

N2
ERE

(∑
i

∑
i′

ZiZi′YiYi′ENBB(WiWi′)
)

=
1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′)ENBB(WiWi′).

Next, ENBB(WiWi′) = 1 + τ21i=i′ . Therefore

ERE

(
ṼarNBB(X̄∗)

)
=

1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′) +
τ2

N2

∑
i

ZiERE(Y 2
i ). (24)

The double sum in (24) vanishes because
∑

i ZiYi = 0. Then from Lemma 1,
the coefficient of σ2

u in (24) is

τ2

N2

∑
i

Zi

(
1− 2Ni,u

N
+
νu
N

)
=

τ2

N2

(
N − 2νu + νu

)
establishing (7).

Theorem 4. Let W and Wi,b be IID random variables with mean 1 variance
τ2 and kurtosis κw <∞. Then holding Yi = Xi − X̄ fixed,

VarNBB(
̂̃
VarNBB(X̄∗)) =

σ4τ4

BN2

(
2 +

κ(κx + 3)

N

)
where σ2 = (1/N)

∑
i ZiY

2
i , and κx = (1/N)

∑
i ZiY

4
i /σ

4 − 3. A delta method
approximation gives

VarNBB(s2NBB)
.
=
σ4τ4

BN2

(
2B

B − 1
+
κ(κx + 3)

N

)
.

Proof. First, the variance of
̂̃
VarNBB(X̄∗) scales as 1/B so we can work with

B = 1 and divide the result by B. For B = 1, we drop the subscript b from
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W ’s. We will use the identity
∑

i ZiWiYi =
∑

i Zi(Wi − 1)Yi. If B = 1, then

VarNBB(
̂̃
VarNBB(X̄∗)) equals

ENBB

((∑
i

ZiWiYi

)4)
−
(
σ2τ2

N

)2

=
1

N4

∑
i

ZiE((Wi − 1)4)Y 4
i +

3

N4

∑
i

∑
i′

ZiZi′E((Wi − 1)2)2Y 2
i Y

2
i′

− 3

N4

∑
i

ZiE((Wi − 1)2)2Y 4
i −

(
σ2τ2

N

)2

=
τ4σ4(κ+ 3)(κx + 3)

N3
+

3τ4σ4

N2
− 3τ4σ4(κx + 3)

N3
− σ4τ4

N2

=
τ4σ4

N2

(
2 +

κ(κx + 3)

N

)
.

For the second part

VarNBB(s2NBB) = ENBB(s2NBB)2
(

2

B − 1
+
κ∗

B

)
where κ∗ is the kurtosis of X̄∗ =

∑
i ZiWiYi/

∑
i ZiWi. The delta method

approximation to ENBB(s2NBB) is τ2σ2/N . For the kurtosis, we make the Taylor
approximation

X̄∗
.
= X̄ +

∑
i

Zi(Wi − 1)Yi.

The expected value of X̄∗−X̄ reuses much of the above computation and yields

ENBB((X̄∗ − X̄)4)
.
=
τ4σ4

N2

(
3 +

κ(κx + 3)

N

)
.

Therefore κ∗ = κ(κx + 3)/N and so

VarNBB(s2NBB) =
τ4σ4

BN2

(
2B

B − 1
+
κ(κx + 3)

N

)
.

Proof of Theorems 5, 6, and 7.

Theorem 5 gives an exact expression for the gain coefficients of the Bayesian
pigeonhole bootstrap in the constant variance crossed random effects model.
Theorem 6 gives an interpretable approximation to those gain coefficients. The-
orem 7 shows factorial reweighting gives nearly the correct variance when ε and
η are both small.

Theorem 5. In the random effects model (1)

ERE

(
ṼarPW(X̄∗)

)
=

1

N

∑
u6=∅

γuσ
2
u, (13)
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where

γu =

r∑
k=0

(1 + τ2)k(νk,u − 2ν̃k,u + ρkνu). (14)

Proof. We begin along the same lines as Theorem 3 and find that

ERE

(
ṼarPW(X̄∗)

)
=

1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′)EPW(WiWi′).

For the product weights used in this bootstrap,

EPW(WiWi′) =
∏

j:ij=i′j

(1 + τ2) = (1 + τ2)|Mii′ |,

with EPW(WiWi′) = 1 if i and i′ are not equal in any components.

From Lemma 1, the coefficient of σ2
u in ERE(ṼarPW(X̄∗)) is

1

N2

∑
i

∑
i′

ZiZi′

(
1iu=i′u −

Ni,u

N
−
Ni′,u

N
+
νu
N

)
(1 + τ2)|Mii′ |

=
1

N2

∑
i

∑
i′

ZiZi′

(
1iu=i′u −

2Ni,u

N
+
νu
N

)
(1 + τ2)|Mii′ |

=
1

N2

r∑
k=0

(1 + τ2)k
∑
i

∑
i′

1|Mii′ |=kZiZi′

(
1iu=i′u −

2Ni,u

N
+
νu
N

)
=

1

N

r∑
k=0

(1 + τ2)k
(
νk,u − 2ν̃k,u + ρkνu

)
.

Next we establish an interpretable approximation to the Bayesian pigeonhole
bootstrap variance, using the quantity ε = maxi maxj Ni,{j}/N which is small
unless the data are extremely imbalanced.

Theorem 6. In the random effects model (1), the gain coefficient (14) for
u 6= ∅ in the product reweighted bootstrap is

γu = νu[(1 + τ2)|u| − 1 + Θuε] +
∑
v)u

(1 + τ2)|v|(τ2)|v−u|νv (15)

where |Θu| ≤ (1 + τ2)((1 + τ2)r − 1)/τ2. For τ2 = 1,

γu = νu[2|u| − 1 + Θuε] +
∑
v)u

2|v|νv,

where |Θu| ≤ 2r+1 − 2.
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Proof. The second claim follows immediately from the first which we now prove.
We will approximate γu =

∑r
k=0(1 + τ2)k(νk,u − 2ν̃k,u + ρkνu). First

r∑
k=0

(1 + τ2)kνk,u =
1

N

r∑
k=0

(1 + τ2)k
∑
i

∑
i′

ZiZi′1|Mii′ |=k1iu=i′u

=
1

N

∑
w⊇u

(1 + τ2)|w|
∑
i

∑
i′

ZiZi′1Mii′=w

=
1

N

∑
w⊇u

(1 + τ2)|w|
∑
i

∑
i′

ZiZi′

∑
v⊇w

(−1)|v−w|1iw=i′w

=
∑
w⊇u

(1 + τ2)|w|
∑
v⊇w

(−1)|v−w|νv.

Writing w ∈ [u, v] for u ⊆ w ⊆ v,∑
w⊇u

(1 + τ2)|w|
∑
v⊆w

(−1)|v−w|νv

=
∑
v⊇u

νv
∑

w∈[u,v]

(1 + τ2)|w|(−1)|v−w|

=
∑
v⊇u

νv

|v−u|∑
`=0

(
|v − u|
`

)
(−1)`(1 + τ2)|v|−`

=
∑
v⊇u

νv(1 + τ2)|v|(τ2)|v−u|.

For the other parts of γu, we use quantities θ that satisfy bounds 0 ≤ θ ≤ 1.
There are several such quantities, distinguished by subscripts, and defined at
their first appearance. First, we have the bounds

Ni,0

N
= 1− rθi,0ε, and

Ni,k

N
= θi,kε, 1 ≤ k ≤ r. (25)

Next, for u 6= ∅,

ν̃0,u =
1

N2

∑
i

ZiNi,uNi,0 =
1

N

∑
i

ZiNi,u(1− rθi,0ε) = νu(1− rθ0,uε)

and for k = 1, . . . , r

ν̃k,u =
1

N2

∑
i

ZiNi,uNi,k =
1

N

∑
i

ZiNi,uθi,kε = νuθk,uε,

Turning to ρk,

ρ0 =
1

N2

∑
i

ZiNi,0 =
1

N

∑
i

Zi(1− εrθi,0) = 1− εrθ0, and

ρk =
1

N2

∑
i

ZiNi,k =
1

N

∑
i

Ziθi,kε = θkε, k = 1, . . . , r.
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Now −2ν̃0,u + ρ0νu = −νu + νu(2θ0,u − θ0)rε and

r∑
k=1

(1 + τ2)k(−2ν̃k,u + ρkνu) = νu

r∑
k=1

(1 + τ2)k(θk − 2θk,u)ε

Therefore

γu = νu
(
(1 + τ2)|u| − 1 + Θuε

)
+
∑
v)u

νv(1 + τ2)(τ2)|v−u|, where

Θu =

r∑
k=1

(1 + τ2)k(θk − 2θk,u).

The proof follows because −1 ≤ θk − 2θk,u ≤ 1 and
∑r
k=1(1 + τ2)k = (1 +

τ2)((1 + τ2)r − 1)/τ2.

Theorem 7. For the random effects model (1) and the product reweighted
bootstrap with τ2 = 1, the gain coefficient for nonempty u ⊆ [r] satisfies

2|u| − 1− (2r+1 − 2)ε <
γu
νu
≤ 2|u|(1 + 2η)|v−u| − 1 + (2r+1 − 2)ε.

If there exist m and M with 0 < m ≤ σ2
u ≤M <∞ for all u 6= ∅, then

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

= 1 +O(η + ε).

Proof. From Theorem 6

γu
νu
≤ −1 +

∑
v⊇u

2|v|η|v−u| + (2r+1 − 2)ε

= 2|u|(1 + 2η)|v−u| − 1 + (2r+1 − 2)ε,

and then using νv > 0,

γu
νu

> 2|u| − 1− (2r+1 − 2)ε.

For the second claim, small η means that the variance is dominated by
contributions σ2

{j} for which γ{j} ≈ ν{j}. Now∑
|u|=1

γuσ
2
u =

∑
|u|=1

νuσ
2
u[1 +O(η + ε)]

where the constant in O(·) can depend on r, and∑
|u|>1

γuσ
2
u =

∑
|u|>1

νuσ
2
u[2|u| +O(η + ε)] = O(η)

∑
|u|=1

νuσ
2
u.
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Similarly
∑
|u|>1 γuσ

2
u = O(η)

∑
|u|=1 νuσ

2
u. Therefore

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

=
(1 +O(η + ε))

∑
|u|=1 νuσ

2
u

(1 +O(η))
∑
|u|=1 νuσ

2
u

= 1 +O(η + ε).

Proof of Theorems 8 through 11.

Here we prove the theorems for the heteroscedastic case. We begin with a
lemma.

Lemma 2. Let Xi follow the heteroscedastic random effects model (17) and let
Yi = Xi − X̄. Then

ERE(XiXi′) = µ2 +
∑
u6=∅

σ2
i,u1iu=i′u (26)

and

ERE(YiYi′) =
∑
u6=∅

(
1iu=i′uσ

2
i,u − νi,uσ2

i,u − νi′,uσ2
i′,u + νuσ2

u

)
. (27)

Proof. Equation (26) follows directly just as the analogous expression did in
Lemma 1. Once again, expanding YiYi′ yields

XiXi′ −
1

N

∑
i′′

Zi′′XiXi′′ −
1

N

∑
i′′

Zi′′Xi′Xi′′ +
1

N2

∑
i′′

∑
i′′′

Zi′′Zi′′′Xi′′Xi′′′ .

and we may assume that µ = 0 while proving (27). Now

ERE

( 1

N

∑
i′

Zi′XiXi′

)
=

1

N

∑
u6=∅

∑
i′

Zi′1iu=i′uσ
2
i,u =

∑
u 6=∅

∑
i

σ2
i,uνi,u,

and

ERE

( 1

N2

∑
i′′

∑
i′′′

Zi′′Zi′′′Xi′′Xi′′′

)
=

1

N2

∑
u 6=∅

∑
i′′

∑
i′′′

Zi′′Zi′′′1i′′u=i′′′u σ
2
i′′,u

=
1

N

∑
u6=∅

∑
i′′

Zi′′σ
2
i′′,uνi′′,u

=
∑
u6=∅

νuσ2
u,

which together establish (27).

Theorem 8. In the heteroscedastic random effect model (17)

Var(X̄) =
1

N

∑
u6=∅

∑
i

νi,uσ
2
i,u. (28)
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Proof. The proof is very similar to that of Theorem 1.

Theorem 9. In the heteroscedastic random effects model (17)

ERE

(
ṼarPW(X̄∗)

)
=

1

N

∑
u 6=∅

∑
i

γi,uσ
2
i,u, (19)

where

γi,u =

r∑
k=0

(1 + τ2)k(νi,k,u − 2νi,kνi,u + νkνi,u). (20)

Proof. We begin along the same lines as Theorem 3 and find that

ERE

(
ṼarPW(X̄∗)

)
=

1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′)EPW(WiWi′).

As in Theorem 5, EPW(WiWi′) = (1 + τ2)|Mii′ |.
From Lemma 2,

ERE(ṼarPW(X̄∗)) =
1

N2

∑
u 6=∅

∑
i

∑
i′

ZiZi′(1 + τ2)|Mii′ |

×
(
1iu=i′uσ

2
i,u − νi,uσ2

i,u − νi′,uσ2
i′,u + νuσ2

u

)
.

(29)

The contribution from the last term in the parentheses of (29) is

1

N

∑
u6=∅

νuσ2
u

r∑
k=0

(1 + τ2)k
∑
i

Ziνi,k =
∑
u 6=∅

νuσ2
u

r∑
k=0

(1 + τ2)kνk.

Therefore the coefficient of σ2
i,u, in ERE(ṼarPW(X̄∗)) (when Zi = 1) is

1

N2

∑
i′

Zi′

r∑
k=0

1|Mii′ |=k(1 + τ2)k
(
1iu=i′u − 2νi,u

)
+
νi,u
N

r∑
k=0

(1 + τ2)rνk

=
1

N

r∑
k=0

(1 + τ2)k(νi,k,u − 2νi,kνi,u + νkνi,u).

Theorem 10. In the heteroscedastic random effects model (17), the gain co-
efficient γi,u of (20) for Zi = 1 and u 6= ∅, in the product reweighted bootstrap
is

γi,u = νi,u[(1 + τ2)|u| − 1 + Θuε] +
∑
v)u

(1 + τ2)|v|(τ2)|v−u|νi,v

where |Θu| ≤ (1 + τ2)((1 + τ2)r − 1)/τ2. For τ2 = 1

γi,u = νi,u[2|u| − 1 + Θuε] +
∑
v)u

2|v|νi,v

where |Θu| ≤ 2r+1 − 2.
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Proof. From Theorem 9, γi,u =
∑r
k=0(1 + τ2)k(νi,k,u − 2νi,kνi,u + νkνi,u). The

proof is similar to that of Theorem 6, so we summarize the steps. First
r∑

k=0

(1 + τ2)kνi,k,u =
∑
v⊇u

νi,v(1 + τ2)|v|(τ2)|v−u|.

Next, νi,0 = 1 − rθi,0ε and ν0 = 1 − rθ0, while for k ≥ 1, νi,k = θi,kε and
νk = θkε. Here, all of the θ’s are in the interval [0, 1]. The result follows as in
Theorem 6.

Theorem 11. For the heteroscedastic random effects model (17), assume
that there exist m and M with 0 < m ≤ σ2

i,u ≤ M < ∞. Then the product

reweighted bootstrap with τ2 = 1, satisfies

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

= 1 +O(η + ε).

Proof. First we show that main effects dominate. For |u| > 1,∑
i

γi,uσ
2
i,u ≤M

∑
i

νi,u(2|u| − 1 + 2r+1ε) +
∑
v)u

2|v|νi,v

= M

(
νu(2|u| − 1 + 2r+1ε) +

∑
v)u

2|v|νv

)
= (2|u| − 1)Mνu(1 +O(ε+ η))

= O(η) max
1≤j≤r

ν{j},

and similarly
∑

i νi,uσ
2
i,u = O(η) max1≤j≤r ν{j}. For u = {j},∑

i

γi,{j}σ
2
i,{j} ≥ m

∑
i

νi,{j}(1− 2r+1ε)

= mν{j}(1 +O(ε)).

Therefore

ERE

(
ṼarPW(X̄∗)

)
Var(X̄)

=

∑
i

∑r
j=1 γi,{j}σ

2
i,{j}∑

i

∑r
j=1 νi,{j}σ

2
i,{j}

(1 +O(η + ε)).

Next we show that the main effects are properly estimated∑
i

r∑
j=1

|γi,{j} − νi,{j}|σ2
i,{j} ≤M

∑
i

r∑
j=1

|γi,{j} − νi,{j}|

≤M
∑
i

r∑
j=1

νi,{j}(2
r+1ε+ 3rη)

=

r∑
j=1

ν{j}O(η + ε),
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while
∑

i

∑r
j=1 νi,{j}σ

2
i,{j} ≥ m

∑r
j=1 ν{j}.
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