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Abstract

Stochastic Kronecker graphs supply a parsimonious model for large
sparse real world graphs. They can specify the distribution of a large
random graph using only three or four parameters. Those parameters
have however proved difficult to choose in specific applications. This ar-
ticle looks at method of moments estimators that are computationally
much simpler than maximum likelihood. The estimators are fast and in
our examples, they typically yield Kronecker parameters with expected
feature counts closer to a given graph than we get from KronFit. The
improvement was especially prominent for the number of triangles in the
graph.

1 Introduction

Stochastic Kronecker graphs were introduced by [6] as a method for simulating
very large random graphs. Random synthetic graphs are used to test graph
algorithms and to understand observed properties of graphs. By using simulated
graphs, instead of real measured ones, it is possible to test algorithms on graphs
larger or denser than presently observed ones. Simulated graphs also allow one
to judge which features of a real graph are likely to hold in other similar graphs
and which are idiosyncratic to the given data.

Stochastic Kronecker graphs are able to serve these purposes through a
model that has only three or four parameters. Parameter estimation poses
unique challenges for those graphs. The main problem is that for a graph with
N nodes, the likelihood has contributions from N ! permutations of the nodes
[7]. In practice, many thousands or millions of randomly sampled permutations
are used to estimate the likelihood. Even then it takes more than O(N2) work
to evaluate the likelihood contribution from one of the permutations.

∗Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.
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In this paper we present a method of moments strategy for parameter es-
timation. While moment methods can be inefficient compared to maximum
likelihood, statistical efficiency is of reduced importance for enormous samples
and in settings where the dominant error is lack of fit. The method equates
expected to observed counts for edges, triangles, hairpins (2-stars or wedges)
and tripins (3-stars). The Kronecker model gives quite tractable formulas for
these moments.

The outline of this paper is as follows. Section 2 defines Kronecker graphs
and introduces some notation. Section 3 derives the expected feature counts.
Section 4 describes how to solve method of moment equations for the parameters
of the Kronecker graph model. Section 5 presents some examples on fitting Kro-
necker models to some real world graphs. We compare several moment based
ways to estimate Kronecker graph parameters and find the most reliable results
come from a criterion that sums squared relative errors between observed and
expected features. We find that the fitted Kronecker models usually underesti-
mate the number of triangles compared to the real graphs. While our parameter
estimates underestimate triangle counts and some other features, we find that
they provide much closer matches than some previously published parameters
fit by KronFit. Section 6 fits parameters to graphs that were randomly gener-
ated from the Kronecker model. We find that the estimated parameters closely
track their generating values, with some small bias when a parameter is at the
extreme range of valid values. Section 7 has our conclusions.

The data for our examples is online at

https://dgleich.com/gitweb/?p=kgmoments;a=summary

along with the code used to estimate Kronecker parameters.

2 The Kronecker model

Given a node set N of cardinality N ≥ 1, and a matrix Pij ∈ [0, 1] defined
over i, j ∈ N , a random graph G∗(P ) is one where the edge [ij] exists with
probability Pij and all N2 edges exist or don’t independently. The graph G∗

includes loops [ii] and may possibly include both [ij] and [ji]. We snip these
out by defining the random graph G(P ) with edges [ij] only when i 6= j and
[max(i, j),min(i, j)] ∈ G∗, using any non-random ordering of N . Both G∗ and
G are in fact probability weighted ensembles of graphs, but for simplicity we
describe them as single random graphs. We assume that P is a symmetric
matrix and so the ordering of nodes does not affect the distribution.

The description of P allows up to N(N − 1)/2 parameters that affect the
outcome. Much more parsimonious descriptions can be made by taking P to
be the Kronecker product of two or more smaller matrices. Recall that the
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Kronecker product of matrices X ∈ Rm×n and Y ∈ Rr×s is

X ⊗ Y ≡


X11Y X12Y · · · X1nY
X21Y X22Y · · · X2nY

...
...

. . .
...

Xm1Y Xm2Y · · · XmnY

 ∈ Rmr×ns.

An extremely parsimonious stochastic Kronecker graph takes P to be the

r-fold Kronecker product of Θ =

(
a b
b c

)
, for a, b, c ∈ [0, 1]. That is

P = P (r) = Θ⊗Θ⊗ · · · ⊗Θ ≡ Θ[r].

If the power r is known, then only three numbers need to be specified, and with
them we can then simulate other graphs that are like the original. Perhaps
surprisingly, stochastic Kronecker graphs imitate many, but of course not all, of
the important features seen in large real world graphs. See for example [7].

We would like to pick parameters a, b, c ∈ [0, 1] to match the properties seen

in a real and large graph. Parameter matrices Θ =

(
a b
b c

)
and Θ∗ =

(
c b
b a

)
give rise to the same graph distribution. To force identifiability, we may assume
that a ≥ c.

3 Moment formulas

The Kronecker structure in P makes certain aspects of G very tractable. For
example, the number E of edges in G can be shown to have expectation

E(E) =
1

2

(
(a+ 2b+ c)r − (a+ c)r

)
. (1)

Simply counting the edges in G gives us valuable information on the parameter
vector (a, b, c). Because E is a sum of independent Bernoulli random variables
we find that Var(E) ≤ E(E) and so the relative uncertainty

√
Var(E)/E(E) ≤

E(E)−1/2 will be small in a graph with a large number of expected edges.
This section derives equation (1) and similar formulas for the expected num-

ber of features of various types. The expected feature counts require sums over
various sets of nodes. Section 3.1 records some summation formulas that sim-
plify that task. Then Section 3.2 turns expected feature counts into sums and
Section 3.3 shows how those sums simplify for stochastic Kronecker matrices.

3.1 Summation formulas

Let i, j, k, l ∈ N for a finite index set N . A plain summation sign
∑

represents
sums over all combinations of levels of all the subscripting indices used. The
symbol

∑∗
includes all levels of all indices, except for any combinations where

two or more of those indices take the same value. In several places we find that
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sums are easier to do over all levels of all indices, while the desired sums are
over unique levels. Here we record some formulas to translate the second type
into the first.

It is elementary that ∑
ij

∗
fij =

∑
ij

fij −
∑
i

fii, (2)

and similarly∑
ijk

∗
fijk =

∑
ijk

fijk −
∑
ij

(fijj + fiji + fiij) + 2
∑
i

fiii. (3)

When there are four indices, we get∑
ijkl

∗
fijkl =

∑
ijkl

fijkl −
∑
ijk

(
fijki + fijkj + fijkk + fijik + fijjk + fiijk

)
+
∑
ij

(
2 (fijjj + fijii + fiiji + fiiij) + fijij + fijji + fiijj

)
− 6

∑
i

fiiii.
(4)

Equation (4) is more complicated than the others. It can be proved by defining
gijk =

∑
l fijkl − fijki − fijkj − fijkk, writing

∑∗

ijkl fijkl =
∑∗

ijkgijk and then
applying (3).

In some of our formulas below, the first index is singled out but the others are
exchangeable. By this we mean that fijk = fikj , when there are three indices,
while fijkl = fijlk = fikjl = fiklj = filjk = filkj is the version for four indices.

When indices after the first are exchangeable, then equation (3) simplifies
to ∑

ijk

fijk −
∑
ij

(
fijj + 2fiij

)
+ 2

∑
i

fiii, (5)

and equation (4) simplifies to∑
ijkl

fijkl − 3
∑
ijk

(
fiijk + fijjk

)
+
∑
ij

(
2fijjj + 5fiijj + 4fiiij

)
− 6

∑
i

fiiii. (6)

When all indices ijk are exchangeable, so that fijk = fikj = fjik = fjki =
fkij = fkji, then equation (5) simplifies to∑

ijk

fijk − 3
∑
ij

fiij + 2
∑
i

fiii. (7)

3.2 Expected feature counts for independent edges

The graph features we describe are shown in Figure 1. In addition to edges,
there are hairpins (2-stars) where two edges share a common node, tripins (3-
stars) where three edges share a node, and triangles. The Kronecker model has
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Figure 1: This figure illustrates some of the graph features that we can count,
for use in moment based estimates of the parameters in the stochastic Kronecker
graph.

independent edges. Here we find the expected feature counts for any random
graph where edge [ij] appears with probability Pij and edges are independent.

Recall that G∗ is a random graph with Pr([ij] ∈ G∗) = Pij (independently).
Let it have incidence matrix A∗. There may be loops A∗ii = 1, and for i 6= j,
A∗ij and A∗ji are independently generated. The graph G is formed by deleting
loops from G∗ and symmetrizing the incidence matrix via

Aij =


A∗ij i > j

0 i = j

A∗ji i < j.

The number of edges in G is E = (1/2)
∑∗

ijAij . The expected number of
edges satisfies

2E(E) = E
(∑∗

ijAij

)
=
∑
ij

∗
Pij =

∑
ij

Pij −
∑
i

Pii, (8)

using E(Aij) = E(A∗ij).

The number of hairpins in G is H = (1/2)
∑∗

ijkAijAik. Dividing by two
adjusts the sum for counting {[ij], [ik]} twice. The expected value of H satisfies

2E(H) =
∑
ijk

∗
PijPik =

∑
ijk

PijPik −
∑
ij

P 2
ij − 2

∑
ij

PiiPij + 2
∑
i

P 2
ii

by letting fijk = PijPik, for which fijk = fikj , and applying equation (5).
The number of triangles in G is ∆ = (1/6)

∑∗

ijkAijAikAjk, because the
sum counts each triangle 3! = 6 times. The expected value of each term is
fijk = PijPikPjk which is symmetric in its three arguments and so we may
apply equation (7) to get

6E(∆) =
∑
ijk

PijPikPjk − 3
∑
ij

PiiP
2
ij + 2

∑
i

P 3
ii.
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The number of tripins in G is T = (1/6)
∑∗

ijklAijAikAil. The final three
indices in fijkl = PijPikPil are exchangeable, and so equation (6) applies. Thus

6E(T ) =
∑
ijkl

PijPikPil − 3
∑
ijk

PiiPijPik − 3
∑
ijk

P 2
ijPik

+ 2
∑
ij

P 3
ij + 5

∑
ij

PiiP
2
ij + 4

∑
ij

P 2
iiPij − 6

∑
i

P 3
ii.

3.3 Simplifying the sums

The sums in the expected counts simplify, because of the properties of the
Kronecker graph. Let the node set be N = Nr = {0, 1, . . . , 2r − 1}. For i ∈ N
write i =

∑r
s=1 2s−1is for is ∈ {0, 1}. Similarly let j, k, and l be described in

terms of js, ks, ls ∈ {0, 1} for s = 1, . . . , r.

The matrix entry Pij = P
(r)
ij may be written

P
(r)
ij =

r∏
s=1

Θisjs .

For r ≥ 2, we simplify the expression by induction using a smaller version of
the problem defined via P (r−1). Specifically,

∑
ijk

P
(r)
ij P

(r)
ik =

∑
i1

· · ·
∑
ir

∑
j1

· · ·
∑
jr

∑
k1

· · ·
∑
kr

r∏
s=1

ΘisjsΘisks

=

(∑
i1

· · ·
∑
ir−1

∑
j1

· · ·
∑
jr−1

∑
k1

· · ·
∑
kr−1

r−1∏
s=1

ΘisjsΘisks

) ∑
irjrkr

ΘirjrΘirkr

=

(∑
ijk

P
(r−1)
ij P

(r−1)
ik

) ∑
irjrkr

ΘirjrΘirkr

=

( ∑
irjrkr

ΘirjrΘirkr

)r
,

where indices is, js and ks are summed over their full ranges, and the indices i,

j, k for P
(r−1)
ij P

(r−1)
ik are summed over the node set Nr−1 = {0, . . . , 2r−1 − 1}.

All of the sums of products of elements of P
(r)
ij listed in the previous section,

with summation over all levels of each index, also reduce this way to r’th powers
of their value for the case r = 1.

For r = 1 we need to sum products of elements of P over i or over i, j or
over i, j, k. These cases correspond to the first 2, 4, or 8 rows of Table 1 for

Θ =

(
a b
c d

)
. For instance E(H) requires

∑
ijk PijPik which we know to be the
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i j k Θii Θij Θik Θjk

0 0 0 a a a a
1 0 0 c b b a
0 1 0 a b a b
1 1 0 c c b b
0 0 1 a a b b
1 0 1 c b c b
0 1 1 a b b c
1 1 1 c c c c

Table 1: This table shows entries in the matrix Θ with various indexing patterns
needed in the examples. Sums over i, ij, and ijk use, respectively, the first 2,
4, and 8 rows of the table.

r’th power of∑
irjrkr

ΘirjrΘirkr = a2 + ba+ b2 + cb+ ab+ b2 + bc+ c2 (9)

= (a+ b)2 + (b+ c)2.

The first expression (9) follows by summing over the 8 rows of Table 1. As a
result ∑

ijk

PijPik =
(
(a+ b)2 + (b+ c)2

)r
.

In the rest of this section, we record the other sums we need. First, the sums
over one index variable take the form∑

i

Pmii =
(
am + cm

)r
, (10)

where cases m = 1, 2, 3 are used in our expected feature counts. The sums over
two index variables are∑

ij

Pmii P
n
ij =

(
am(an + bn) + cm(bn + cn)

)r
.

The cases we need are for (m,n) ∈ {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2)}.
Four sums over three indices are used. They are:∑

ijk

PijPik =
(
(a+ b)2 + (b+ c)2

)r
∑
ijk

P 2
ijPik =

(
a3 + c3 + b(a2 + c2) + b2(a+ c) + 2b3

)r
∑
ijk

PijPikPjk =
(
a3 + c3 + 3b2(a+ c)

)r
, and

∑
ijk

PiiPijPik =
(
a(a+ b)2 + c(b+ c)2

)r
.
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Finally, one sum over four indices is used:∑
ijkl

PijPikPil =
(
(a+ b)3 + (b+ c)3

)r
.

3.4 Expected feature counts

Now we can specialize the results of Section 3.2 to the Kronecker graph setting.
Gathering together the previous developments, we find

2E(E) =
(
a+ 2b+ c

)r − (a+ c
)r

2E(H) =
(
(a+ b)2 + (b+ c)2

)r − 2
(
a(a+ b) + c(c+ b)

)r
−
(
a2 + 2b2 + c2

)r
+ 2
(
a2 + c2

)r
6E(∆) =

(
a3 + 3b2(a+ c) + c3

)r − 3
(
a(a2 + b2) + c(b2 + c2)

)r
+ 2
(
a3 + c3

)r
6E(T ) =

(
(a+ b)3 + (b+ c)3

)r − 3
(
a(a+ b)2 + c(b+ c)2

)r
− 3
(
a3 + c3 + b(a2 + c2) + b2(a+ c) + 2b3

)r
+ 2
(
a3 + 2b3 + c3

)r
+ 5
(
a3 + c3 + b2(a+ c)

)r
+ 4
(
a3 + c3 + b(a2 + c2)

)r − 6
(
a3 + c3

)r
.

In each formula, the terms from sums over fewer indices come after the ones
from more indices. The later terms adjust for loops and double edges and other
degenerate quantities. For large r, we expect that the first term should be most
important. In particular if min(a, b, c) > 0 then in all cases the first quantity
raised to the power r is the largest one. For example the first term in E(E) is
(1 + 2b/(a+ c))r times as large as the second one, which subtracts out loops.

The first term will dominate for large r unless b � a + c. The relative
magnitude of the second term is(

a+ c

a+ 2b+ c

)r
= 2r log2((a+c)/(a+2b+c)) = N−α

where α = log2((a + 2b + c)/(a + c)). If α > 1/2 then dropping the second
term in E(E) makes a smaller difference than the sampling uncertainty in E.
This holds when the off diagonal element of Θ is not too small compared to the
average of the diagonal elements: b > (

√
2− 1)(a+ c)/2.

3.5 Illustrations

Some special cases of the formulas are of interest. For example if b = 0 then
there are no edges in G∗ apart from loops. As a result G has 2r isolated nodes.
We find from the above that E(E) = E(H) = E(∆) = E(T ) = 0 when b = 0.

If instead a = c = 0 then each node i ∈ N with coordinates i1, . . . , ir has
a dual node i∗ which has coordinates i∗s = 1 − is for s = 1, . . . , r. The only
possible edges in G are between nodes and their duals. There are N = 2r nodes
each with probability br of having an edge out to its dual. The formula above
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gives E(E) = (2b)r/2 = Nbr/2 when a = c = 0, as it should. We also get
E(H) = E(∆) = E(T ) = 0 when a = c = 0.

If a = b = c = 1, then G∗ has every possible edge and loop with probability
1. As a result G is the complete graph on N = 2r nodes. Then it has N(N−1)/2
edges, N(N − 1)(N − 2)/2 hairpins, N(N − 1)(N − 2)/2 triangles, and it has
N(N − 1)(N − 2)(N − 3)/6 tripins.

4 Solving for a, b, and c

There are four equations in Section 3.4. To estimate a, b, and c will require at
least three of them. Because they are high order polynomials it is possible that
there are multiple solutions or even none at all. The latter circumstance would
provide some evidence of lack of fit of the stochastic Kronecker model to a given
graph. Regardless, each of the equations involves the count of a feature in the
graph.

4.1 Counting features in a graph

Three of the features we use are easily obtainable from the degrees of the nodes.
Let di =

∑
j∈N Aij be the degree of node i in graph G. Then

E =
1

2

∑
i

di,

H =
1

2

∑
i

di(di − 1), and

T =
1

6

∑
i

di(di − 1)(di − 2)

give the number of edges, hairpins (or wedges), and tripins in terms of the
degrees di.

The number of triangles ∆ is not a simple function of di. Algorithms to
count triangles are considered in [11]. The time complexity can be as low as
O(E3/2), and sometimes even lower for approximate counting [5].

4.2 Objective functions

A pragmatic way to choose a, b, and c is to solve

min
a,b,c

∑
F

(F − Ea,b,c(F ))2

Ea,b,c(F )
(11)

where the sum is over three or four of the features F ∈ {E,H, T,∆} from
Section 3.4 and the minimization is taken over 0 ≤ c ≤ a ≤ 1 and 0 ≤ b ≤ 1.
The terms in (11) are scaled by an approximate variance. A sharper expression
would account for correlations among the features used. That should increase
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statistical efficiency, but in large problems lack of fit to the Kronecker model is
likely to be more important than inefficiency of estimates within it.

Many real world networks may not have good fits in terms of these three
Kronecker parameters. This is the case for most of the forthcoming experiments.
The following more general objective can be more robust to these deviances:

min
a,b,c

∑
F

D(F,Ea,b,c(F ))

N(F,Ea,b,c(F ))
. (12)

Here D is either of the two distance functions:

Dsq(x, y) = (x− y)2 or Dabs(x, y) = |x− y|

and N is one of the normalizations:

NF (F,E) = F, NF 2(F,E) = F 2, NE(F,E) = E, NE2(F,E) = E2.

Using Dsq and NE makes it equal to the previous objective (11).
In principle, either of the two distance functions can be combined with any of

the four normalizations. We do not think it is reasonable to expect a quadratic
denominator to be a suitable match for the absolute error. Therefore our inves-
tigations exclude combination of Dabs with either NF 2 or NE2 .

We will find in Section 5 below that robust results arise from the combination
Dsq and NF 2 , for which (12) reduces to

min
a,b,c

∑
F

(F − Ea,b,c(F )

F

)2

, (13)

a sum of squared relative errors.
Because there are only three parameters, the criterion (12) can simply be

evaluated over a grid inside {(a, b, c) ∈ [0, 1]3 | a ≥ c}. To be sure of taking a
point within ε of the minimizer takes work O(ε−3). An alternative is to employ
a general nonlinear minimization procedure. The remainder of this section looks
at a method to reduce that effort.

4.3 Matching leading terms

In a synthetic graph N = 2r is known. When fitting to a real world graph a
pragmatic choice is r = dlog2(N)e. The interpretation is that the random graph
G∗ may have had isolated nodes that were then dropped when forming G, but
we suppose that fewer than half of the nodes in G∗ have been dropped.

If we consider just the lead terms, then we could get estimates â, b̂, and ĉ
by solving three of the equations:

e ≡ (2E)1/r = â+ 2b̂+ ĉ,

h ≡ (2H)1/r = (â+ b̂)2 + (b̂+ ĉ)2,

δ ≡ (6∆)1/r = (â3 + ĉ3) + 3b̂2(â+ ĉ) and

t ≡ (6T )1/r = (â+ b̂)3 + (b̂+ ĉ)3.
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The equations for e and h together can be solved to get

x̂ ≡ â+ b̂ =
e+
√

2h− e2

2

ŷ ≡ b̂+ ĉ =
e−
√

2h− e2

2
,

(14)

where we have assumed that a ≥ c. The transformed tripin count t matches
x̂3 + ŷ3 and so it is redundant given e and h, if we are just using lead terms.
We must either count triangles, or use higher order terms.

Equation (14) may fail to have a meaningful solution. At a minimum we
require e2 ≤ 2h and e ≥

√
2h− e2. These translate into

h ≤ e2 ≤ 2h,

which is equivalent to
2H ≤ 4E2 ≤ 2r+1H

that in terms of node degrees is∑
i

di(di − 1) ≤
(∑

i

di

)2

≤ N
∑
i

di(di − 1). (15)

The left hand inequality in (15) holds for any graph, but the right hand side
need not. It holds when N−1

∑
i(di − d̄)2 ≥ d̄ = N−1

∑
i di. If the variance of

the node degrees di is smaller than their mean, then equation (14) does not have
real valued solutions. The degree distribution of a stochastic Kronecker graph
has heavy tails [10]. Therefore in applications where that model is suitable
equation (14) will give a reasonable solution.

When di have a variance larger than their mean, then we can do a univariate
grid search for b ∈ [0, 1] using equation (14) to get a = x − b ≡ a(b) and
c = y − b ≡ c(b). The choice of b can then be made as the minimizer of
|a(b)3 + c(b)3 + 3b2(a(b) + c(b))− δ|.

5 Examples

In this section, we experiment with different techniques for fitting the parame-
ters of the Kronecker model. These experiments involve 8 real world networks
whose statistical properties are listed in the rows of the forthcoming tables la-
beled “Source.”

The networks ca-GrQc, ca-HepTh, ca-HepPh are co-authorship networks
from arXiv [9]. The nodes of the network represent authors, and there is an
edge between two nodes when the authors jointly wrote a paper. Likewise, the
hollywood-2009 network is a collaboration graph between actors and actresses
in IMDB [1, 2]. Nodes are actresses or actors, and edges are collaborations on
a movie, as evidenced by jointly appearing on the cast. These networks are
naturally undirected and all edges are unweighted.
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Both as20000102 and as-Skitter are technological infrastructure networks [9].
Each node represents a router on the internet and edges represent a physical or
virtual connection between the routers. Again, these networks are undirected
and unweighted.

The wikipedia-20051105 graph is a symmetrized link graph of the articles
on Wikipedia generated from a data download on November 5th, 2005 [3]. The
underlying network is directed, but in these experiments, we have converted it
into an undirected network by dropping the direction of the edges.

All of the previously described networks have distinctly skewed degree dis-
tributions. That is, there are a few authors, actors, routers, or articles with a
large number of links, despite the overall network having a small average de-
gree. The final network we study is usroads, a highway-level network from the
National Highway Planning Network (http://www.fhwa.dot.gov/planning/
nhpn/), which does not have a highly skewed distribution. We include it as an
example of a nearly planar network. It is also naturally undirected.

In two of the experiments, we generate synthetic Kronecker networks. The
algorithm to realize these networks is an explicit coin-flipping procedure instead
of the more common ball-dropping method [8]. For each cell i, j in the

(
2r−1

2

)
upper triangular portion, we first determine the log of the probability of a non-
zero value in that cell, then generate a random coin flip with that probability
as heads and record an edge when the coin comes up heads. This procedure
is scalable because the full matrix of probabilities is never formed. It is also
easily parallelizable. Our implementation uses pthreads to exploit multi-core
parallelism. It takes somewhat more work than the ball-dropping procedure,
scaling as O(r22r) instead of O(rm), where m is the number of balls dropped.
Often m ≈ 2r+3, that is, 8 balls per vertex [4]. Each ball generates about one
edge; see [4] for a more thorough analysis. Coin-flipping preserves the exact
Kronecker distribution whereas ball-dropping is an approximation.

The experiments with these networks investigate (i) the difference in results
from the various choices of D and N in the objective (12); (ii) the fitted param-
eters to the 8 real world networks; and (iii) the difference in fitted parameters
when only using three of the four graph features.

5.1 Objective functions

The first study regards the choice of objective function. Of eight possible com-
binations of distance and normalization, we considered two to be unreasonable
a priori. Here we investigate the other six pairs.

Table 2 shows the different parameters a, b, and c chosen by each objec-
tive function, as well as the expected feature counts for those parameters for
three graphs: a single realization of a Kronecker graph with a = 0.99, b =
0.48, c = 0.25, the collaboration network ca-GrQc, and the infractucture net-
work as20000102. The rows labeled “Source” contain the actual feature counts
in each network. The optimization algorithm to pick a, b, c uses the best ob-
jective value from three procedures. First, it tries 50 random starting points
for the fmincon function in Matlab R2010b, an active set algorithm. Then, it
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performs a grid search procedure with 100 equally spaced points in each dimen-
sion. Finally, it tries the leading term matching algorithm from Section 4.3, and
considers those parameters.

The results in the table show that the choice of objective function does
not make a difference when the graph fits the Kronecker model. However, it
can make a large difference when the graph does not exactly fit, as in the ca-
GrQc and as20000102 networks. Both of the objectives Dsq, NE2 and Dabs, NE
produced distinctly different fits for these two networks, compared to the other
objectives. These two fits seem to be primarily matching the number of triangles
– almost to the exclusion of the other features. The other odd fit for the ca-
GrQc graph comes from the Dsq, NE objective. This fit appears to be matching
the tripin count and ignoring other features, something that also seems to be
true for the as20000102 graph. Among the remaining fits for ca-GrQc, there is
little difference among the fitted parameters and estimated features. The results
are a bit different for as20000102. The fits for Dsq, NE and Dsq, NF are almost
identical and show a good match to the tripin count, but a poor match to the
remaining features. The fits for Dsq, NF 2 and Dabs, NF are similar and deciding
which is better seems like a matter of preference. These observations held up
under further experimentation, which we omit here in the interest of space.

Based on these results, either of the objectives Dsq, NF 2 or Dabs, NF appears
to be a robust choice when the model does not fit exactly. Due to the continuity
of the Dsq function, the rest of our fits in this manuscript uses the Dsq, NF 2

variation.

5.2 Parameters for real-world networks

For the 8 networks previously described, we use the objective function (12)
with Dsq, NF 2 to fit the parameters a, b, c. The results, along with the expected
feature counts for the fitted parameters, are presented in Table 3. We show the
minimizer for the three different strategies to optimize the objective described in
the previous section: a direct minimization procedure, the grid search procedure,
and the leading term matching approach (Section 4.3). For each approach, the
table also shows the time required for that algorithm and the value of the
objective function at the minimizer.

Leskovec et al. [8] provide the fitted parameters a, b, and c from their KronFit
algorithm for the networks ca-GrQc, ca-HepTh, ca-HepPh, and as20000102. We
include them in Table 3 for comparison. In all cases but one, the expected
feature count using KronFit is farther from the observed feature count than the
expectation under our moment based fits. Sometimes it is much farther. There
was one exception. For the graph as20000102, KronFit gave a better estimate
of the number of edges than our moment method gave.

KronFit typically underestimates the feature counts. The effect is severe for
triangles. Kronecker random graphs commonly have many fewer triangles than
the real world graphs to which they are fit. Our moment based estimators find
parameters leading to many more triangles than the KronFit parameters do.

In fairness, we point out that our method is designed to match expected to
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Table 2: For three graphs, the fitted Kronecker parameters a, b, c for variations
on the objective function (12). Subsequent columns show counts for these pa-
rameters; the row labeled Source shows the actual network feature values Fobs.
The other rows show E(F )/Fobs. The objective column shows the value of the
objective function at the minimizer.

Graph Kron. Parameters Graph / Expected Features Obj.
Fit type a b c Verts. Edges Hairpins Tripins Tris.

Stochastic Kronecker
Source 0.99 0.48 0.25 16384 30830 521676 8659050 854 —
Dsq, NE 0.993 0.476 0.255 16384 1.00 1.00 1.000 1.0010 7.76·10-1
Dsq, NE2 0.993 0.476 0.254 � 1.00 1.00 1.001 1.0000 9.72·10-6
Dsq, NF 0.993 0.476 0.255 � 1.00 1.00 1.000 1.0014 7.80·10-1
Dsq, NF2 0.993 0.476 0.254 � 1.00 1.00 1.001 1.0000 9.71·10-6
Dabs, NE 0.993 0.476 0.253 � 1.00 1.00 1.000 1.0000 4.19·10-3
Dabs, NF 0.993 0.476 0.253 � 1.00 1.00 1.000 1.0000 4.17·10-3
Leading 0.990 0.479 0.250 � 1.00 1.00 1.006 0.9835 —

ca-GrQc
Source — — — 5242 14484 229867 2482738 48260 —
Dsq, NE 1.000 0.221 1.000 8192 3.52 2.74 1.028 0.0666 9.14·105
Dsq, NE2 1.000 0.733 0.000 � 4.30 29.82 355.084 0.9052 2.53·100
Dsq, NF 1.000 0.459 0.312 � 1.17 0.99 1.001 0.0107 4.77·104
Dsq, NF2 1.000 0.467 0.279 � 1.06 0.92 1.035 0.0107 9.89·10-1
Dabs, NE 1.000 0.737 0.000 � 4.51 32.38 397.213 1.0000 2.75·100
Dabs, NF 1.000 0.469 0.267 � 1.00 0.87 1.000 0.0103 1.12·100
Leading 1.000 0.488 0.229 � 1.00 1.00 1.405 0.0131 —

as20000102
Source — — — 6474 12572 2059364 6.75·108 6584 —
Dsq, NE 1.000 0.722 0.000 8192 4.42 2.73 0.997 5.2222 2.32·106
Dsq, NE2 0.712 0.947 0.000 � 10.13 4.89 0.840 1.1082 1.49·100
Dsq, NF 1.000 0.722 0.000 � 4.40 2.71 0.989 5.1843 6.39·106
Dsq, NF2 1.000 0.632 0.000 � 1.63 0.51 0.101 0.7029 1.54·100
Dabs, NE 0.676 0.980 0.000 � 11.83 5.98 1.000 1.0000 1.75·100
Dabs, NF 1.000 0.648 0.000 � 1.95 0.68 0.152 1.0000 2.12·100
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observed feature counts, while KronFit fits by maximum likelihood. Therefore
the evaluation criterion is closer to the fitting criterion for us. But maximum
likelihood ordinarily beats or matches the method of moments in large samples
from parametric models; it’s mismatching criteria are more than compensated
for by superior statistical efficiency. The explanation here may involve maximum
likelihood being less robust to lack of fit of the Kronecker model, or it may be
that KronFit is not finding the MLE.

The results in Table 3 show small differences in the fits between the direct and
grid algorithms, although the direct algorithm is much faster. The leading term
matching algorithm, when it succeeds, generates similar Kronecker parameters,
although with a distinctly worse objective value. The results from the KronFit
algorithm differ and likely match the graph in another aspect.

Lead term matching is tens of times faster than direct search and roughly
1000 times faster than grid search. But even the grid search takes under a
minute in our examples, so the speed savings from the lead term approach is
of little benefit here. For the large graphs, the time to compute the network
features dominates the time to fit the parameters, showing that this approach
scales to large networks.

Overall, the results indicate that the Kronecker models tend not to be a
good fit to the data. The model appears to have a considerable difference in
at least once of the graph features. Usually, it’s the number of triangles, which
differs by up to two orders of magnitude for many of the collaboration networks.

5.3 Fitting partial sets of features

The previous set of experiments illustrated that the Kronecker graphs may not
simultaneously fit all four of the network features: edges, hairpins/wedges, trip-
ins, and triangles. In Table 4, we examine the change in fits when only using
three of the four network features in the summation in the objective (12). We
take the set of parameters with the smallest objective among all the procedures
investigated in the previous section. The results show small changes to the pa-
rameters and expected feature fits. Nonetheless, the minimizer remains mostly
unchanged.

Table 4 provides a kind of cross-validated feature estimation, showing the
accuracy of a feature’s estimate when it is not included in the fitting. Apart
from the exception noted before (the edge counts for as20000102) our moment
based estimates give closer matches to the source feature counts than KronFit
provides, whether the moment being studied is part of the fitting process or not.

We see some examples where leaving out one feature seems to improve the
fitting of another. For instance, in three of the four graphs, leaving out the
tripin count improved the match for triangles and conversely.
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Table 3: The fitted Kronecker parameters for variations on the algorithm –
direct, grid, leading, or KronFit [8] – to minimize of the objective function (12)
Subsequent columns show the expected feature counts for these parameters;
the row labeled Source shows the actual network features. The time column is
either the time to compute the features on the original graph or the time for
the algorithm to fit the parameters.

Graph Kron. Parameters Graph / Expected Features Time
Fit type a b c Verts. Edges Hairpins Tripins Tris. Obj. (sec.)

ca-GrQc
Source — — — 5242 14484 229867 2482738 48260 — <0.05
Direct 1.000 0.467 0.279 8192 1.06 0.92 1.035 0.0107 0.989 1.0
Grid 1.000 0.470 0.270 � 1.03 0.91 1.060 0.0108 0.991 48.5
Leading 1.000 0.488 0.229 � 1.00 1.00 1.405 0.0131 1.138 <0.05
KronFit 0.999 0.245 0.691 � 0.84 0.20 0.029 0.0012 2.935 —

ca-HepPh
Source — — — 12008 118489 15278011 1.28·109 3358499 — 1.9
Direct 1.000 0.669 0.101 16384 1.11 0.82 1.064 0.0164 1.015 0.8
Grid 1.000 0.670 0.100 � 1.12 0.84 1.091 0.0167 1.016 48.6
Leading 1.000 0.708 0.005 � 1.00 1.00 2.021 0.0196 2.004 <0.05
KronFit 0.999 0.437 0.484 � 0.69 0.10 0.014 0.0006 3.196 —

ca-HepTh
Source — — — 9877 25973 299356 2098335 28339 — <0.05
Direct 1.000 0.401 0.379 16384 1.06 0.92 1.035 0.0112 0.989 0.8
Grid 1.000 0.400 0.380 � 1.05 0.90 1.001 0.0109 0.991 48.7
Leading 1.000 0.423 0.325 � 1.00 1.00 1.444 0.0140 1.169 <0.05
KronFit 0.999 0.271 0.587 � 0.74 0.25 0.073 0.0020 2.936 —

hollywood
Source — — — 1139905 56375711 4.76·1010 3.24·1013 4.92·109 — 2946.1
Direct 1.000 0.623 0.186 2097152 1.13 0.76 1.070 0.0029 1.075 1.0
Grid 1.000 0.620 0.200 � 1.21 0.80 1.055 0.0030 1.083 48.6
Leading 1.000 0.662 0.095 � 1.00 1.00 2.670 0.0046 3.779 <0.05

as20000102
Source — — — 6474 12572 2059364 6.75·108 6584 — <0.05
Direct 1.000 0.632 0.000 8192 1.63 0.51 0.101 0.7029 1.541 0.8
Grid 1.000 0.630 0.000 � 1.60 0.49 0.096 0.6717 1.543 48.7
KronFit 0.987 0.571 0.049 � 0.99 0.17 0.018 0.1738 2.655 —

as-skitter
Source — — — 1696415 11095298 1.60·1010 9.66·1013 28769868 — 107.0
Direct 1.000 0.644 0.000 2097152 1.61 0.74 0.239 0.1384 1.755 0.7
Grid 1.000 0.640 0.000 � 1.48 0.65 0.199 0.1181 1.776 48.7

wiki-2005
Source — — — 1634989 18540603 3.72·1010 3.72·1014 44667105 — 378.9
Direct 1.000 0.674 0.000 2097152 1.64 0.79 0.211 0.2589 1.629 0.6
Grid 1.000 0.670 0.000 � 1.53 0.70 0.179 0.2246 1.646 48.5

usroads
Source — — — 126146 161950 292425 115885 4113 — <0.05
Direct 1.000 0.070 1.000 131072 0.88 1.04 1.057 0.1177 0.798 1.0
Grid 1.000 0.070 1.000 � 0.87 1.03 1.012 0.1148 0.800 48.5
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Table 4: The change in fitted parameters when the objective function (12) only
considers three of the four features. The row labeled “-Tris”, for instance, gives
the fitted parameters when triangles are not included in (11). Rows labeled
“source” again contain the actual graph features, and the rows labeled “all”
show the parameters fitted to all four features.

Graph Kron. Parameters Graph / Expected Features Time
Fit type a b c Verts. Edges Hairpins Tripins Tris. Obj. (sec.)

ca-GrQc
Source — — — 5242 14484 229867 2482738 48260 — <0.05

All 1.000 0.467 0.279 8192 1.06 0.92 1.035 0.0107 0.989 54.8
KronFit 0.999 0.245 0.691 � 0.84 0.20 0.029 0.0012 2.935 —

-Edges 1.000 0.458 0.317 � 1.19 1.00 1.007 0.0108 0.978 53.9
-Hairpins 1.000 0.469 0.267 � 1.00 0.87 1.007 0.0103 0.980 53.9
-Tripins 1.000 0.493 0.216 � 0.99 1.02 1.536 0.0139 0.973 54.0
-Tris 1.000 0.467 0.279 � 1.06 0.92 1.029 0.0106 0.011 56.1

ca-HepPh
Source — — — 12008 118489 15278011 1.28·109 3358499 — 1.9

All 1.000 0.669 0.101 16384 1.11 0.82 1.064 0.0164 1.015 54.1
KronFit 0.999 0.437 0.484 � 0.69 0.10 0.014 0.0006 3.196 —

-Edges 1.000 0.650 0.192 � 1.49 1.02 1.006 0.0201 0.960 57.2
-Hairpins 1.000 0.670 0.083 � 1.01 0.75 1.007 0.0146 0.971 57.2
-Tripins 1.000 0.709 0.005 � 1.01 1.02 2.065 0.0200 0.961 56.9
-Tris 1.000 0.669 0.099 � 1.10 0.82 1.058 0.0162 0.047 54.7

ca-HepTh
Source — — — 9877 25973 299356 2098335 28339 — <0.05

All 1.000 0.401 0.379 16384 1.06 0.92 1.035 0.0112 0.989 57.4
KronFit 0.999 0.271 0.587 � 0.74 0.25 0.073 0.0020 2.936 —

-Edges 1.000 0.391 0.417 � 1.19 1.00 1.006 0.0114 0.977 56.5
-Hairpins 1.000 0.404 0.365 � 1.00 0.87 1.008 0.0108 0.979 57.1
-Tripins 1.000 0.431 0.308 � 0.98 1.03 1.623 0.0152 0.971 56.9
-Tris 1.000 0.401 0.379 � 1.06 0.92 1.028 0.0111 0.011 56.6

as20000102
Source — — — 6474 12572 2059364 6.75·108 6584 — <0.05

All 1.000 0.632 0.000 8192 1.63 0.51 0.101 0.7029 1.541 56.7
KronFit 0.987 0.571 0.049 � 0.99 0.17 0.018 0.1738 2.655 —

-Edges 0.935 0.720 0.000 � 3.04 1.12 0.235 1.0796 0.608 57.3
-Hairpins 1.000 0.621 0.000 � 1.44 0.41 0.077 0.5526 1.250 58.5
-Tripins 1.000 0.628 0.000 � 1.56 0.47 0.091 0.6400 0.723 56.7
-Tris 1.000 0.618 0.000 � 1.39 0.39 0.071 0.5137 1.392 57.1
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6 Synthetic examples

The results from the previous section show that there can often by a large
deviation in the expected moments of the best Kronecker fit. In this section, we
investigate the accuracy of the fitting procedure when the graph is a realization
of a stochastic Kronecker network.

For four sets of Kronecker parameters:
� (a, b, c) = (0.99, 0.48, 0.25), r = 14
� (a, b, c) = (1.0, 0.67, 0.08), r = 14
� (a, b, c) = (0.999, 0.271, 0.587), r = 14
� (a, b, c) = (0.87, 0.6, 0.7), r = 14

we generate 50 realizations of each Kronecker graph. For each realization, we
compute a fit using the objective (12) with the choices Dsq, NF 2 and using the
combination of approaches from the previous section. Figure 2 shows distribu-
tion of fitted parameters to these 50 samples. For all four sets of parameters,
the fitted results closely match the true values, with fairly small variation.

For these synthetic problems, we also study how the empirical and fitted
features differ. Figure 3 shows the distribution of the relative difference between
the expectation of the fitted Kronecker features and the actual feature of each
realization. It also shows the difference between the original feature count and
the feature count of a re-realization. In other words, generate a Kronecker graph,
fit the parameters, and re-generate with the fitted parameters. The figures show
that the fitted parameters closely match the realizations. A curious property is
that the fitted triangle count is always smaller than the empirical count. The
difference in the re-realization can be large, almost 20% in the case of tripins or
triangles for the first set of Kronecker parameters.

Our final study is the distributions of the graph features given the Kronecker
parameters, the expected features of the fitted parameters, and the graph fea-
tures of a re-realized Kronecker graph. The plots in Figure 4 show that these
distributions are all quite similar.

7 Conclusions

We have presented formuals for expected feature counts in Kronecker graphs
and used them to generate a method of moments fitting strategy. We found
that summing squared relative feature count errors was robust and easy to
optimize. For graphs generated by the Kronecker model, our parameter and
feature estimates closely match those of the fitted graph. For real world graphs
we often find that the fitted Kronecker model implies smaller feature counts
(apart from edges) than are seen in the real graph. The moment estimators
typically come closer to the counts than those from KronFit.
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Figure 2: Histograms of fitted parameters to 50 realizations of a Kronecker
graphs with the parameters given in the caption (red lines).
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Figure 3: Histograms of the relative difference between the true graph feature
and the fitted (black solid) or regenerated (blue dashed line) feature. The
relative difference is (Ftrue − Ffit)/Ftrue.
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Figure 4: Histograms of empirical features. The dashed blue line with no ×
marks shows the empirically measured features and the solid black line with
circles shows the expected value of each feature given the fitted parameters.
These lines are often on top of each other. The dashed red line with × marks
shows the features of a regenerated graph.
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