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Abstract

Suppose a discrete-time signal S(t), 0 � t < N , is a superposition of atoms taken

from a combined time/frequency dictionary made of spike sequences 1ft=�g and sinu-

soids expf2�iwt=N)=
p
N . Can one recover, from knowledge of S alone, the precise

collection of atoms going to make up S? Because every discrete-time signal can be

represented as a superposition of spikes alone, or as a superposition of sinusoids alone,

there is no unique way of writing S as a sum of spikes and sinusoids in general.

We prove that if S is representable as a highly sparse superposition of atoms from

this time/frequency dictionary, then there is only one such highly sparse representation

of S, and it can be obtained by solving the convex optimization problem of minimizing

the `1 norm of the coe�cients among all decompositions. Here \highly sparse" means

that Nt + Nw <
p
N=2 where Nt is the number of time atoms, Nw is the number of

frequency atoms, and N is the length of the discrete-time signal.

Related phenomena hold for functions of a real variable. We prove that if a func-

tion f(�) on the circle [0; 2�) is representable by a su�ciently sparse superposition of

wavelets and sinusoids, then there is only one such sparse representation; it may be ob-

tained by minimum `1 norm atomic decomposition. The condition \su�ciently sparse"

means that the number of wavelets at level j plus the number of sinusoids in the j-th

dyadic frequency band are together less than a constant times 2j=2.

Parallel results hold for functions of two real variables. If a function f(x1; x2) on

R
2 is a su�ciently sparse superposition of wavelets and ridgelets, there is only one such

decomposition and minimum `1-norm decomposition will �nd it. Here \su�ciently

sparse" means that the total number of wavelets and ridgelets at level j is less than a

certain constant times 2j=2.

Underlying these results is a simple `1 uncertainty principle which says that if two

bases are mutually incoherent, no nonzero signal can have a sparse representation in

both bases simultaneously.

The results have idealized applications to bandlimited approximation with gross

errors, to error-correcting encryption, and to separation of uncoordinated sources.
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1 Introduction

Recently, workers in the computational harmonic analysis community have developed a
number of interesting new signal representations; see [8, 18, 23]. In addition to sinusoids and
wavelets, we now have Wilson bases [9], wavelet packets, and cosine packets [7]. Moreover,
the list of such representations is expanding all the time; recent additions include ridgelets,
curvelets, and chirplets [4, 2, 3].

In each of these cases we have a transform which has been designed to be e�ective at
representing objects of a speci�c type, where \e�ective" means requiring very few signi�cant
coe�cients. The transforms turn out to be complementary in the sense that the type of
objects for which one transform is well-suited are unlike the objects for which another
transform is well-suited. For example, wavelets perform relatively poorly on high-frequency
sinusoids, for which sinusoids are (naturally) very e�ective. On the other hand, sinusoids
perform poorly on impulsive events, for which wavelets are very e�ective. In dimension 2,
wavelets do poorly with discontinuities on edges, for which ridgelets are e�ective [4], while
ridgelets do poorly on impulsive events.

It is natural in such a setting to consider combining signal representations, using terms
from each of several di�erent bases. One supposes that the object of interest is a superposi-
tion of two phenomena, one of which by itself can be e�ectively represented in Basis 1 and
the other of which by itself can be e�ectively represented in Basis 2, and one hopes that
by allowing a representation built from terms in both bases, one might obtain an e�ective
representation { far more e�ective than what one could obtain using either basis alone.
Speci�cally, one hopes to represent an object containing two phenomena in superposition
with the e�ciency one would expect in analyzing each phenomenon separately in its own
appropriate basis.

Such speculation leads one to propose the use of dictionaries � = �1[�2[: : :[�D made
from a concatenation of several orthonormal bases �d = f'd;ig, and to seek representations
of a signal S(t) as

S =
X



�
'
 ; (1.1)

where 
 = (d; i) is an index into the dictionary, naming both the basis and the speci�c
basis element. The general aim is to �nd concrete methods which o�er decompositions
of better sparsity through the use of several representations than is possible through any
one representation alone. Mallat and Zhang [19] were early advocates of this approach, and
introduced the \dictionary methodology", and a heuristic greedy approximation method for
representation using overcomplete dictionaries, called Matching Pursuit. While Matching
Pursuit works well in many cases, it is not known to provide sparse approximations in
general, and there are counterexamples [6, 10]: signals synthesizable from a few terms in a
dictionary but requiring a very large number of signi�cant terms in the MP representation.

As � is the concatenation of several bases, the representation (1.1) is not unique; any
single basis alone a�ords already decomposition of an arbitrary signal S, and consequently
many possibilities for combined decomposition arise. The general goal would be to �nd a
highly sparse decomposition|one with very few nonzero terms. This leads to the optimiza-
tion problem

(P0) : min k�k0; s.t. S =
X



�
'
 ;
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where k�k0 = #f
 : �
 6= 0g is the `0 quasi-norm. Unfortunately, in general, this prob-
lem requires a search through subsets of � looking for a sparse subset providing exact
decomposition.

Chen, Donoho and Saunders [5, 6] proposed an alternate approach to signal decomposi-
tion in dictionaries, which they called Basis Pursuit. It calls for solving the `1 optimization
problem

(P1) : min k�k1; s.t. S =
X



�
'
 ;

where k�k1 =
P j�
 j is the `1 norm of the coe�cients. This is a convex optimization prob-

lem, and can be attacked using linear programming methods based either on the classical
simplex method of linear programming or the recently popular interior point methods [25].
As the `1 norm is, in a certain natural sense, a convexi�cation of the `0 norm, the problem
(P1) can be viewed as a convexi�cation of (P0), one which makes accessible a variety of
computationally feasible strategies.

In Chen's thesis [6], it was shown that, empirically, the solution of BP is frequently quite
sparse; and that in fact when the underlying synthesis was made from only a few dictionary
elements, the BP solution may perfectly recover the speci�c atoms and speci�c coe�cients
used in the synthesis. For example, on pages 35-37, Figures 3.5, 3.6 and 3.7, Chen consid-
ered a sum of 4 sinusoids and 2 spikes, decomposed them in a combined time/frequency
dictionary of sinusoids and spikes, and found that BP recovered exactly the indices and co-
e�cients of the terms involved in the synthesis; this held across a wide range of amplitude
ratios between the sinusoid and spike components. In contrast, when the same signal ana-
lyzed using Matching Pursuit, the recovery of indices and coe�cients was only approximate
and became very inexact when the sinusoidal and spike components were at very di�erent
amplitudes.

1.1 Ideal Atomic Decomposition

Our goal in this paper is to prove that in certain speci�c cases, when the signal is a
su�ciently sparse sum of terms from a dictionary, the BP principle of `1 optimization of
the decomposition from that dictionary in fact gives the solution of the `0 optimization
problem and in fact recovers the identities and coe�cients of the original synthesizing
elements perfectly.

The following terminology helps formalize this phenomenon. If � is an overcomplete
system, any representation S =

P

 �
�
 is an atomic decomposition using atoms from the

dictionary. If S in fact can be generated by a highly sparse sum, with the term \highly
sparse" given an appropriate de�nition, and there is in fact only one such highly sparse
way of doing so, and if an optimization principle �nds that decomposition, we say that
the principle leads to ideal atomic decomposition under the stated sparsity hypothesis. In
e�ect then, we are claiming that under certain sparsity conditions, the minimum `1-norm
decomposition in certain dictionaries achieves an ideal atomic decomposition.

1.2 Time/Frequency Decomposition

We initially consider the situation where � = �1 [ �2 with �1 the spike basis '1;� (t) =
1ft=�g; � = 0; 1; : : : ; N � 1 and �2 the Fourier basis '2;w(t) = 1p

N
exp(2�iwt=N), w =

0; 1; : : : ; N � 1. Both �1 and �2 are orthonormal bases for l
2
N . We prove in this paper.
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Theorem 1.1 Let S =
P


2T �
'
+
P


2W �
'
 where T is a subset of the \time domain"

f(1; �)g and W is a subset of the \frequency domain" f(2; w)g. If

jT j+ jW j <
p
N;

then (P0) has a unique solution. Meanwhile, there exist (S; T;W ) so that

jT j+ jW j =
p
N

and (P0) has a non-unique solution.

Theorem 1.2 Let S =
P


2T[W �
'
 with T;W as in Theorem 1.1. If

jT j+ jW j < 1

2

p
N;

then (P1) has a unique solution, which is also the unique solution of (P0). Meanwhile, there

exist (S; T;W ) so that

jT j+ jW j =
p
N

and (P1) has a non-unique solution.

In short, if the signal S truly has a very sparse decomposition in the time/frequency
dictionary, this is unique, and basis pursuit (`1 decomposition) will �nd it.

1.3 Relation to the Uncertainty Principle

Underlying Theorems 1.1 and 1.2 is an uncertainty principle: the analysis of a signal in the
time and frequency domains cannot yield a transform pair which is sparse in both domains
simultaneously.

To explain this connection, note that in order to take ideal atomic decomposition se-
riously we must know that under su�ciently strict interpretation of the term `sparsity', a
signal cannot be sparsely synthesized from both the frequency side and from the time side

at the same time. If this were possible, the atomic decomposition would be nonunique.
Now suppose there existed a signal whose Fourier transform was very sparse and whose

representation in the standard basis was very sparse. Then we would have exactly an
example of such nonunique sparse decomposition: the signal could be represented in two
di�erent ways: as a sparse sum of sinusoids and as a sparse sum of spikes.

In e�ect, at the center of our analysis of the `1 decomposition in this �nite-N , discrete
time setting is exactly a certain picket fence sequence III which may equally be viewed
either as a relatively sparse sum of sinusoids or an equally sparse sum of spikes. This
sequence has been studied before in connection with the uncertainty principle, for which it
serves as a kind of extremal function [12].

The connection between unique decomposition and the uncertainty principle will emerge
repeatedly, and in a quantitative form, throughout the article. It is closely connected to
work on the uncertainty principle in [12, 13], however, the uncertainty principle employed
here gives a more symmetric role for time and frequency.

4



1.4 Nonlinearity of `1 Norm

The phenomenon of ideal atomic decomposition is intimately connected with very particular
properties of the `1 norm. In e�ect, (P1) asks to �nd the member of a linear subspace
closest to the origin in `1 norm. This closest point problem (which would be a linear
problem in `2 norm) is highly nonlinear in `1 norm, and the nonlinearity is responsible for
our phenomenon.

A precedent for this type of perfect recovery is what [12] has called Logan's Phenomenon;
see also [17, 13]. That phenomenon arises when one is trying to �nd a decomposition of
a signal into bandlimited function and impulsive noise; supposing that the product of the
signal bandwidth and the measure of the support of the noise is su�ciently small, this can
be done perfectly, by �nding the bandlimited function closest to the observed signal in an
`1 sense. The phenomenon is highly nonlinear in the sense that perfect reconstruction holds
at all signal/noise ratios. See Section 5 below.

In a sense, the phenomenon exposed in this article is due to the same nonlinearity of the
`1 norm, only transposed into the setting of approximation from arbitrary time/frequency
dictionaries in which time and frequency play a symmetric role, and in which there is no
need for the frequency support of the signal to be an interval or even to be known.

1.5 Other Dictionary Pairs

In fact the methods of this paper provide insights outside of the setting of time/frequency
pairs. We give two examples. The �rst considers dictionaries of sinusoids and wavelets.

Theorem 1.3 Let f(�) denote a square-integrable function on the circle [0; 2�). Suppose

that f is a superposition of sinusoids and wavelets,

f(�) =
X
�

�� �(�) +
X
jnj�n0

cne
in�: (1.2)

Here the  � are the Meyer-Lemari�e wavelets, and n0 = 2j0+2. There is a constant C with

the following property. Let Nj(Wavelets) be the number of Meyer Wavelets at resolution

level j and let Nj(Sinusoids) be the number of sinusoids at frequencies 2j � jnj < 2j+1.
Suppose that the sum obeys all the conditions

Nj(Wavelets) +Nj(Sinusoids) � C � 2j=2; j = j0 + 1; : : : (1.3)

Consider the overcomplete dictionary � consisting of Meyer-Lemari�e wavelets and of sinu-

soids at frequencies n0 � 2j0+1. There is at most one way of decomposing a function f in

the form (1.2) while obeying (1.3). If f has such a decomposition, it is the unique solution

to the minimum `1 optimization problem

min
X
�

j��j+
X
jnj�n0

jcnj:

In short, minimum `1 decomposition, which makes no assumption about the sparsity or
non-sparsity of the representation of f , nevertheless gives ideal atomic decomposition when
su�cient sparsity is present.

Note however, that the notion of sparsity becomes level-dependent. We can tolerate more
total terms at high resolution than we can at low resolution. Intuitively, this is because

5



there is less possibility of confusion between sparse sums of wavelets and sparse sums of
sinusoids as we go to sums limited to dyadic bands at increasingly high frequencies|the
two systems become increasingly disjoint.

Mathematically, we could say that there is an uncertainty principle: a phenomenon
near scale 2�j frequency 2j cannot have a sparse representation in both the wavelets basis
and the sinusoid basis. The alternative expression of this phenomenon is the fact that if a
function f has at most C �2j=2 nonzero wavelet coe�cients and sinusoid coe�cients at level
j, then the function is zero.

For a second example of this kind, we consider combined dictionaries of wavelets and
ridgelets.

Theorem 1.4 Let f(x1; x2) denote a square-integrable function on the R2. Suppose that

f is a superposition of wavelets and ridgelets,

f =
X
Q

�Q Q +
X
�2�

����: (1.4)

Here the  Q are the usual two-dimensional Meyer-Lemari�e wavelets for the plane. The ��
are orthonormal ridgelets [11] and � consists of ridgelets at ridge scales j � j0+2. There is
a constant C > 0 with the following property. Let Nj(Wavelets) be the number of wavelets

used in this decomposition at resolution level j and let Nj(Ridgelets) be the number of

ridgelets at level j. Suppose that the sum obeys all the conditions

Nj(Wavelets) +Nj(Ridgelets) � C � 2j=2; j = j0 + 2; : : : (1.5)

Consider the overcomplete dictionary � consisting of Meyer-Lemari�e wavelets and of ridgelets

with � 2 � and j � j0 + 2. There is at most one way of decomposing a function f in the

form (1.4) while obeying (1.5). If f has such a decomposition it is the unique solution of

the minimum `1 optimization problem

X
Q

j�Qj+
X
�

j��j:

In short, minimum `1 decomposition, which makes no assumption about the sparsity or
non-sparsity of the representation of f , nevertheless gives ideal atomic decomposition when
su�cient sparsity is present.

Again the notion of sparsity becomes level-dependent. We again tolerate more total
terms at high resolution than we do at low resolution. Intuitively, this is because there is
less possibility of confusion between sparse sums of wavelets and sparse sums of ridgelets as
we go to sums limited to dyadic bands at increasingly high frequencies|the two systems
become increasingly disjoint.

Mathematically, we could say that there is an uncertainty principle: a phenomenon
occurring at scale 2�j and frequency 2j cannot have a sparse representation in both the
wavelets basis and the ridgelets basis. The quantitative expression of this phenomenon is
the fact that if a function f has at most C � 2j=2 nonzero wavelet coe�cients and ridgelet
coe�cients at level j, then the function is zero.

1.6 Contents

Sections 2-4 of the paper prove Theorems 1.1 and 1.2. Section 5 gives an application to
bandlimited approximation with unknown band and impulsive noise. Section 6 discusses
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generalizations of Theorems 1.1 and 1.2 to the setting of real sinusoids (as opposed to
complex exponentials). Section 7 isolates the concept { mutual incoherence { which makes
Theorems 1.1 and 1.2 work, and shows that it generalizes to other pairs of orthogonal bases;
Section 8 shows that in some sense \most pairs of ortho bases" are mutually incoherent.
It also gives applications to encryption and blind separation of uncoordinated sources.
Sections 9, 10, and 11 switch gears, establishing Theorems 1.3 and 1.4. Section 12 describes
generalizations to the non-orthogonal setting. Section 13 considers relations of the concepts
here to the classical uncertainty principle for functions of a single real variable, and applies
insights derivable from experience in that setting. It also suggests that for many situations,
the provable bound jT j+ jW j < const �

p
N of Theorems 1.1 and 1.2 overstates severely the

required sparsity; often jT j+ jW j < const �N is su�cient for uniqueness of `1 optimization.

2 Uniqueness of `0 optimization

We begin by quoting a simple uncertainty principle from [12]:

Theorem 2.1 Suppose (xt)
N�1
t=0 has Nt nonzero elements and that its Fourier transform

(bxw)N�1w=0 has Nw nonzero elements. Then NtNw � N and so

Nt +Nw � 2
p
N: (2.1)

The proof in [12] identi�es the extremal functions for these inequalities. When N is a
perfect square, (2.1) is attained by

IIIt =

�
1 t = l

p
N; l = 0; 1; : : : ;

p
N � 1;

0 else

and by its frequency and time shifts. The complete catalog of extremal functions is gener-
ated by scalar multiples of

expf2�i=N � w � (t	 �)gIIIt	� ;

where w is an integer in the range 0 � w <
p
N , � is an integer in the range 0 � � <

p
N ,

and 	 denotes subtraction modulo N .
The key properties of III are its sparsity (Nt + Nw = 2

p
N) and its invariance under

Fourier transformation:

F(III) = III:

This says that III may equally well be viewed as either being produced by

(1) time domain synthesis using
p
N spikes, or

(2) frequency-domain synthesis from
p
N sinusoids.

In consequence: for S = III, the problem (P0) has a non-unique solution in the overcomplete
dictionary fspikesg [ fsinusoidsg. It follows that constraints on sparsity of the form
Nt +Nw < K cannot guarantee uniqueness in this setting for K >

p
N . In fact K =

p
N

can guarantee uniqueness, as we have claimed previously in Theorem 1.1. We now show
this, and thereby prove Theorem 1.1.
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Suppose that S had two decompositions S = ��1, S = ��2, where both �1 and �2

obey k�ik0 <
p
N ; then 0 = �(�1 � �2). In other words, if we let N = f� : �� = 0g, then

�1 � �2 2 N . For � 2 N , suppose � = (�(1;0); �(1;1); : : : ; �(1;N�1); �(2;0); �(2;1); : : : ; �(2;N�1)),
where the �rst N components are associated with dictionary elements belonging to the
spike basis and the last N are associated with dictionary elements belonging to the Fourier
basis. Thus letting � = (�1; �2) denote the partitioning of components, � 2 N implies

�1�
1 +�2�

2 = 0;

or

�2 = ��T
2 �

1:

In a more transparent notation, N is the set of all pairs (x;�bx), where x = (xt)
N�1
t=0 and

bx = (x̂w)
N�1
w=0 is its Fourier transform.

Returning now to our setting, � = �1��2 has therefore the structure of a pair (x;�bx);
by the uncertainty principle in Theorem 2.1, � must have at least 2

p
N nonzero entries

or else � = 0. But by hypothesis k�1k0 <
p
N and k�2k0 <

p
N . Hence � = 0; in short

�1 = �2.

3 Uniqueness of `1 optimization

Suppose that S = ��, where � is sparse, made from atoms in sets T and W in the time
and frequency domain respectively. We seek a condition on the size of T and W which
guarantees that � is the unique solution of the `1 optimization problem (P1).

In order that � be the unique solution, we must have ke�k1 > k�k1, for every e� satisfying
�e� = ��. Equivalently, for every � 2 N (�� = 0), we must have

k�+ �k1 � k�k1 > 0;

unless � = 0. Now

k�+ �k1 � k�k1 =
X

(T[W )c

j�
 j+
X
T[W

(j�
 + �
 j � j�
 j):

Note that

j�
 + �
 j � j�
 j � �j�
 j;

and so

k�+ �k1 � k�k1 �
X

(T[W )c

j�
 j �
X
T[W

j�
 j:

Hence a su�cient condition for uniqueness is that for � 6= 0,X
T[W

j�
 j <
X

(T[W )c

j�
 j; 8� 2 N : (3.1)

In words, every nonzero member of N has smaller `1 norm on the support of � than o� the
support of �. Since N consists of all pairs (x;�bx), the condition (3.1) is equivalent to

X
T

jxtj+
X
W

jbxwj < 1

2
(kxk1 + kbxk1) ; (3.2)
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for every nonzero x. Formalizing matters somewhat, we view this as a time-frequency
concentration problem. For given sets T and W , let

�(T;W ) = sup

P
T jxtj+

P
W jbxwj

kxk1 + kbxk1 ; (3.3)

where the supremum is over all x = (xt)
N�1
t=0 which are nonzero. This measures the degree

to which the joint `1 norm can be concentrated to sets T and W ; the uniqueness of `1

optimization is therefore implied by

�(T;W ) <
1

2
: (3.4)

We note that �(T;W ) is closely related to a variety of known time-frequency concentration
functionals connected with the uncertainty principle. See Section 5.

The sequence IIIt shows that we can have

�(T;W ) � jT j+ jW j
2
p
N

; (3.5)

and in particular, if
p
N is even, there exist jT j, jW j of size

p
N
2 so that

�(T;W ) � 1

2
: (3.6)

In short, for a sparsity condition on T and W to imply uniqueness of a solution to (P1), it
must clearly be of the form jT j+ jW j < K, for some K �

p
N . This is the same range as we

contemplated in the condition for uniqueness in the `0 problem (P0), but it is a necessary
restrictiveness: we can see from the sequence III that there are sets jT j =

p
N so that the

problem (P1) has a non-unique solution. Indeed

III = �1 � III = �2 � cIII;
and one can verify that

�1 =

�
1 
 = (1; t); t 2 suppfIIIg;
0 else;

�2 =

�
1 
 = (2; w); w 2 suppfcIIIg;
0 else;

are both solutions of the problem (P1), as are all convex combinations of �1 and �2.
Curiously, III is within a factor 2 extremal for the �(T;W ) concentration measure.

Theorem 3.1 Let T be a subset of the time domain and W be a subset of the frequency

domain. Then

�(T;W ) � jT j+ jW jp
N + 1

: (3.7)

In particular, if jT j+ jW j � 1
2

p
N , then �(T;W ) < 1=2, and the optimization problem (P1)

has a unique solution.

We need two lemmas.

Lemma 3.2 Let (x; bx) be a Fourier transform pair. Then

kbxk1 � p
Nkxk1: (3.8)
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Proof. Let jxtj = kxk1. Then from Fourier inversion

xt =

N�1X
w=0

bxwew(t)
with ew the l2-normalized sinusoid of frequency 2�w

N
, so that

jxtj � kbxk1kewk1:
Now kewk1 = maxt

��� 1p
N
expf2�iwt=Ng

��� = 1p
N
. (3.8) follows. }

Lemma 3.3 Consider the capacity de�ned by the optimization problem

(K1;� ) min kxk1 + kbxk1; subject to x� = 1:

The value of this optimization problem obeys

Val(K1;� ) = Val(K1;0); � = 1; 2; : : : ; N � 1: (3.9)

Also, for the frequency-side capacity de�ned by the optimization problem

(K2;w) min kxk1 + kbxk1; subject to bxw = 1;

we have

Val(K2;w) = Val(K2;0); w = 1; 2; : : : ; N � 1: (3.10)

Finally

Val(K1;0) = Val(K2;0) = 1 +
p
N: (3.11)

Proof. Candidates x(1;0) for (K1;0) and x
(1;�) for (K1;� ) are related by appropriate trans-

lation/modulation;

x
(1;�)
t = x

(1;0)
t	� ;

bx(1;�)w = expfi2�w�gbx(1;0)w ;

indeed, this transformation preserves the l1 norm kxk1 + kbxk1 and the constraint x0 = 1
maps to x� = 1. Hence any solution of (K1;0) maps to a solution of (K1;� ), and vice versa.
Similar ideas map solutions of (K2;w) into solutions of (K2;0), and vice versa.

Similarly, the formal interchange of time and frequency domains turns any candidate
for (K1;0) into a candidate for (K2;0) with equal constraint and equal norm. Finally, from
Lemma 3.2, we have

Val(K1;0) � 1 +
p
N:

On the other hand, let x = '(1;0) be the Kronecker sequence. Then x obeys the constraint

of (K1;0) while kxk1 + kbxk1 = 1 +
p
N . (3.11) follows. }

The proof of Theorem 3.1 follows directly from Lemma 3.3;

jxtj � Val(K1;t)
�1 (kxk1 + kbxk1) ;

jbxwj � Val(K2;w)
�1 (kxk1 + kbxk1) ;

so P
T jxtj+

P
W jbxwj

kxk1 + kbxk1 �
X
T

Val(K1;t)
�1 +

X
W

Val(K2;w)
�1

= (jT j+ jW j)(
p
N + 1)�1:

(3.7) follows.
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4 Simultaneous solution of `0 and `1

From the results of Section 3 we know that a solution to (P1), if it satis�es k�k0 < 1
2

p
N ,

is unique. This must also solve (P0), because at most one vector � may satisfy S = �� and
k�k0 < 1

2

p
N . In short, any vector � obeying k�k0 < 1

2

p
N and S = �� is simultaneously

the solution of (P1) and (P0).

5 Application: Bandlimited Approximation with Gross Er-

rors

Before continuing with our development of general atomic decomposition results, we in-
dicate an application. The functional �(T;W ) we have studied in Section 3 is related
to time-frequency concentration functionals connected with bandlimited approximation.
Donoho and Stark [12] de�ned

�0(T;W ) = sup

P
T jxtj
kxk1

; subject to suppfbxwg �W:

In short, this measures the time-side concentration ratio
P

T jxtj=
PN�1

t=0 jxtj for objects x
perfectly localized to W on the frequency side. They gave the inequality

�0(T;W ) � jT jjW j=N;

and described applications in the recovery of bandlimited signals facing scattered gross
errors. They assumed that one observed

S(t) = B(t) + �(t)

where B is a discrete-time bandlimited signal with frequency-domain support purely in a
certain known band W and that � is a discrete-time noise, of arbitrary size, supported in a
set T . In that setting they showed that whenever the support of the noise satis�es

�0(T;W ) < 1=2

the `1 approximant

~B = argminXkS �Xk1 subject to supp(X̂) 2W

recovers B perfectly: ~B = B. Here W is a known frequency band, but the support T of
the noise is unknown. This is an instance of what they called Logan's phenomenon for
bandlimited `1 approximation, after B.F. Logan, whose thesis [17] discovered it, in the
setting of lowpass approximation to continuous-time signals. Compare also [13].

The concentration notion � given in this paper is not directly comparable with �0,
nor is the application of `1 approximation. In [12], the �0 functional supposes that the
object in question is perfectly localized to a set W in the frequency domain, and measures
the degree of concentration to T , while in this paper, the object is not assumed to be
perfectly localized either to T or to W , and the quantity � is fully symmetric in the
roles played by time and frequency. Also, the `1 approximation in [12] was based on
�nding the `1-closest approximant from a �xed, known band W . In short, the signal was
representable as a superposition of sinusoids with �xed and known frequencies. In contrast,
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the `1 decomposition here is based on approximation from an arbitrary collection of times
and/or frequencies, none of which is pre-speci�ed. The method uses whatever combination
of spikes and/or sinusoids may be necessary to decompose the object. If we label ~B as
the component of the `1 solution coming from sinusoids and ~� as the component of the `1

solution coming from spikes, the approach of this paper may be viewed as a method for
also solving the problem of bandlimited approximation with unknown bandW ! The results
of this paper show that, if jsupp( ~B)j+ jsupp(�)j � 1

2

p
N , then ~B = B and ~� = �.

In short, the `1 atomic decomposition may be viewed as a method for recovery of a
bandlimited signal with unknown bandW in the presence of sparse gross errors in the time
domain. The errors may be of arbitrary amplitude, but if the bandW and the support T of
the errors are both su�ciently sparse, then `1 atomic decomposition gives perfect recovery
of the underlying B and �.

In comparing the approach of this paper with the older one, we see a key di�erence:
namely, that the condition for perfect recovery in the bandlimited approximation algorithm
is jT jjW j < N=2, whereas the condition in the atomic decomposition algorithm is jT j+jW j <
1
2

p
N ; the conditions cover a somewhat di�erent collection of T ,W pairs.

6 Real Sinusoids

So far, we have been using as sinusoid basis the traditional system of complex exponentials�
1p
N
ei2�wt=N

�N�1
w=0

. How do things change if we use instead the real sinusoids, or one of the

discrete cosine transform or discrete sine transform bases [21]?
Let ('w)

N�1
w=0 be an orthonormal system for l2;N . Let ~xw = hx; 'wi be the Fourier-

Bessel coe�cients in this system. Let T and W be subsets of the t- and w- index space,
respectively. De�ne

~�(T;W ;') = sup

P
T jxtj+

P
W j~xwj

kxk1 + kbxk1 ;

so that what we earlier called �(T;W ) is the special case with 'w = 1p
N
ei2�wt=N . Careful

inspection of previous arguments will show that if we put

fM = max
w

max
t
j'w(t)j;

then for problem

( eK1;t) min kxk1 + k~xk1; subject to xt = 1;

we have

Val( eK1;t) � 1 + fM�1; 8t;

and similarly for problem

( eK2;w) min kxk1 + kexk1; subject to exw = 1;

we have

Val( eK2;w) � 1 + fM�1; 8w:

12



It follows that

e�(T;W ) � jT j+ jW j
(1 + fM�1)

:

Now for the real Fourier basis, for domain t = 0; 1; : : : ; N � 1, with N even,

'0(t) = 1=
p
N;

'2k�1(t) =

r
2

N
sin(2�kt=N); k = 1; 2; : : : ; N=2 � 1;

'2k(t) =

r
2

N
cos(2�kt=N); k = 1; 2; : : : ; N=2 � 1;

'N�1(t) =

r
1

N
(�1)t;

we have

fM =

r
2

N
;

and so

e�(T;W ) <
p
2(jT j+ jW j)=

p
N: (6.1)

Combining this with arguments of Section 3, we immediately obtain

Theorem 6.1 Let �1 be the basis of spikes and let �2 be the basis of real sinusoids. If S

is a superposition of atoms from sets T and W and

jT j+ jW j � 1

2

p
N=2; (6.2)

then the solution to (P1) is unique.

What about the solution of (P0)? Arguing as in Section 2, we wish to ask about
the minimal cardinality of sets T and W so that a nonzero pair (x;�~x) exists with x

concentrated to T and ~x concentrated to W . Unless ~�(T;W ) � 1 there is no signal x 100%
concentrated to T , with its real Fourier transform ~x is also perfectly concentrated to W .
The inequality (6.1) therefore shows that, unless

jT j+ jW j >
p
N=2;

We conclude that

Theorem 6.2 Let �1, �2, S, T and W be the same as in Theorem 6.1. If

jT j+ jW j � 1

2

p
N=2;

then

� the solution to (P0) is unique;

� the solutions of problem (P0) and (P1) are identical.
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Actually, the criterion of uniqueness for the `0 problem can be sharpened by a factor two.
The key is the following uncertainty principle for the real Fourier transform:

Theorem 6.3 Let x be the coe�cient vector associated with the spike basis and let ex be

the coe�cient vector associated with the real Fourier basis. Suppose x and ex have Nt and
~Nw nonzero elements respectively; we have

Nt � ~Nw � N=2;

and so

Nt + ~Nw �
p
2N:

A variation of III will achieve Nt + ~Nw =
p
2N + 1.

Proof. Letting bx be the complex Fourier transform of x. The two sequences bx and ~x are
connected in the following way: for an even N ,

ex0 = bx0;
exN�1 = bxN=2;
ex2k = bxk + bxN�k; k = 1; 2; : : : ; N=2 � 1;

ex2k�1 = i(bxk � bxN�k); k = 1; 2; : : : ; N=2 � 1:

Letting Nw denote the number of nonzero elements in bx, we have ~Nw � 1
2Nw. By Theorem

2.1, Nt �Nw � N , hence Nt � ~Nw � 1
2N .

Suppose
p
N=2 is an integer. As a variation of III, we consider

x0 = xp2N = x2
p
2N = � � � = xN�

p
2N = 1;

with other entries of x vanishing. Hence,

bx0 = bxp
N=2

= bx
2
p
N=2

= � � � = bx
N�
p
N=2

= 1;

with other entries of bx vanishing. Then

ex0 = 1;

exN�1 = 1;

exp2N = ex2p2N = ex3p2N = � � � = ex
N�

p
2N = 1;

and the rest of ex are zeros. Hence Nt =
p
N=2, Nw =

p
2N and ~Nw =

p
N=2 + 1. }

Applying this and arguing as in Section 2

Corollary 6.4 Let �1, �2, S, T and W be the same as in Theorem 6.1. If

jT j+ jW j �
p
N=2;

then the solution to (P0) is unique. There are S, T , W with

jT j+ jW j =
p
N=2 + 1;

for which the solution to (P0) is not unique.

In short, we have a parallel of the earlier situation based on the complex Fourier trans-
form, only with a lower threshold for the (P1), (P0) equivalence e�ect. There is a similar
parallel, with the same lower threshold, for the various real orthogonal bases associated
with the real discrete cosine transforms and discrete sine transforms.
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7 Mutual Incoherence

The extension from complex sinusoids to real sinusoids generalizes immediately to the
following result.

Theorem 7.1 Let �1 and �2 be orthonormal bases for RN and let

M(�1;�2) = supfjh�1; �2ij : �1 2 �1; �2 2 �2g:

Let � = �1 [ �2 be the concatenation of the two bases. Let S = ��, where � obeys

k�k0 <
1

2

�
1 +M�1� ;

then � is the unique solution to (P1) and also the unique solution to (P0).

This shows that su�ciently small values of the functional M(�1;�2) guarantee the
possibility of ideal atomic decomposition. We call M a measure of the mutual coherence of
two bases; if two bases have a very small value of M then we say that they are mutually
incoherent. Obviously 0 � M � 1; if two orthobases have an element in common, then
M = 1. On the other hand, for discrete time signals of length N ,

M(spikes;complex sinusoids) = 1=
p
N

so that M can be small for large N . There is an easy bound on how incoherent two bases
can be:

Lemma 7.2 For any pair of orthonormal bases �1,�2 of RN ,

M(�1;�2) � 1=
p
N:

Proof. The matrix �T
1�2 is an orthonormal matrix. The sum of squares of entries in

an orthonormal matrix is N ; the average squared entry is therefore 1=N ; the maximum
entry is therefore at least 1=

p
N . }

This shows that the basis pair (Spikes,Sinusoids) yields a most mutually incoherent

pair. For this pair, the sparsity condition leading to ideal atomic decomposition will be
most generous. There are other examples of extremal bases, the pair (Spikes, Walsh Func-
tions) being an example; but these will seem far less \natural" to those with standard
mathematical training.

Underlying Theorem 7.1 is the following uncertainty principle.

Theorem 7.3 Let �1 and �2 be orthonormal bases for RN . Let �1 index the collection of

nonzero coe�cients for x in basis 1, and �2 index the collection of nonzero coe�cients for

x in basis 2. Then

j�1j+ j�2j � (1 +M�1): (7.1)

If we compare this result with the earlier uncertainty principles (Theorem 2.1 and
Theorem 6.3), we see that the general bound (7.1) can be a factor of two away from
sharpness in those cases. Its generality can be an advantage in some cases.

Thus mutual incoherence of bases has the following pair of implications:
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� No signal can be analyzed in both bases and have simultaneously fewer than about
M�1 nonzero components from �1 and �2 together;

� A signal which is synthesized from fewer than about M�1 components from �1 and
M�1 components from �2 is decomposed by minimum `1 atomic decomposition per-
fectly into those components.

It is curious that M was implicitly identi�ed as heuristically signi�cant by Mallat and
Zhang [19] in their article introducing Matching Pursuit; however, we emphasize that M
is relevant here for Basis Pursuit `1 optimization, rather than Matching Pursuit (greedy
single-component extraction).

8 Random Orthogonal Bases

To make the point about generality of these results, we now consider random orthogonal
bases, their incoherence properties and some idealized applications.

8.1 Mutual Incoherence is Generic

Is mutual incoherence special or generic? That is, if one takes a pair of \random orthogonal"
bases of RN , what will be the typical size of M?

The question can be reduced to: what is the largest amplitude in a random orthogonal
matrix? Here \random" means uniformly distributed on the orthogonal group.

The largest entry in a random real orthogonal matrix is not typically larger than

� 2
p
loge(N)=

p
N:

We illustrate this in the following table of results based on generation of 100 pseudo-random
orthogonal matrices:

Size N 32 64 128 256 512 1024

Median M(N) 0.5684 0.4506 0.3543 0.2706 0.2052 0.1549

2
p
log(N)=N 0.6582 0.5098 0.3894 0.2944 0.2208 0.1645

(Median of M(N))=(2
p
log(N)=N ) 0.8636 0.8837 0.9099 0.9193 0.9296 0.9413

Table 1: Table of the medians of the maximum amplitude in a realN�N random orthogonal
matrix, out of 100 generations.

Actually, empirical results seem to suggest that the normalized maximum amplitudes
M(N)=(2

p
log(N)=N ) converge to a limiting distribution. Figure 1 gives the empirical

distribution out of 1000 simulations.
For a formal result, we have

Theorem 8.1 Let U denote a random real orthogonal matrix, uniformly distributed on

O(N). Let � > 0. Then the exceedance probability

��;N = P

�
max
ij

jUijj > 2
p
log(N)=N (1 + �)

�

obeys ��;N ! 0 as N !1.
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Figure 1: Empirical distributions of the normalized maximum entryM(N)=(2
p
log(N)=N )

for N = 64; 128; 256; 512. Each is based on 1000 simulations.

Proof. Any �xed column of a random orthonormal matrix, viewed as a vector in
RN , is uniformly distributed on the N -sphere. Each entry Ui;j can therefore be identi�ed
with the projection on the i-th coordinate of a randomly-chosen point (Ui;j)j on the N -
sphere. This is an exceptionally well-studied quantity; it is the classical example of so-called
\concentration of measure phenomena" and \isoperimetry" [16]. It is known that there is
very little chance that a random point on the sphere falls far away from the equator; in
fact, most distributional properties are similar to those which would hold for a Normally
distributed quantity having mean zero and variance 1=N . Theorem 1.1, Page 15 of [16]
implies

P (jUij j > �=
p
N � 2) � 2 � expf��2=2g; � > 0:

From Boole's inequality

P (any jUij j > �=
p
N) �

X
ij

P (jUij j > �=
p
N)

� 2 �N2 � exp
�
�N � 2

N
� �2=2

�
;

so that taking � = 2
p
log(N)(1 + �) we get ��;N ! 0. }

In short, the 1=
p
N behavior we saw for the incoherence in the (Spikes, Sinusoids) pair

is not far from the generic behavior.

For \most" pairs of orthogonal bases of RN , there is an uncertainty principle
threshold and an ideal atomic decomposition threshold, which are both of order
O(
p
N= log(N)).
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8.2 Application: Error-Correcting Encryption

Here is an amusing application of the use of random orthonormal bases in connection with
minimum `1 methods.

A.D. Wyner [26, 27, 22] has advocated a method of encryption for real-valued discrete-
time signals S of length N : form a random orthogonal matrix U , multiply the signal vector
by the matrix and get the encryptionE = US. Transmit the encryption to a remote receiver
who knows U , and who decrypts via S = UTE. This an encryption scheme because the
observer of E who does not know U sees only that the marginal distribution of the encrypted
vector E is uniform on the sphere of radius kSk and so there is no \pattern" in E other
than the simple pattern of a uniformly distributed vector on the sphere.

The results of this paper show that we may use minimum `1-norm decomposition in
an overcomplete dictionary to extend this encryption scheme so that it is robust against
the possibility of gross errors in transmission or recording. With M the amplitude of the
largest entry in matrix U , we encode a vector of K < M�1=2 entries by embedding it in
a vector S of length N in scattered locations, with the other entries in the vector being
zero. We encrypt S according to Wyner's scheme. We transmit E over a channel prone
to small number of gross errors. The receiver obtains eE, equal to E in \most" places, and
performs minimum `1 atomic decomposition in a combined dictionary consisting of spikes
and columns of U .

This variant of the method is robust against gross errors in the transmission and record-
ing of E. Suppose that ~E agrees with E except in K entries. We may view ~E as a super-
position of K terms from the spike dictionary and K terms from the U dictionary. Because
2K < M�1, we conclude that minimum `1 atomic decomposition recovers perfectly both
the columns of U that correspond to the transmitted data, and the speci�c locations where
~E di�ers from E. In addition, it recovers precisely the entries in the original signal vector
S.

Note that the errors can be really large: in principle they can have an amplitude 1000
or even 106 times as large as the amplitude of the transmitted signal, and perfect recovery
will still obtain.

Quite generally, then, we can transmit up to O(
p
N= log(N)) real numbers encrypted

in a vector of length N and be immune to up to O(
p
N= log(N)) gross errors in the trans-

mission and recording of the encrypted data.

8.3 Application: Separation of Two Uncoordinated Sources

The mutual incoherence of random orthogonal bases has other potential applications. Sup-
pose that an idealized receiver obtains the superposition of two encoded signals

R = E1 +E2

and the goal is to perfectly separate the two signals. For example, R is an idealized antenna
and the Ei are received signals from two transmitters which must use the same frequency
band. If we are allowed to use this setup with a preprocessing of signals, we can arrange for
perfect separation of signals, in principle, even when they are encoded without coordination
and are of radically di�erent amplitudes. The idea is that each Ei is a discrete-time signal
of length N which is obtained from encoding a message Si of at most K < M�1=2 nonzero
entries by applying a random orthogonal transformation Ui to the message vector. Then
with minimum `1-norm postprocessing at the receiver, we can separate out the two messages
perfectly.
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This scheme has several key features:

� Each of the two broadcast signals is encrypted and so not accessible to others, includ-
ing the operator of the other transmitter.

� The transmitters are uncoordinated. The matrices Ui are generated randomly and
independently of each other, and each can be kept secret (say) from the owner of the
other. Only the receiver operator would need to know both matrices Ui to perform
separation.

� The scheme works perfectly, no matter what the relative sizes of the two signals: it
works, in principle, at rather enormous di�erences in transmitter strength.

In comparison, more typical separation schemes would assign each transmitter a subband
quasi-disjoint from the other, which requires coordination; also, they rely on linear methods
for separation which work poorly when the signal strengths are very di�erent.

9 Multiscale Bases with Block Diagonal Structure

While the argumentation so far has mostly been quite general, and could apply to any
pair of bases, a special feature of the analysis so far is that we had M small for large N ;
M = O(N�1=2). If we consider the broader �eld of applications, this special feature may
be absent: we may have M roughly 1. In that case the above development is rather useless
as is.

Nevertheless we may still obtain interesting insights by extending the approach devel-
oped so far. Suppose we have two orthonormal bases �1 and �2, and consider the capacity
de�ned by the optimization problem

(K
) min k�T
1 xk1 + k�T

2 xk1; subject to hx; �
i = 1;

In e�ect, the previous analysis relied on the fact that the value Val(K
) did not depend on

, or at most weakly so.

In some interesting cases the capacities Val(K
) take widely di�erent values, with the
largest values being of order 1 independent of N and with many values much smaller than
this; in such an event the preceding analysis by itself tells us almost nothing of any use.
Such a case arises when �1 is a wavelet basis and �2 is a sinusoid basis; at low frequencies,
wavelets and sinusoids are not very di�erent, and the associated capacity problem (K
) has
large values; while the value of the capacity problem (K
) tends to zero at high frequencies.

Abstracting this situation, we now consider bases with an interesting block diagonal

structure. Informally, the 
-indices can be grouped in blocks in such a way that values
within a block of 
-indices have almost the same value Val(K
), and, in addition, the basis
functions in a certain group coming from Basis 1 span the same space as the basis functions
in a corresponding group for Basis 2.

De�nition 9.1 A pair of orthonormal bases �1, �2 has joint block diagonal structure

if the following are true:

� There is an orthogonal direct sum decomposition of RN as

RN = X0 �X1 � � � � �XJ :
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� There is a grouping of indices �1;j for basis 1 so that

span(�
 : 
 2 �1;j) = Xj

and similarly a grouping of indices �2;j for basis 2 so that

span(�
 : 
 2 �2;j) = Xj

An example of this kind is a combined dictionary (Wavelets, Sinusoids) which will
be explained in detail later. We record a simple observation, without proof.

Lemma 9.2 If a pair of bases has joint block diagonal structure, then the optimization

problems (P0) and (P1) separate into a direct sum of subproblems, as follows. Let S(j) be the

ortho-projection of S on Xj, let �
(j) be the subdictionary formed from �
 with 
 2 �1;j[�2;j

and de�ne

(P0;j) min k�(j)k0; subject to S(j) = �(j)�(j);

and

(P1;j) min k�(j)k1; subject to S(j) = �(j)�(j):

Then if a unique solution to each (P0;j) exists, a solution to (P0) is given by the concatena-

tion of all the individual component solutions. Moreover, if a unique solution to each (P1;j)
exists, a solution to (P1) is given by the concatenation of all the individual component

solutions.

The next observation is immediate:

Lemma 9.3 In the setting of the previous lemma, let

Mj =M(f�
 : 
 2 �1;jg; f�
 : 
 2 �2;jg

be the blockwise mutual incoherence. Then if S can be represented as a superposition of

N1;j terms from �1;j and N2;j terms from �2;j, and

N1;j +N2;j <
1

2
M�1

j

the solutions of each (P0;j) and each (P1;j) are unique and are the same.

For our application, consider a dictionary for discrete-time signals S(t); t = 0; 1; : : : ; N�
1, made by merging the periodized discrete Meyer orthonormal wavelets basis [15] with an
orthonormal basis of certain special orthogonal functions, each one made up of four complex
sinusoids of similar frequencies which we will call real bi-sinusoids.

The wavelets basis is commonly indexed by � = (j; k; �) where j � j0, k 2 f0; : : : ; 2j+1g,
and � 2 f0; 1g. The basis has, for resolution level j = j0 and gender � = 0, a set of
periodized Lemari�e scaling functions, and, for resolution levels j = j0; j0 + 1; : : : ; j1, and
gender � = 1, the Meyer wavelets; we denote any of these by  �. Here the e�ective support
of  �, � = (j; k; �) is roughly of width N=2j and so j measures scale.

The real bi-sinusoids ew are certain special functions, deriving from the construction
of the Meyer-Lemari�e wavelets. With ! = (w; �), where w 2 [2j ; 2j+1) and � 2 f1; 2g we
de�ne 
j = [2j ; 2j+1)� f1; 2g and we have basis functions in four di�erent groups:
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RW1. e!(t) = bj(w) cos (2�wt=N)� bj(w
0) cos (2�w0t=N) w < 2j � 4=3; � = 1;

RW2. e!(t) = bj(w) cos (2�wt=N) + bj(w
0) cos (2�w0t=N) w � 2j � 4=3; � = 1;

IW1. e!(t) = bj(w) sin (2�wt=N) � bj(w
0) sin (2�w0t=N) w < 2j � 4=3; � = 2;

IW2. e!(t) = bj(w) sin (2�wt=N) + bj(w
0) sin (2�w0t=N) w � 2j � 4=3; � = 2:

Here w0 is the \twin" of w, and obeys

2j � w0 = w � 2j ; w � 2j � 4=3;
2j+1 � w = w0 � 2j+1; w > 2j � 4=3:

while|important point|bj(w) is a certain \bell function" that is also used in the construc-
tion of the Meyer Wavelet basis, and obeying

bj(w)
2 + bj(w

0)2 = 2=N; w 2 [2j ; 2j+1):

The system e! has been constructed so that it is orthonormal and spans the same space
Wj as the collection of periodized Meyer wavelets. We call the e! real bi-sinusoids because
they are made from pairs of real sinusoids.

The key property relating our two bases for Wj can be summarized as follows

Lemma 9.4 The wavelet coe�cients at a given level j > j0 are obtained from the real

bi-sinusoid coe�cients at the same level j by a �nite orthogonal transform Uj of length 2j

built from discrete cosine and sine transforms.

Proof. By consulting [15] or by adapting arguments from [1], one learns that the
algorithm for the discrete periodized Meyer wavelet coe�cients at level j of a vector x has
�ve steps. The steps are (for terminology see the cited references)

PMT1. Fourier transform the vector x, yielding x̂.

PMT2. Separate x̂ into its real and imaginary components.

PMT3. To the frequencies at level j apply folding projection to the real and imaginary
components of x̂ separately, with polarities (+;�) and (�;+), respectively, producing
two sequences, (cjl )l and (djl )l.

PMT4. Apply the discrete sine transform DST-III to the cj sequence and the discrete
cosine transform DCT-III to the dj sequence, yielding sequences ĉj and d̂j.

PMT5. Combine the results, according to a simple formula

for � = (j; k; 1); �� = (�1)k+1 � (ĉjk + d̂j
2j�k); k = 0; 1; : : : ; 2j � 1;

for � = (j; 2j + k; 2); �� = (�1)k+1 � (ĉjk � d̂
j

2j�k); k = 0; 1; : : : ; 2j � 1:

The key observation is that all these steps are isometries or else isometries up to a scale
factor 2�1=2. It follows that there is an orthonormal basis giving the representers of the
output of Step 3. These are exactly the real bi-sinusoids de�ned earlier:

c
j
l = hx; e!i; ! = (l; 1)

djl = hx; e!i; ! = (l; 2):
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In e�ect, our real bi-sinusoids were obtained by starting from this de�nition; to obtain
formulas RW1-IW2, we started with Kronecker sequences in 
j and inverted the transforms
in steps PMT3, PMT2, PMT1.

Now, given this identi�cation, it is clear that the transform Uj mapping real bi-sinusoid
coe�cients to wavelet coe�cients is just the properly-scaled composition of steps PMT4.
and PMT5., which composition is an isometry. This completes the proof. }

Figure 2 gives a depiction of the procedure in the above proof.
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Figure 2: Flowchart of periodized orthonormal Meyer wavelet transform at scale j.

In short, we have the following structure

BD1. RN is partitioned into an orthogonal sum of linear subspaces

Vj0 �Wj0 �Wj0+1 � � � � �Wj1 :

BD2. dim(Wj) = 2j+1.

BD3. Each Wj has two di�erent orthonormal bases: the wavelets 	1;j = ( � : � 2 �j)
and the bi-sinusoids 	2;j = (e! : ! 2 
j).

BD4. There is a real orthonormal matrix Uj so that

	1;j = Uj	2;j:

It follows, upon comparison with Lemma 9.2, that for the combined dictionary

� = �1;j0 [ (	1;j0 [ : : : [	1;j1) [ (	2;j0 [ : : : [	2;j1) ;

using wavelets at all scales and sinusoids at su�ciently �ne scales, the problems (P0) and
(P1) split into a direct sum of problems (P0;j) and (P1;j) with �(j) = 	1;j [ 	2;j, for
j = j0; j0 + 1; : : : ; j1, and S

(j) the ortho-projection of S onto Wj:

(P0;j) min k�(j)k0; subject to S(j) = �(j)�(j);
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while

(P1;j) min k�(j)k1; subject to S(j) = �(j)�(j);

with the component eS(j0) of S in Vj0 handled by

eS(j0) = X
�2e�j0

h'�; Si'�:

Lemmas 9.2 and 9.3 draw us to calculate

Mj = supfjh 1;�;  2;!ij; � 2 �j ; ! 2 
jg;
this is the mutual incoherence constant M associated with the orthogonal transform be-
tween the two bases 	1;j and 	2;j. This will determine the ideal atomic decomposition
threshold associated with bases 	1;j and 	2;j.

Lemma 9.5 Mj is exactly the same as the constant for the real Fourier system of cardi-

nality N = 2j�1:

Mj = 2�(j�2)=2:

Proof. Let �j denote the vector of wavelet coe�cients at level j and 
j denote the
vector of real bi-sinusoid coe�cients at level j stored in order (RW1, RW2, IW1, IW2),
then


j(!) = hS; e!i; ! 2 
j; (9.1)

and

�j(�) = hS;  �i; � 2 �j; (9.2)

using column vector notation, we have

�j =

�
D

D

� �
(DST-III) (DCT-III)

�R(DST-III) R(DCT-III)

�

j ;


j =
1

2

�
(DST-II) �(DST-II)R
(DCT-II) (DCT-II)R

� �
D

D

�
�j ;

where D is a diagonal matrix, Dkk = (�1)k+1, k = 0; 1; 2; : : : ; 2j � 1; (DST-III) and (DST-
II) are the matrices of type-III and type-II discrete sine transforms; (DCT-III) and (DCT-II)
are the matrices of the type-III and type-II discrete cosine transforms; and, �nally, R is the
reversing matrix, (skew-identity)

R =

0
B@

0 � � � 1
...

...

...
1 � � � 0

1
CA :

Now the quantityMj is the amplitude of the largest entry in the matrix representing Uj and
obtained by performing the above matrix products. However, by inspection, one sees thatM
will turn out to be just the largest amplitude in any one of the four submatrices representing
the various DCT/DST transforms. The closed form for one of these transforms of length
N , has entries of the form

p
2=N times a real sinusoid cos(argument) or sin(argument) and

so we get by inspection that the largest entry in such a matrix is not larger than
p
2=N .

Taking N = 2j�1 we are done. }
And hence we have the following.
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Theorem 9.6 Suppose that S is a linear combination of wavelets  �; � = (j; k; ") with

� 2 �, and of real bi-sinusoids e! with ! 2 
, and the sets of synthesis � and 
 obey

levelwise the inequality

j� \ �1;jj+ j
 \ �2;j j <
1

2

�
1 + 2(j�2)=2

�
: (9.3)

There is at most one way of writing S as such a superposition, and the corresponding sparse

vector � is the unique solution of both (P0) and (P1).

Some remarks.

1. If S obeys the condition (9.3) only at some levels and not others, then at least one
can say that decomposition according to (P0) and (P1) are identical at all levels where
the condition holds.

2. In essence, the sub-dictionaries are becoming increasingly disjoint as j ! 1, so the
sparsity constraint is essentially less restrictive at large j.

No essential role is played in Theorem 9.6 by the �nite-dimensionality of the overall
space RN . Accordingly, we may consider dictionaries with joint block diagonal structure
in the form of in�nite direct sums and reach similar conclusions.

In fact there is a simple dictionary of this form, based on Meyer wavelets on the con-
tinuum circle [0; 2�) and real bi-sinusoids on the continuum circle. Without going into
details, which are exactly parallel to those in the discrete-time case above (see [1]), we get
a sequence of vector spaces ~Vj0 and

~Wj, j � j0 obeying

L2[0; 2�) = ~Vj0 � ~Wj0 � ~Wj0+1 � � � � ;

and each of these is spanned by basis functions in the corresponding groupings. Continuing
in this way we would reach conclusions similar to Theorem 9.6: under the sparsity conditions
j� \ �1;jj + j
 \ �2;jj < C � 2j=2; j = j0; j0 + 1; : : : there is at most one way of writing a
function in L2 obeying those conditions, and the minimum-l1-norm decomposition �nds it.

10 Multiscale Bases with Block Band Structure

A drawback of Theorem 9.6 and the extension to L2[0; 2�) is that the real bi-sinusoids are
not classical sinusoids. At �rst blush one thinks to use the fact that each real bi-sinusoid
is a sum of two real sinusoids, which implies, in an obvious notation,

Nj(real bi-sinusoids) �
X

jj�j0j�1
Nj0(real sinusoids):

It follows that if the object f is a superposition of wavelets and real sinusoids, but we use
a dictionary of wavelets and real bi-sinusoids, then under the sparsity condition

Nj(wavelets) +Nj(real sinusoids) � C2j=2; j = j0 + 1; j0 + 2; : : : ;

the decomposition into wavelets and real bi-sinusoids is unique according to (P0) and (P1),
involving only the precise wavelets occurring in the expansion of f and the precise real bi-
sinusoids appearing in the expansion of sinusoids by real bi-sinusoids. However, it seems to
us that a conceptually cleaner result is Theorem 1.3 of the introduction, which assumes that
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f is made from wavelets and classical sinusoids and the dictionary is made from wavelets and
classical sinusoids. For a result of that form, we generalize somewhat from block diagonal
structure to block-banded structure.

Consider, then, a multiscale setting where basis �1 is associated with a multiresolution
decomposition

L2[0; 2�) = V 1
j0 �W 1

j0 � � � � �W 1
j �W 1

j+1 � � � �

and basis �2 is associated with another multiresolution decomposition

L2[0; 2�) = V 2
j0
�W 2

j0
� � � � �W 2

j �W 2
j+1 � � � � ;

but now W 1
j 6=W 2

j . Instead, we impose the condition of block-bandedness

W 1
j \W 2

j0 = ;; jj � j0j > h: (10.1)

Consider the following formal structure.

[1] � = �1 [ �2.

[2] The index set �1 for the atoms in �1 can be partitioned into subsets �1;j with W
1
j =

spanf'
 : 
 2 �1;jg. And similarly for �2, the index set �2 for the atoms in �2 can
be partitioned into subsets �2;j with W

2
j = spanf'
 : 
 2 �2;jg.

[3] For the capacity

K(
) = inffk�1k1 + k�2k1g; subject to

8<
:
hf; '
i = 1
�1 = (hf; '
i : 
 2 �1)
�2 = (hf; '
i : 
 2 �2)

we have the levelwise capacity

C(j) = infK(
); subject to 
 2 �1;j [ �2;j;

obeying the crucial condition

C(j)! +1; as j ! +1:

[4] We have the block-bandedness (10.1).

Lemma 10.1 In the setting [1]-[4], there exists a sequence of critical numbers Nj ! +1
with the following interpretation. If an L2 function f =

P

2� �
'
 is made of a countable

number of atoms from � with

#f
 2 �1;j [ �2;jg < Nj; (10.2)

then

(a) there is at most one way in which f can be decomposed into a sum of atoms obeying

this sparsity condition,

(b) the minimum l1-norm decomposition (P1) has a unique solution,

(c) the solution is the unique decomposition obeying (10.2),
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In this result, we may take

Nj =
1

4h+ 2
min

jj�j0j�h
C(j0): (10.3)

Proof. Let �0 collect the indices of atoms of f appearing non-trivially in a decomposition
f =

P

2� �
'
 . By hypothesis, �0 has at most a �nite number of terms �
 from each �1;j

and �2;j. We are interested in showing that for any object g having coe�cients x1
 = hg; '
 i,

 2 �1 and x

2

 in Basis 2,

X
�0\�1

jx1
 j+
X
�0\�2

jx2
 j <
1

2

�
k(x1
)k1 + k(x2
)k1

�
: (10.4)

It will follow as before that the minimum `1 norm atomic decomposition is precisely f =P
�0
�
'
 .

Now for 
 2 �1;j,

jx1
 j � C(j)�1 �
�
kx1k1 + kx2k1

�
;

and similarly for 
 2 �2;j ,

jx2
 j � C(j)�1 �
�
kx1k1 + kx2k1

�
:

For a vector x1 = (x1
 : 
 2 �1), let x
1;j = (x1
 : 
 2 �1;j) and similarly for x2;j. Let

�1;j = kx1;jk1=(kx1k1+kx2k1) and similarly for �2;j. Then from the short-range interaction
between scales (10.1),

jx1
 j � C(j)�1 �

0
@ X
jj0�jj�h

(�1;j0 + �2;j0)

1
A �

�
kx1k1 + kx2k1

�
;

and similarly for x2
 . It follows, letting �0;j = �0 \ (�1;j [ �2;j), thatX
j

X
�0;j

jx
 j �
X
j

C(j)�1(#�0;j)
X

jj0�jj�h
(�1;j0 + �2;j0) �

�
kx1k1 + kx2k1

�
:

Now note that

X
j

C(j)�1(#�0;j)
X

jj0�jj�h
(�1;j0 + �2;j0) �

X
j0

(�1;j0 + �2;j0)

2
4 X
jj0�jj�h

C(j)�1#�0;j

3
5

� sup
j0

X
jj0�jj�h

C(j)�1#�0;j;

as
P

j0(�1;j0 + �2;j0) � 1. In short, if

sup
j0

X
jj0�jj�h

C(j)�1#�0;j <
1

2
;

the su�cient condition (10.4) will follow. Now if, as in (10.3), #�0;j <
1

4h+2C(j), then

sup
j0

X
jj0�jj�h

C(j)�1#�0;j < sup
j0

X
jj0�jj�h

C(j)�1
1

4h+ 2
C(j)

=
1

2
:

26



This completes the proof. }
We now consider a dictionary built from an orthobasis of Meyer wavelets combined

with an orthobasis of true sinusoids. In this case the Vj0 and Wj are just as in the previous
section, but the W 0

j are now simply: the collection of all sines and cosines cos(w�) and

sin(w�) with 2j � w < 2(j+1) (i.e. sinusoids rather than bi-sinusoids). A key point is that
since the transformation from real bi-sinusoids to real sinusoids involves only �j, �j0 at
two adjacent values jj � j0j � 1, it follows that the bandedness condition (10.1) holds with
h = 1. A second key point is that each C(j) in this case di�ers from the corresponding
C(j) in the real-bi-sinusoid case by at most a factor 2.

Combining these observations gives a proof of Theorem 1.3 of the introduction in the
case where we interpret sinusoids to mean \real sinusoids".

The proof in the case where we interpret sinusoids to mean \complex sinusoids" is
similar.

11 Wavelets and Ridgelets

We now turn to Theorem 1.4 of the introduction. This example, combining the Meyer
wavelets and orthonormal ridgelets, has a block-banded structure.

We work with functions f(x1; x2) in L
2(R2) and consider two orthonormal sets: for �1

the 2-dimensional Meyer wavelets [1, 20] and for �2 the orthonormal ridgelets [11]. The
key properties we use are the following:

[1] The Meyer wavelets have frequency-domain support in the rectangular annulus A1
j ,

suppf j;k1;k2;"(�)g satis�es

� 2
�
�8

3
�2j ;

8

3
�2j

�
n
�
�2

3
�2j ;

2

3
�2j

�
:

[2] Orthonormal ridgelets have frequency-domain support in the circular annulus A2
j

j�j 2
�
2

3
�2j ;

8

3
�2j

�
:

[3] We use a coarse scale j0 > 0 for the Meyer wavelets, and we use only the part of the
ridgelet basis at ridge scales j > j0 + 2.

[4] We have A1
j \A2

j0 = ; if
p
2832

j < 2
32

j0

, i.e. j � j0 � 3, or 8
32

j0

< 2
32

j , i.e. j0 � j � 2.

[5] For W 1
j = spanf j;k1;k2g, W 2

j = spanf'j;k;i;lg, W 1
j ?W 2

j0 = ;, for jj0 � jj > 2.

In short, we have block-bandedness with h = 2.
We now calculate the levelwise capacity C(j). We may write

K(
) =
�
1 + 1= sup

�
jh'
 ; '
0ij : 
 6= 
0

	�
;

and

C(j) = inf fK(
) : 
 2 �1;j [ �2;jg :

The following Lemma shows that C(j) � C2�j=2 and proves Theorem 1.4 of the intro-
duction.
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Lemma 11.1 For the wavelet/ridgelet pair, and 
 2 �1;j [ �2;j,

sup fjh j;k1;k2;"; ��ij : �g � C2�j=2;

sup fjh��;  j;k1;k2;"ij : (j; k1; k2; ")g � C2�j=2;

where C is a constant independent of 
.

Proof. We pass to the frequency domain:

jh ; �ij =
1

2�
jh b ; b�ij

� 1

2�
k b k1kb�k1

=
1

2�
� 2�j � 2j=2 � C

= C � 2�j=2:

Here the estimates

k b k1 � C2�j;

kb�k1 � C2j=2

follow from known closed-form expressions for b and b� . }

12 Non-orthogonal Dictionaries

Much of what we have done can be generalized to the case where �1 and �2 are not required
to be orthogonal bases. In this case, we measure incoherence via

fM(�1;�2) = max

�
max
ij

j��11 �2jij ;max
ij

j��12 �1jij
�
;

which agrees with the previous measure if �1 and �2 are orthogonal; here �
�1
1 stands for

the matrix inverse to �1 and similarly for ��12 . We record the essential conclusions:

Theorem 12.1 Let �1 and �2 be bases for RN , and let � = �1 [ �2 be the dictionary

obtained by merging the two bases. Suppose that S can be represented as a superposition of

N1 atoms from Basis 1 and N2 atoms from Basis 2. If

N1 +N2 �
1

2
fM(�1;�2)

�1;

then the solution to (P1) is unique, the solution to (P0) is unique, and they are the same.

Proof. With the capacity ( eK
) now de�ned by

( eK
) inf k��11 xk1 + k��12 xk1; subject to hx; '�
i = 1;

where '
 is a basis function and '�
 is its dual, ie. the vector in the dual basis satisfying
h'
 ; '�
0i = �
;
0 . We use the estimate, for 
 associated with Basis 1,

hx; '�
i = h��12 x;�T
2 '

�

i

� k��12 xk1k�T
2 '

�

k1:
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So, with �
 the Kronecker sequence located at 
,

k�T
2 '

�

k1 = k�T

2 �
(�1)T
1 �
k1

� max

12�1;
22�2

j�T
2 �

(�1)T
1 j
1
2

� fM:

Hence

val( eK
) � 1 + fM�1:

Arguing as before, this implies that for a subset �0 � �,

X

2�0\�1

j��11 xj
 +
X


2�0\�2
j��12 xj
 <

�
1 + fM�1

��1
j�0j

�
k��11 xk1 + k��12 xk1

�
:

It follows that if S is generated by atoms in �0 and if

j�0j �
1

2
fM�1;

then the solution to (P1) is unique; the argument for (P0) is similar. }
As an application, consider the Basis �2 of geometrically decaying sinusoids. Let, for

�xed � 2 (0; 1), z = � expf2�i=Ng. For 
 = (2; w), let '
(t) = ztw � 1p
N
. Then the

f'
 : w = 0; 1; : : : ; N � 1g are linearly independent but not orthogonal; they would be
orthonormal if � = 1, but we consider only the case 0 < � < 1, which forbids this. With a
certain application in mind, we are mainly interested in � very close to one, e.g. � such that
�N � c, where c is substantial (e.g. 1=10, or 1=4). We remark that '�
(t) = (~z)tw � 1p

N
is the

dual basis, where ~z = ��1 expf2�i=Ng. Let �1 be the impulse basis, and let � = �1 [ �2.
Then

fM(�1;�2) = ��N=
p
N = c=

p
N

and we conclude that if S is a superposition of spikes and decaying sinusoids, then supposing

#(spikes) + #(decaying sinusoids) � 1

2c

p
N;

the minimum `1 atomic decomposition in dictionary � will �nd the common solution of
(P0) and (P1).

An area where this might be of interest is in magnetic resonance spectroscopy, where
the recorded signal is

S(t) = FID(t) + "(t);

where the free-induction decay (FID) is a sparse superposition of decaying exponentials
with the "(t) representing gross errors occurring at those moments of time where the FID
exceeds the analog-to-digital converter's upper bound. The above result says that if the
FID is accurately modelled as having a few oscillations with common decay rate, then it
can be perfectly recovered despite gross recording errors of arbitrary amplitude in unknown
locations. This is of particular interest in connection with the water-line problem of mag-
netic resonance spectroscopy, where the oscillations due to water are so large that they
cause the FID to over
ow in the �rst few recorded samples.
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13 Discussion

13.1 Continuous Time Uncertainty Principles

The point of view in this paper concerns the sparsity of representation in two bases:

If two bases are mutually incoherent, then no signal can have a highly sparse
representation in both bases simultaneously.

In the case of discrete-time signals and Spike/Sinusoid basis pair, this can be tangibly
related to time-frequency concentration. In the case of continuous-time signals, this `lack of
simultaneous sparsity' principle does not seem to connect directly with classical uncertainty
principles. Those principles concern the extent to which a continuous-time function f =
(f(t) : t 2 R) can have small support in both time and frequency-domain simultaneously
[14].

By restating the argument used in Section 3 above, we obtain a continuous-time uncer-
tainty principle. De�ne the Fourier transform by f̂(!) =

R
f(t) expf�2�i!tgd!; with the

2� factor in the exponent, the transform f ! f̂ is unitary. For sets T � R and W � R,
de�ne the concentration functional

�c(T;W ) = supf
R
T
jf(t)jdt+

R
W
jf̂(!)jd!

kfkL1 + kf̂kL1

: f 2 L1 \ FL1g:

This measures the extent to which an integrable function with integrable Fourier transform
can be concentrated to the pair (T;W ). We then have, by arguments parallel to Section 3,

Theorem 13.1

�c(T;W ) � jT j+ jW j:

For example, a function cannot have more than 90% of its combined L1 norms in (T;W )
unless jT j+ jW j > :9.

Proof. De�ne the capacities

(K1;t) inf kfkL1 + kf̂kL1 : f(t) = 1:

Evidently, Val(K1;t) is independent of t. Similarly, de�ne

(K2;!) inf kfkL1 + kf̂kL1 : f̂(!) = 1;

and note also that Val(K2;!) is independent of !. From the completely interchangeable
roles of time and frequency, Val(K2;0) = Val(K1;0). From

f(0) =

Z
f̂(!)d!

we have

jf(0)j � kf̂kL1

and so Val(K1;0) � 1, while setting f(t) = expf�t2=�2g with � ! 0 shows that we can

have functions f with f(0) = 1, kfkL1 � 0 and kf̂kL1 = 1; hence

Val(K1;0) = 1:
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Now if kfkL1 + kf̂kL1 = 1,Z
T

jf(t)jdt+
Z
W

jf̂(!)jd! �
Z
T

Val(K1;t)
�1dt+

Z
W

Val(K2;!)
�1d!

=

Z
T

1dt+

Z
W

1d!

= jT j+ jW j:

}
This form of uncertainty principle is more symmetric and so in a sense more natural

than related L1 uncertainty principles [12, 24] and of course it gives the same type of insight.

13.2 Behavior of � for Scattered Sets

The connection to the uncertainty principle is useful, above all, for the insights it gives back
to the possible behavior of �(T;W ). It suggests immediately that the su�cient condition
(� < 1=2) for ideal atomic decomposition holds for many sets T andW where the combined
cardinality of T and W far exceeds

p
N , cardinalities as large as c �N being possible, if T

and W have the right `disorganization'.
In [12], the behavior of a functional similar to the quantity �0 of Section 6 was studied

for a collection of randomly-generated, highly scattered sets T ,W . Also some basic analysis
of simple T , W con�gurations was made. It was found that if T and W are in some sense
\scattered", one could have quite small � even though T andW were very large sets in total
measure. In short, a condition like jT jjW j=N � 1=2 was found to be in no way necessary

for low concentration, unless T and W are very carefully arranged in a \picket-fence"form.
In [13], the behavior of a functional similar to �0 was analyzed in the case where W is

an interval. It was found that T could have very large measure, even proportional to N ,
and still one could have �0 � 1=2, provided in each interval of a certain length, there was
only a small number of points from T ; here the length of the interval was reciprocal to the
size of the frequency band W .

Both of these strands of investigation indicate clearly that the
p
N threshold and the

mutual incoherence property should be viewed simply as worst-case measures. Typically,
we can relax our quantitative sparsity constraint signi�cantly, and, as long as T and/or W
are su�ciently scattered, we will still have favorable concentration ratios.

To investigate this idea, we performed a computational experiment in the (Spikes,Sinusoids)
dictionary. As in Section 3, we note a simple su�cient condition for a sequence (�
) to be
a unique solution of the `1 problem. Suppose the sequence is supported on a set T [W
with sign sequence �
 = sign(�
). In order to be to be a set of uniqueness for the `1, it is
su�cient that, for all � 2 N ,

X
T[W

�
�
 <
1

2
k�k1:

In our experiment, we generated 1000 sets T[W with variousN , Nt andNw, and calculated
by linear programming

~�(T;W ; �) = sup
X



�
�
 ; subject to k�k1 � 1; � 2 N :

As an example, we computed realizations of ~� for N = 32 and Nt = Nw 2 f3,
6; 9; 12; 15; 18; 21, 24g. Figure 3 presents a histogram of our results, illustrating that, within
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a given set of parameters N;Nt; Nw, the obtained values of ~� exhibit a roughly Normal dis-
tribution, with increasing values of Nt and Nw leading to increasing ~�, as they must. It
is clear that a simple numerical summary of the distribution, such as the median of each
histogram, will adequately describe the distribution of ~�.
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Figure 3: Histograms of ~�(T;W ; �). N = 32. Ordered from left to right and top to bottom,
Nt = Nw = 3; 6; 9; 12; 15; 18; 21; 24 respectively.

Figure 4 presents a display of the median values of ~� in simulations at N = 32; 64
and 128, plotted as three curves, with median(~�) displayed versus the density � = (Nt +
Nw)=(2N). We make the following observations:

� The curves are very similar at di�erent N , so that the description of ~� as dependent
on the density � seems reasonable.

� The curves are almost linear, roughly obeying the equation

median(~�) � 0:32 + 0:79�

� The curves cross the critical threshold concentration = 1=2 near � = 0:2.

These results suggest that for a large collection of triplets (T;W; �) one has, at the
same time, jT j + jW j � N=5 and ~� < :5; in such cases the associated (P1) has a unique
solution. In such cases, the method of minimum `1-norm atomic decomposition will give
a unique solution. This suggests that the results proved in this paper under restrictive
sparsity assumptions may point the way to a phenomenon valid under far less restrictive
sparsity assumptions.
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Figure 4: Plot of median(~�) versus density � for N = 32; 64; 128. The curve associated
with N = 32 is the lowest and the curve associated with N = 128 is the highest.
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