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Abstract

We develop a unifying perspective on several decompositions exhibiting directional parabolic
scaling. In each decomposition, the individual atoms are highly anisotropic at fine scales,
with effective support obeying the parabolic scaling principle length ≈ width2. Our com-
parisons allow to extend Theorems known for one decomposition to others.

We start from a Continuous Curvelet Transform f �→ Γf (a, b, θ) of functions f(x1, x2)
on R2, with parameter space indexed by scale a > 0, location b ∈ R2, and orientation θ.
The transform projects f onto a curvelet γabθ, yielding coefficient Γf (a, b, θ) = 〈f, γabθ〉;
the corresponding curvelet γabθ is defined by parabolic dilation in polar frequency domain
coordinates. We establish a reproducing formula and Parseval relation for the transform,
showing that these curvelets provide a continuous tight frame.

The CCT is closely related to a continuous transform introduced by Hart Smith in
his study of Fourier Integral Operators. Smith’s transform is based on true affine parabolic
scaling of a single mother wavelet, while the CCT can only be viewed as true affine parabolic
scaling in euclidean coordinates by taking a slightly different mother wavelet at each scale.
Smith’s transform, unlike the CCT, does not provide a continuous tight frame. We show
that, with the right underlying wavelet in Smith’s transform, the analyzing elements of the
two transforms become increasingly similar at increasingly fine scales.

We derive a discrete tight frame essentially by sampling the CCT at dyadic intervals
in scale aj = 2−j , at equispaced intervals in direction, θj,� = 2π2−j/2�, and equispaced
sampling on a rotated anisotropic grid in space. This frame is a complexification of the
‘Curvelets 2002’ frame constructed by Emmanuel Candès et al. [1, 2, 3]. We compare this
discrete frame with a composite system which at coarse scales is the same as this frame but
at fine scales is based on sampling Smith’s transform rather than the CCT. We are able
to show a very close approximation of the two systems at fine scales, in a strong operator
norm sense.

Smith’s continuous transform was intended for use in forming molecular decompositions
of Fourier Integral Operators (FIO’s). Our results showing close approximation of the
curvelet frame by a composite frame using true affine paraboblic scaling at fine scales allow
us to cross-apply Smith’s results, proving that the discrete curvelet transform gives sparse
representations of FIO’s of order zero. This yields an alternate proof of a recent result of
Candès and Demanet about the sparsity of FIO representations in discrete curvelet frames.
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1 Introduction

An important role in modern harmonic analysis is played by parabolic dilations

φa(x1, x2) = φ1(a1/2x1, ax2),

so called because they leave invariant the parabola x2 = x2
1. It is also useful to choose the

coordinate system in which the dilation is applied, resulting in directional parabolic dilations
of the form

fa,θ(x1, x2) = fa(Rθ(x1, x2)′).
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where again Rθ is rotation by θ radians. Such dilations can be used to generate vaguely ‘wavelet-
like’ decompositions, where unlike classical wavelets, resulting ‘wavelets’ are highly directionally-
oriented; at fine scales they are increasingly long compared to their width: width ≈ length2.

The motivation for decompositions based on parabolic dilations comes from several sources.
Starting in the 1970’s they were used in harmonic analysis, for example by Fefferman [9] to
study the Lp boundedness of Bochner-Riesz summation and later by Seeger, Sogge, and Stein
[13] to study the boundedness of Fourier Integral operators. More recently, Hart Smith [14]
used parabolic scaling to define function spaces preserved by Fourier Integral Operators, while
Candès and Donoho [3] used parabolic scaling to define frame decompositions of image-like
objects which are smooth apart from edges; see also [7]. So parabolic dilations are useful in
representing operators and singularities along curves.

In this paper, we discuss four recent types of decompositions based on parabolic scaling and
describe the similarities and relationships between them.

We start from a continuous curvelet transform f �→ Γf (a, b, θ) of functions f(x1, x2) on R2,
with continuous parameter space indexed by scale a > 0, location b ∈ R2, and orientation
θ. Associated to each parameter triple is an analyzing element γabθ generating coefficients
Γf (a, b, θ) = 〈f, γabθ〉. Each element γabθ is defined by what we call polar-coordinate parabolic
scaling; its Fourier transform is supported on a wedge in the polar domain, and in the spatial
domain is smooth and of rapid decay away from an a by

√
a rectangle with minor axis pointing

in direction θ. We establish a reproducing formula and a Parseval relation for the transform,
showing that these elemnts provide a continuous tight frame.

The CCT is first compared to a continuous curvelet-like transform used by Hart Smith in his
study of Fourier Integral Operators. In our reformulation of Smith’s transform, the difference is
principally that Smith’s transform is based on affine parabolic scaling of a single mother wavelet,
while the CCT uses a slightly different mother wavelet at each specific scale. The impact: Smith’s
transform, unlike the CCT, does not provide a continuous tight frame. We show that, with the
right mother wavelet in Smith’s transform, the analyzing elements become increasingly similar
to the CCT at fine scales.

The CCT is then compared to a discrete curvelet tight frame recently developed by Candès
at al. [1, 3, 2]. We take the viewpoint that this new frame can be viewed as essentially sampling
the CCT at dyadic intervals in scale aj = 2−j , at equispaced intervals in angle θj,� = 2π ·2−j/2 ·�
and on a rotated equispaced grid in space b

(j,�)
k1,k2

= Rθj,�
(2−jk1, 2−j/2k2). More precisely, We

show that for two slighly different curvelet systems γ0
abθ and γ1

abθ, an appropriate sampling
(ψj,k,�) = (γr

aj ,b
(j,�)
k1,k2

,θj,�

) (setting r = 0 or 1 according as the scale j is even or odd) yields a tight

frame. Thus the coefficients αj,k,� = Γr(aj , b
(j,�)
k1,k2

, θj,�) obey the discrete Parseval relation ‖f‖2
2 =

∑
|αj,k,�|2. This is not quite an equispaced sampling of the CCT, but rather an interleaving at

alternate scales of equispaced samplings of two (very slightly) different CCT’s.
As with the CCT, the curvelet frame elements are not quite parabolic dilations all of a single

generating function; there is a slight variation in the generating function from one scale to the
next. As in the continuous case, we are able to show that the wavelets involved in the discrete
tight frame are very close to affine scalings of a single mother wavelet. In fact we consider a
system of analyzing elements made by true affine parabolic scaling, and show that, if one ‘splices’
the curvelet frame at low frequencies to the true affine parabolic system at high frequencies, one
gets a discrete frame which has essentially the same properties as the discrete curvelet frame.

Hart Smith’s transform was constructed to form molecular decompositions of Fourier Integral
Operators (FIO’s). Smith gave a Lemma implying that if a frame were based on true parabolic
scalings of a single wavelet, it would provide a sparse representation for FIO’s of order zero.
Because the curvelet frame is so close to a frame based on true parabolic scaling, we are able to
use Smith’s lemma to infer that curvelets give a sparse representation of FIO’s of order 0. This
yields an alternate proof of a recent result of Candès and Demanet [2] about the sparsity of FIO
representations in curvelet tight-frames.
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Contents

Section 2 constructs a continuous curvelet transform based on a polar parabolic scaling, pro-
viding a Calderón reproducing formula, (i.e. exact reconstuction) and a Parseval relation for
that transform. Section 3 discusses our reformulation of Hart Smith’s transform based on true
parabolic scaling. Section 4 samples the CCT to produce a frame and explains that this is a
complexified version of the discrete curvelet frame in [1, 3, 2]. Section 5 compares the complexi-
fied discrete curvelet frame with a sampling of Smith’s transform and shows that the properties
are extremely close at fine scales. Section 6 shows how to use this similarity at fine scales to
apply results on FIO sparsity relevant to a sampling of Smith’s transform, obtaining results
about sparsity of FIOs in the discrete curvelet frame. Section 7 concludes with a discussion.

2 Transform based on Polar Parabolic Scaling

We define a CCT with a continuous scale/location/direction parameter space; compare [4]. We
work throughout in R2, with spatial variable x, with ξ a frequency-domain variable, and with
r and ω polar coordinates in the frequency-domain. We start with a pair of windows W (r) and
V (t), which we will call the ‘radial window’ and ‘angular window’, respectively. These are both
positive and real-valued, with W taking positive real arguments and supported on r ∈ (1/2, 2)
and V taking real arguments and supported for t ∈ [−1, 1]. These windows will always obey the
admissibility conditions:

∫ ∞

0

W (r)2
dr

r
= 1, (1)

∫ 1

−1

V (t)2dt = 1. (2)

We use these windows in the frequency domain to construct a family of complex-valued waveforms
with three parameters: scale a > 0, location b ∈ R2 and orientation θ ∈ [0, 2π) (or (−π, π)
according to convenience below). At scale a, the family is generated by translation and rotation
of a basic element γa,0,0:

γabθ(x) = γa,0,0(Rθ(x − b)),

where Rθ is the 2-by-2 rotation matrix effecting planar rotation by θ radians. The generating
element at scale a is defined by going to polar Fourier coordinates (r, ω) and setting

γ̂a00(r, ω) = W (a · r) · V (ω/
√

a) · a3/4, 0 < a < a0.

Thus the support of the γ̂ is a polar ‘wedge’ defined by the support of W and V , the radial and
angular windows, applied with scale-dependent window widths in each direction. In effect, the
scaling is parabolic in the polar variables r and ω, with ω being the ‘thin’ variable. However,
note that the element γa,0,0 is not a simple affine change-of-variables acting on γa′,0,0 for a′ 	= a.
We initially omit description of the transform at coarse scales, and so ignore low frequency
adjustment terms. These elements become increasingly needle-like at fine scales.

Equipped with this family of high-frequency elements, we can define a Continuous Curvelet
Transform Γf , a function on scale/location/direction space:

Γf (a, b, θ) = 〈γabθ, f〉, a < a0, b ∈ R2, θ ∈ [0, 2π).

Here and below, a0 is a fixed number – the coarsest scale for our problem. It is fixed once and
for all, and must obey a0 < π2 for the above construction to work properly. a0 = 1 seems a
natural choice.
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Theorem 1 Let f ∈ L2 have a Fourier transform vanishing for |ξ| < 2/a0. Let V and W obey
the admissibility conditions (1)-(2). We have a Calderón-like reproducing formula, valid for such
high-frequency functions:

f(x) =
∫

Γ(a, b, θ)γabθ(x)µ(da db dθ), (3)

and a Parseval formula for high-frequency functions:

‖f‖2
L2 =

∫

|Γ(a, b, θ)|2µ(da db dθ), (4)

in both cases, µ denotes the reference measure dµ = da
a3 dbdθ.

Proof. The argument is analogous to standard arguments for the Calderón reproducing
formula for the ordinary continuous wavelet transform. We rehearse only the formal aspects, ig-
noring convergence details, which are similar to those for the usual continuous wavelet transform
[10]. Consider the contribution to the reproducing formula (3) from a single scale:

ga,θ(x) =
∫

〈γabθ, f〉γabθ(x)db

We are to show that

f(x) =
∫ a0

0

∫ 2π

0

gaθ(x)dθ
da

a3
. (5)

Now γabθ(x) = γa,0,θ(x − b), so

ga,θ(x) =
∫

γa0θ(x − b)
(∫

γ∗
a0θ(y − b)f(y)dy

)

db

=
∫

γa0θ(x − b) (γ̃∗
a0θ 
 f) (b)db

= ((γa0θ 
 γ̃∗
a0θ) 
 f) (x),

where γ̃a0θ(x) = γ∗
a0θ(−x). Now on the Fourier side,

(γa0θ 
 γ̃∗
a0θ)

̂(ξ) = |γ̂a0θ(ξ)|2

Hence,

ĝa,θ(ξ) = |γ̂a0θ(ξ)|2 · f̂(ξ), ∀ξ ∈ R2.

Substituting this in (5), we obtain that the Fourier transform is given by

f̂(ξ) =
∫

ĝaθ(ξ)dθ
da

a3

= f̂(ξ) ·
∫

|γ̂a0θ(ξ)|2dθ
da

a3
,

and so we must verify that

1 =
∫

|γ̂a0θ(ξ)|2dθ
da

a3
∀ξ ∈ suppf̂ . (6)

We will see that this follows from the admissibility conditions (1)-(2). Now from the definition
of γ̂a0θ, if we put eω = (cos(ω), sin(ω)),

γ̂a0θ(r · eω) = W (a · r) · V ((ω − θ)/
√

a) · a3/4.
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So rewrite
∫ a0

0

∫ 2π

0

|γ̂a0θ(ξ)|2dθ
da

a3
=

∫ a0

0

∫ 2π

0

W (a · r)2V ((ω − θ)/
√

a)2a3/2dθ
da

a3
;

using admissibility of V , (2), we have
∫ 2π

0
V ((ω − θ)/

√
a)2dω = a1/2, so (6) reduces to

1 =
∫ a0

0

W (a · r)2 da

a
∀r = |ξ| with ξ ∈ suppf̂ ;

Now, for r = |ξ| with ξ ∈ suppf̂ , we have r > 2/a0, so a simple rescaling of variables and
admissibility of W , (1), gives

∫ a0

0

W (a · r)2 da

a
=

∫ a0r

0

W (a)2
da

a
=

∫ 2

1/2

W (a)2
da

a
= 1.

This gives (6) and completes the formal aspects of the proof of (3).
We now consider the proof of (4).

∫

{a<a0}
|〈γabθ, f〉|2µ(da db dθ) =

∫

{a<a0}
|(γ̃∗

a0θ 
 f)(b)|2dbdθ
da

a3
.

The Plancherel formula now gives
∫

{a<a0}
|〈γabθ, f〉|2µ(da db dθ) =

1
(2π)2

∫

|f̂(ξ)|2|γ̂a0θ(ξ)|2dξdθ
da

a3

=
1

(2π)2

∫

|f̂(ξ)|2
(∫

|γ̂a0θ(ξ)|2dθ
da

a3

)

dξ

=
1

(2π)2

∫

|f̂(ξ)|2dξ = ‖f‖2
L2 ,

where we used (6). �
Remark. The reference measure is important for what follows. We prefer to think of it as

dµ =
db

a3/2

dθ

a1/2

da

a

suggesting that the range of b be viewed as divided into unit cells of side a by
√

a (and so area
a3/2), the range of θ is naturally viewed as divided into unit cells (intervals) of side

√
a, and the

range of log(a) has unit cells of side 1. This point of view will be very important in understanding
the sparsity and discretization of the transform.

We can extend this transform to low frequencies as follows. Let f be an L2 function, and let

P1(f) =
∫

a<a0

Γ(a, b, θ)γabθ(x)µ(da db dθ).

In the frequency domain, we have

P̂1(f)(ξ) = f̂(ξ) ·
(∫ a0

0

W (a · |ξ|)2 da

a

)

= f̂(ξ) · Ψ̂(ξ)2,

say. (The definition as a square makes sense because the integrand in parentheses is real and
nonnegative, Ψ̂(ξ)2 =

∫ a0|ξ|
0

|W (a)|2 da
a .) Set Φ̂(ξ)2 = 1 − Ψ̂(ξ)2. Then

P1(f)(x) = Ψ 
 f, P0(f) = f − P1(f) = Φ 
 f.

From the argument in the proof of Theorem 1, we can see that

Φ̂(ξ) = 0, |ξ| > 2/a0, Φ̂(ξ) = 1, |ξ| < 1/(2a0).
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and 0 ≤ Φ̂(ξ), Ψ̂(ξ) ≤ 1, while by construction

Φ̂(ξ)2 + Ψ̂(ξ)2 = 1.

Define now the ‘father wavelet’ Φa0,b(x) = Φ(x − b), and note that

P0(f)(x) =
∫

〈Φa0,b, f〉Φa0,b(x)db.

Hence we have

f(x) = P0(f)(x) + P1(f)(x),

valid in an L2 sense for all functions in L2. Moreover,
∫

|〈Φa0,b, f〉|2db = ‖Φ 
 f‖2
2,

and
∫

{a<a0}
|〈γabθ, f〉|2µ(dadbdθ) = ‖Ψ 
 f‖2

2.

This gives the formal part of the proof for:

Theorem 2 Let f ∈ L2(R2). Then

f =
∫

〈Φa0,b, f〉Φa0,b(x)db +
∫ a0

0

∫ ∫

〈γabθ, f〉γabθ(x)µ(da db dθ)

and

‖f‖2
2 =

∫

|〈Φa0,b, f〉|2db +
∫ a0

0

∫ ∫

|〈γabθ, f〉|2µ(da db dθ)

We can think of the ‘full CCT’ as consisting of curvelets at fine scales and isotropic father
wavelets at coarse scales. For our purposes, it is only the behavior of the fine-scale elements that
matters.

3 Transform based on Affine Parabolic Scaling

Let Pa,θ be the parabolic directional dilation of R2 given in matrix form by

Pa,θ = D1/aR−θ

where D1/a = diag(1/a, 1/
√

a) and R−θ is planar rotation by −θ radians. For a vector v ∈ R2,
define the norm

|v|a,θ ≡ |Pa,θ(v)|;

this metric has ellipsoidal contours with minor axis pointing in direction θ.
Suppose now that we take a single ‘mother wavelet ’ ϕ and define an affine system

ϕabθ = ϕ(Pa,θ(x − b)) · Det(Pa,θ)1/2. (7)

Classically, the term ‘wavelet transform’ has been understood to mean that a single waveform
is operated on by a family of affine transformations, producing a family of analysing waveforms.
So this transform fits in with the classical notion of wavelet family, except that the family of
parabolic affine transforms is nonstandard.

Hart Smith in [14] studied essentially this construction, with two inessential differences: first,
instead of working with scale a and direction θ, he worked with the frequency variable ξ ≡ a−1eθ,
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and second, instead of using the L2 normalizing factor Det(Pa,θ)1/2, he used the L1 normalizing
factor Det(Pa,θ). In any event, we pretend that Smith had used the scale/location/direction
parametrization and the L2 normalization as in (7) and call

Γf (a, b, θ) = 〈ϕabθ, f〉 a < a0, b ∈ R2, θ ∈ [0, 2π).

Hart Smith’s directional wavelet transform based on affine parabolic scaling.
While affine parabolic scaling is conceptually a bit simpler than the scaling we have mostly

studied here, it does complicate life a bit. Here is the result paralleling to Theorem 1.

Theorem 3 (Translation of Smith, 1998 into new parametrization/normalization). There is a
Fourier multiplier M of order 0 so that whenever f is a high-frequency function supported in
frequency space |ξ| > 2/a0,

f =
∫

〈ϕabθ, Mf〉ϕabθdµ

and

‖f‖2
2 =

∫

|〈ϕabθ, M
1/2f〉|2dµ.

Here dµ = a−3dbdθda and Mf is defined in the frequency domain by a multiplier formula
m(|ξ|)f̂(ξ), where the multiplier m is a symbol of order 0.

Here the multiplier m(r) is a smooth function tending to a constant at infinity and with decaying
derivatives; for terminology on multipliers of order 0, see [16, 8].

In short, one has to work not with the coefficients of f but with those of Mf . An alter-
nate approach, not discussed by Smith, defines dual elements ϕ�

abθ ≡ Mϕabθ and changes the
transform definition to either

f =
∫

〈ϕ�
a,b,θ, f〉ϕabθdµ

or

f =
∫

〈ϕa,b,θ, f〉ϕ�
abθdµ.

This more complicated set of formulas leads to a few annoyances which are avoided using the CCT
we defined in the previous section. We will see that there are other advantages to the definition
of the CCT when it comes to discretizing the transform, which are discussed elsewhere.

However, for many purposes, the two transforms have similar behavior. For an elementary
example, we have :

Lemma 3.1 Suppose that the windows V and W underlying the CCT are C∞, and that the
mother wavelet generating the Smith transform Γ has the frequency-domain representation

ϕ̂a00(ξ) = cW (aξ1)V (
ξ2√
aξ1

)a3/4, a < ā0,

for the same windows V and W , where c is some normalizing constant, and ā0 is the transform’s
coarsest scale. Then at fine scales we have the equivalence

sup
b,θ

‖γabθ − ϕabθ‖2 → 0, a → 0.

Much finer notions of equivalence could be developed here; some of these will be explored in
far more detail in the discrete setting in Section 5 below. The proof of Lemma 3.1 will follow
completely as in Section 5’s discussion of the discrete case, so the proof is omitted.
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4 Discretization by Sampling

Obviously Γf (a, b, θ) is not an arbitrary continuous function of a, b, and θ. It is best thought of as
broken into a collection of coherent regions, each covering a ‘unit cell’ in scale/space/orientation
– where a cell has µ-measure about 1. Indeed, the transform is very smooth, and over small
neighborhoods of (a, b, θ) space having µ-measure much smaller than 1 it cannot vary by much.

Consider then discretizing the CCT according to tiles Q = Q(j, k1, k2, �) which obey the
following desiderata:

• In tile Q(j, k1, k2, �), scale a runs through a dyadic interval 2−j > a ≥ 2−(j+1).

• At scale 2−j , locations run through rectangularly shaped regions with aspect ratio roughly
2−j by 2−j/2.

• The tile contains orientations running through 2π�/2j/2 ≤ θ < 2π(� + 1)/2j/2.

• The location regions are rotated consistent with the orientation b ≈ Rθ�
(k1/2j , k2/2j/2),

θ� = 2π�/2j/2.

• The tiles pack together neatly to cover the full scale/location/direction space with minimal
overlap.

Note again that for such tiles µ(Q) ≈ 1. Over such tiles different values of Γf (a, b, θ) are roughly
comparable and different curvelets γabθ as well. Hence it is sensible to decompose the reproducing
formula into a discrete sum of subrepresentations based on coherent regions:

f(x) =
∫

Γ(a, b, θ)γabθ(x)dµ

=
∑

Q

∫

Q

Γ(a, b, θ)γabθ(x)dµ

=
∑

Q

mQ(x), mQ(x) =
∫

Q

Γ(a, b, θ)γabθ(x)dµ

=
∑

Q

AQMQ(x), AQ = ‖Γ(a, b, θ)‖L2(Q), (8)

where the MQ are L2 normalized ‘directional molecules’ and the AQ are amplitudes. It can be
shown that each MQ is a smooth function, has anisotropic effective support obeying parabolic
scaling, and so on. It can also be shown that the coefficient amplitudes measure various norms;
thus

∑
Q A2

Q � ‖f‖2
2, etc. Molecular decompositions of this kind have a long history in wavelet

analysis [10]; it may be expected that this type of decomposition in the curvelet setting would
have many equally important applications.

Unfortunately, such molecular decompositions have the drawback that they are nonlinear in
f . There are many potential advantages of a discrete decomposition which is linear and has
fixed elements. We now construct such a transform, roughly the idea is to sample the continuous
transform at a range of scales aj , orientations θj,� and locations bj,�

k1,k2
, according to

• aj = 2−j , j ≥ 0.

• θj,� = π/2 · � · 2−�j/2�, 0 ≤ � < Lj ≡ 4 · 2�j/2�.

• The locations bk1,k2 run through a j, � dependent grid defined by

bj,�
k1,k2

= Rθj,�
(k1/2j , k2/2j/2) (9)

where Rθ denotes planar rotation by θ radians, and k1, k2 run over Z2.

The construction goes in two stages, first building a semi-discrete transform where the spatial
variable b is continuous but the other variables j, � are discrete; and then discretizing the space
variable.
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4.1 Semi-Discrete Transform

Pick now windows W (r) and V (t) similar to the windows of the continuous transform – both
are real, nonnegative, C∞, supported in (1/2, 2) and in (−1, 1) respectively. They should obey
discrete admissibility conditions analogous to the continuous ones used above:

∞∑

j=−∞
W 2(2jr) = 1, r ∈ (3/4, 3/2); (10)

∞∑

�=−∞
V 2(t − �) = 1, t ∈ (−1/2, 1/2). (11)

These conditions are basically compatible with the admissibility conditions (1)-(2) for the contin-
uous transform. More precisely, if we have a window V satisfying the above condition (11), then
it automatically satisfies the continuous admissibility condition (2), while if we have a window
W satisfying (10), then it automatically also satisfies the continuous admissibility condition (1)
up to a constant of proportionality:

∫

W 2(ar)
da

a
= log(2).

We also define ã
1/2
j = 1

2 · 2−�j/2�.
We are going to construct a family φj,b,�(x) analogous to our earlier construction of curvelets.

At scale aj , the family is generated by translation and rotation of a basic element φj,0,0:

φj,b,�(x) = φj,0,0(Rθj,�
(x − b)).

The generating element at scale aj is defined by going to polar Fourier coordinates (r, ω) and
setting

φ̂aj ,0,0(r, ω) = W (aj · r) · V
(

ω

πã
1/2
j

)

· a3/4
j , j = 0, 1, . . . .

This is very similar to the definition of the analyzing elements of the CCT. Again, these elements
are not quite affine parabolic scaling of a single wavelet. Note also that the angular width of φ̂’s
support in frequency space is π · 2−�j/2�. We can then define the semidiscrete transform via

Γ̃(j, b, �) = 〈φj,b,�, f〉.

This transform has an exact reconstruction formula and a Parseval relation.

Theorem 4.1 Let f be a high frequency function with f̂(ξ) vanishing for |ξ| < 2/a0. Then

f =
∑

j

∑

�

∫

Γ̃(j, b, �)φj,b,�db/a
3/2
j , (12)

and

‖f‖2
2 =

∑

j

∑

�

‖Γ̃(j, ·, �)‖2
L2(R2)a

−3/2
j . (13)

We again just give the formal elements of the proof. Define

gj,�(x) =
∫

〈φj,b,�, f〉φj,b,�(x)db/a
3/2
j .

9



Then, as in Theorem 1,

ĝj,�(ξ) = |φ̂j,b,�(ξ)|2 · f̂(ξ), ∀ξ ∈ R2

= f̂(ξ) · W 2(aj |ξ|)V 2

(
ω − θj,�

πãj
1/2

)

.

Now

Lj−1∑

�=0

V 2

(
ω − θj,�

πãj
1/2

)

=
Lj/2−1∑

−Lj/2

V 2(t − �) = 1,

where t is proportional to the distance from ω to the nearest among the θj,�. Hence,

Lj−1∑

�=0

ĝj,�(ξ) = f̂(ξ)W 2(aj |ξ|).

We have assumed that ξ ≥ 2/a0. Hence from the fact that W is supported in (1/2, 2), we have

∑

j≥0

W 2(aj |ξ|) =
∑

j≥0

W 2(2−j |ξ|) =
∞∑

j=−∞
W 2(2−j |ξ|) = 1.

We conclude that

f̂(ξ) =
∑

j

∑

�

ĝj,�(ξ),

and the result (12) follows.
We now consider (13). Arguing as in Theorem 1,

∑

j

∑

�

∫

|Γ̃(j, b, �)|2db/a
3/2
j =

∑

j,�

‖gj,�‖2
2

= (2π)−2

∫

|f̂(ξ)|2



∑

j,�

|W (aj |ξ|)|2|V (
ω − θj,�

πãj
1/2

)|2


 dξ

= (2π)−2

∫

|f̂(ξ)|2dξ = ‖f‖2
2.

4.2 Tight Frame

We now go to the final step and obtain a full tight frame, by sampling the semidiscrete decom-
position. We define frame coefficients

αj,(k1,k2),� = Γ̃(j, bj,�
k1,k2

, �),

for j ≥ 0, (k1, k2) ∈ Z2, and 0 ≤ � < Lj ; here the bj,�
k1,k2

are as in (9). Abusing notation, the
corresponding frame elements are

φj,k,� ≡ φj,bj,�
k1,k2

,�.

We note that the spatial sampling uses a different rectangular grid for each different orientation
and that it has a different spacing in each of the two orthogonal directions, consistent with
parabolic scaling.
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Theorem 4.2 Let f be a highpass L2 function. Then we have

f =
∑

j,k,�

αj,k,�φj,k,�,

in L2(R2), and

‖f‖2
2 =

∑

j,k,�

|αj,k,�|2.

The proof is merely to verify that

gj,� =
∑

k

αj,k,�φj,k,�

and

‖gj,�‖2
2 =

∑

k

|αj,k,�|2.

We verify this for � = 0 only, as the other cases follow by rotation of coordinates. We make
two remarks, formalized as Lemmas. Together, these lemmas imply the case � = 0 and therefore
yield the full proof.

Lemma 4.1 For j ≥ 1, φ̂j,0,0(ξ) has support bounded inside a rectangle which if translated to
the origin, would fit inside the rectangle

[−π2j , π2j ] × [−π2j/2, π2j/2].

This is proven by simple inspection of the region {|ξ| : 2j−1 ≤ |ξ| ≤ 2j+1, |ω| < πã
1/2
j }.

Lemma 4.2 Suppose that Φ ∈ L2(R2) is a bandlimited function with

supp(Φ̂) ⊂ [−πA, πA] × [−πB, πB].

Suppose that g ∈ L2(R2) is defined in the frequency domain by

ĝ(ξ) = |Φ̂(ξ)|2f̂(ξ).

Then set Φk1,k2(x) = Φ(x1 − k1/A, x1 − k2/B). We have

g(x) =
∑

k

〈Φk1,k2 , f〉Φk1,k2(x).

and

‖g‖2
2 =

∑

k

|〈Φk1,k2 , f〉|2.

This Lemma is well-known and frequently used throughout wavelet theory and filterbank theory;
compare [6, 12, 10].

4.3 Interpretation

The frame that we have just constructed is almost identical to the discrete curvelets frame
proposed by Candès and coauthors [1, 2, 3]; that frame is set up so that the frame elements are
real valued; it can be be produced from this one by averaging together terms at θj,� with those
at −θj,�. Thus we see that there is an intimate connection between the discrete curvelets frame
and the CCT. For simplicity, we will also call the frame constructed here a curvelet frame.
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We have written above that the frame is produced by equispaced sampling of the CCT, but
that is not strictly correct. While in almost all respects the Γ̃ and Γ are the same, there are
two important discrepancies: first, as mentioned earlier, the W window in the continuous case
obeys a slighly different normalization than the W window in the discrete case, so we could at
best expect Γ ∝ Γ̃; but more seriously, Γ̃ dilates in the polar angular variable using ã

1/2
j rather

than a
1/2
j . Now these two quantities are identical for even j, but not for odd j. One way to

look at this is as follows. It is as if we have two different continuous transforms Γ1(a, b, θ) and
Γ2(a, b, θ), with Γ = Γ1 as we have discussed so far, but with Γ2 based on an angular window
V 2(·) = V (

√
2·). Thus Γ2 uses a slightly different generating curvelet at each scale than Γ1.

Then we have for appropriate constants ci,

Γ̃(j, k, �) =

{
c1 · Γ1(aj , b

j,�
k1,k2

, θj,�) j even
c2 · Γ2(aj , b

j,�
k1,k2

, θj,�) j odd
.

In essence, the curvelet frame is an interleaving of sampling from two different frames at alternate
scales. For an alternate approach, see the discussion section below.

5 Comparison of Frames

The discrete curvelet frame is not the result of affine changes of variables to a single generating
element. In this section we consider a sense in which ‘at fine scales’ the curvelet frame is very
close to such a system.

Consider then a curvelet in standard position and orientation: k = 0 and � = 0. In the
Fourier domain, it is given by

φ̂j,0,0 = W (ajr)V (ω/πã
1/2
j )a3/4

j . (14)

Now define an affiliated wavelet based on true parabolic scaling i.e. not using polar variables:

ϕ̂j,0,0(ξ) = W (ajξ1)V (
ξ2

ξ1

1

πã
1/2
j

)a3/4
j . (15)

Note that, by construction, the ϕ̂j,0,0(ξ) are all true affine images of a single generator:

ϕ̂j′,0,0(ξ) = ϕ̂j,0,0(dj′,jξ1, ej′,jξ2)fj′,j

where

dj′,j =
aj′

aj
; ej′,j =

aj′/ã
1/2
j′

aj/ã
1/2
j

fj′,j =
a
3/4
j′

a
3/4
j

.

Such a relationship would not be true in the curvelet family, where the generator is (slightly)
different at each different scale. Now visual comparison of (14)-(15) suggests that, each pair of
corresponding elements in the two families are close. Indeed, the arguments to the corresponding
V and W are almost the same. Letting Ξj denote the support of φ̂j,0,0 we have,

‖ r

ξ1
− 1‖L∞(Ξj) → 0, j → ∞.

‖ξ2/ξ1

ω
− 1‖L∞(Ξj) → 0, j → ∞.

By smoothness of V and W we immediately see that the two families match up, element for
element, at very fine scales, proving

12



Lemma 5.1

0 = lim
J→∞

sup
j≥J

sup
k,�

‖φj,k,� − ϕj,k,�‖2;

In fact, a much stronger matching-up of the two systems occurs. Consider then the curvelet
frame Φ = {φj,k,�} and the composite system ΦJ defined so that at coarse scales it uses elements
from the curvelet frame, and at fine scales it uses elements obeying true affine parabolic scaling:

ΦJ = {φj,k,� : j ≤ J} ∪ {ϕj,k,� : j > J}.

It turns out that, for large J , the two systems are nearly equivalent.

Theorem 5.1 For all sufficiently large J , ΦJ is a frame. In fact the frame bounds tend to 1 as
J → ∞. Let f be an L2 function, and let α be the coefficient sequence generated by the curvelet
frame Φ and let α(J) be the coefficient sequence generated by the composite frame ΦJ . Then

0 = lim
J→∞

sup
f �=0

‖α(f) − α(J)(f)‖2

‖f‖2
.

Dually, let α be a coefficient sequence and let f(α) be the synthesis of f using Φ and fJ(α) using
ΦJ . Then

0 = lim
J→∞

sup
α�=0

‖f(α) − fJ(α)‖2

‖α‖2
.

Finally, suppose that f is a function with sparse curvelet transform: for 0 < p ≤ 1 we have
‖α(f)‖p < ∞. Then f also has a sparse ΦJ frame transform ‖α(J)(f)‖p < ∞ - and vice versa.
In fact, with constants that depend on p only,

‖α(f)‖p � ‖α(J)(f)‖p.

This result justifies the effective equivalence of our notion of parabolic scaling to traditional
parabolic scaling. Either system gives sparse coefficients if and only if the others sequence does.
It will will play a key role in deducing the FIO representation theorem in the next section. We
carry out the proof over the next two subsections.

5.1 Gram Matrices of the Two Frames

For notational simplicity let Q = (j, k, �) denote a scale/location/orientation triple. Consider
the tight frame Gram matrix

M#(Q, Q′) = 〈φQ, φQ′〉

and the cross-frame matrix

MJ(Q, Q′) = 〈φQ, ϕQ′〉.

The cross-frame matrix relates coefficients α in the Φ frame to coefficients α(J) in the ΦJ system.
Thus, if f = ΦJ(α(J)) then f = Φ(α) where α = MJα(J). We also observe that because Φ is a
tight frame, M# is Hermitian and idempotent

M# = (M#)H ; (M#)2 = M#. (16)

Here MH means the Hermitian transpose of M .
For such matrices, and for 0 < p ≤ 1 define the p-norm by the maximum �p norm of any row

or column:

‖M‖p = max



(sup
Q

∑

Q′

|M(Q, Q′)|p)1/p, (sup
Q′

∑

Q

|M(Q, Q′)|p)1/p




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(Of course, for 0 < p < 1 this is not actually a norm but instead a quasi-norm; it does not
obey the triangle inequality but instead the p-triangle inequality.) For this norm and p ≤ 1, we
observe that if N and M are matrices

‖M · N‖p ≤ ‖M‖p · ‖N‖p,

as can be seen by systematic application of the p-triangle inequality for vectors
∑

i |ui + vi|p ≤∑
i |ui|p +

∑
i |vi|p. A further useful observation is that the usual matrix norm

|||M ||| ≡ sup
x�=0

‖Mx‖
‖x‖

is controlled by the p-norm:

|||M ||| ≤ ‖M‖p.

Thus convergence in p-norm implies usual norm convergence of matrices.
Using these facts and sharpening the analysis beyond the pointwise convergence, we get the

following showing strong convergence:

Lemma 5.2 For all J > J0, ‖MJ‖p < ∞. Moreover,

‖M# − MJ‖p → 0, J → ∞.

For sufficiently large J , the matrix M†
J can be defined by the convergent infinite series

M†
J = MJ

∑

t≥1

(M# − MJMH
J )t;

this obeys ‖M†
J‖p < ∞, and is a generalized right-hand inverse

MJM†
J = M#. (17)

Finally,

‖M# − M†
J‖p → 0, J → ∞.

This of course implies everything stated in Theorem 5.1, and much more. The proof depends
on an analysis, given in the next section, where we use smoothness of V and W to refine the
comparison of φ̂j,0,0 and of ϕj,0,0 as in Lemma 3.1 so as to yield the following:

Lemma 5.3 For p ∈ (0, 1] there is Cp < ∞ so

max
Q

∑

Q′

|〈φQ, φQ′〉|p < Cp. (18)

For p ∈ (0, 1] there is a sequence (εJ,p) with εJ,p → 0 as J → ∞ so that letting ϕQ denote
the Q-th element of the frame ΦJ ,

max
Q′

∑

Q

|〈φQ, φQ′ − ϕQ′〉|p < εJ,p (19)

Also, for the same p ∈ (0, 1] and the same sequence (εJ,p)

max
Q

∑

Q′

|〈φQ, φQ′ − ϕQ′〉|p < εJ,p (20)

14



Together with Hermitian symmetry of M#, (18) immediately implies the sparsity of the
frame Gramian:

‖M#‖p
p < Cp < ∞,

Using the p-triangle inequality ‖MJ‖p ≤ ‖M#‖p+‖M#−MJ‖p we get the uniform boundedness
of MJ :

‖MJ‖p
p ≤ Cp + εJ,p.

Hence, ‖MJ‖�p
< ∞ and for large J , |||MJ ||| < ∞ as well. It follows that, if α = MJα(J),

‖α‖2 = ‖MJα(J)‖ ≤ |||MJ ||| · ‖α(J)‖2,

which is half what we need to show that ΦJ is a frame. The Lemma also implies the convergence

‖MJ − M#‖p → 0, J → ∞,

which gives

|||MJ ||| → |||M#||| = 1;

hence the upper frame bound constant for ΦJ tends to 1 with increasing J .
We now turn to parts of the Theorem concerning lower frame bounds; this means we must

study the existence and properties of the pseudo-inverse M†.
Suppose now that we have a coefficient sequence α(J) which can synthesize f using the ΦJ

frame: f = ΦJ(α(J)) =
∑

Q α
(J)
Q ϕQ. We wish to convert this to a coefficient sequence α that

synthesizes the same function, only using the Φ frame: f =
∑

αQφQ where αQ = 〈f, φQ〉. This
job is accomplished by α = MJα(J). The purpose of the matrix M†

J is to go in the other direction.
Given coefficients α that synthesize f through the frame Φ, find coefficients that synthesize that
same function through the frame ΦJ . This means to ‘invert’ MJ , i.e. to solve MJα(J) = α,
which we will write as α(J) = M†

Jα. Now we are interested in solving this equation only when
we are given α satisfying α = M#α. Our solution should therefore satisfy

MM†α = M#α.

The result M† therefore obeys (17) above.
To obtain such a matrix, we consider an iterative scheme based on simple relaxation for

solving for α(J) given α. Set for short M = MJ and set δ(0) = α, where α is in range(M#).
Then put

A(1) = MHδ(0), δ(1) = δ(0) − MA(1).

In essence, we are using MH to ‘guess’ an element A(1) which may be close to α(J). Then we
compute the implied approximation to α(J) which such a ‘guess’ would generate, and get the
approximation error δ(1). Now as δ(0) ∈ range(M#), we have δ(1) ∈ range(M#) as well. We
can continue this iteration, getting A(2), δ(2), etc., where for clarity we spell out

A(2) = MHδ(1), δ(2) = δ(1) − MA(2);

and later terms in the iteration are defined analogously. Note that with sufficient control on
‖M − M#‖p, we can show that this iteration converges geometrically. We can formalize this:

Lemma 5.4 Fix 0 < p ≤ 1, and suppose ‖M − M#‖p < (1/4)1/p/‖M#‖p. Then

‖δ(k)‖2 ≤ (3/4)k‖δ(0)‖2,

and so both series
∑

k≥0 δ(k) and
∑

k≥0 A(k) are absolutely summable.
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Proof. Indeed, each δ(k) is in the range of M#, and

δ(k+1) = (I − MMH)δ(k) = (M# − MMH)δ(k).

Now, writing ∆ = M − M#

M# − MMH = (M#)2 − (M# + ∆)(M# + ∆)H = ∆(M#)H + M#∆H + ∆∆H .

Hence, from ‖∆‖p = ‖M − M#‖p < (1/4)1/p/‖M#‖p, and ‖M#‖p ≥ 1

‖M# − MMH‖p
p ≤ 2‖M#‖p

p‖∆‖p
p + ‖∆‖2p

p < 1/2 + 1/16 = 3/4.

Hence,

‖δ(k+1)‖2 ≤ |||M# − MMH |||‖δ(k)‖2 ≤ ‖M# − MMH‖p‖δ(k)‖2 ≤ (3/4)1/p‖δ(k)‖2.

Given this geometric decay, and the boundedness |||MH ||| ≤ ‖M‖p < ∞ we conclude that
(A(k))k = (MHδ(k))k is a summable sequence. �

This Lemma justifies the definition α(J) = A(1) + A(2) + . . . . It also justifies the formal
calculation

Mα(J) = MA(1) + MA(2) + . . . = (δ(0) − δ(1)) + (δ(1) − δ(2)) + . . . = δ(0)

to conclude that

Mα(J) = α;

in short, the iterative scheme rigorously solves the problem of ‘inverting’ M .
Now in effect the iterative scheme is equivalent to applying the matrix M†, where

M† = M
∑

t≥1

(M# − MMH)t;

By Lemma 5.4, this is well defined as soon as ‖MJ − M#‖p < (1/4)1/p/‖M#‖p (which will
eventually be satisfied for J large enough); the sum on the right hand side converges, because
(as in Lemma 5.4) this implies ‖M# − MMH‖p ≤ 3/4, and so defines a matrix with

‖M†‖p ≤ ‖M‖p(
∑

t≥1

‖(M# − MMH)t‖p
p)

1/p ≤ 3 · ‖M‖p;

and hence |||M†||| < ∞. This gives the lower frame bound immediately:

‖α(J)‖2 = ‖M†
Jα‖ ≤ |||M†

J |||‖α‖2,

All the claims in Theorem 5.1 are now established.

5.2 Sparsity of the Gram Matrix

Here and below, we use the notation 〈a〉 = (1+a2)1/2. All the claims given in Lemma 5.3 follow
from the two basic sets of estimates. First, let ψj,0,0 denote either of φj,0,0 or ϕj,0,0. Then, for
each m = 1, 2, 3, . . . there are constants Cm so that

|〈ψj,0,0, φj′,k,�〉| ≤ Cm1{|j−j′|≤1} · 1{|θj,�|≤10ã
1/2
j } · 〈|b

j,�
k1,k2

|aj ,0〉−m ∀j, j′, k, �. (21)

In words, this says that different terms interact only if they are comparable in scale and orien-
tation and then only if their locations are close in the metric |v|aj ,0 = |(v1/aj , v2/

√
aj)|2.

The second estimate concerns the difference between the two systems. For each m =
1, 2, 3, . . . , there is a sequence εm,j tending to zero with increasing j so that

|〈φj,0,0 − ϕj,0,0, φj′,k,�〉| ≤ εm,j · 1{|j−j′|≤1} · 1{|θj,�|≤10ã
1/2
j } · 〈|b

j,�
k1,k2

|aj ,0〉−m ∀j, j′, k, �. (22)
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The interpretation is similar to the previous one, only the point is that even when terms interact,
they are small for large j.

Before developing these estimates, we remark that they immediately imply (18), (19), (20).
Indeed, |bj,�

k1,k2
|aj ,0 ≥ C〈|(k1, k2)|〉. Thus,

∑

k1,k2

|〈|bj,�
k1,k2

|aj ,0〉−m|p ≤ C
∑

k1,k2

〈|(k1, k2)|〉−mp.

On the other hand 〈k1〉〈k2〉 ≤ 2〈|(k1, k2)|〉, and picking mp > 1, we have for i = 1, 2 that∑
ki
|〈ki〉|−mp < Cm,p.

Both estimates follow from familiar principles about decay of Fourier transforms of smooth
functions, after translation into a setting of parabolic scaling. We first recall the well-known
basic principle.

Lemma 5.5 Let g be a bandlimited function, with ĝ supported in a fixed bounded rectangle Ξ
and belonging to C∞

0 (Ξ). Then for each m = 2, 4, 6, . . . there are constants Cm depending only
on m and diam(Ξ), so that

|g(b)| ≤ Cm · (‖ĝ‖∞ + ‖ĝ‖Cm)〈|b|〉−m

Proof. This is very standard, but we reproduce it here for the convenience of some read-
ers. From the Fourier inversion g(b) = (2π)−2

∫
eiξ′bĝ(ξ)dξ and the spatial-domain multiplier

representation of the frequency-domain Laplacian ∆ =
∑

i
∂2

∂ξ2 ,

(−|b|2)kg(b) = (2π)−2

∫

eiξ′b(∆kĝ(ξ))dξ, k = 1, 2, . . .

we immediately get

|g(b)| ≤
∫

|ĝ(ξ)|dξ, |b|2k|g(b)| ≤
∫

|∆kĝ(ξ)|dξ

from which

(1 + |b|2k)|g(b)| ≤ Diam(Ξ)2 · (|ĝ|∞ + ‖ĝ‖C2k),

and (1 + |b|2k) ≥ 〈|b|〉−2k. �
An obvious parabolic rescaling of Lemma 5.5 gives

Lemma 5.6 Suppose we have a sequence of functions (fj) so that every f̂j is supported in a
rectangle

Ξj = [−C1/aj , C2/aj ] × [−C2/a
1/2
j , C2/a

1/2
j ]

and each rescaled function

ĝj(u, v) = f̂j(u/aj , v/
√

aj)a
−3/2
j

obeys ‖ĝj‖Cm ≤ γm, m = 2, 4, 6, . . . , independently of j. Then for m = 1, 2, 3, . . . there are
constants cm so that

|f̂j(b)| ≤ cm(γ0 + γm) · 〈|b|aj ,0〉−m ∀b.

We now apply this parabolic variant of the decay principle to get the two estimates (21)-(22).
To get the first estimate, we note that

〈φj,0,0, φj,k,�〉 = (2π)−2

∫

e−iξ′bk f̂j(ξ)dξ,
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where

f̂j(ξ) = W (ajr)V (
ω

πã
1/2
j

)W (aj′r)V (
ω − θj′,�

πã
1/2
j′

)a3/4
j · a3/4

j′ .

As we are trying to control a Fourier transform, the estimation Lemma 5.6 will be brought into
play. Note that the pairs in the product (WV ) · (WV ) have disjoint support unless |j − j′| ≤ 1
and |θj′,�′ | < 10√aj . Rescaling the product according to

ĝj(u, v) = f̂j(u/aj , v/
√

aj)a
−3/2
j

yields a function which can be decomposed into factors following the original product structure:

ĝj(u, v) = Ṽ0,j(u, v)W̃0,j(u, v) · Ṽ0,j′,j(u, v)W̃1,j′,j(u, v).

Here the factors Ṽi,j and W̃i,j individually belong to C∞, and by inspection we can see they
obey bounds on derivatives independent of j and j′ as soon as they are sufficiently large. For
example, consider W̃0,j(u, v) = W (

√
u2 + aj · v2). This is a function on a fixed domain (u, v) ∈

[C1/4, 4C1] × [C2, C2], for all large enough j. Now evidently, for each m ≥ 1 we can find a
constant ηm so that on this domain

‖
√

u2 + aj · v2‖Cm ≤ ηm j → ∞,

and of course W is smooth, so similar types of control are available for the Cm norms W̃0,j on
this domain, valid for all sufficiently large j. Similar analyses apply to the other terms. Hence
the product of those terms is C∞ with bounds on the Cm norms independent of j, j′ once they
are both sufficiently large and |j − j′| ≤ 1. Applying the estimation Lemma 5.6 gives the result
(21).

The argument for (22) is similar.

〈φj,0,0 − ϕj,0,0, φj′,k,�〉 = (2π)−2

∫

e−iξ′bk f̂j(ξ)dξ,

where

f̂j(ξ) =

(

W (ajr)V (
ω

πã
1/2
j

) − W (ajξ1)V (
ξ2

ξ1

1

πã
1/2
j

)

)

· W (aj′r)V (
ω − θj′,�

πã
1/2
j′

)a3/4
j · a3/4

j′ .

which rescales as

ĝj(u, v) =
(
W̃0,j(u, v)Ṽ0,j(u, v) − W̃1,j(u, v)Ṽ1,j(u, v)

)
· W̃2,j′,j(u, v)Ṽ2,j′,j(u, v).

Here, for example

W̃0,j(u, v) = W (
√

u2 + aj · v2)), W̃1,j(u, v) = W (u).

These are both functions on a fixed domain in (u, v) ∈ [C1/4, 4C1]× [C2, C2]. Now evidently for
each m ≥ 1 on this domain we have

‖
√

u2 + aj · v2 − u‖Cm → 0, j → ∞.

By smoothness of W we have that, for every m = 1, 2, . . . , there is a sequence η1
m,j → 0 as

j → ∞ with

‖W̃0,j(u, v) − W̃1,j(u, v)‖Cm ≤ η1
j,m.

We get a sequence η2
j,m giving similar control on the factors Ṽ0,j(u, v) − Ṽ1,j(u, v) by parallel

arguments. The factors Ṽ2,j′,j(u, v)W̃2,j′,j(u, v) are handled as for the first family of estimates
discussed earlier, the Cm norms being bounded by constants γm for all sufficiently large j′.
Combining all these bounds, we get a sequence εj,m → 0 so that for each m

‖ĝj(u, v)‖Cm ≤ εj,m → 0 j → ∞.

Applying Lemma 5.6 completes the estimate (22).
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6 Sparse Representation of FIO’s

Parabolic-scaling decompositions have been used in earlier work to obtain representations and
boundeness properties of Fourier Integral Operators. In particular, Hart Smith in [14] proved
the invariance under diffeomorphisms of certain properties on molecular decompositions f =∑

AQmQ as in (8). His arguments concerned, as we have mentioned, a continuous transform
based on affine parabolic scaling strictu sensu. However, using the results we have just proven
on the comparison of frames Φ and ΦJ , we can draw parallel conclusions for the frame Φ, which
we now do.

A (local) Fourier Integral Operator of order 0 [11, 8] is an operator T generated by

(Tf)(x) =
∫

eiΦ(x,y,ξ)a(x, y, ξ)f(y)dydξ; (23)

here a belongs to the symbol class S0(R4 × R2) of usual pseudo-differential symbols as in [11],
and the phase function Φ satisfies nondegeneracy conditions

det(
∂

∂xi

∂

∂ξj
Φ) 	= 0; det(

∂

∂yi

∂

∂ξj
Φ) 	= 0.

Examples of FIO’s include:

• Change of variables operators Tf(x) = f(κ(x)) where κ is a diffeomorphism of R2, in
which case a = 1 and Φ(x, y, ξ) = ξ′(y − κ(x));

• Pseudodifferential operators, where Tf(x) =
∫

e−iξ′xa(x, ξ)f̂(ξ)dξ, which implicitly is of
the form (23) with Φ(x, y, ξ) = ξ′(x − y), and a is a symbol of order 0.

There is some sense in which these two examples, taken together, exhaust the class of FIO’s;
microlocally, an FIO may be interpreted as a composition of a change-of-variables with a pseu-
dodifferential operator.

A key notion in microlocal anlysis is that of canonical transformation of phase space; we
let S∗(R2) denote the cosphere bundle of R2 – loosely, {(x0, θ0) : x0 ∈ R2, θ0 ∈ [0, 2π)}. If
we consider a diffeomorphism κ : R2 �→ R2, then it maps space/codirection pairs (x0, θ0) into
space/codirection pairs χ(x0, θ0) = (κ(x0), κ∗θ0), where κ∗θ0 is the codirection into which the
codirection θ0 based infinitesimally at x0 is mapped under κ. In effect, a diffeomorphism κ
of the base space induces a diffeomorphism χ of the phase space. More generally, a canonical
transformation is a diffeomorphism of the phase space which locally behaves as if it were induced
by such a global diffeomorphism of the base space.

We now show how to adapt ideas of [14] to obtain the following result.

Theorem 6.1 Suppose T is a local Fourier integral operator of order 0 such that the Lagrangian
relation of T is the graph of a homogeneous canonical transformation, and such that the distri-
bution kernel of T vanishes outside a compact set. Let S = (〈φQ, TφQ′〉) denote the matrix
representation of the operator T using the curvelets frame. Then the matrix is sparse:

‖S‖p < ∞ ∀p > 0.

In short, the curvelet frame sparsely represents Fourier Integral Operators of order 0. More
extensive results of this kind have been developed by Candès and Demanet. Our argument here
merely applies an estimate from the paper [14] in the frame ΦJ and then uses the sparsity of the
change-of-frame matrices connecting Φ and ΦJ .

To state the key estimate, we use Smith’s parabolic distance in phase space [14]. Given phase
space pairs (x, θ), (x′, θ′), define the pseudo-distance

d(x, θ;x′, θ′) = |〈eθ, x
′ − x〉| + |〈eθ′ , x′ − x〉| + min(|x′ − x|, |x′ − x|2) + |θ − θ′|2,

where eθ ≡ (cos(θ), sin(θ)). Roughly speaking, displacements in space which align with the
codirections are treated much more seriously than those which are not aligned. Using these
notions, Smith showed the following:
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Lemma 6.1 (Smith, Lemma 3.11, 1998) Let T be as in the statement of Theorem 6.1. Let ηi,
i = 1, 2, be bandlimited functions with η̂i both C∞ and supported in |ξ − (1, 0)| < 1/4. Let ηi

j,0,�

be affine parabolic dilation of ηi according to Rθj,�
Daj

, and let ηi
j,b,�(x) = ηj,0,�(x − b). Set

T j′,�′

j,� (b, b′) = 〈η1
j,b,�, Tη2

j′,b′,�′〉, b, b′ ∈ R2.

Then, for each N > 0,

|T j′,�′

j,� (b, b′)| ≤ CN · 〈aj′

aj
〉−N · 〈 aj

aj′
〉−N · 〈d((b, θj,�);χ(b′, θj′,�′))〉−N . (24)

Here the constant CN depends on N , T , and ηi, i = 1, 2, but not on j,j′, �, or �′.

Define a matrix Si,i′ by sampling (b, b′)-space according to the schemes we used in Section 4
above:

Si,i′

Q,Q′ =
(
T j′,�′

j,� (bj,�
k1,k2

, bj′,�′

k′
1,k′

2
)
)

The lemma implies that this matrix is sparse: for each p > 0, ‖Si,i′‖p < ∞.
In a moment we will show how this sparsity immediately implies:

Lemma 6.2 Let T be as in the statement of Theorem 6.1. Let S(J) denote the matrix defined
using the frame ΦJ by

S
(J)
Q,Q′ = 〈ϕQ, TϕQ′〉.

This matrix is sparse: for each p > 0, ‖S(J)‖p < ∞.

There is also a corresponding part of Smith’s lemma concerning low-frequency functions,
which offers the expected counterpart of the above, and which we use implicitly without any
comment.

Before proving this lemma, we remark that it proves Theorem 6.1. Indeed, the S matrix to
be bounded in the Theorem is related to S(J) of the Lemma by:

S = MJS(J)M†
J

where MJ and M†
J are the change-of-frame matrices in the previous section. But, of course

‖S‖p ≤ ‖MJ‖p · ‖S(J)‖p · ‖M†
J‖p

where finiteness of ‖MJ‖p and ‖MJ‖p has been established in the last section. Hence, finiteness
of ‖S(J)‖p implies that of ‖S‖p.

It remains to prove Lemma 6.2. Note that the Lemma 6.1 would provide exactly what is
needed, if it could be applied to elements of the curvelet frame ΦJ with a constant CN not
depending on j, j′, � or �. However, Smith’s Lemma as stated makes the (in our context)
restrictive assumption that ηi have Fourier transforms supported in |ξ − (1, 0)| < 1/4, so it does
not apply immediately; and the curvelet frame ΦJ does not use affine parabolic scaling, which
is also an obstacle to immediate application.

Each frame element ϕj,0,�, after parabolic affine rescaling, has a Fourier transform ϕ̂j which is
compactly suported in a fixed rectangle in polar coordinates, [1/2, 2]×[−1, 1], say. This rectangle
can be covered by a finite system of overlapping balls B(ξi, 1/4). With such a system, we can
construct a smooth finite partition of unity (wi) such that

ϕ̂j(ξ) =
∑

i

wi(ξ)ϕ̂j(ξ) =
∑

i

ηj,i(ξ). (25)

Now each ηj,i is localized in a small ball in frequency space as in Smith’s hypothesis. However,
the ball is ‘centered’ at ξi rather than (1, 0). Hence the parabolic rescaling ηj,i

j,b,� is centered at
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scale ai
j (rather than aj) and angle θi

j,� (rather than θj,�). Lemma 6.1 applies in this setting,
with this slightly different set of angles and scales, yielding:

|〈ηj,i
j,b,�, η

j′,i′

j′,b′,�′〉| ≤ CN,(j,i),(j′,i′) · 〈
ai′

j′

ai
j

〉−N · 〈
ai

j

ai′
j′
〉−N · 〈d((b, θi

j,�);χ(b′, θi′

j′,�′))〉−N . (26)

Now note that

|θi
j,� − θj,�| < C

√
aj , | log(aj/ai

j)| < 3.

We have the relations

〈
ai

j

ai′
j′
〉 � 〈 aj

aj′
〉

and

〈d((b, θi
j,�);χ(b′, θi′

j′,�′))〉 � 〈d((b, θj,�);χ(b′, θj′,�′))〉;

in both, the implied constants are independent of j,j′. Using the finiteness of the sum in (25),
we sum inequalities (26) to get that

|〈ϕj,b,�, Tϕj′,b′,�′〉| ≤ CN,j,j′ · 〈aj′

aj
〉−N · 〈 aj

aj′
〉−N · 〈d((b, θj,�);χ(b′, θj′,�′))〉−N . (27)

We now make the observation that, although the system ΦJ is not generated by affine parabolic
scaling of a single element, it is generated by affine parabolic scaling of only J + 1 different
elements – because there are only J different levels where we use polar parabolic scaling as
opposed to true affine parabolic scaling. Hence, as the underlying estimate (24) is uniform
across all pairs at fine scales generated by affine parabolic scaling, there are really only finitely
many different constants CN,j,j′ involved in this estimate, and so,taking

C∗
N = max

0≤j,j′≤J
CN,j,j′

gives the same form of inequality as (27) with C∗
N in place of CN,j,j′ . For large enough N

this inequality is p-th power summable either in j, k, � or j, k′, �′; so we get a sum bounded
independently of the row or column being summed, hence Lemma 6.2 follows.

7 Discussion

We have described several transforms and their interrelationships. There are other possibilities.
For example, it is possible to further simplify the relation between continuous and discrete tight

frames. One can, in fact, define a continuous transform ˜̃Γ(a, b, θ) which makes a continuous
tight frame, and in which simple equispaced sampling yields (up to a proportionality factor),
the coefficients of a discrete tight frame. One simply defines curvelets spanning two octaves at
once, and samples only every other scale. The details are easy to supply using the framework of
Sections 2 and 4 above.
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