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Abstract

We present a deterministic approximation algorithm to compute logarithm of the number of ‘good’
truth assignments for a random k-satisfiability (k-SAT) formula in polynomial time (by ‘good’ we mean
that violate a small fraction of clauses). The relative error is bounded above by an arbitrarily small
constant ǫ with high probability1 as long as the clause density (ratio of clauses to variables) α <
αu(k) = 2k−1 log k(1 + o(1)). The algorithm is based on computation of marginal distribution via belief
propagation and use of an interpolation procedure. This scheme substitutes the traditional one based
on approximation of marginal probabilities via MCMC, in conjunction with self-reduction, which is not
easy to extend to the present problem.

We derive 2k−1 log k(1 + o(1)) as threshold for uniqueness of the Gibbs distribution on satisfying
assignment of random infinite tree k-SAT formulae to establish our results, which is of interest in its
own right.

1 Introduction

Setup and Problem Statement. GivenN boolean variables xi, 1 ≤ i ≤ N , anM clause k-satisfiability
(k-SAT) formula has the form F = ∧M

j=1Cj , where Cj = ∨k
ℓ=1zjℓ

with literal zjℓ
being either xi for x̄i

for some 1 ≤ i ≤ N . An assignment x ∈ {0, 1}N of variables xi, 1 ≤ i ≤ N satisfies clauses Cj if at
least of one the k literals of Cj evaluates to be true. We will denote true by “1” and false by “0”. For
given F , E(x) denote the number of unsatisfied clauses of F under assignment x. Given β ∈ R+ (called
inverse temperature in statistical physics), define partition function as

ZN (β, F ) ≡
∑

x∈{0,1}N

e−βE(x) . (1)

Notice that ZN (β, F ) weighs in favor of “good” assignments, i.e. assignments that satisfy more clauses.
As β → ∞, ZN(β, F ) becomes the number of assignments that satisfy (all clauses of) F . The partition
function naturally arises as normalizing constant in the following probability measure on {0, 1}N , often
denoted as Boltzmann distribution [1] related to F : for x ∈ {0, 1}N ,

µβ,F (x) =
1

ZN(β, F )

M∏

j=1

ψj(x) =
e−βE(x)

ZN (β, F )
, where ψj(x) =

{
1 if x satisfy clause Cj ,
e−β otherwise.

(2)
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1In this paper, by term ”with high probability” (whp) we mean with probability 1 − oN (1).



We shall write µ( · ) = µβ,F ( · ) whenever it will not be necessary to specify the formula and inverse
temperature. We further denote by 〈 · 〉 = 〈 · 〉β,F expectations with respect to the measure µ.

In this paper, we are interested in random k-SAT formulas. These are generated by selecting M
clauses independently and uniformly at random from all possible 2k

(
N
k

)
k-clauses. Specifically, let M

scale linearly in N , i.e. M = αN for α ∈ R+.
The main motivation in this paper is to describe an efficient algorithm to compute a good ap-

proximation of ZN(β, F ) for such random formulas. An important open conjecture is to show, that
for any α, β ∈ R+, under the probability distribution induced by random k-SAT formula, the limit
limN→∞

1
N logZN (β, F ) exists with probability 1. The analysis of our algorithm implies such a result

for all finite β, and α smaller than a critical value.

Related Previous Work. The well-known threshold conjecture for random k-SAT states that for all
k ≥ 2, there exists αc(k) such that for α < αc(k) (resp. α > αc(k)) the randomly generated formula
is satisfiable (resp. not satisfiable) with probability 1 as N → ∞. There has been a lot of interesting
work on this topic, and a convergence of methods from different communities [2, 3, 4]. Due to space
limitation, we will recall only some of the key relevant results.

Friedgut [14] established existence of a sharp threshold. More precisely, he proved that there exists
αc(k,N) such that the satisfiability probability tends to 1 (to 0) if α < αc(k,N)(1 − η) (respectively
α > αc(k,N)(1 + η)). While it is expected that limN→∞ αc(k,N) exists, it has still remained elusive.
Recently, Achlioptas and Peres [6] established that αc(k,N) = 2k ln k(1 + ok(1)) thus implying that
αc(k,N) can be taken N independent to first order for large k.

The existence of limN→∞ limβ→∞
1
N logZN (β, F ) with probability 1, for all α ∈ R+ and k naturally

establishes the threshold conjecture. More generally, the log-partition function at β = ∞ provides
detailed information about the satisfying assignments (computing it exactly is of course #-P complete).
In [7] a formula for the limit log-partition function was derived through the non-rigorous replica method
from statistical physics. The existence of the N → ∞ limit was proved by Franz, Leone and Toninelli [8,
9] for even k and all values of α. These authors also provided an upper bound on limN→∞

1
N logZN (β, F ).

However evaluating the bound requires solving an a priori complex optimization problem, and a matching
lower bound wasn’t proved there. Talagrand [5] established the existence of the limit and its value for
very small value of β (depending on k).

Overview of Results. In this paper, we essentially prove that the Boltzmann distribution (2) is a
pure state [1] by establishing appropriate worst-case correlation decay for tree formulae. The approach of
Talagrand [5] also crucially relied of proving correlation decay, albeit with different means. This resulted
in a limitation to small values of β and thus leaving out interesting regime of large β.

An analogy can be drawn with the Markov Chain Monte Carlo (MCMC) approach to the approximate
computation of partition functions (see, for example, work by Jerrum and Sinclair [10]). In that case,
the crucial step consists in proving an appropriate mixing condition (‘temporal’ correlation decay) for
some Markov Chain. The same role is played here by ‘spatial’ correlation decay with respect to the
measure (2).

In this paper, we establish correlation decay for random k-SAT formula for a range of α and all β.
This allows to estabilish that deterministic Belief Propagation algorithm provides a good approximation
of the marginals with respect to the distribution (2), cf. Section 3. In the usual MCMC approach,
marginals are used to approximate the partition function by recursively fixing the variables and exploit-
ing self-reducibility. This cannnot be done in the present case because the reduced SAT formulae are not
random anymore. Instead, we use interpolation in β, to obtain logZN(β, F ) approximately (Theorem
1). The analysis of the approximation scheme implies the existence of the limit limN→∞

1
N logZN (β, F )

(Theorem 3). We hope that our novel approach for counting will find applications in other hard com-
binatorial problems. Similar schemes were recently discussed by Weitz [11], and Bandyopadhyay and
Gamarnik [12] for counting independent sets approximately via deterministic algorithms.

Finally, we show that the computation of the partition function leads to an estimate of the number
of truth assignments that violate at most Nε clauses, for small ε (Theorem 4). As a byproduct, we
obtain an asymptotically (in k) threshold for uniqueness Gibbs measure on infinite k-SAT tree formula
(Theorem 2).
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Organization. Section 2 presents preliminaries and statements of the main results. The Section 3
describes the approximate counting algorithm and the proof of key Lemmas related to the correlation
decay (or uniqueness) of Gibbs distribution on random tree k-SAT. The Section 4 completes the proofs
of all main results stated in Section 2. We present direction for future work in Section 5.

2 Preliminaries and Main Results

Given α and k, define α∗(k) to be the smallest positive root of the equation κ(α) = 1, where

κ(α) ≡ k(k − 1)α

(
1 −

1

4
e−kα/2

) (
1 −

1

2
e−kα/2

)k−2

. (3)

For k = 2, 3, 4, 6, the α∗(k) is approximately 0.58216, 0.293, 0.217, 0.16670. Asymptotically, α∗(k) =

2k−1 log k
(
1 +O

(
log log k

log k

))
. Now, we state the main result of this paper about approximating loga-

rithm of partition function.

Theorem 1. Given ε > 0 and α < α∗(k), there exists δ′ > 0 and a polynomial (in N , independent of
ε) time algorithm that computes a number Φ(β, F ) (the input being β ∈ R and a satisfiability formula
F ) such that the following is true. If β ∈ [0, N δ′

] and F is random k-SAT formula with N variables and
M = Nα clauses, then, with high probability,

Φ(β, F ) (1 − ε) ≤ logZN (β, F ) ≤ Φ(β, F ) (1 + ε). (4)

The proof of Theorem 1 requires us to prove uniqueness of Gibbs measure for the model (2) on infinite
tree random k-SAT formulae. To state this result, we first need some definitions. An appropriate model
for tree random k-SAT, T∗(r) is described as follows: For r = 0, it is the graph containing a unique

variable node. For any r ≥ 1, start by a single variable node (the root) and add l
d
= Poisson(kα) clauses,

each one including the root, and k − 1 new variables (first generation variables). For each one of the
l clauses, the corresponding literals are non-negated or negated indipendently with equal probability.
If r ≥ 2, generate an independent copy of T∗(r − 1) for each variable node in the first generation and
attach it to them. By construction, for any r′ < r the first r′ generations of a tree from T∗(r) are
distributed according to the model T∗(r

′). As a consequence, the infinite tree distribution T∗(∞) is also
well defined. In what follows, we denote the root of T∗(·) as 0. Let µ denote the Gibbs distribution
on random formula on T∗(r) (cf. (2)) and µ0|r(x0|xr) be the conditional distribution of root variable
conditional to the assignment of r-th generation nodes of T∗(r) according to xr. The key property for
most of the results of this paper is that of correlation decay with respect to random tree formulas T∗(·).

Definition 1. Given α, β ∈ R+ and k ≥ 2, the Gibbs distribution defined by (2) on the random tree
T∗(·) is unique with exponential correlation decay if there exists positive constants A, γ > 0, such that

E

[
sup
x

r
,z

r

∣∣∣∣µ0|r( · |xr) − µ0|r( · |zr)
∣∣∣∣

TV

]
≤ Ae−γr , (5)

for any r ≥ 0. The uniqueness threshold αu(k) is the supremum value of α such that the above condition
is verified for any β ∈ [0,∞].

The property defined here is a lot stronger than the usual notion of correlation decay, which only
requires

∣∣∣∣µ0|r( · |xr) − µ0|r( · |zr)
∣∣∣∣

TV
→ 0 as r → ∞ almost surely. Let α′

u(k) denote the threshold for
this weaker property. To the best of our knowledge, nothing has been known about the precise values of
αu(k), α′

u(k) or the relation between them other than trivial lower bound from percolation threshold of
Ω(k−2). We establish the precise asymptotic behavior of αu(k) and show that αu(k) = α′

u(k)(1 + ok(1))
as stated below.

Theorem 2. For the Gibbs distribution (2) defined on T∗(·) as above,

αu(k) =
2 log k

k

{
1 +O

(
log log k

log k

)}
, α′

u(k) =
2 log k

k

{
1 +O

(
log log k

log k

)}
. (6)
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Though algorithmically we obtain approximation of logZN (β, F ), it is possible to establish the
convergence of 1

N logZN(β, F ) with probability 1. Before stating this result, we need some definitions.
In what follows, define function f : R

k−1 → R as

f(x1, . . . , xk−1) = −
1

2
log

{
1 −

1 − e−β

2k−1

k−1∏

i=1

(1 − tanhxi)

}
. (7)

Let D denote the space of probability distributions on the real line R. Define functions S, S1, S2 : D → D
as follows: Given µ ∈ D, define random variable u = f(h1, . . . , hk−1) where h1, . . . , hk−1 are i.i.d. with
distribution µ. Define distribution of u as S1(µ). Given a distribution ν ∈ D, let random variable

h0 =
∑ℓ+

a=1 ua −
∑ℓ−

b=1 ub, where ℓ+, ℓ− are independent Poisson random variables with mean kα/2 and
ua, ub be i.i.d. with distribution ν. Let distribution of h0 be denoted by S2(ν). Define S ≡ S1 ◦ S2.
Now, we state the result.

Theorem 3. Given k, let α < α∗(k) and β ∈ [0,∞). Then, the function S : D → D as defined above
has unique fixed point, say µ∗. Let ν∗ = S2(µ

∗). Then,

1

N
logZ(β, FN )

a.s.
→ φ(β) , (8)

where φ(β) = −kαE log[1 + tanhh tanhu] + αE log

{
1 −

1

2k
(1 − e−β)

k∏

i=1

(1 − tanhhi)

}
+ (9)

+E log






ℓ+∏

i=1

(1 + tanhu+
i )

ℓ−∏

i=1

(1 − tanhu−i ) +

ℓ+∏

i=1

(1 − tanhu+
i )

ℓ−∏

i=1

(1 + tanhu−i )




 ,

where u, u±i are i.i.d. with distribution µ∗, h, hj are i.i.d. with distribution ν∗ and ℓ± are Poisson of
mean kα/2.

Finally, define Ξ(ζ, F ) to be the number of assigments that violate at most ζ clauses. The next
result formalizes the relation between the approximation of ZN (β, F ) and counting the number of truth
assignments that violate a small fraction of clauses.

Theorem 4. For any k ≥ 2, ε > 0, and α < α∗(k) there exists A,C > 0, a > 0 such that the following
is true. If F is a random k-SAT M = Nα clauses over N variables, and β = A log 1/ε, then

|log Ξ(Nε, F ) − Φ(β, F )| ≤ NCεa , (10)

with high probability, where Φ(β, F ) as defined in Theorem 1.

3 Algorithm and Key Lemmas

3.1 Algorithm

We first define a factor graph GF for a given formula F : each variable is represented by (circle) variable
node and each clause by a (square) clause node with an edge between a variable and a clause node only
if corresponding variable belongs to the clause. The edge is solid if variable is non-negated and dashed if
variable is negated. The Belief Propagation (BP) algorithm is a heuristic (exact for tree factor graphs)
to estimate the marginal distribution of node variables for any factor graph. Specifically, we will use BP
to approximately compute marginals of the distribution (2).

We will quickly recall BP for our specific setup. We refer reader to see [15, 16] for further details
on the algorithm. BP is a message passing algorithm in which at each iteration messages are sent from
variable nodes to neighboring clause nodes and vice versa. The messages at iteration t+1 are functions of
messages received at iteration t. To describe the message update equations, we need some notation. Let
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∂a denote the set of all variables that belong to clause a. If variable xi is involved in clause a as literal
z (either z = xi or z = x̄i), then define ∂+i(a) as the set of all clauses (minus a) in which xi appears as

z. Similarly, ∂−i(a) denotes the set of all clauses in which xi appears as z̄. Let {h
(t)
i→a}, {u

(t)
a→i} denote

the messages (ideally they are half log-likelihood ratios) that are passed along the ddirected edges i→ a
and a→ i respectively at time t, then the precise update equations are

h
(t+1)
i→a =

∑

b∈∂+i(a)

u
(t)
b→i −

∑

b∈∂−i(a)

u
(t)
b→i , u

(t)
a→i = f({h

(t)
j→a; j ∈ ∂a\i}) , (11)

where the function f( · ) has been defined in Eq. (7). We shall assume 2 that the update equations are

initialized by h
(0)
i→a = 0 and algorithm stops at iteration tmax which is equal to the diameter of GF . Let

(hi→a, ua→i) be messages passed in the last iteration of BP. Using these messages, an estimate of the
probability that a clause is satisfied can be obtained as follows. Let Ea(x∂a) be the indicator function
for the a-th clause not being satisfied. As mentioned above, hi→a is thought of as half log-likelihood
ratio for i satisfying a and i not satisfying a, in the absence of clause a itself. A little algebra then shows
that the BP estimate for the expectation of Ea(x∂a) is

〈Ea(x∂a)〉BP =

∑
x∂a

Ea(x∂a) exp{−βEa(x∂a) + hi→aσai(xi)}
∑

x
∂a

exp{−βEa(x∂a) + hi→aσai(xi)}
, (12)

where σai(x) = +1 if setting xi = x satisfies clause a, and = −1 otherwise. We further introduce the
number of clauses violated by x, E(x) =

∑
aEa(x∂a), and its BP estimate 〈E(x)〉BP =

∑
a〈Ea(x)〉BP.

Given β > 0, we let βi = iβ/N2, for i = 0, . . . , n ≡ N2. Then,

logZ(β, F ) = logZ(0, F ) +

n−1∑

i=0

log
Z(βi+1, F )

Z(βi, F )
= N log 2 +

n−1∑

i=0

log〈e−∆E(x)〉i , (13)

where ∆ ≡ βi+1 − βi, and 〈 · 〉i is a shorthand for expectation with respect to the measure µβi,F ( · ).
The above expression is difficult to evaluate. However, due to ∆ being small the 〈−∆E(x)〉 is a good
estimate of log〈e−∆E(x)〉i. Hence, define the algorithm estimate as

Φ(β, F ) = N log 2 −
n−1∑

i=1

∆ 〈E(x)〉BP,i , (14)

where the subscript in 〈 · 〉BP,i emphasizes that the BP computation must be performed at inverse
temperature βi.

3.2 Key Lemmas

Before presenting useful Lemmas, let us mention a few facts. Given factor graph GF and variable node
i, 1 ≤ i ≤ N , let Bi(r) denote subgraph induced by the set of all variable that are within shortest path
distance r of node i (distance between two variables sharing a clause is unit). Analogously, for a clause
node a, Ba(r) is the union of Bi(r) with i running over the variables involved in a. Let A be subset
of variable nodes. Then, let xA denote an assignment to the corresponding variables. Given two such
subsets A,B ⊆ [N ] and assignments xA, xB, let µA|B(xA|xB) be the conditional probability under the
distribution (2) of the variables in A, given assignment xB on B. The following is a well-known result
about BP algorithm (see [17]).

Lemma 1. Given a clause a and r, let Ba(r + 1) be a tree. Let U = Ba(r) and V = [N ]\U . Then

|〈Ea(x∂a)〉 − 〈Ea(x∂a)〉BP| ≤ sup
y,z

∣∣∣
∣∣∣µ∂a|V ( · |y

V
) − µ∂a|V ( · |zV )

∣∣∣
∣∣∣
TV

, (15)

0 ≤ 〈Ea(x∂a)〉, 〈Ea(x∂a)〉BP ≤ max
zV





∑

x∂a

Ea(x)µ∂a|V (x∂a|zV )




 (16)

2In fact an arbitrary initial condition and a smaller number of iterations wouldn’t change our main results.
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b

ub→j1

j1

a

ua→i

i

Figure 1: Pictorial representation of the recursion (21) on the factor graph GF : filled squares represent
function nodes and empty circles variable nodes. Dashed edges correspond to negations.

Next, we present a known result about locally tree-like structure of random k-SAT formula (an
analogous result concerns the local structure of sparse random graphs).

Lemma 2. Consider k ≥ 2, α ∈ [0,∞) and a random k-SAT formula F with clause density α. For
r ≥ 0, let Bi(r) be the ball of radius r centered at a uniformly random variable node i. Let S(r) be an
r-generation tree with distribution same as T∗(r) (with the same values of k and α). Then, there exists
A, ρ (dependent on α, k) such that

||P{Bi(r) ∈ · } − P{S(r) ∈ · } ||TV ≤
Aeρr

N
. (17)

Lemma 3. Let α∗(k) be the smallest positive root of the equation κ(α) = 1, with κ(α) defined as in
Eq. (3). Then α∗(k) ≤ αu(k).

Proof: Given an r-generations tree formula F , consider an edge i → a directed toward the root
and the subtree rooted at i and not containing a. Denote by µi→a( · ) the marginal distribution of xi

with respect to the model associated to this subtree, and let hi→a ∈ [−∞,∞] be the corresponding
log-likelihood ratio

hi→a ≡
1

2
log

{
µi→a(xi satisfies a)

µi→a(xi doesn’t satisfy a)

}
. (18)

Analogously, given an edge a→ i, we consider the subtree rooted at i and containing only a among the
clauses involving i. We denote by µa→i( · ) the corresponding marginal distribution at i, and let

ua→i ≡
1

2
log

{
µa→i(xi satisfies a)

µa→i(xi doesn’t satisfy a)

}
. (19)

It is easy to show that these log-likelihoods satisfy the recursions3

hj→a =
∑

b∈∂+j(a)

ub→j −
∑

b∈∂−j(a)

ub→j , ua→i = f({hj→a; j ∈ ∂a\i}) , (20)

with the function f( · ) being defined as in Eq. (7). For the calculations below, it is convernient to
eliminate the hi→a variables, to get

ua→i = f




∑

b∈∂+j
1
(a)

ub→j1−
∑

b∈∂−j
1
(a)

ub→j1 ; . . . ;
∑

b∈∂+j
k−1

(a)

ub→jk−1
−

∑

b∈∂−j
k−1

(a)

ub→jk−1



 , (21)

3The reader will notice that these coincide with the BP update equations, cf. Eq. (11), which are known to be exact on
trees.
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where we denoted by j1, . . . , jk−1 the indices of variables involved in clause a (other than i). A pictorial
representation of this recursion is provided in Fig. 1.

Notice that the above recursions hold irrespective whether one considers the unconditional measure
µ( · ), or the conditional one µ( · |xr). What changes in the two cases are the initial condition for
the recursion, i.e. the value of hi→a associated with the variables i at the r-th generation. For the
unconditioned measure (‘free boudary condition’), the appropriate initialization is hi→a = 0. If one
conditions to xr, hi→a = +∞, or = −∞ depending (respectively) whether xi satisfy clause a or not.

In the rest of the proof, we shall think always to the conditioned measure µ( · |xr). As a consequence,
the log-likelihoods are, implicity, functions of xr: ua→i = ua→i(xr) (indeed of the restriction of xr to
the subtree rooted at i, and only containing a). We then let

ua→i = max
xr

ua→i(xr) , ua→i = min
xr

ua→i(xr) . (22)

In the case β = ∞, the maximum (minimum) is taken over all boundary conditions xr, such that the
sub-formula rooted at i admits at least one solutions, under the condition xr (there is always at least
one such boundaries). We further let ∆a→i = ua→i − ua→i ≥ 0.

Consider a random tree distributed as T∗(r), conditioned to the root having degree 1, i.e. to the root
variable being involved in a unique clause, to be denoted by a. Let ∆(r) = ∆a→i be the corresponding
log-likelihoods interval. We will show that E tanh ∆(r) ≤ e−γr for some positive constant γ. Before
proving this claim, let us show that it indeed implies the thesis. Denoting by ∂+0 the set of clauses in
which the root is involved as the direct literal, and by ∂−0 the set in which it is involved as negated, we
have

∣∣∣∣µ0|r( · |xr) − µ0|r( · |zr)
∣∣∣∣

TV
=

1

2

∣∣ tanhh0(xr) − tanhh0(zr)
∣∣ , (23)

h0(xr) ≡
∑

a∈∂+0

ua→0(xr) −
∑

a∈∂−0

ua→0(xr) . (24)

Since x 7→ tanh(x) is monotonically increasing in x, we have

∣∣∣∣µ0|r( · |xr) − µ0|r( · |zr)
∣∣∣∣

TV
≤

1

2

{
tanhh0 − tanhh0

}
, (25)

h0 ≡
∑

a∈∂+0

ua→0 −
∑

a∈∂−0

ua→0 , h0 ≡
∑

a∈∂+0

ua→0 −
∑

a∈∂−0

ua→0 . (26)

Using the elementary properties tanhx − tanh y ≤ 2 tanh(x − y) for any x ≥ y, and tanh(x + y) ≤
tanhx+ tanh y for x, y ≥ 0, we get

∣∣∣∣µ0|r( · |xr) − µ0|r( · |zr)
∣∣∣∣

TV
≤ tanh

{
∑

a∈∂0

∆a→0

}
≤

∑

a∈∂0

tanh ∆a→0 . (27)

We can take the maximum over boundary condition and the expectation with respect to the tree en-
semble. Recalling that |∂0| is a Poisson random variable of mean kα, we get

E max
x,z

∣∣∣∣µ0|r( · |xr) − µ0|r( · |zr)
∣∣∣∣

TV
≤ kαE tanh ∆(r) , (28)

which implies the thesis upon taking A = kα.
We are now left with the task of proving E tanh ∆(r) ≤ e−γr. It is easy to realize that f(x1, . . . , xk−1)

is monotonically decreasing in each of its arguments. Therefore Eq. (21) yields the following recursion
for upper/lower bounds

ua→i = f




∑

b∈∂+j
1
(a)

ub→j1−
∑

b∈∂−j
1
(a)

ub→j1 ; . . . ;
∑

b∈∂+j
k−1

(a)

ub→jk−1
−

∑

b∈∂−j
k−1

(a)

ub→jk−1



 , (29)
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together with the equation obtained by interchanging u··· and u···. By taking the difference of these two
equations, we get

∆a→i = f(h1; . . . ;hk−1) − f(h1; . . . ;hk−1) , (30)

where we defined hi =
∑

b∈∂+j
i
(a) ub→ji

−
∑

b∈∂−j
i
(a) ub→ji

and hi =
∑

b∈∂+j
i
(a) ub→ji

−
∑

b∈∂−j
i
(a) ub→ji

(obviously hi ≥ hi).
Suppose now n out of the k−1 variables xj1 , . . . , xjk−1

are pure literals, let’s say variables xj1 , . . . , xjn
.

This means that ∂−j1(a), . . . ∂−jn(a) = ∅, and therefore, since the loglikelihoods ub→j are non-negative
(because f is non-negative), h1, . . . hn ≥ 0. It is an easy exercise of analysis to show that, if x1, . . . , xn ≥
0,

0 ≤ −
∂f

∂xi
(x1, . . . , xk−1) ≤

1

2n
. (31)

Therefore, by the Mean Value Theorem

∆a→i ≤
1

2n

k−1∑

l=1

(hl − hl) =
1

2n

k−1∑

l=1

∑

b∈∂jl

∆b→jl
, (32)

Next we take the hyperbolic tangent of both sides, and use again tanh(x + y) ≤ tanhx + tanh y, for
x, y ≥ 0 to get

tanh∆a→i ≤
1

2n

k−1∑

l=1

∑

b∈∂jl

tanh ∆b→jl
. (33)

Finally we take expectation of this inequality. In order to do this, we recall that n is just the number
of pure literals among xj1 , . . . xjk−1

. In our notations this can be written as n =
∑k−1

l=1 I(|∂−jl(a)| = 0).
We further assume that i is the root of a tree from T∗(r + 1), r ≥ 0 and therefore ∆a→i is distributed
as ∆(r). Furthermore the differences ∆b→jl

will be distributed as ∆(r+1). We thus obtain

E tanh ∆(r+1) ≤ E






k−1∏

l=1

1

2I(|∂−j
l
(a)|=0)

k−1∑

l=1

∑

b∈∂jl(a)

tanh ∆(r)




 = (34)

= (k − 1) E

{
1

2I(|∂−j|=0)
|∂j|

} {
E 2−I(|∂−j|=0)

}k−2

E tanh ∆(r) . (35)

The expectations over |∂+j|, |∂−j| are easily evaluated by recalling that these are inpependent Poisson
random variables of mean kα/2. One finally obtains E tanh ∆(r+1) ≤ κ(α)E tanh ∆(r). The thesis follows
(with γ = − logκ(α)) by noticing that E tanh ∆(0) ≤ 1, and recalling that κ(α) < 1 for α < α∗(k). �

Next, we state result about the error in expectation w.r.t. to BP estimate in a clauses being satisfied
or not. To obtain bound in the error of BP estimate of 〈Ea(x)〉, we need to study the error in estimation
of the joint distribution of k variables in a clause. For this, we first choose a clause at random and treat
all of its k variables as root of k independent rooted random trees (of suitable depth r) as before. Note
that, this asymptotically does not bias the distribution of the original random formula as this process
tilt the original distribution by at most O(1/N).

To this end, let xr be an assigment for the r-th generation variables. We shall denote by 〈 · 〉(r)

the expectation with respect to the graphical model (2) associated to a formula constructed as follows.
First we generate a uniformly random clause over variables x1, . . . , xk. Then we sample k independent

trees according to T∗(r) and root them at x1, . . . , xk. We let 〈 · 〉
(r)
xr

be the corresponding conditional
expectation, given the assignment to the r-th generation.

Lemma 4. Let k ≥ 2, α < α∗(k) and β ∈ [0,∞]. Then there exist two positive constants A, γ, such
that

E max
xr ,zr

∣∣∣〈Ea(x)〉(r)
xr

− 〈Ea(x)〉(r)
zr

∣∣∣ ≤ Ae−γr . (36)
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Proof: Denote by x∂a = {x1, . . . , xk} the zeroth generation variables, by T1, . . . , Tk the tree
factor graphs drawn from T∗(r) and rooted, respectively, at variable nodes 1, . . . , k. We then denote by
µi(xi|xr), i ∈ {1, . . . , k} the conditional distribution for variable xi with respect to the model associated
with the tree Ti. We also let hi(xr) be the associated log-likelihoods (defined analogously to Eq. (18)),
and hi = maxx

r
hi(xr) (hi = minx

r
hi(xr)) be their maximum (minimum) values with respect to the

boundary condition.

It is not hard to show that 〈Ea(x)〉
(r)
xr

= g(h1(xr), . . . , hk(xr)) where the function g : R
k → R is

defined as follows

g(x1, . . . , xk) ≡
e−β

∏k
i=1

1
2 (1 − tanhxi)

1 − (1 − e−β)
∏k

i=1
1
2 (1 − tanhxi)

. (37)

Since g(x1, . . . , xk) is monotonically decreasing in each of its arguments, we have

E max
x

r
,z

r

∣∣∣〈Ea(x)〉(r)
xr

− 〈Ea(x)〉(r)
zr

∣∣∣ ≤ E
{
g(h1, . . . , hk) − g(h1, . . . , hk)

}
, (38)

where the couples (h1, h1), . . . , (hk, hk) are i.i.d.’s and distributed as (h0, h0) in the proof of Lemma 3,
cf. Eq. (26). In particular, proceeding as in that proof, we deduce that E tanh(hi − hi) ≤ Ae−γr. We
are left with the task of proving that this implies an analogous bound on the right hand side of Eq. (38).

To this end, we first consider a single variable function g̃ : R → R with 0 ≤ g̃(x) ≤ 1 and −1 ≤
g̃′(x) ≤ 0. Then

E{g̃(h1) − g̃(h1)} ≤ P{h1 − h1 ≥ ∆} + E{(h1 − h1) I(h1 − h1 < ∆)} ≤ (39)

≤
1

tanh ∆
E tanh(h1 − h1) +

∆

tanh ∆
E{tanh(h1 − h1) I(h1 − h1 < ∆)} ≤

≤
1 + ∆

tanh ∆
E tanh(h1 − h1) .

The proof is completed by writing E{g(h1, . . . , hk) − g(h1, . . . , hk)} =
∑k

i=0 E{g̃i(hi) − g̃i(hi)} where

g̃i(x) ≡ g(h1 . . . hi−1, x, hi+1, . . . , hk) and noticing that −1 ≤ ∂g
∂xi

≤ 0 (the last statement is proved in
the appendix) �

Finally, a result that puts together the above observations to derive the net error in BP estimation.

Lemma 5. Let k ≥ 2, α < α∗(k) and β ∈ [0,∞]. Then there exists two positive constants C and δ < 1
such that for any N ,

E |〈E(x)〉 − 〈E(x)〉BP| ≤ CN δ . (40)

Proof: By linearity of expectation and using Lemma 1, we get

E |〈E(x)〉 − 〈E(x)〉BP| ≤ME |〈Ea(x)〉 − 〈Ea(x)〉BP| ≤ME

{
max
x,z

∣∣∣〈Ea(x)〉(r)
xr

− 〈Ea(x)〉(r)
zr

∣∣∣
}
. (41)

We would like to apply Lemma 4, but the expectation in the last expression is taken with respect to
the formula F drawn from the random k-SAT ensemble, instead of the tree model T̂∗(r). However,
the quantity in curly brackets depends only of the radius r neighborhood Ba(r) of vertex a in GF .
Furthermore is non negative and upper bounded by 1. We can therefore apply Lemma 2 and 4 to upper
bound the last expression by (here E

T̂
denotes expectation with respect to the tree ensemble):

M ||P{Bi(r) ∈ · } − P{S(r) ∈ · } ||TV +ME
T̂

{
max
x,z

∣∣∣〈Ea(x)〉(r)
xr

− 〈Ea(x)〉(r)
zr

∣∣∣
}

≤ (42)

≤ Aα eρr +NA′α e−γr

The proof is completed by setting r = 1
ρ+γ logN , which yields Eq. (40) with δ = ρ

γ+ρ . �

9



4 Proofs of Theorems

4.1 Proof of Theorem 1

Clearly, the running time of algorithm described in Section 3 is O(N4) as total number of BP runs are
O(N2) and each BP run takes O(N) iterations or O(N2) serial operations. Now, we’ll prove Eq. (4).

Using te existing lower bounds on αc(k,N) (see [6] and references therein), it is not hard to show
that α∗(k) ≤ αc(k,N)(1 − η) for some η > 0 all k ≥ 2 and N large enough. By definition, for
α < αc(k,N)(1 − η), β ∈ [0,∞] there exists a constant C(α) > 0 such that logZ(β, F ) ≥ C(α)N log 2
whp. This follows from the following two facts for appropriate C(α): (1) at least C(α)N variables do not
appear in any clause whp and (2) at least one solution is satisfying assignment whp as α < αc(k,N)(1−η).
Thus, there are at least 2C(α)N satisfying assignment, whence ZN (β, F ) ≥ 2C(α)N . Given this, it is
sufficient to show that |logZ(β, F ) − Φ(β, F )| ≤ Nε w.h.p. for any ε > 0 and N large enough.

Now, Eqs. (13) and (14) imply that

|logZ(β, F ) − Φ(β, F )| ≤
n−1∑

i=0

∣∣∣log〈e−∆E(x)〉i + ∆ 〈E(x)〉BP,i

∣∣∣

≤
n−1∑

i=0

∣∣∣log〈e−∆E(x)〉i + ∆ 〈E(x)〉i

∣∣∣ +

n−1∑

i=0

∆ |〈E(x)〉i − 〈E(x)〉BP,i| . (43)

Consider the first term in (43): for any non-negative random variable X , log〈e−X〉 ≤ 〈e−X〉 − 1 ≤
〈1 −X +X2〉 − 1 ≤ −〈X〉 + 〈X2〉. As a consequence, we obtain

n−1∑

i=0

∣∣∣log〈e−∆E(x)〉i + ∆ 〈E(x)〉i

∣∣∣ ≤
n−1∑

i=0

∆2〈E(x)2〉i ≤ β∆sup
i
〈E(x)2〉i ≤ N2δ′

α2 , (44)

where we used β ≤ N δ′

, ∆ = β/N2 ≤ N δ′−2 and 0 ≤ E(x) ≤ Nα. If we choose δ′ < 1/2, this
contribution is smaller than Nε/2 for all N large enough.

Now, the second term in Eq. (43): the bound (40) holds for any β in the compact region [0,∞].
Furhter, the left hand side is uniformly bounded (in terms of N) and continuous in β. Hence, there
exists a C so that the bound (40) holds uniformly for β ∈ [0,∞]. This will imply that

n−1∑

i=0

∆ E |〈E(x)〉i − 〈E(x)〉BP,i| ≤ βCN δ ≤ CN δ+δ′

(45)

Choosing δ′ ∈ (0, 1 − δ) and Markov inequality will imply that the second term is also bounded above
by Nε/2 whp. This completes the proof of Theorem 1. �

4.2 Proofs of Theorems 2, 3, and 4

Due to shortage of space, they are moved to Appendix A.

5 Discussion and Future Work

We presented a novel deterministic algorithm for approximately counting good truth assignments of
random k-SAT formula with high probability. The algorithm is built upon the well-known Belief Propa-
gation heuristic and an interpolation method for the log-partition function. In the process of establishing
the correctness of the algorithm, we obtained the threshold for uniqueness of Gibbs distribution for ran-
dom k-SAT formula as 2k−1 log k(1 + ok(1)). This result if of interest in its own right.

We believe that our result can be extended to a reasonable class of non-random k-SAT formula. We
also believe that the approximation guarantees of Theorem 1 should hold for any β ∈ [0,∞].
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A Proof Sketches: Theorems 2, 3 and 4

Due to space limitations, we only provide sketch of proofs for Theorems 2, 3 and 4.

Proof sketch for Theorem 2. By using the definition κ(α∗) = 1 (with κ(α) being defined as in
Eq. (3)), it is easy to show that α∗(k) = 2k−1 log k{1 + O(log log k/ log k)}. To complete the proof,
we need a (asymptotically in k) matching upper bound. In order to obtain such an upper bound, we
consider the case β = ∞, i.e. only satisfying assignments have positive weight. Consider a tree formula
which is distributed as T∗(r). Let Pr be the probability that there exists two boundary conditions

x
(0)
r , x

(1)
r , such that the root takes values, respectively, 0 or 1 in all the satisfying assignments with the

respective boundary conditions. Clearly for the Gibbs measure to be unique (or have correlation decay)
in the sense of Definition 1 (but also in the weaker sense correspondint to the threshold α′

u(k)), it must
be that Pr → 0 as r → ∞. Hence, if we establish that for α > 2k−1 log k{1 +O(log log k/ log k)}, there
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exists such boundary conditions with positive probability, then the proof will be complete. Next, we do
that.

For this, consider a tree from T∗(r) with the root having degree 1. Given such a tree, let ρr be the
probability that there exists a boundary condition xr, such that the root variable is the only variable
that satisfies the only clause in which it belongs (recall that the root variable has degree 1) for all
possible satisfying assignments with the given boundary condition. If Pr → 0, then ρr → 0. To prove
this claim, assume by contraddiction that ρr remains bounded away from zero (say ρr ≥ ρ > 0) and
consider an tree from T∗(r) (without conditioning). With finite probability the root belongs to two
clauses in which it appears, respectively, directed and negated. With probability at least ρ2 > 0, for
each of the corresponding subtrees there exists a boundary condition that fixes the root variable to be
(respectively) directed or negated. By extending arbitrarily this boundary conditions to the full tree,

we obtain the desired x
(1)
r , x

(0)
r .

It turns out that ρr can be determined recursively. Set ρ0 = 1 and ρr+1 = {1 − exp(−kαρr/2)}k−1.
Recursively, ρr → 0 as r → ∞ only if α < α∗(k), where α∗(k) for the above recursion (with little bit
of algebra) evaluates to α∗(k) = 2k−1 log k{1 +O(log log k/ log k)}. This completes the proof sketch of
Theorem 2.

Proof sketch for Theorem 3. First notice that, if F and F ′ differ in a single clause, then | logZ(β, F )−
logZ(β, F ′)| ≤ 2β. Hence, by application of Azuma-Hoeffding’s inequality, it follows that | logZ −

E logZ| ≤ Nδ with probability at least 1− e−NCβδ2

, for some Cβ > 0 for any β ∈ [0,∞). Given this, to
obtain the almost sure convergence as in (8), it is sufficient to prove that limN→∞N−1

E Φ(β, F ) = φ(β),
in light of Theorem 1 and Borel-Cantelli’s Lemma.

To do so, first we need to establish that

lim
N→∞

1

N
E〈E(x)〉BP,β = αEg(h1, . . . , hk) , (46)

where g is defined as in Eq. (37); the random variables h1, . . . , hk are i.i.d. with distribution ν∗ that is
fixed point of operator S as defined in the statement of Theorem 3. We claimed that the fixed point is
unique for S. To justify this claim, first note that the image of S is contained in the space of distributions
supported on [0, β/2], call it Dβ , which is a compact space with respect to the weak topology. Being
continuous on Dβ, S admits at least one fixed point in it. Moreover, the contraction condition implied by
the correlation decay (proved as a part of Theorem 2) implies the attractiveness as well as the uniqueness
of the fixed point of S.

Once we establish existence of the unique fixed point, the (46) follows from Lemma 2 and correlation
decay established in Theorem 2. Now, by integrating Eq. (46) over β and observing that βi+1−βi = β/N2

(hence integration error is negligible at scale 1/N) one gets

lim
N→∞

N−1
E Φ(β, F ) = log 2 − α

∫ β

0

Eβ′g(h1, . . . , hk) dβ′ , (47)

where a subscript has been added in Eβ′ to stress that the fixed point distribution has to be taken at
inverse temperature β′. The proof of Theorem 3 is completed by showing that the integral on the right
hand side of the last equation is given by φ(β) as in Eq. (9). In fact, by taking the derivative of this
expression wrt β, one gets a contribution coming from the explicit β dependence, which evaluates to
−αEg(h1, . . . , hk), and one from the β dependence of the fixed poit distribution, that can be shown to
vanish.

Proof Sketch of Theorem 4. For the ease of notation, let Z(β) ≡ ZN(β, F ), Ξ(ζ) ≡ Ξ(ζ, F ) and
U(β) ≡ 〈E(x)〉β,F . Because of Theorem 1, it is sufficient to prove that | log Ξ(Nǫ) − logZ(β)| ≤ Nǫa

whp. This follows from two inequalities.
First inequality. For any ζ ≥ 0,

Z(β) =
∑

x:E(x)≥ζ

e−βE(x) +
∑

x:E(x)<ζ

e−βE(x) ≥ e−βζΞ(ζ). (48)
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Second inequality. For any ζ ≥ 0 and using the first equality in (48), we obtain

Z(β) ≤
∑

x:E(x)≥ζ

e−βE(x) + Ξ(ζ).

Equivalently, Z(β)µ(E(x) < ζ) ≤ Ξ(ζ). Now, take ζ = 2U(β) then, we get using Markov’s inequality

µ{E(x) < 2U(β)} ≥ 1 −
U(β)

2U(β)
=

1

2
. (49)

¿From (48) and (49), we obtain

logZ(β) − log 2 ≤ log Ξ(2U(β)) ≤ logZ(β) + 2βU(β). (50)

The next sep consists in controlling U(β) at large β. Arguing analogously to the proof of Theorem
1 one can show that there exist constants C1, C2, C3, a > 0 such that, for any β ∈ [0,∞], NC1e

−2β ≤
U(β) ≤ NC2e

−bβ + C3N
δ whp.

Fix β1 in such a way that 2C1e
−2β1 = ε. Then 2U(β1) ≥ Nε whp. By the upper bound in Eq. (50)

and monotonicit of Ξ(ζ), we get

log Ξ(Nε) ≤ logZ(β1) + 2β1U(β1) ≤ logZ(β1) + 2β1NC2e
−bβ1 + 2β1C3N

δ . (51)

Using the definition of β1, which gives β1 = 1
2 log 2C1

ε , we get that there exists C, a > 0 such that

log Ξ(Nε) ≤ logZ(β1) +NCεa . (52)

with high probability.
The lower bound on log Ξ(Nε) is proved analogously by taking β2 such that 2C2e

−bβ +2C3N
−1+δ = ε

thus getting log Ξ(Nε) ≥ logZ(β2) −NCεa whp. One concludes by bounding the difference of the two
partition functions: | logZ(β2) − logZ(β1)| ≤ U(β2)|β1 − β2| ≤ NCεa whp. �
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