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Abstract— Measuring network flow sizes is important for updating counts, installing new counters when flows irgtiat
tasks like accounting/billing, network forensics and sectity.  and uninstalling them when flows terminate.
Per-flow accounting is considered hard because it requireat Since high-speed large memories are either too expensive
many counters be updated at a very high speed; however, . ) . .
the large fast memories needed for storing the counters are or simply |nfeas!ble in the current technology, the bU|k_ of
prohibitively expensive. Therefore, current approaches an to  research on traffic measurement has focused on approximate
obtain approximate flow counts; that is, to detect largeelephant  counting methods. These approaches work aim at detecting
flows and then measure their sizes. elephant flows and measure their sizes.

Recently the authors and their collaborators have develope Counter braids. In [1] we develop a novel counter archi-
[1] a novel method for per-flow traffic measurement that is . . L .
fast, highly memory efficient and accurate. At the core of thé te_cture, called “counter _bra'ds , Which is fast, very etfiui
method is a novel counter architecture called “counter braids.” ~ With memory use and gives an accurate measuremeal of
In this paper, we analyze the performance of the counter flow sizes, not just the elephants. We will briefly review this
braid architecture under a Maximum Likelihood (ML) flow architecture using the following simple example.
size estimation algorithm and show that it is optimal; that is, Suppose we are given 5 numbers and are told that four of

the number of bits needed to store the size of a flow matches . . .
the entropy lower bound. While the ML algorithm is optimal, them are no more than 2 bits long while the fifth can be 8

it is too complex to implement. In [1] we have developed an bitS.Iong. We are not told which is which! _
easy-to-implement and efficient message passing algorithfor Figures 1 and 2 present two approaches for storing the

estimating flow sizes that is analyzed elsewhere. values of the 5 numbers. The first one corresponds to a
traditional array of counters, whereby the same number of

I. INTRODUCTION . : .
) ) _ .. memory registers is allocated to each measured variable
This paper addresses a theoretical problem arising in (ﬂow). The structure in Fig. 2 is more efficient in mem-

novel approach to network traffic measurement the authog.y, but retrieving the count values is less straightforyar
and their collaborators have recently developed. We ref?équiring a flow size estimation algorithm.

the reader to [1] for technological background, motivation

related literature and other details. In order to keep thisgp 0o OO O OO0
self-contained, we summarize the background and redtect t

literature survey to what is relevant for the results of this O O=>0=0=>0=0=0
paper.

Background. Measuring the sizes of network flows on high OTOTOFOEO=O
speed links is known to be a technologically challenging O=0>=0>0>=0>0>0
problem [2]. The nature of the data to be measured is as

follows: At any given time several 10s or 100s of thousands O=0=0 =0

of flows can be active on core Internet links. Packets arrive
at the rate of one in every 40-50 nanoseconds on theﬁg'
links which currently run at 10 Gbps. Finally, flow size
distributions are heavy-tailed, giving rise to the wellekvm
decomposition of flows into a large number of short “mice”
and a few large “elephants.” As a rule of thumb, network
traffic follows an “80-20 rule”: 80% of the flows are small,
and the remaining 20% of the large flows bring about 80%
of the packets or bytes.

This implies that measuring flow sizes accurately requires
a large array of counters which can be updated at very
high speeds, and a good counter management algorithm for

1. A simple counter structure: to each flow size we associate
binary representation (filled circle 1, empty circle= 0).
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code[3]. However, the applications we consider impose aode|E,|/|I.| is bounded.

stringent constraint on such a code: each time that the SI6eiaﬁnition 2. A state(or configurationof the counter braid

of a flow change.s (because a new packet arrives) a smgl , with is an assignmertz, y) of non-negative integers to
number of operations must be sufficient to update the stor?ﬁﬂe nodes irG, with = — {x, : i € I} € NI, andy = {, :
1 - 7 - I} - j .

information. ThIS is not the case with standard source (;odesE R} € NE. The state(z, y) is valid if y; € {0,...,q— 1}

where changing a single letter in the source stream may altgar . .
. or any registery € R.

completely the compressed version.

In this paper we prove that, under a probabilistic model Notice that a valid register configuration can be regarded
for the flow sizes (namely that they form a vector of iidas an element ofZ,)® (whereZ, is the group of integers
random variables), counter braids achieve a compressiomodulog.) We denote by the zero vector iflN%.
rate equal to the entropy of the flow sizes distribution, in We want now to describe the braid behavior when one
the large system limit. Namely, for any rate larger tharof the input nodes is incremented by one unity (i.e. when a
the flow entropy, the flow sizes can be recovered from thpacket arrives at input nodec I.) Assume the braidG, q)
counters values, with error probability vanishing in thegla to be in a valid statéz, y). Giveni € I, we define the new
system limit. Further, we prove optimal compression can bgtate (z',y') = T;(z,y) by letting z; = z; + 1, 2 = x;
achieved by using braids that asparse The result is non- for anyj # i, andy’ be defined by the following procedure.
obvious, since counter braids form a pretty restrictiveifam Notice that this definition is ambiguous in that we did not
of architectures. _

Our treatment makes use of techniques from the theory oREGISTERS UPDATE I(iPUT: flow index )
low-density parity check codes, and the whole construdton . .

o . : (0) =y, for 041,
inspired to LDPC'’s [4], [5]. These have an analogous in the yja(né v; (yoj) _ ij i 1+oztherwise
source coding problem thanks to standard equivalence be2 Sett :JO / '
tween coding over discrete memoryless symmetric channel : \ i -
AT . : while y(t) is not valid
and compressing iid discrete random variables [6]. However ,. : ‘ .
; ; 4: Letj € R be such thay;(t) > ¢;
the key ideas in the present paper have been developeg. Sety;(t + 1) = y;(t) — ¢
to deal with the problem that the flow sizes aaepriori ' For aJ\nyl co, Jsety,(t’+ 1) = plt) + 1;
unbounded. In the channel coding language, this would b AL AN .
. AP For anyl € R\ {j,0+7}, sety(t + 1) = y;(¢);
equivalent to use a countable but infinite input alphabet. Incrementt = ¢ + 1:
Finally, we insist on using sparse braids for two reasons.q. o4 ' '
First, this allows the stored values to be updated wisimall
: . o return y(t).
(typically bounded) number of operations. Second, it igyeas
to realize that ML decoding of counter braids is NP-hard

s‘%)ecify which register to pick among the ones wgiltt) > ¢

since it has ML decoding of finear codes as a special ca% step 4 in the registers update routine. However this is not

[7]. However, thanks to the sparseness of the underlyin[j%(Ijn

. . . . cessary, as stated in the following lemma (the proof is
graph, one may use iterative message passing techniques [8] ; ;
: : . .~ . omitted from this extended abstract).
Indeed, a simple message passing algorithm for estimating
flow sizes is described and analyzed using real and synthetiemma 1. The update procedure above halts after a finite
network traces in [1]. number of steps. Further its outptt(x, y) does not depend

Il. COUNTERBRAIDS: BASIC DEFINITIONS on the order of update of the registers.

Definition 1. A counter braids a couple(G, ¢) whereq > 2 With an abuse of notation we shall writ¢ = T, (),

is an integer (register capacity) an@ is a directed acyclic y' = Ti(y), when(z’,y’) = Tz;(l‘, Y). _

graph on vertex setd (input nodes) andR (registers), Whe_n input _valugs;: are mcremen;ed sequentially, the
with the input nodes having in-degree zero. We weite= stored informatiory is updated according fo t_he above pro-
(I, R, E), with E the set of directed edges @. cedure. From now on we shall take a static view and assume

For any nodei € I U R, we will denote by i = {j : 2 certain inputz. The corresponding stored informatigns
(i,j) € E} the set of descendants ffand byd_i = {; : obtained through the mapping defined below.

(J,i) € E} the set of parents of Finally 9i =9, U0-i.  Definition 3. Given a counter braidG, ¢), the associated

In the following we shall often omit the explicit referenceStorage functionFg : N — Zif returns, for any input
to the register capacity and writé for (G,q). The input conflgu_ratlonx € N! a register configurationy = Fg(x) €
size of the braid ig]| = n, and its storage sizgR| = m. Z; defined as follows. Let® =0, 2., 2V = &
An important parameter is its rate, which we measure in bit3€ & sequence of input configurations such thét™") is
obtained fromz(*) by incrementing its entry(s). Then

= |R|log, g 1)
I Fa(z) = Tiyny o Tiyn—1)o -0 Ty1y(0). (2
We will say that a sequence of counters braigs, = We shall drop the subscrigt from Fg whenever clear

(I, Rn, Ey)} is sparseif the number of edges per input from the context. A priori it is not obvious that the mapping



Fo is well defined. In particular, it is not obvious that it Ill. THE ARCHITECTURE
does not depend on the order in which input values arg Layering
incremented, i.e. on the sequeng#l),...,i(N)}. This is

nevertheless the case (the proof is omitted.) We will considerlayeredarchitectures. By this we mean

that the set of register is the disjoint union bflayers R =
Definition 4. Given a counter braidG, g), a reconstruction R'UR?U---UR! and that directed edges are either frém
(or decoding functionis a functionF : fo — N. to R! or from R! to R'*! for somel € {1,...,L — 1} (we
shall sometimes adopt the conventi® = I). We denote
by ¥ = {y; : i € R'} the vector of register values in layer
1. We further letm; = |R'| denote the size of theth layer
Throughout this paper, we shall model the input valuegwith my = n).

A. Main results

as iid integer random variabldsyy, ..., X,,) = X (identi- The graph structure is conveniently encoded.imatrices
fying V = [n]) with common distributionp. The (binary) Hy, ...Hy, wherebyH is them; x m;_; adjacency matrix
entropy of this distribution will be denoted b¥f,(p) = of the subgraph induced b U R'~!. We further letH' =
— > . p(x)logy p(x). H;-H;_, - - - H;. The storage functiof can be characterized
. . as follows.
Definition 5. A sequence of counters braid&G, =
(In, Ry, En)}, with |I,,| = n hasdesign rate- if Lemma 2. Consider anL-layers counters braid, let: be
its input, and define the sequence of vectdfs € NZ', by
Rl 20 =z and
r= lim ——-log,q. 3)

n—oo In
= 20 = |(Bi20-D) g ©)

(the division and floor operation being component-wise on

the vectorH;z(!'~1.) Then, the register values arg!) =

H; 21 mod gq.

It is reliablefor the distributionp if there exists a sequence
of reconstruction function§,, = F¢, such that, forX a
random input and” = F¢,, (X)
Pee(Gy, Fp) = ]P’{?n(Y) #X}50. (4) B. Recovery function
We now describe the recovery functidn Since in this

Shannon’s source coding theorem implies that there cann@iper we are only interested in achievability, we will negle
exist reliable counter braids with asymptotic rate: 22(p).  complexity considerations.

However, the aChievabiIity of such rates is far from ObVi,OUS 1) One |ayer: Let us start from a One-|ayer braid and
since counter braids are a fairly specific compression sehenyssume the inputs to be iid with common distribution
The main theorem of this paper establishes achievabilityypported or{0,...¢—1} 3 ;. Then the register values are

even under the restriction that the braid is sparse. y = Hz mod ¢, whereH is the adjacency matrix of the
In order to avoid technical complication, we make twopraid. Fix~y € (0,1). We say that the input € {0,...,q —
assumptions on the input distributign 1}™ is typical, and writex € T, (p.) if its type 6, satisfies
1) It hasat most power-law tailsBy this we mean that D(0z|lp.) < n™ (here the Kullback-Leibler divergence is
P{X; > 2} < Az—¢ for somee > 0. computed in natural base). Denote By, (p.;y) the set of
2) It has decreasing digit entropy Let X; = Inputvectors thatare typical and such thiat =y, mod q.

S~ Xi(a)g® be theg-ary expansion of;, andh, be The ‘typical set decoder’ returns a vectoiif this is the the
the g-ary entropy ofX;(I). Thenh,; is monotonically unique element ifl,,(p.;y) and a standard error message

decreasing ifl for any ¢ large enough. otherwise. In formulae
We call a distributiorp with this two propertiesadmissible Fly) = { z if Tu(psiy) = {7}, (6)
While this class does not cover all possible distributidhs, w0 [Tu(psy)l # 1.
is likely to include any case of practical interest. 2) Multi-layer: Consider now a multi-layer braid and

x € N! (inputs not restricted to be smaller thapwith z;'s

Theorem 1. For any admissible input distributiop, and L . . . :
any rater > H,(p) there exist a sequence of reliable Sparsedlstrlbuted independently according jo It is convenient to

counter braids with asymptotic rate write the input vector in basg

As stressed above, we insist on the braid being sparse for r= Zx(a) q - @)
two reasons{(i) It allows to update the registers content a20
with a small number of operations, whenever one entry ofherex(a) = {z;(a) : i € V'} with x;(a) € {0,...,¢—1}.
x is incremented (i.e. the storage function can be efficientliMotice that, for eactu > 0, the vectorz(a) has iid entries.
recomputed){iz) It opens the way to using low-complexity Let p, be the distribution orx;(a) whenz; has distribution
message passing algorithms for estimating the input vagtor p.
given the stored information (i.e. for evaluating the resgv We'll apply typical set decoding recursively, determining
function F¢). theg-ary vectorse(0), z(1), z(2), ... in this order. Consider



first 2(0). It is clear from Lemma 2 thay") = H;x(0) = subset oft registers it is connected to can be chosen through
H'z(0) mod q. We then apply typical set decoding to thea simple hash function.
determination ofc(0). More precisely, we look for a solution  To theseL, stages, we add furthet, stages, all of the
of H'z = y» mod ¢ that is typical under distributiop,.  same sizemy,,1 = --- = mp,4r, = m., with edges
If there is a unique such solution, we declare it our estimateonnecting each node i®;_; to a different node inR;.
of z(0) and denote by (0). Otherwise we declare an error. Equivalently, we takeH; to be the identity matrix in these
Consider now the determination afl) and assume the stages.
lower order terms in the expansion (7) have already been It remains to specify the number of stagés, L; and
estimated to bez(0), z(1), ..., &(l — 1). Let 20 = their sizesmy,...,mz,. Let p; be the distribution of thé-th
Zf:o Z(a) ¢, and2(?), a > 1 be determined through the least significant digit in the-ary expansion ofX;. Recall
same recursion as in Eq. (5). Further &) = H,2(®~Y  that we defined, to be theg-ary entropy of the distribution
mod ¢ (this are nothing but the register values on inpit).  p,, i.e.

Assume the estimates(0), z(1), ..., z(l — 1) to be
correct. It is then easy to realize thgt® = y(® for _
a=1,...1. Furtherz(® = 20 £ H'2(l) mod ¢, hence sz z)log, pi(®) ©)
y"D =g L H*2(1)  mod q. (8)  Finally, in the achievability proof, we shall assume that

We therefore proceed to computét?) — 50+ mod q. If is a prime number, large enough fbr to be monotonically
the linear systenil! 'z (1) = y+Y -5+ mod ¢ admits decreasing.

more than one or no solution that is typical with respect tpemma 3. AssumeP{X; > z} < Az~°. Then there exists

the distributionp;, an error is returned. Otherwise, the nexfconstantsB, C' that only depend om, e, such that for all
term in the expansion (7) is estimated through the unique> 1, and all ¢ large enough

typical solution of such linear system.

The recovery algorithm is summarized below, with one h < Blg™', (10)
improvement with respect to the description above. Instead ‘hg(p) _ Zhl log, q‘ < Cq<(logyq)®. (11)
of recomputingz(®, ..., 2, at stagel we only compute 1>0 -

the vector thag") that is needed at the present stage.
The proof of this simple Lemma is deferred to Section VI.

RECOVERY (NPUT: register valuey)) Lemma 4. Let p. be a distribution over{0,...,q}, with

1: Initialize 2(@) = 0 for a > 0; g-ary entropy H(p.), and T, (p.) be the set op.-typical
2. forle{0,...L} vectors defined as in Sec . Léf,(p.)| be the size of
3: Setg(l +1) = H 120 mod ¢; this set. Recall that: € T,(p.) if its type 0, satisfies
4 Let T, be the set ofy-typical (_937||p*) < n~7. Then, for anyg € (1 — v/2,1), there
solutions of HH17 = y(+1) — 50+ mod ¢; existsA = A(f,~, q) such that
5: IfT,={z}letz(l) =2 nH(p.)+An”
otherwise if|T;| # 1 return error; Ta(p)l < g e
6: Setz("tD) = |{H'"'20 + H12(1)}/q); Further, if X = (X1,...,X,) is a vector with iid entries
7. end R o with common distributiomn,
8. return T =) 7(i)q".

nt=7

P{X ¢ Tu(p)} < (n+1)%e” (12)

C. Sparse graph ensemble and choice of the parameters In the following we will considery and 3 fixed once and

The optimal compression rate in Theorem 1 is achievel@r all, for instance byy = 1/2 and 3 = 7/8.
with the following random sparse graph construction. Fix Fix somed >0, and letA(q) be a suitably large constant,
the registers capacity and an integek > 2. Then fori = Wwelet, forl=1,..., Lo,

., Ly the graph induced by verticeB;_; U R; has a .

random edge set that is sampled by connecting éaclk;_ mi = max{my, [§mu-1]}, 5 (13)
to k iid uniformly random vertices ink; (all edges being m, (146) [nhi—1(1+0) + A(g)n”] . (14)
directed fromR;_; to R;). In other words, then; x m;_1,
0 — 1 matrix H; has independent columns, each sampled bThe number of stages is such that

mcrementmgk iid p_osmons. _ _ _ m, < n(logn)~2 for anyl > L. (15)
The choice of this ensemble is motivated by implementa-
tion concerns. In the flow counting problem, we do not knowrhis implies, by Lemma 3L, = O(loglogn). To this we

a priori the exact number of flows that needs to be store@add L, = (logn)3/? stages within the second group, of size
The above structure, this number can be changed without, = my, < n(logn)~2. The total number of registers
modifying existing links. Further, for each new flow, theis therefore upper bounded a&| < n(1 + )3 ;5 (h +



AnP1) (3,50 6Y) +n(logn)~1/2, and therefore the asymp-  Further, for some universal constant, and D, = 1 —

totic rate of this architecture cos2m/q, andn, =) n.
149 q—1
r< T Mo, 16)  prpy —0) < (Chno) = QUkii/m)™ R(m, ~ 3 an)

120 q z=1

. . . L (18)
Since the right hand side can be made arbitrarily close to 1 .

h(p) by Lemma 3, Theorem 1 follows from the following. Q(k7i/m) < p {1 +(qg—1)ePa m*} , (29)
Theorem 2. For any input distributiorp with at most power- R(m,N) = min {17 (quN/m)N} (20)

law tails and any choice of > 2 and § > 0, there exists

k > 2 such that the multi-layer braid described above igProof. Due to the symmetry of the distribution @& with
reliable. respect to permutation in its columnB{Hz = 0} does
depend onx only through the number of ones, twos, etc.
Without loss of generality we can assume the first
coordinates to be ones, the nextto be twos, and so on, and

In order to prove our main Theorem or, equivalentlyneglectthe last —3°_ n. columns, corresponding to zeros.
Theorem 2, we need first to prove a few preliminary resultd hink now of filling the matrix, by choosing its non-zero
concerning a one-layer architecture. The proof here faflonentries (edges in the associated graph). If we associate to
the technique of [9], the main tool being an estimate ofach such entry the vglye of the corresponding coordinate in
the distance enumerator as in [4], [10], [11]. Distance ends We want the pr'obablllty'for the sum of labels on eaph row
merators for non-binary LDPC codes have been estimatd@Pe€0 mod g¢. Since entries are independent and uniformly
in [12]. Unhappily we cannot here limit ourselves to citingrandom, this is equal to the probability that eachmefurns

these works, because the graph ensemble is different frdffilled with balls whose labels add @ when we throw
the regular ones treated there. kn, balls labeled withl, kny labeled with2, and so on. It

is an exercise in combinatorics to show that this is

IV. ANALYSIS OF ONELAYER ARCHITECTURES

Throughout this Section the source is a vecfor =
(X1,...,Xy) with iid entries taking values if0, ...,g—1}  ¢-1 (kn.)! i
and distributiorp,. (in the application to multi-layer schemesH o coeff {P(£1, e Egy)™ ,gq’f"i‘l} ;
p. will coincide with p, for somel > 0). We letH be :=1 "
an m x n matrix whose columns are independent vectors I3 ff:f a-!
with integer entries. Each column is obtained by chooging Pi-)= Y 17Tl d z2l.=0p.
positions independently and uniformly at random (evemyual hodgr 5 =

with repetition) and ingremer_wting the corresp_onding eblyy_ Equation (17) is then obtained by evaluatihgand showing
one. In other wordgH is distributed as the adjacency matriXyhat it yields the above combinatorial expression.

of a given layer in the multi-layer architecture. In order to get Eq. (18), we denof,{---} by R, and
_ Our first result is a simple combinatorial calculation. Letuse)\z = kn./m, thus Ieading to ’

. -1
A= A{X : 2z =1,...,¢ — 1} be a vector inRY .

It is convenient to introduce the random variadig = a1 (kn.)! ekn= .
{(W. : z = 1,...,q — 1} taking values inN?~!, The P{Hz = 0} = H WQ(k”/m) R.
joint distribution of (W1, ..., W,_1) (to be denoted bys) z=1

is the one ofg — 1 Poisson random variables with meansEquation (18) follows from the observation thaf! <
(respectivelyl\s . .., A,—1, conditioned oy 7= zW. =0, \/CN (N/e)" for some universal constagt.
mod g. In order to prove Eg. (19), notice that, by discrete Fourier

Lemma 5. Letz € {0,...,q— 1}" be an input vector with ansform

n, entries equal toz, for z = 0,...,¢ — 1, and H be a 1t it g1

. . o 2mit ya=1 7
random matrix as above. Defie= {n. : z=1,...,q—1}. QN = - ZE e a =l }
For any X € RY, let Wy,...W,, bem iid vectors with 1=
distribution P;. Then the probability thallz = 0 mod ¢

12 = pmit
is = —Zexp —Z)\Z(l—eT) .
q £=0 z=1

—1 m
P{Hz = 0} = ql_[ (kn.)!em = (X)m]P’x Z Vi — kit b The claim is proved by singling Z%E thé = 0 term and
bounding the others usinBe(1 —e ¢« ) > Dj,.
a7 Let us finally prove Eq. (20). Obviouslyz < 1 since
it is an upper bound on the probabilif§; {---}. If we let
whereQ()) is the probability thatzz_} z2U,=0, modq N = %ZZ;} zn,, we can therefore assume, without loss

for independent Poisson random variables with means  of generality, thatV is an integer withNV/m < 1/q. Let V;

z=1



be distributed agg;} W; »z/q conditioned onV; being an
integer. Then the probabilit§;{- - - } is upper bounded by

P{i% > N} (%)P{Vi > 1y

(Csan)

Recalling the definition o¥;, we have

IN

IN

qg—1 q—1
PViz1} = P{3 0. 243 20, =0 modq}
z=1 z=1
1 q_l
< XiT Az]p{ Z 2U, > q} .
z=1
But Y21\, = kn./m < Ng/m < 1. Further,

912U, > q only if Y291 U, > 2. Therefore we get

-1

Q

PViz1} < P{} U.22}
z=1
q—1 9
< C(Z/\z) < C(kn./m)? .
z=1
The proof is completed by noticing thatkn./m) <
(Ng/m). O
In the following, given a vector: = (z1,...,z,), We

shall denote by|x||o is number of non-zero entries.

Lemma 6. Let H be a randomm x n matrix distributed as
above, with column weiglit. Assumé: not to be a multiple
of ¢, m < n, (m/nk)l/k >A>0and3 <k <m/logm.
Then, there exists a constaBt = B(q,A), C = C(q,A),
such that, if

p<_C&m

= Toglb/m) “

then
P{3||Z||o <E:H:=0 mod q} < n? <%> " (22
m

(where it is understood that € {0,...,q — 1}™.)

Proof. Throughout the proofA will denote a generic con-

For ||z|lo = ¢ < Ep (and z # 0) we use Lemma 5,
Eq. (18), where we seQ(---) < 1, n, = ¢ and & <
k37971 zn. < kL. Further we assumedk(/m < 1, which
holds without loss of generality if we takgq) < 1/AA° <
1/AA%F/(5=2) in Eq. (23), thus getting

P{Hz =0} < (Ak0)™= (Akt/m)*/1.  (25)

Since (k£)(a=1/2 < A*/4 we have (by properly adjust-
ing A)

P{Hz =0} < (Akl/m)*/7. (26)

For ||z|| > Ep, we use Eq. (18) withR(---) < 1. Since
kl/m > kEp/m is bounded away frond by Eq. (24),

we haveQ(---) < e~ ¢ for someC = C(A,q) > 0 and
therefore

P{Hz=0} < (Akf)@D/2e=Cm, (27)

There are at mosf?) (¢ — 1)* < (42)" vectorsz with
l|z|lo = ¢. If we denote byPg, g, the probability of the event
Jz: By <||z|lo < Bz, Hz =0 mod q}, the probability
in Eq. (22) is upper bounded B8, g, +Pg,, z (notice that if

k is not a multiple ofg, Hz = 0 is impossible fod|z||o = 1).
By union bound we have

2o An\ [ AR\ K
> (7) ()
=2
2 2k/q Eo
(Y ()"
- 2 m
=2
where (using(¢/2)?*/1-2 < Ak(=2)/4 and eventually ad-
justing the constan#)

IN

PZEQ

o) 2,

e=7

For ¢ < Ey, and choosing(q) small enough in Eq. (23), we
obtain&(¢) < 1/2 thus leading tdPs g, < n?(Ak/m)*/4.

Finally consider the contribution of vectofk||o > Fj.
Proceeding as above, we have

E A l
3 (7"> (Ake)(a=1/2 g=Cm

{=Ey

g (Ar ) (AkE)(a=1/2 g=Cm
= .

Akﬁ)k/q

m

N

Pr,.E

IN

stant depending only og that can be chosen large enougl]_|ere we boundedAn/0)¢ = [(An/0)/A"]A" < (An/E)F

to make the inequalities below hold.

Let z € {0,...,¢ — 1}™ be such that|z||o = £. We will
upper bound the probability th&fz = 0 mod ¢ in different
ways depending whethér< Ey, or ¢ > E,, where

PET e

with p(q) a function to be determined. Notice that, under our

hypotheses,

kE _
il > p(q) A2k/(E=2)
m

is bounded away from (as2 < 2k/(k—2) <6 for k > 3.)

(24)

using the fact that:=* is an increasing function of for
r <e~ !, and thatE /An = Cm/Anlog(nk/m) < Cm/An
is smaller thare=! for C' small enough.

Finally we boundE(@t1)/2 < AF and kle-1/2 < kP
(which holds form large enough), thus getting

E
(nkA) o—Cm_
m

If we take E = Cm/2log(nkA/m), we getPg, g, <
e~C™/2 which is smaller thar(Bk/m)f for a properly
chosen constanB and k£ < m/logm (indeedk < me,,
would be enough for any,, | 0.) O

IN
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V. ANALYSIS OF MULTI-LAYER ARCHITECTURES AND  and 5 (to bound®{H;z = 0} for ||z||o > E)

PROOF OFTHEOREML E,P {32’ € T,(p) St E < dy, Ha/ = H'z} <
Proof. Let Pff,), denote the probability thdtth term in the 5 (1 my
g-ary expansion of: is decoded incorrectly by the decoder< ¢"" 4" (Ckn)*= {—[1 + (¢ — 1)6_DkE/mt]} ;
in Section 11I-B (i.e. thatz(l) # x(1)) given thatx(0), ..., e
(1 — 1) have been correctly recovered. We will prove thaBy eventually enlarging the constant (in a way that
PY. = O(n=4) for some A > 0. Since the multi-layer depends om), we can get rid of the terniCn)™=". By
architecture involves at most(logn)? layers, this implies further using(1 + z) < ¢*/!°5% we can upper bound the
the thesis. Further, we shall consider only the firstlayers, above byk~1/2¢® where
since it.\_/vill.be clear frpm the derivation below that the erro g _ nh + A(Q)n® —ms + A/(q)mte—D(q)k,E/mt
probability is decreasing for the lagt; layers.

Let z be the input. Since we are focusing on fhil term  With A’(¢) = (¢ — 1)/logq. Notice that kE/m; =
in the g-ary expansion of the input, we will drop the indexC(q, §)k/ log(km;_1/m;) can be made arbitrarily large by
I, and taker € {0,...,q— 1}". This is just a vector whose takingk large enough. In particular, we can chodség, 9)
entries are iid with distribution;. such thatd’(g)e~P@kE/m: < 5/3 for anyk > k.. For such

The error probabilityPY. is upper bounded by the prob- 4, and using the fact that; > m; = [nh;+ A(g)n”](1+6)

ability thatx & T,.(p;) plus the probability that there exists 1

2/ # z with H'z' = H'z mod q. The first contribution @ < nfu+ Alg)n” —mi(1-6/3) < _gé[nhl + Alg)n”].

IS bouno!ed by Lemma 4, apd we caln*)thereforg .neglect Summing the various contributions, we obtain, for ény

it. Denoting the second contribution ally , and writing k.(g,0)

E., P for (respectively) expectation with respect toand ’

probability with respect to the matricé®,, ...H;, we have Q\" < C(q, k,8)(logn)s 2n~at2 + k"2 g oA +nh)/3 - (og)

(matrix multiplications below are understood to be modulo )
?) which proves the thesis. O

PLY = E,P{32' € To(p))\ {2} s.t. H'2' = H'z}

err

VI. SOME AUXILIARY RESULTS

. Proof: Lemma 3.First consider Eq. (10). LetX; be an
Zle), integer random variable with distributiop, X;(I) its I-th
P least significany-ary digit andZ the indicator function on
X1(l) > 0. From H(X;(l)) = H(Z) + H(X:1(1)|Z) it

O]
t follows that, forp, = P{X; > ¢'}:

E,P{32' € T,(p) \ {2} sit.
Hz' = Hlz, H "o # Ht_lx} .

hy <P, log,(q — 1) —p;log, p, — (1 — ;) log,(1 —D;) -

. - - 0
< L= = :

gl(n:i‘l) TnLQ(l) vovgofa?'sgp:rziléﬁ:ails)?tet\fer??sogfé to inpul(t:hoosmgq large enough so thay, < Aq” < 1/2 for al
' ¢ > 1, we can upper bound-(1 — p;)log,(1 — p,;) by 2p,,

a’ such thatd, = d(H'~'a’, H'"'z) < E and the other ones. getting PP (1 =P log, (1 =P1) by 2P,

As a consequenc®'” is upper bounded by
hy < 3p; — P, log, Dy,
E,P{32' € T,(m), st.1<d, < E, H'a' =H'z} + 1 — Pri08q P
which implies Eq. (10) fop;, < Ag~'c.)

/ L1 ol
HEP {32 € Tu(p) St B < de, Ha' =H'z} < In order to prove Eqg. (11), first notice thdf(X;) =
<P{3z st|lzllo < E,Hiz = 0}+ H{X:()}) < YoH(X1(1)) whence hy(p) <
+ [Tn(pi)| sup {P{Hz = 0} : ||z]]o > E}. Y10 hilogs g. By the same argumeritz(p) > holog, g.

) . . _ The thesis follows by boundiny’,.., »; using Eq. (10). O
Here z is understood to be a;_; dimensional vector with =
entries in{0,...,q— 1}. Proof: Lemma 4..The number of vectors with typé is

Notice that (m/kms_1)"/* > (5/k)/% > 5. Next we Upper bounded by"#(®). Since there are at mogt + 1)¢
chooseE = O(q, A = 8)my/ log(my_1k/my) with C(q, A)  distinct types|T,,(p.)| < ¢" P+ where
as in the statement of Lemma 6. As a consequence the first ~ log, (n + 1)
term above is upper bounded by Ky, = SI;P{H(G) — H(p.) : D(0||p«) <n” 7} + - :
Bk\ ko_o —kio k_p _k The boundH (0) — H (p.) < [|6 — p«||11og(q/[|6 — p.||) and
2 - < q 2 q < q 2 q+2
it <m) < (BR)wo™m, * < Ologn) s ™%, g || < \/2D(0]lp.) [3].
Equation (12) is just Sanov Theorem. O
where we usedn; 1 < m;/d andm; > n/(logn)?. The

constantC' that depends uniquely op &, &, but not onn. VIl. ACKNOLEDGMENTS
It remains to bound the second contribution, due to inputs Yi Lu is supported by the Cisco Stanford Graduate Fel-
2’ with d(«’,z) > E. Using Lemma 4 (to bound ,(p;)) lowship.
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