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Abstract. The Ridgelet Packets library provides a large family of or-
thonormal bases for functions f(z,y) in L?(dxdy) which includes or-
thonormal ridgelets as well as bases deriving from tilings reminiscent from
the theory of wavelets and the study of oscillatory Fourier integrals. An
intuitively appealing feature: many of these bases have elements whose
envelope is strongly aligned along specified ‘ridges’ while displaying oscil-
latory components across the main ‘ridge’.

There are two approaches to constructing ridgelet packets; the most
direct is a frequency-domain viewpoint. We take a recursive dyadic par-
tition of the polar Fourier domain into a collection of rectangular tiles
of various widths and lengths. Focusing attention on each tile in turn,
we take a tensor basis, using windowed sinusoids in € times windowed
sinusoids in 7. There is also a Radon-domain approach to constructing
ridgelet packets, which involves applying the Radon isometry and then,
in the Radon plane, using wavelets in 6 times wavelet packets in t, with
the scales of the wavelets in the two directions carefully related.

We discuss digital implementations of the two continuum approaches,
yielding many new frames for representation of digital images I(3,j).
These rely on two tools: the pseudopolar Fast Fourier Transform, and
a pseudo Radon isometry called the normalized Slant Stack; these are
described in Averbuch et al. (2001). In the Fourier approach, we mimic
the continuum Fourier approach by partitioning the pseudopolar Fourier
domain, building an orthonormal basis in the image space subordinate
to each tile of the partition. On each rectangle of the partition, we use
windowed sinusoids in € times windowed sinusoids in r. In the Radon
approach, we operate on the pseudo-Radon plane, and mimic the con-
struction of orthonormal ridgelets, but with different scaling relationships
between angular wavelets and ridge wavelets. Using wavelet packets in
the ridge direction would also be possible.

Because of the wide range of possible ridgelet packet frames, the
question arises: what is the best frame for a given dataset? Because
of the Cartesian format of our 2-D pseudopolar domain, it is possible
to apply best-basis algorithms for best anisotropic cosine packets bases;
this will rapidly search among all such frames for the best possible frame
according to a sparsity criterion — compare N. Bennett’s 1997 Yale Thesis.
This automatically finds the best ridgelet packet frame for a given dataset.

Key Words and Phrases. Wavelets. Ridge function. Ridgelets.
Radon Transform. Radon Isometry. Wavelet Packets, Cosine Pack-
ets. Best basis. Gabor Analysis.

Beyond Wavelets

J. Stoeckler and G. V. Welland (Eds.), pp. 1-77.
Copyright ©2001 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-XXXXXX-X



2 Flesia, Hel-Or, et al.

1. Introduction

There is considerable scientific and technological interest in representing 2-
dimensional objects f(z,y) — images — in terms of oscillatory 2 — d waveforms
with anisotropic envelopes.

For example, it is widely believed in the study of computational and biologi-
cal vision that early vision depends on the analysis of image data by directionally
oriented waveforms [19, 35, 20, 21]. It is also believed that representations by
oriented oscillatory waveforms are important for efficient representation of real
image data, [2, 30, 29], and to texture simulation [22].

These scientific and engineering interests interact with the agenda of com-
putational harmonic analysis, where an important goal in dealing with 2-D and
higher-dimensional objects is to construct representations which have a wide
range of orientations, aspect ratios, locations, scales, and oscillation numbers.
For example, one would like the ability to decompose an object f(z), z € R?,
stably and compactly, into a sum of oscillatory waveforms with anisotropic en-
velopes:

Yape(z) = e T exp{—(z — b)' A(z — b)}.

If such an ability were available, it would encompass in one framework most of
the benefits of wavelets, Gabor transforms, ridgelets, and many other specific
decompositions.

Unfortunately, no effective, stable decomposition into general collections of
such atoms is available today. The present paper does make some progress in
this direction in the two-dimensional case d = 2.

To put our approach in context, recall that an important stage in the devel-
opment of computational harmonic analysis was the generalization from wavelet
bases to wavelet packet and cosine packet bases [11]. Coifman and Meyer recog-
nized that one could develop a very intuitive picture of basis construction around
the notion of tilings of the time-frequency domain, and this picture would ex-
plain how to go beyond wavelets, creating a very wide variety of orthonormal
bases with various interesting properties. In their approach, one had available
a general family of tilings of the time-frequency plane based on recursive dyadic
partitioning, and one could build a basis corresponding to each such tiling by
using some simple tools deployed within an appropriately general framework.
Reducing this insight to very intuitive terms, these constructions allow bases
made of waveforms which, like wavelets, were localized in time and scale, but
which instead of the fixed, small number of oscillations offered by wavelets, had
a variable number of oscillations, controllable by the user.

In this paper, we describe a system of orthonormal bases and frames for
L?(dxdy) as well as frames for two-dimensional digital data I(i,5). The sys-
tem we describe, Ridgelet Packets, has many points in common with ridgelet
analysis, while allowing for a more complex and oscillatory structure. Thus,
the system contains bases where the basis elements are, like ridgelets, highly
orientation-selective, but which have greater degrees of oscillation either along
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or across the direction of primary orientation. We also describe algorithms
for two-dimensional digital data which can adaptively construct frames which
are well-adapted to sparse representation of given digital data. The tools can
be viewed as a contribution towards solving the problem proposed in para-
graph one above: automatically decomposing objects into compact collections
of anisotropic, oscillating waveforms. They bear much the same relationship to
ridgelets as do wavelet packets to wavelets.

One idea driving our construction is indicated in Figure 1 below. We illus-
trate the tiling underlying the orthonormal ridgelet basis, and two other tilings
which we have labeled ‘wavelet-like’ and ‘FIO’. These tilings of Fourier space are
all similar in that they all involve the subdivision of the radial axis dyadically.
They differ in the degree of angular subdivision that they apply. For ridgelets,
the frequency band 2/ < r < 2/%! is subdivided into 27 tiles angularly, while for
the FIO tiling, the same frequency band is divided into 27/2 tiles, and for the
wavelet-like tiling, the frequency band is divided in a constant number of tiles,
irrespective of the frequency range. (Inspirations for studying tilings of these
forms include: for the ridgelet tiling — Candes’ thesis [8, 7]; for wavelet-like tiling
— work in representation of natural images, such as Watson’s article on the Cor-
tex transform [35], and Field’s articles on statistics of natural images [19, 20];
for the FIO-tiling — work applying ‘Second Dyadic Decomposition’ in harmonic
analysis going back to Fefferman’s analysis of Bochner-Riesz summability; see
(32, 31].)

<

U

NWZ

Al

Figure 1. Three Tilings of the Frequency Domain: (a) Ridgelet tiling; (b) FIO tiling;
(c) Wavelet tiling.
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After tiling the frequency domain according to one of these schemes, we can
create a basis where each basis element is associated with a specific frequency
domain tile. If the tile is very narrow in the angular sense, then the basis
element, viewed in the original spatial (z,y) domain, will exhibit a very high
degree of orientational preference. If the tile is very anisotropic, the spatial
envelope of the basis element, viewed in the spatial domain, will have a very
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anisotropic envelope, and so a long and thin tile (long in » and thin in §) will
give rise to basis elements which are long and thin as well.

Figure 2. First Row, Left to Right: Basis Elements associated with Ridgelet tiling,
from coarse to fine ridge scale, with same angular position. Second Row, Left to Right:
Basis Elements associated with FIO tiling, from coarse to fine ridge scale, with same
angular position. .

We have illustrated this concept in Figure 2, the first row depicts basis
elements associated with the Ridgelet tiling (a) from Figure 1, that belongs to
four consecutive scales in r, plotted from left to right as r increases, and same
angular direction 6. The second row depicts basis elements associated with the
FIO tiling (b) from Figure 1, chosen from the same scales in r as the Ridgelet
basis elements. We can see that the ridgelet basis elements are generally thinner
and longer than corresponding FIO-derived elements.

In discussing such tilings, we have already claimed that we can construct
a basis adapted to each such tiling. To see how this can work, recall that [15]
introduced orthonormal ridgelets, defined as follows. Let (¢ (t) : j € Z,k € Z)
be an orthonormal basis of Meyer wavelets for L?(R), and let (w} ,(0), £ =
0,...,2% —1; w}j(e), i > ig, £=0,...,2"—1) be an orthonormal basis for
L?[0,27) made of periodized Lemarié scaling functions w?o’é at level 79 and

periodized Meyer wavelets w), at levels i > 4. Let 9);x(w) denote the Fourier
transform of ¢; x(t), and define ridgelets px(x), A = (4, k; ¢, ¢, €) as functions of
x € R? using the frequency-domain definition

PAE) = €172 (B (16105 ¢ (0) + e (—[€Dwf (0 + 7)) /2 (1.1)
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Here the indices run as follows: j,k € Z, £ = 0,...,2""1 — 1, i > iy; and, if
i > 19, @ > j. Also, if i > ig and ¢ > j, then necessarily ¢ = 1. Let A denote
the set of all such indices A. In that article, it was shown that this collection of
functions makes an orthonormal set for L?(R?).

From (1.1), and the definition of 1-D Meyer wavelets in the frequency do-
main as having the form e*sx u(\/27)/27/2 of a windowed sinusoid, we can see
that the construction is essentially based on selecting a tile, using a windowed
sinusoid in r = [£| and using a wavelet in 6 which peaks near that tile in 6.

In the end, the construction is based on the use of a tensor basis in (r, ) for
the space of functions localized (near) the tile.

In this paper we will carefully describe a general construction that contains
the idea behind the ridgelets construction as a special case. The result will
be a family of bases with a variety of interesting space-frequency localization
properties. For example, by modifying the ridgelet construction using wavelet
packets in the ridge direction and wavelets in the angular direction, one induces
on real space elements which are oscillatory ridgelets in the sense that they have
angular localization features similar to the orthonormal ridgelet family — being
nearly ridge functions — while being oscillatory in the ridge direction, see Fig-
ure 3. On the other hand, by using wavelets in the ridge direction together with
cosine packets in the angular direction one can produce effects which are more
like brush strokes — bundles of line elements with given orientation, position,
and textural cross-section.

Radon Domain Spatial Domain

—————— > - R M

= =

Figure 3. Construction of a Ridgelet Packet. A wavelet packet in the ridge direction
and father wavelet Symmlet 8 in the angular direction are combined by tensor product,
creating a waveform in the normalized Radon domain; this is backprojected into the
spatial domain, creating an oriented waveform there.

We will also develop a digital realization of these ideas, based on the so-
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called pseudopolar FFT. In our digital realization, we replace the polar Fourier
plane (which we can view as based on concentric circles of different radii) by a
pseudopolar system, based on concentric squares of different pseudo-radii. The
result is that we have tilings as illustrated in Figure 4.
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Figure 4. Three Tilings of the Digital Frequency Domain: (a) Digital Ridgelet; (b)
Digital FIO; (¢) Wavelet-like.

We will also describe an adaptive algorithm, based on tree pruning, that
can rapidly search through a wide variety of such bases, and select one that
can provide the sparsest representation of the digital data. An example of the
output of this algorithm is provided in Figure 5 below.

Finally, we will describe a software package for calculating with ridgelet
packets which is available as part of the Beamlab software distribution at
www.beamlab.net.

2. Fourier Preliminaries

A function f(x,y) in L?(dzdy), has a Fourier transform f({) which, by Par-
seval/Plancherel, is isometric to it: [|f]|3 = (%)QHJEH% (we will typically use
the term isometric in the broad sense, meaning preservation of norm up to
multiplication by a fixed scalar multiple). Another isometry is given by the
Cartesian-to-polar transformation f — F defined by

F(X\0) = |AY2f(X- cos(6), X - sin(8)), (2.1)

is an isometry from £2(d§1d£2) to L?(R x [0,27)). The composition of these
two isometries, f +— F maps the spatial domain into the polar Fourier domain,
is again an isometry, and motivates the following

Definition 1. By Polar Fourier Transform we mean the mapping F = TI(f)
defined by
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Figure 5. Disc-shaped object and Adapted Tiling. (a) Disc-shaped object. (b)
Adaptive Tiling of the Fourier Plane, overlaid on the Fourier Transform of the disc.
It is interesting to note that owing to the Cartesian structure of the data, the Fourier
Transform of the disc does not have radial symmetry near the corners. This may
explain the ‘unexpected’ high-frequency splits..

F(X,0) = f(\-cos(),\-sin(6)),
whereas the Polar Fourier Isometry F = II(f) is defined by (2.1).
Suppose now that we take a tiling of the Fourier domain, such as one of the

tilings of the introduction, and consider its equivalent in polar coordinates, as
illustrated in Figure 6.

@ (b) (©

Figure 6. Tilings of Figure 1 Translated into Polar Form.
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We then construct an orthonormal basis for functions on the polar strip
which is the ‘gluing together’ of individual orthonormal bases for functions
(nearly) localized to the individual tiles. Finally, we invert the Polar Fourier
Isometry, producing a basis for L?(dzidxs).

It is well understood how to construct interesting bases based on tilings in
dimension 1 [11, 36]. If we want to divide the frequency axis into intervals {I}
and then construct bases for the space of functions localized near those intervals,
we construct smooth windows wj localized near those intervals and obeying
special properties and multiply those by sinusoids ¢y ; producing windowed
sinusoids wy (t) ¢k, 1(t).

One can adapt this idea to the two-dimensional case, produce bases associ-
ated with tilings of the polar strip by a tensor product construction. We use a
similar cosine packets idea in 0, partitioning the interval [0, 27) into a sequence
of intervals {J} and consider the tensor cosine packet as the candidate basis
element

Crork(0,X) =wi(0)de,1(0) - wr(N)dw,r(N).

The collection of all such elements gives (if the windows and sinusoids are set
up appropriately) an orthobasis for the polar frequency domain L?(R. x [0, 27)).

We would next attempt to use this basis to induce a frame in the spatial
domain. We might be tempted to identify each Cj, 1 as the image, under
polar Fourier isometry, of an object v, 1k in L?(dz1dxs); and then to invert
the isometry, getting vy m 1k = o (Cm,1,k). The inspiration is clear. Several
details are less clear:

e Can this procedure really be carried out: is such a tensor product really
in the range of the polar Fourier isometry? Strictly speaking, the answer
is no; some modification is required. The information in the polar Fourier
strip is redundant:

F(\0)=F(=\0+7);

and if, in addition f is real-valued,
F(\0)=F(\0+m)"

The basis elements Cj,, 1,%(0, A) will have to be modified to obey these
constraints. A suitable modification is:

Crmik(0,N) = (Crmi1x(0,N) + Crmirx(0+m,—X)/2

e Even after suitable modifications, does this lead to an interpretable ba-
sis and interpretable basis elements? Candeés and Donoho, in preliminary
calculations, have some theoretical insights on this matter. The digital im-
plementations described later below provide an empirical tool for studying
the resulting bases.
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e The above construction does not correspond to the ortho-ridgelet defini-
tion (1.1); so apparently there is more than one way to operationalize a
given set of tilings.

e There is no well-defined polar Fourier transform for digital data; it is
unclear whether the ideas underling this construction have serious impli-
cations for digital data.

Because of these observations, it will turn out that the polar Fourier view-
point tells only part of the story. In broad terms, there are two viewpoints,
one in the polar Frequency domain and one in the (closely related) Radon do-
main. It will be very instructive in the coming few sections to develop a Radon
viewpoint, which provides full or partial answers to all the open issues above.

3. Radon Preliminaries

For a smooth function f(x) = f(x1,22) of rapid decay, let Rf denote the Radon
transform of f, the integral along a line L ;), expressed using the Dirac mass
4 as

(Rf)(t,0) = /f(a;)&(xl cosf + xosinf —t) dx | (3.1)

where we permit 0 € [0,27) and t € R. To create a space of such objects, we
let [, ] denote the pairing

F,G] = i /0 " /_ TR 0)G(t,0) dt db (3.2)

and by L?(dt df) norm we mean ||F||?> = [F, F]. We let Rt denote the adjoint
of the Radon transform so that for all sufficiently nice G € A and all sufficiently
nice f € L*(dz),

[Rf,G] = (f,R"G), (3.3)
which leads to

1 27

(RTG)(z) = i G(z1cos0 + x2sin0,6) db . (3.4)
0

Define the Riesz order-1/2 fractional differentiation operator A™ by

@ =y [ T e )l dw (3.5)

21 J_
This unbounded operator is well-defined on functions which are sufficiently
smooth [formally, the domain D(AT)={f: ffooo |f(w)|? |w|dw}]. In particular,

it is well-defined on every 1-D Meyer wavelet 1; 1, owing to supp(@-,k) CA{w:
lw| € [%7r23, %7727]}. Moreover, on the appropriate domain, it is self-adjoint.
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Definition 2. The Radon Isometry R is the operator densely defined by the
formal expression

R(f) = (AT @ DR[f].

The adjoint Radon Isometry R is the operator densely defined by the formal
expression

—%

R (G) = RT[(AT @ )G).
Now note that Rf has the antipodal symmetry
(Rf)(=t,0 +m) = (Rf)(t,0) . (3.6)

We adopt the convention that F' (and G and variants) typically will denote a
function on R x [0, 27) obeying the same antipodal symmetry:

F(—t,0+7) = F(t,0) . (3.7)

Let A be the closed subspace of L?(dt df) of functions F' obeying (3.7). Let
P4F be the orthoprojector from L?(dt df) onto A, defined by

(PAF)(t,0) = (F(t,0) + F(—t,0 +7))/2 . (3.8)

4. The Ridgelet Construction, and its Properties

The Radon machinery can be used to construct orthonormal ridgelets very effi-
ciently. Define the operator of reflection of functions of one variable (T'f)(t) =
f(—=t) and the operator of translation by half a period by (Sg)(6) = g(0 + 7).
Note that the space A consists of objects invariant under T'® S; (3.7) can be
rewritten (T ® S)F = F. In fact, Py = (I + T ® S)/2. Set now, for j, k € Z,
and i > i, £ =0,...,271 —1, € {0,1}

Wi(t,0) = Pa(vjr @ wi,) , (4.1)
where A = (j, k;,¢,¢). For later reference, we spell this out:
WA(t,0) = (¥, k()wi (0) + 1 n(—t)wi (0 + 7)) /2 . (4.2)

It was shown in [15] that the W) provide an orthobasis for .A. In order to obtain
orthonormality with respect to the scalar product [,], a particular normalization
was imposed. In that normalization, |[¢; x| r2®) = V2, and |w§ llL2(0,27) =
2y/m. In a sense, the (W, : A € A) constitute a “tensor wavelet basis which has
been antipodally symmetrized”.
If we now let py denote the ridgelet elements defined in the Introduction, we
note that
pr =R W], (4.3)

this says that an orthonormal ridgelet is isometric to a wavelet in Radon-space
which has been antipodally-symmetrized.
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The ortho-ridgelet construction may be viewed as transferring a basis from
Radon space to real space via an isometry R". If we reflect on the details of
the above construction, we notice that the basis we used was not completely
arbitrary: it had to consist of elements both in the domain of R and the range
of R". Now the range and domain both consist of functions in A, and the
easiest elements in both range and domain to describe are functions which are
bandpass in ¢, i.e. functions with support in the frequency domain contained in
a compact set separated from the origin.

These ideas imposed the following restrictions on the construction.

e The basis on Radon space was a basis for A rather than L?(dtdf). This
meant that its elements had to obey an antipodal symmetry requirement,
or equivalently that an element W of the basis had to obey the invariance
P,W=W.

e In order to construct such a basis, we started with an orthonormal basis for
L?(dtdf) and operated on it by Py, creating a tight frame with antipodal
symmetry. But as turned out, the tight frame was actually an orthobasis,
owing to two special closure properties of these families we used; closure
under reflection about the origin in the ridge direction:

Vik(—t) = ¥j1-k(t) , (4.4)
and closure under translation by half a cycle in the angular direction:
WE (04 7) = W s (6) (45)

The closure property (4.4) would not hold for certain other prominent
wavelet families, such as Daubechies’ compactly supported wavelets. The
significance of the closure properties was that for certain pairs (W, W),
PAWy = P4Wy, so that the induced frame consisted of many identical
pairs. Systematically removing one element from each such pair, and
rescaling the other element, we obtained an orthonormal basis.

e An ‘absence of low-frequencies’ restriction was imposed: the basis in the
ridge-direction consisted entirely of bandpass elements, i.e. elements with
frequency-domain support in an octave band disjoint from the origin.

If we weakened these conditions, the following would still be true.

e We can always start from an orthobasis for L?(R) and apply the projector
Py, getting a tight frame for A. We can then apply the isometry to this,
getting a tight frame for real space.

e If in addition, the original basis obeyed appropriate closure under ridge-
reflection and angular translation, the tight frame in real space can be
decimated by a factor of two to form an ortho-basis.
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e The condition that the low-frequency terms be absent from all basis ele-
ments is simply a regularity condition on the outcome of the procedure.
If certain elements in the basis have support near the origin in frequency
space, then the construction can still take place; however, some of the
corresponding frame elements will have poor decay.

In other words, the construction is quite general, but it might lead to a
redundant set with redundancy two and it might lead to a basis where certain
elements do not exhibit good spatial decay.

5. Ridgelet Packet Construction

We now propose a class of tight frames based on the remarks just given. In
certain cases, these can be subsampled to form orthobases.

5.1. General Procedure

We begin with a general set of ingredients:

e An orthonormal basis (U,(t)) for L?(R) for the ridge direction. If the
elements are bandlimited, we call this a bandlimited basis. If the elements
obey the closure condition

Uup(—t) =Uw(t)
the basis will be called a basis closed under reflection.

e A basis (V,(0)), for L?[0,27) in the angular direction. If the elements
obey the closure condition

V(04 m) =V, (0)
the basis will be called a basis closed under translation.

e A collection of antipodally-symmetric functions A will be constructed from
the two families of bases. Letting A = (i, ) group the indices in each of
the variables,

Wi (t,0) = PA[UM(X)VV]; (5.1)

as the result of applying an orthonormal projector to the orthonormal
basis, the W, make a tight frame for A.

e A collection of functions p) will be induced by the isometry R
pr=R (W) VA

As an isometry of a tight frame, the p) make a tight frame for their span.
In fact their span is all of L?(R?).
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We note the following.
First, there is a simple expression for the element p)

PAE) = 1172 (UL €D - Vi (0) + Uy~ I€D) - Vi (6 + 7)) /2
valid for £ = (€| cos(8), |£] sin(h)).

Second, if the elements U,, are bandpass, with C* Fourier transforms, and if
the elements V,, are C'*° then the elements p) are likewise bandpass with smooth
Fourier transforms; it follows that they are C°° with spatial rapid decay.

Third, the general procedure described above has been stated for tensor
product bases U, ® V,,. In general, there is no reason to restrict ourselves in
this way. More generally, we may allow a semi-direct product

Wy = PA[Uu & V,,|H], VA= (u,v) (5.2)

where the basis (V,,|, : v) depends on p. The orthoridgelet basis defined in the
Introduction in fact has this form, as can be seen from the constraint ¢ > j.
By and large, the freedom enabled by the rule (5.2) will only be exercised in a
limited way, as exemplified by the way it is exercised in the ridgelet orthoba-
sis; the coarsest-scale of resolution may be adjusted to the properties of the
corresponding ridge element.

5.2. Bases of Ridgelet Packets

While in principle, any pair of bases may be used for the above construction,
we are interested here in those bases deriving from applying certain principles
of time-frequency localization [13, 33].

Definition 3. We call ridgelet packet basis a basis constructed by the above
procedure, where the basis U, is chosen from a wavelet packets dictionary
and the basis V,, (or V|, if rule (5.2) is used) is chosen from a wavelet packets
dictionary or a cosine packets dictionary.

When the basis in the angular direction is chosen from the wavelet packets
dictionary, we will sometimes speak of the Radon-domain approach to defin-
ing ridgelet packets, whereas when the basis in the angular direction is chosen
from the cosine packets dictionary, we will speak of the polar Fourier-domain
approach. This distinction reflects the structure of the underlying algorithms in
the two situations, as we will discuss later. Admittedly, this is artificial to some
extent, since the Radon and Fourier domains are related in 1-1 fashion, but we
find the distinction helpful.

5.3. Radon Approach: Wavelets in both Ridge and Angular Direc-
tions

The orthonormal ridgelet basis is built using wavelets in both the ridge and
angular directions. Other bases can be built within this framework, by simply
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varying the base resolution level of the angular wavelets as a function of the
resolution of the ridge wavelets.

In the ortho-ridgelet case, we start with ridge wavelets ¢; ;(t) for j, k € Z
and with angular wavelets wig(e). The key decision is that we limit ¢ > 7, and
we have ¢ = 1 for ¢ > j, while ¢ € {0,1} for i = j.

To interpret these choices, focus on the situation where i = j and ¢ = 0.
Hence we are looking at a tensor product based on the male-gendered wavelet
at scale j, w?’Z(H) - x(t) Note that for ¢ = 0, wj.)e(é) is a “bump”, integrating
to 2//2. The tensor product is thus localized near § = ¢/27, and has each
constant-6, varying-t profile proportional to the wavelet 1); 1.

This has an interpretation in terms of the tilings mentioned in the introduc-
tion. Indeed, the successive terms

w?,z(é), w]{e(ﬁ), wjl'+1,218(9)a ’LUJI'+1,2£+1(9)7 e

represent an orthogonal set of functions localized in the vicinity of the angular
interval [27¢/27,27(¢ + 1)/27). Thinking now in the polar frequency domain,
the orthogonal functions

0 7 1 7 1 7 1 7
Wj 0 ®Vjs Wi g @Yk, Wit 00 @Yk, Wit 0041 @ Yjkes - -

for k € Z, create an orthogonal set localized near the ‘tile’ [27//27 27 (¢ +
1)/27) x [29,27F1). In this way, the formula (1.1) for ridgelets implements the
tiling shown in Figures 1 and 6.

This discussion suggests how we can derive a formula for basis elements
which implement a quasi-FIO tiling. The idea is to use the same framework,
only instead of taking the base resolution ig = j + ¢, we take ig = j/2+c. The
orthonormal functions

0 ; 1 ; 1 ; 1 ;
Wi ¢ @ Vi ks Wi ¢ @ Vi ey Wi 11,20 @ Viiker Wi 41,2041 @ Vjokes - - -

form an orthogonal set of functions all localized near the ‘tile’ [27¢/2%, 27 (¢ +
1)/2%) x [27,271). Hence, the angular subdivision is not nearly so fine, so that
at frequency 27, we have tiles of height 2/ and width 2 - 279/2.

Many other possibilities could be considered. Perhaps the simplest is to pick
the base angular resolution fixed, independent of j: ig = 3 (say). Then the
functions

0 7 1 ; 1 7 1 p
W3 ¢ @ Vj gy W3 p @ VY gy W 00 @ ks Wy 0041 @ Vjiky- -

form an orthonormal set, each one localized near a tile of fixed width 27/8 and
height 27.

All these constructions have the qualitative property that a given basis ele-
ment generated from

w; ;@ ik,
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exhibits an orientation localized to directions near 6; , = 2mw¢/ 2¢, and a scale
normal to that direction of scale 277. To see this, note that the basis element
is generated by

pr =R (Pa(wf, ;)

which can be written as

pa(x) = g [ (W5 (x1 cos(8) + w2 sin(0))ws ,(9))/2d0
+4 f(i/)j’k(xl cos(0 4 m) 4 o sin(0 4 m))ws (6 + 7)) /246,

where w;k = A*1); ;. This shows that each basis element is an angular “aver-
age” of ridge functions

z/x;fk(zl cos(f) + xo sin(6))

over § in a 27 vicinity of 6, ,. The only “location-like” parameter here is k,
which sets the position of the underlying ridge near z1 cos(6) + x sin(0) = t; x,
where ¢, = k/27. It follows, in particular, that the system, while offering an
orientation, a ridge, and a scale parameter, does not offer a traditional location
parameter.

In later sections, we will give illustrations of digital frame elements inspired
by these constructions.

5.4. Radon Approach: Wavelet Packets in the Ridge Direction

By Wawvelet Packets basis in the ridge direction, we mean the use of the prin-
ciple of local cosine bases of Coifman and Meyer (1989) applied in the radial
frequency variable A. In our opinion, the best references for understanding this
construction are the article of Auscher, Weiss and Wickerhauser [1] (in English)
and the monograph of Yves Meyer (in French) [26]. We note that, to avoid
confusion, our notation is nonstandard, since typically the term wavelet pack-
ets refers to bases constructed by applications of special filter banks, and the
specific idea we discuss now cannot be implemented through finite-length filter
banks.

One chooses a partition in the 1-dimensional frequency variable according
to the general rules of symmetric recursive dyadic partitioning. One takes the
initial sequence of breakpoints {2’ : j > 0} and views this as referring to the
partition

{(-1,0]U0,1),(—-2,-1] U [1,2),(—4,-2]U[2,4),...}

and one considers all partitions reachable from this one by repeatedly applying
midpoint splits to a pair in the partition, producing a new pair. For example, we
could split [0, 1) into [0,1/2),[1/2,1) and also (—1,0] into (—1/2,0],(—1,—1/2]
and then replace (—1,0] U [0,1) in the initial partition by the pair (—1/2,0] U
[0,1/2) and (—1,—1/2] U[1/2,1), producing a new partition of this sort. One
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may, if one likes, impose a balance condition on partitions, allowing only parti-
tions in which adjacent intervals differ by a factor of two in length.

Associated with any partition reachable in this way is an orthonormal basis,
produced as follows. To each interval I in the partition we associate a window
wr(A) which is smooth and nonnegative, 1 near the center of the window, and
vanishing outside a slight enlargement of the window. The squares of the win-
dows together should form a partition of unity: > ; w?(\) = 1, VA. Then we
define a collection of trigonometric functions ¢y x(w) associated with the win-
dow which make an orthonormal set for L?(I). If the interval does not abut 0,
these functions are chosen from the DCT-IV system. If the window does abut
0, we view I and —I as a single interval I and these functions are chosen from
the DST-III system. The basis is then the collection

Uu(A\) = wi(A) - dr(N), A €R

where p = (I, k) is an index pair unifying the indices I and k.
Some examples of this construction are quite familiar.

o Meyer Wawvelets. If we use breakpoints {2/ : —co < j < oo}, we get a
partition into intervals I; = (=271 —27] U [27,27F1). The basis element
U,, with index p = (I;, k) is then precisely an orthonormal Meyer wavelet

wj,lv

o Wilson-like Basis. If we use breakpoints {1,2,3,...}, we get a partition
into intervals
Ij:(—j,—(j—l)]UU—l,j)7 (51)
and we obtain in this way elements familiar to those who understand
[1] and who have studied the construction of the Wilson basis [14]. In
effect, the basis elements are windowed sinusoids of frequency roughly
7, exponentially localized near a position proportional to k£ in the time
domain.

Other examples of the construction may seem more exotic:

o Intermediate Coherence Length. Suppose we use breakpoints
{1,2,4,6,8,12,16,20,24,28,32, ...},

where in general the 2j-th and 2(j + 1)-th initial intervals [27,27+1) and
[27F127%2) are recursively subdivided j/2 times, yielding a family of 27 /2
subintervals. Then we obtain a basis where the typical elements supported
near high frequency w have a frequency localized in a band of width about
y/w and a time localization, according to the Heisenberg principle, to a
correspondingly short interval of length about 1/y/w. This says that the
time coherence of effects at frequency w is not as short as in the wavelet
system, where it is proportional to 1/w, nor as long as in the Gabor system,
where coherent effects last for about one unit of time.
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e Increasing Coherence Length. If we use breakpoints

{1,2,344 55 66 77 884 82 849 by

where in general the j-th initial dyadic interval [27,2711) is subdivided
dyadically through 2j — 2 complete generations, then we obtain a basis
where the typical elements supported near high-frequency w have a fre-
quency localized in a band of width about 1/4/w and a time localization,
according to the Heisenberg principle, to a correspondingly short interval
of length about y/w. This says that the time coherence of effects at fre-
quency w is not as short as in the Gabor system, where coherent effects
last for about one unit of time, nor as long as in the Fourier system, where
coherent effects last for infinite time.

With any of these choices, we can then subdivide the angular variable in
a fashion subordinate to the ridge frequency variable, according to the same
principle as in the ortho ridgelet basis. Let V,,|,, be simply the periodized Meyer
wavelet as in the ortho ridgelet basis — under a low frequency constraint to be
determined below — and let W, be a wavelet packet basis based on a different
partition than the dyadic wavelet partition. Consider for example the Wilson-
like basis partition (5.1) based on integer breakpoints. Choose the low-frequency
constraint on w;, so that ¢ > j i.e. so that the angular scale is finer than the
ridge frequency. It results that for j > 0, the p) are bandlimited and of rapid
decay.

For each p) we have from (4.3) the formula

pr =R [W)]
which gives the explicit formula

oa(z) = =i L [(UF (21 cos(0) + zo sin(0))ws ,(6))/2d0
+4 J( UJr (w1 cos(0 + ) + 2 s1n(9 ¥ m))ws (0 4 7)) /2d6.

Now roughly speaking, U, with u = (j,k) is a sinusoid of frequency j, say
localized to an interval of length ~ 1 situated near ¢t ~ k. Hence, the ridge
function U,f(x1 cos(f) + x2sin(f)) is localized near x cos(f) + x2sin(f) = k.
Similarly w ,(0) is localized near § = 6;, = 2n¢/2". It follows that the in-
tegrand is large for z in a range where z ~ (k cos(6;.¢), ksin(; ¢)), so we
may expect that for ¢ = 0 and i = ig(p), the function py concentrates near

~ (kcos(0; ), ksin(6;¢)). For € =1 and ¢ > iy, one must argue by cancela-
tion, which is more subtle.

5.5. Polar Fourier Approach: Wavelet ® Cosine Packet

Let now (U,) be simply the standard Meyer wavelet basis for R, just as in
the ortho-ridgelet basis (1.1). Let V,,,, however, be a cosine packet basis based
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on a recursive dyadic partition of the angle domain. Consider for example, a
partition based on dividing the angular domain into 27 equal sectors. Use the
cosine packets subordinate to this partitioning. In the polar Fourier domain,
things are very simple, because Meyer wavelets are the Fourier transforms of
cosine packets in the frequency domain. Hence we have cosine packets in A times
cosine packets in 6. Hence, bivariate cosine packets are being used, subordinate
to a recursive dyadic partition.
For each p) we have the explicit formula

pr(@) =& [ (21 cos(0) + 2 5in(0))V, ())/2d0
+ b [(W] (w1 cos(O + ) + wasin(0 + 7))V, (0 + 7)) /2d6.

Now, roughly speaking, w;fk is a wavelet of scale 277, localized near t ~ tik =
k/27. Hence, the ridge function w;fk(ml cos(f) + xosin(f)) is localized near
xq1cos(f) + zosin(f) = t; . Similarly V,, is localized to an interval Jp,,. It
follows that the integrand is large for  in a range where |z| ~ t;, and 0 €
Jm,- We may expect that the function p, is large in the neighborhood where
x ~ x(|t; x| cos(b; ), |t; k] sin(b; ). Knowing the exact shape of the support
requires additional insight.

Now we make the more detailed assumption that V,, is a sinusoid in 6 of
frequency 27 - ky localized near the interval J,,, ¢. This allows us to study the
details of py on its support. For large |t; | and large m, the integrand is
approximately of the form

15 (21 €08(0m1) + 22800 1) )w g, , (0) D, ().

Hence it has approximately the form of a wavelet function in the ridge direction
and the form of a localized sinusoid in the transverse direction.

6. Implementation on Digital Data

Ridgelet Packets bases for digital data can be constructed based on an adap-
tation of a circle of ideas associated to digital implementation of the Radon
transform, polar Fourier transform, and ridgelet transform [3, 17].

6.1. Fast Slant Stack

Averbuch et al. (2001) [3] describe a realization of the Radon transform suited
for n-by-n image data, called Fast Slant Stack, claiming that the transform
is geometrically accurate and can be implemented by a fast algorithm. The
geometric accuracy, for example, implies that the backprojection of a point in
Radon space is a true ridge function, i.e. a true object of the form ¥ (x + sy),
where 1(+) is delta-like.

This scheme has been deployed by Donoho and Flesia [17] to produce a
discrete ridgelet transform based on true ridge functions. In our work for this
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paper, we have used the same scheme to provide a digital implementation of
ridgelet packets.

6.2. Pseudopolar FFT

Underlying the Fast Slant Stack is a notion of digital polar transform Fourier
called pseudopolar FFT in [3].

The key point is to view the digital Fourier domain not as a cartesian grid,
but instead as a special pointset as shown in Figure (7). Then define the pseu-
dopolar Fourier transform as the evaluation of the Fourier transform

n—1

€)= ) (w1, m) exp{—(::161 + 2262)}

wl,wQ:O

at the 4n? points of this pointset. The pointset can be viewed as a set of “con-
centric squares” stacked inside each other (like Chinese boxes), with equispaced
points along the boundary of the box. The half-width of a side functions as a
pseudo radius, and the arclength along the perimeter of the box functions as a
pseudo angular variable.

Figure 7. Pseudopolar Fourier Grid.

As shown in [3], the evaluation of the Fourier sum on this set of gridpoints
can be performed in order N log(N) flops, where N = n? is the total number
of pixels. The underlying ideas that allow rapid evaluation of these specific
gridpoints date back to work of Pasciak [27], Edholm and Herman [18], and
Lawton [24], working variously in Medical Imaging and in Synthetic Aperture
Radar.

The resulting set of pseudopolar values may be viewed as a 2n by 2n array:
2n points on each line through the origin, and 2n lines through the origin,
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grouped in columns as different lines through the origin, in rows as different
‘radii’. We define the pseudopolar FFT P(I) to be the transform from n by n
arrays to 2n by 2n arrays produced in this way.

Note that the pseudopolar grid samples the region near the origin more finely
than the region near the boundary. In fact the spacing between samples on line
segments varies inversely with distance of the segment from the origin. Define
the normalized pseudopolar FFT P(I) to be the result of applying a simple
rescaling of entries in P(I) according to the square root of the local sample
spacing in the pseudopolar grid at the corresponding grid point. Since P(I)
is a discrete analog of F(r,0) = f(rcos(f), rsin(f)), sampled at specific points
in (r,0), the definition of P(I) is very analogous to defining in the continuum
case F(r,0) = r'/2f(rcos(9), rsin(d)). Recall that f — F is an isometry from
L?(dzdy) to L*(drdf); we can’t get quite so much in the digital case: Instead
we have

CillI||z < [[PI)]]2 < CallI]2, (6.1)

where empirically, Cy/Cy < 1.1.

Note that if we had C; = Cy then, up to normalization, P would be an ¢2
isometry. In that sense, the mapping I +— P(I) is a digital analog of the polar
Fourier Isometry.

6.3. Digital Radon Domain

If we apply a 1-dimensional inverse FFT to each column of the 2-D pseudopolar
FFT array, we create a new 2n-by-2n matrix. This matrix is a digital Radon
transform of I; each column gives the sums of (an interpolant of) I along a
family of equispaced parallel lines, where the slope of the lines in that family
is indexed by the column index (which provide a pseudo-angular variable) [3].
Call the overall mapping S(I) the slant stack.

If we apply instead a 1-dimensional inverse FFT to each column of the
2-D normalized pseudopolar FFT array, we create another new 2n-by-2n ma-
trix. This matrix is a preconditioned digital Radon transform of I. Call the
overall transform mapping S(I) the normalized slant stack. Because of the
near-isometry property of P(I), we have

CillIll2 < IS(D) ]2 < Call]2-

Here C; and Cy are the same as in (6.1). Again, if C; = Cy then, up to
normalization, then S(I) would be an ¢* isometry. In that sense, the mapping
I— S(I) is a digital analog of the Radon Isometry.

6.4. Strategy for Digital Implementation

We have now introduced a set of digital-data friendly tools which are analogous
to the continuum-domain tools discussed in earlier sections. In a sense, we
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have built up a ‘dictionary’ to translate between the continuum domain and the
digital domain. The dictionary is summarized in the table below.

Continuum Concept Symbol | Digital Concept Symbol
Polar Fourier Transform F(\,6) | Pseudopolar FFT P(I)
Polar Fourier Isometry ~ F(),6) | Normalized Pseudopolar FFT — P(I)
Radon Transform R(t,0) | Slant Stack S(I)
Radon Isometry R(t,0) | Normalized Slant Stack S(I)

Our strategy for digital implementation of ridgelet packets is to use this
dictionary to substitute digital concepts for continuum concepts in the original
definitions. Thus, if a certain orthobasis for the continuum case used wavelets ‘in
each direction’ followed by dual Radon isometry, then we propose to work with
the normalized slant stack, and use a discrete wavelet basis ‘in each direction’,
followed by the adjoint normalized slant stack ‘to return to the spatial domain’.

A remark about this strategy: before heading a great distance down this
path, it is important to know that there is a ‘proof of concept’ which shows
that at least in a special case, the strategy provides decent results. In this case,
the proof of concept has been provided by the algorithm for the digital ridgelet
transform in [17]. In constructing that transform, the authors have followed the
strategy suggested above and carefully documented the properties of the digital
domain transforms that result.

A second remark: while the continuum approach leads to the definition of
various bases, in the discrete case we will only get frames, for a simple reason.
The normalized pseudopolar FFT and the normalized slant stack are both trans-
forms from n x n arrays to 2n x 2n arrays. Hence the strategy must in general
lead to overcomplete systems (frames) rather than orthobases. However, the
frames generated in this manner can be expected to have good frame bounds,
owing to the closeness of Cy and Cs in (6.1).

6.5. Digital Ridgelet Packets

Our implementation strategy leads to the following general schema:

Definition 4. A Digital Ridgelet Packet transform in dimension two is a
transform of n-by-n data defined as follows.

[DRPT1] The n-by-n digital array is transformed into a digital Radon domain via
the fast normalized slant stack algorithm in [3], which gives a 2n-by-2n
array.

[DRPT2] These arrays are then transformed according to some specific combination
of wavelet packets and cosine packets in each of the two directions (angular
vs. ridge), where the combination of bases in the two directions is made
according to a direct product or a semidirect product.
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The Inverse Digital Ridgelet Packet transform in dimension two is a
transform returning from the Ridgelet Packet domain as follows.

[IDRPT1] The Ridgelet packet coefficients are transformed back into the Radon do-
main by inverting the transform in step [DRPT2] above.

[IDRPT2] The Radon domain data are transformed back into the original digital
spatial domain by inverting the normalized slant stack transform in step
[DRPT1] above, using the algorithm in [3].

This algorithm has the following general characteristics for an image of size
n by n with N = n? pixels.

e Storage Space: The algorithm requires permanent storage of order O(N),
and temporary storage of comparable size.

e Complexity: The forward transform algorithm requires O(N -log N) flops,
and the inverse transform algorithm requires O(C(e) - N - log N) flops,
where C(¢) depends on the relative accuracy required. C(107%) ~ 7.

For certain purposes it may be useful to apply the adjoint of the forward
digital ridgelet packet transform. This is obtained by a two-step procedure

[ADRPT1] The Ridgelet packet coefficients are transformed back into the digital
Radon domain by applying the adjoint of the transform in step [DRPT2]
above. If the transform is orthogonal (as would be typical) this is the
same as inverting the transform.

[ADRPT2] The Radon domain data are transformed back into the original digital
domain by applying the adjoint of the transform in step [DRPT1] above,
using the adjoint algorithm in [3].

The adjoint uses O(N log(N)) flops and O(N) space.

6.6. Digital Implementation

We have developed a digital implementation of these ideas as part of a MATLAB
toolbox called BeamLab. This toolbox contains tools for Ridgelet, beamlet, and
curvelet analysis, and is available for download from

http://www.beamlab.net

where further information is available.

BeamLab contains scripts which can reproduce all the figures in the article
you are reading. It also contains a directory named RP_FCP which imple-
ments ridgelet packets based on anisotropic cosine packets in the pseudopolar
Fourier plane, and a directory named RP_RW W which implements ridgelet pack-
ets based on applying wavelets and wavelet packets in the Radon plane.
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6.7. Examples of Digital Implementation

We now demonstrate the implementation indicated above by displaying some
basis functions and the associated coefficient functionals.

6.8. Synthesis from Tiles

What do ridgelet packets look like? Given the emphasis of this paper on tilings,
it might seem most natural to try many different tilings, and some specific basis
functions associated with each. We suggest that another approach would be
more directly informative: to study individual tiles.

Indeed, the system of tilings underlying our constructions has a relatively
few different shapes of tiles: they are all oriented parallel to the axes in (r,6)
space, and their widths and heights vary through a dyadic set (2¢,27). They are
located at various places in the (r,6) plane, but most of this variation is easily
visualized, as either a rescaling or a rotation.

In short, we propose that to get a good understanding of the system, we
should fix a certain (r,6) and consider objects associated to tiles at a range of
different aspect ratios: (2¢,2°1"), for varying h, or else (277" 27) for varying h.
In this way we see the effect of varying the tile shape on the basis elements.

Carrying out this proposal, we begin by working in the Fourier plane with
Cosine packet bases. Figure 8 gives an example of several basis functions ob-
tained from picking a tile extending from 1/4 to 1/2 of Nyquist in the radial
frequency variable, and considering various widths ranging from very narrow to
very broad. In these figures, we tried to keep the base frequency as low as pos-
sible, so that we explore the shape of the envelope rather than the oscillations
within the envelope.

Figure 8. Basis Functions Derived from Tiles of Different Widths.
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Figure 9 gives an example of several basis functions obtained by picking a tile
extending from 7 /4 to 37 /8, and considering various heights ranging from very
short to very tall. In these figures, we again tried to keep the base frequency
as low as possible, so that we explore the shape of the envelope rather than the
oscillations within the envelope.

Figure 9. Basis Functions Derived from Tiles of Varying Heights.

Continuing with this proposal, we consider comparable tilings, only we im-
plement them using the Radon plane with wavelet packet bases. Figure 10 gives
an example of several basis functions obtained from picking a Radon-domain
waveform made of the tensor product of a wavelet packet in the ridge direction
and a wavelet in the angular direction. The figure explores the results obtained
by varying the scale of the wavelet packet in the ridge direction.

6.9. Analysis

We now give an example of using the Ridgelet Packet systems to analyze images.
One basic purpose of image analysis is sparse representation: to use as few
coefficients as possible to represent the object accurately. We will take some
specific images, and analyze them in several different bases, and compare the
representations for sparsity.

We consider an image with oriented linear features, depicted in Figure 11

We then analyze the object in the system of anisotropic cosine packets in
the frequency domain. The figure 12 below illustrates the results, by showing
the pseudopolar Fourier transform with the basis tiling overlaid upon it. The
various panels indicate the underlying number of coefficients exceeding a fixed
threshold.

To solidify the reader’s understanding, Figure 13 presents the present the
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Figure 10. Basis functions derived from Radon-domain approach. Backprojections
of Wavelet Packets at Different Widths in the ridge direction give different spatial
waveforms.

associated graphic for the image data in original (Cartesian-product) Fourier
space. The same four tilings are presented overlaid on the Fourier transform of
the original image. The strong directionality of the image is evident from the
concentration of energy along a line through the origin.

7. Adaptation

We have defined, in the continuum case, a rather large collection of orthonor-
mal bases; and in the digital data, a rather large collection of frames. Which of
these is ‘best’ for a given dataset? In this section we describing an efficient com-
putational method for finding an optimizing frame among the ridgelet packet
bases.

7.1. Background on Best Basis

This question of adaptively choosing a basis has already been thoroughly studied
in the context of time-frequency decompositions. The Cosine Packets Library
and the Wavelet Packets Library define rather large collections of bases for
representing signals — functions of time. Coifman and Wickerhauser [10] consid-
ered a library of bases £ = {B} with special properties (which were exhibited
by both the cosine packets and wavelet packets libraries) and showed how to
rapidly compute a ‘best basis’, one optimizing an expression of the form

e
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Figure 11. Image with Oriented Linear Features.

where £(B) (the ‘entropy’) is a measure of the quality of the basis. The same
algorithm works equally well to find the minimizing basis.
Their algorithm works under these assumptions:

e Each basis is a particular subset from a dictionary of ¢,, v € I';

e The bases in the library have a natural tree structure, i.e. there is a certain
correspondence between subtrees of a complete tree and bases in a library;

e The ‘entropy’ is defined by an additive measure

EB)=) e,

yeB

The underlying principle that makes the Coifman-Wickerhauser algorithm work
is the principle of dynamic programming, which allows to prove that bottom-up
pruning of the complete tree is optimal.

The Coifman-Wickerhauser algorithm was developed originally in the con-
text of time-frequency analysis, in connection with the Cosine Packet or Wavelet
Packet bases. There the tree-ordering relationship of the bases was based on
the tree-ordering property of the corresponding recursive dyadic partitions of
the time and/or frequency domains, depending on whether we are considering
the Cosine Packet or Wavelet Packet systems. The same general principle works
also in two-dimensions, and has been used for example in constructing 2-d co-
sine packets bases for fingerprint image analysis [36] and in constructing 2-d
brushlet bases [12]. For example, if one considers direct products of univariate
‘time-frequency’ bases, these correspond to direct products of pairs of univari-
ate partitions, and to a natural tree order where one allows either vertical or
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Entropy = 31 Entropy = 40

Entropy = 29 Entropy = 35

Figure 12. The pseudopolar Fourier transform overlaid with tilings defining 4 differ-
ent ridgelet packet bases; the labels give the number of coefficients above threshold.
Apparently, a decomposition splitting only on directions gives the sparsest represen-
tation.

horizontal splits. Other space-frequency bases can be constructed by recursive
dyadic partitioning based on quadtree-splits — simultaneous splitting in both
variables. Either family has the required tree property [4].

There are two general ways in which the Coifman-Wickerhauser algorithm
can be applied, depending on the way in which the e, are specified.

First, one could be interested in finding a best-basis for an individual signal
f, and then it makes sense to choose e, as a function of the coefficients of the
signal f in basis B. If 6, is the -th coefficient of f in basis B, then it would be
appropriate to set e, = e(|0,]), where e(t) is a concave function of ¢* — examples
being e(t) = min(¢?, \?) and e(t) = [t|P, 0 < p < 2. Such are measures of the
sparsity of the coefficients, and, subject to a fixed budget of coefficient energy
doeB |6,]? they are small when the object has sparse coefficients — a few large
coefficients and many small ones. (Note that in this setting our goal would be
to minimize the }___p e, rather than maximize it.)

Second, one could be interested in finding a best-basis for an ensemble of
signals {fm,m = 1,...,M} . Then if 7' denotes the y-th coefficient of f™
in basis B, it could make sense to let e, = Ave{e(0]')}, where e is one of
the functions mentioned above in the single signal case, and then to minimize
E(B). Alternatively, we could take a statistical viewpoint, and look for a basis
capturing the most squared variance on the diagonal; we would then let e, =
(Var,{62'})?, and seek a basis maximizing > e €y The basis then has an
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Figure 13. The two-dimensional Fourier transform overlaid with tilings defining 4
different ridgelet packet bases; the labels give the number of coefficients above thresh-
old. Apparently, a decomposition splitting only on directions gives a larger number
of coefficients exceeding threshold; while a decomposition splitting into more angular
bins at higher frequencies gives fewer coefficients exceeding threshold..

interpretation as providing a best near-diagonalization within the cosine packets
system [25]. In this case it also makes sense to consider maximizing the entropy
derived from averaging e(t) = t*—3-1* across the dataset; then e, = Ave{(67")*—
3-(67)?} is a measure of kurtosis, and the maximizing basis is the most kurtic
basis; such bases are interesting as providing the bases which best expose the
non-Gaussianity of the signal in a certain sense; compare [5, 6].

7.2. Application to Ridgelet Packets

We can adapt these existing best basis ideas to the Ridgelet Packet system
in a natural way. In essence, Ridgelet Packet bases are all based on taking
the data into the pseudopolar Fourier domain, viewing the pseudopolar FT as a
complex valued 2n by 2n image, and then looking for the best anisotropic cosine
packets basis for that image data. Bennett’s thesis [4] has already explored
the properties of best anisotropic cosine packets bases for real valued data;
he studied the natural 2-D analog of the Coifman-Wickerhauser algorithm in
which anisotropic rectangles are allowed in the tiling. The extension to complex-
valued data involves no new issues. Hence, applying the Bennett algorithm to
the pseudopolar FFT involves nothing substantially new.

Figure 14 below shows the results of applying best anisotropic basis algo-
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rithm to the texture image of Figure 11.

Figure 14. Left panel: Best rectangular partition overlaid on pseudopolar Fourier
Plane. Right panel: Corresponding tiling of Cartesian Fourier Plane.

8. Discussion

This is obviously preliminary work; we can expect our efforts to be rapidly
surpassed in various ways. We mention here some of the issues that come up in
attempting to improve on the scheme developed here.

8.1. Improvements in the Digital Implementation

e True Polar FFT. In this article, we have based our efforts on an imple-
mentations using the pseudo Polar FFT and the Slant Stack. These are
analogs, for digital data, of the continuum Fourier and Radon transforms.
However, they are not precise analogs, since they do not fully represent
the polar Fourier domain — using concentric squares rather than concen-
tric circles. The discrepancy between squares and circles is particularly
evident in analyzing radially symmetric objects such as a disk, which have
Fourier transforms organized in a ring pattern (see Figure 4).

In separate work, Averbuch et al. have developed a Polar FFT algorithm
which starts from the pseudopolar FFT and then converts to a true polar
form. While this algorithm does not offer a near isometry, the improved
geometric fidelity might be important to have. A valuable next step would
be to apply the Polar FFT algorithm in the present context.

o Improved Coefficient Decay. In the companion article [17], it was pointed
out that the digital ridgelet transform based on ideas similar to those used
in this paper does not have the same qualities of coefficient decay that were
available in theory for the ortho ridgelet transform of continuous functions.
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One can expect the same statement to be true for any of the frames
constructed using methods of this article. Donoho and Flesia speculate
that the slower decay is owing to an implicit ‘image mutilation’ that occurs
at the heart of the Slant Stack algorithm. This interesting possibility
should be pursued further; perhaps it would lead to improved sparsity of
not only ridgelet but all ridgelet packet representations.

o True Space-Frequency Atoms. As pointed out recently by Lars Villemoes,
the usual setting for application of the Coifman-Wickerhauser algorithm
with Cosine produces bases where the different elements do not have uni-
form Hesienberg constants. Roughly speaking, in the usual application,
one has to make a choice of a “window transition length”, and then all
windows in the whole system make the transition from 1 to 0 in that
same length, no matter whether the window is short or long. The result
is that the basis elements corresponding to the long intervals have poor
time-frequency localization.

To respond to this problem, Villemoes [34] has developed an algorithm
that provides uniformly good time-frequency localization. If Villemoes’
algorithm were used in the ridgelet packet setting, it might substantially
improve the coefficient decay of the best ridgelet packet basis. This would
be a valuable direction to explore.

8.2. Limitations on the Ridgelet Packet Scheme

While the Ridgelet Packet system provides an interesting collection of new bases,
all these bases are missing a key ingredient: a translation parameter. At best,
the scheme offers a ridge translation parameter, associated with displacements
vertically up or down in ridge space. From wavelets and Gabor systems, we are
accustomed to having a translation-like parameter.

To understand this issue better, look at a typical member of a wavelet system
in Fourier space;

Gy 1 (€) = expli€! (kr, ko) 27} - b(€/27) /2972,

The oscillating factor, exp{i&’(k1,k2)/2’} is responsible for the translation ef-
fect. By comparison, a ridgelet packet, viewed in frequency space, is made up
of several terms of the form

exp{ik1(r — a)/b} - exp{ik2(0 — ¢)/d}w,((r — a)/b) - we((8 — ¢)/d).

Now qualitatively, the product of two windows w,.((r — a)/b) - we((0 — ¢)/d) is
simply a nice smooth function. So the oscillating factor

exp{iki(r — a)/b} - exp{ika(6 — ¢)/d}

would have to be able to create a translation or at least a pseudo translation
effect. However, it is evident by inspection that, for large k1, k5 there is no such
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effect. Thus for example, under various assumptions on the behavior of a, b, ¢, d,
the family can be shown to behave very differently than a translation family.

In response to this, it would seem worthwhile to search for a system of bases
and associated algorithms with a more direct connection to translations.

An obvious way to do this would be to borrow ideas which were useful in the
construction of curvelets [9]. Thus, we would separate the image into passbands
based on bandpass filtering, spatially localize the bandpass images into square
subimages via smooth windowing, and then apply ridgelet packet analysis to
the square subimages.
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