Which graphical models are difficult to learn?
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Abstract

We consider the problem of learning the structure of Isinglet® (pairwise bi-
nary Markov random fields) from i.i.d. samples. While seVenathods have
been proposed to accomplish this task, their relative siant limitations remain
somewhat obscure. By analyzing a number of concrete exampkeshow that
low-complexity algorithms systematically fail when the Mav random field de-
velops long-range correlations. More precisely, this gime@non appears to be
related to the Ising model phase transition (although isda# coincide with it).

1 Introduction and main results

Given a graplG = (V = [p|, E), and a positive parametér> 0 theferromagnetic Ising model on
G is the pairwise Markov random field
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over binary variableg = (z1,z2,...,z,). Apart from being one of the most studied models in

statistical mechanics, the Ising model is a prototypicdiretted graphical model, with applications
in computer vision, clustering and spatial statistics. obwious generalization to edge-dependent
parameterd;;, (i, j) € E is of interest as well, and will be introduced in Section 2.2(Let us
stress that we follow the statistical mechanics conventfaalling (1) an Ising model for any graph
G.)

In this paper we study the following structural learning deon: Givenn i.i.d. samplesz(V,
2@ ,..., (") with distribution uuc 6( - ), reconstruct the grapld:. For the sake of simplicity, we
assume that the paramefeis known, and thatz has no double edges (it is a ‘simple’ graph).

The graph learning problem is solvable with unbounded sarm@inplexity, and computational re-
sources [1]. The question we address is: for which classgsaphs and values of the parameités
the problem solvable under appropriate complexity coivgg@ More precisely, given an algorithm
Alg, a graphG, a valued of the model parameter, and a smalt> 0, the sample complexity is
defined as

nag(G,0) = inf {n eN: ]P’n,G,g{Alg(g(l), . ,g(")) =G} >1- 5} , (2)

whereP,, ¢ ¢ denotes probability with respect toi.i.d. samples with distributiopc ¢. Further,
we let xaig (G, ) denote the number of operations of the algoritAtg, when run omai (G, 6)
samples.

For the algorithms analyzed in this paper, the behavietgf andxa,, does not change significantly if we
require only ‘approximate’ reconstruction (e.g. in grajgtahce).



The general problem is therefore to characterize the fanstiag (G, 8) and xaig(G,0), in par-
ticular for an optimal choice of the algorithm. General bdsionna (G, 0) have been given in
[2, 3], under the assumption of unbounded computationaluregs. A general charactrization of
how well low complexity algorithms can perform is therefémeking. Although we cannot prove
such a general characterization, in this paper we estimateindyaig for a number of graph mod-
els, as a function o, and unveil a fascinating universal pattewhen the model (1) develops long
range correlations, low-complexity algorithms fallnder the Ising model, the variablés; };cy
become strongly correlated férarge. For a large class of graphs with degree boundef lthis
phenomenon corresponds to a phase transition beyond sidioa ealue off uniformly bounded in
p, with typically 6.,;; < const./A. In the examples discussed below, the failure of low-comiple
algorithms appears to be related to this phase transitltro(agh it does not coincide with it).

1.1 Atoy example: the thresholding algorithm

In order to illustrate the interplay between graph strugtigample complexity and interaction
strengthy, it is instructive to consider a warmup example. The thré&ihg algorithm reconstructs
G by thresholding the empirical correlations
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THRESHOLDING samples(z(©}, thresholdr )

1. Compute the empirical correlatiof€’;; } ; jyev xv:
2: Foreachi,j) eV xV

3: If CA'ij > 7, set(i,j) € E;

We will denote this algorithm by hr(7). Notice that its complexity is dominated by the computation
of the empirical correlations, i.&rn(-) = O(p®*n). The sample complexityy, () can be bounded
for specific classes of graphs as follows (the proofs ar@gsitf@rward and omitted from this paper).

Theorem 1.1. If G has maximum degreA > 1 and if § < atanh(1/(2A)) then there exists
7 = 7(0) such that
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Further, the choice (8) = (tanh 8 + (1/2A))/2 achieves this bound.

Theorem 1.2. There exists a humerical constafit such that the following is true. i\ > 3 and
¢ > K/A, there are graphs of bounded degréesuch that for anyr, ny(;) = oo, i.e. the
thresholding algorithm always fails with high probability

nThY(T)(G7 9) < (4)

These results confirm the idea that the failure of low-coxipfealgorithms is related to long-range
correlations in the underlying graphical model. If the drépis a tree, then correlations between far
apart variables;, z; decay exponentially with the distance between verticgsThe same happens
on bounded-degree graphdif< const./A. However, forf > const./A, there exists families of
bounded degree graphs with long-range correlations.

1.2 More sophisticated algorithms

In this section we characterizg; (G, ) andnai (G, 0) for more advanced algorithms. We again
obtain very distinct behaviors of these algorithms depegmdin long range correlations. Due to
space limitations, we focus on two type of algorithms and/anitline the proof of our most chal-
lenging result, namely Theorem 1.6.

In the following we denote byi the neighborhood of a nodes G (i ¢ 07), and assume the degree
to be boundeddi| < A.

1.2.1 Local Independence Test

Arecurring approach to structural learning consists if@#pg the conditional independence struc-
ture encoded by the graph [1, 4, 5, 6].



Let us consider, to be definite, the approach of [4], spexig]iit to the model (1). Fix a vertex
whose neighborhood we want to reconstruct, and consideotmgitional distribution of,. given its
neighbors: ta.o(xr|zy,). ANy change ofz;, i € dr, produces a change in this distribution which
is bounded away frorfl. Let U be a candidate neighborhood, and asstime dr. Then changing
the value ofr;, j € U will produce a noticeable change in the marginakof even if we condition
on the remaining values iti and in anyW, [IW| < A. On the other hand, i/ ¢ 9r, then it is
possible to findV (with || < A) and a nodeé € U such that, changing its value after fixing all
other values i/ U W will produce no noticeable change in the conditional maabifJust choose

1 € U\or andW = 9r\U). This procedure allows us to distinguish subset&ofrom other sets
of vertices, thus motivating the following algorithm.

LocAL INDEPENDENCETEST( sampleg (D}, thresholdge, ) )

1: Selectanodec V;

2: Setas its neighborhood the largest candidate neiglitadr
size at mosi\ for which the score function REU) > €/2;

3: Repeat for all nodese V;

The score function SoRE( - ) depends ori{z")}, A, v) and is defined as follows,

min - max [P, g o{Xi = 2| Xy =2y, Xy =2y} -
W,j T5,Zy 2y ,%5

Pr.co{Xi = il Xy = 2w, X = 2. Xj = 25} (5)

In the minimum,|WW| < A andj € U. In the maximum, the values must be such that

Proo{lXw =zw. Xy =2¢} > /2, PogolXw =zw, Xy =200, Xj =3} > /2
@n’g’e is the empirical distribution calculated from the sampﬂeé@}. We denote this algorithm
by Ind(¢,~). The search over candidate neighbbrsthe search for minima and maxima in the
computation of the SORE(U') and the computation d,, ¢ ¢ all contribute forynq(G, ).

Both theorems that follow are consequences of the analf/§i$.o

Theorem 1.3. Let G be a graph of bounded degrée > 1. For everyd there existge, v), and a
numerical constank, such that

100A 2p
21 08 X, (G0) < K (2p)*% logp.

More specifically, one can take= 1 sinh(26), v = =44 2724,

Nind(e,) (Ga 9) <

This first result implies in particular th&¥ can be reconstructed with polynomial complexity for
any bounded\. However, the degree of such polynomial is pretty high angtmoiform in A. This
makes the above approach impractical.

A way out was proposed in [4]. The idea is to identify a set aitgmtial neighbors’ of vertex via
thresholding:

B(r)y={ieV:Cr > r/2}, (6)
For each node € V, we evaluate SORE(U) by restricting the minimum in Eq. (5) ovév C B(r),
and search only ovei C B(r). We call this algorithmndD(e, v, k). The basic intuition here is
that C,.; decreases rapidly with the graph distance between vertiaesli. As mentioned above,
this is true at smal.

Theorem 1.4. LetG be a graph of bounded degreée > 1. Assume thad < K /A for some smalll
enough constank’. Then there exists +, x such that

4 og(4/k
NindD(e,,) (G 0) < 8(k? + SA) log ?p s XindD(, . ) (G,0) < K’pAAi1 G + K'Ap?logp.

More specifically, we can take= tanh 6, e = 1 sinh(260) and~y = e~4% 2724,

2If g is a vector andR is a set of indices then we denote &y the vector formed by the componentsaof
with index in R.



1.2.2 Regularized Pseudo-Likelihoods

A different approach to the learning problem consists inimé&ing an appropriate empirical likeli-
hood function [7, 8, 9, 10, 13]. To control the fluctuationased by the limited number of samples,
and select sparse graphs a regularization term is ofterdddds, 9, 10, 11, 12, 13].

As a specific low complexity implementation of this idea, vwmsider the/;-regularized pseudo-
likelihood method of [7]. For each nodethe following likelihood function is considered

1 n
L(O: =} = == > log P cglal”|2))) (7)
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whereg\r =Zy\, = {z; : i € V'\ r} is the vector of all variables except andP,, ¢ ¢ is defined
from the following extension of (1),
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wheref = {0;;} jcv is a vector of real parameters. Model (1) corresponds;te= 0, V(i,j) ¢ E
andd;; =0, ¥(i,j) € E.

The functionZ(9; {=(”'}) depends only ofi,.. = {6,;, j € Or} and is used to estimate the neigh-
borhood of each node by the following algorithRig()),

REGULARIZED LoGIsTic REGRESSION samplesz(!)}, regularizatior(\))
1: Selectanode € V;

2: Calculate), =arg min {L(0, ;{z“}) + X0, |};
’ 0, €Rv-1 : ’

3: If §,; > 0, set(r, j) € E;

Our first result shows th&lr()) indeed reconstructs if 6 is sufficiently small.
Theorem 1.5. There exists numerical constarits, K», K3, such that the following is true. L&t
be a graph with degree bounded By> 3. If § < K; /A, then there exisk such that

—2 8p?
nrir(n) (G, 0) < K207 A log 5 9)

Further, the above holds with = K30 A~1/2,

This theorem is proved by noting that < K /A correlations decay exponentially, which makes
all conditions in Theorem 1 of [7] (denoted there by Al and AB)d, and then computing the
probability of success as a functionmfwhile strenghtening the error bounds of [7].

In order to prove a converse to the above result, we need te s@ke assumptions on Given

6 > 0, we say that\ is ‘reasonable for that value @fif the following conditions old:(i) Rir())

is successful with probability larger thdrf2 on any star graph (a graph composed by a vertex
connected ta\ neighbors, plus isolated vertice$)i) A < d(n) for some sequencgn) | 0.

Theorem 1.6. There exists a humerical constaft such that the following happens. & > 3,
6 > K/A, then there exists graphS of degree bounded b such that for all reasonable,
nrir(y) (G) = o0, i.e. regularized logistic regression fails with high padlity.

The graphs for which regularized logistic regression faiksnot contrived examples. Indeed we will
prove that the claim in the last theorem holds with high pholitg when G is a uniformly random
graph of regular degref.

The proof Theorem 1.6 is based on showing that an approjnietderence conditiois necessary
for RIr to successfully reconstru@. The analogous result was proven in [14] for model selection
using the Lasso. In this paper we show that such a conditialsésnecessary when the underlying
model is an Ising model. Notice that, given the graphchecking the incoherence condition is
NP-hard for general (non-ferromagnetic) Ising model, aulires significant computational effort
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Figure 1: Learning random subgraphs of & 7 (p = 49) two-dimensional grid fromm = 4500
Ising models samples, using regularized logistic regoesdieft: success probability as a function
of the model parametet and of the regularization paramet®y (darker corresponds to highest
probability). Right: the same data plotted for several chsiof A versusf. The vertical line
corresponds to the model critical temperature. The thiok i6 an envelope of the curves obtained
for different\, and should correspond to optimal regularization.

even in the ferromagnetic case. Hence the incoherencetaamdoes not provide, by itself, a clear
picture of which graph structure are difficult to learn. Welwistead show how to evaluate it on
specific graph families.

Under the restrictioln — 0 the solutions given bRIr converge t@* with n [7]. Thus, for large
n we can expand. aroundd” to second order ifg — 6*). When we add the regularization term
to L we obtain a quadratic model analogous the Lasso plus the ®emm due to the quadratic
approximation. It is thus not surprising that, wher- 0 the incoherence condition introduced for
the Lasso in [14] is also relevant for the Ising model.

2 Numerical experiments

In order to explore the practical relevance of the aboveltgswe carried out extensive numerical
simulations using the regularized logistic regressiow@digm RIr(A). Among other learning algo-
rithms,RIr(\) strikes a good balance of complexity and performance. Sgsripdm the Ising model

(1) where generated using Gibbs sampling (a.k.a. Glaubeardics). Mixing time can be very large
for 6 > 0.1, and was estimated using the time required for the overadl tti change sign (this is a
quite conservative estimate at low temperature). Gemgy tiie sample$z(“)} was indeed the bulk

of our computational effort and took abdiit days CPU time on Pentium Dual Core processors (we
show here only part of these data). Notice tRat\) had been tested in [7] only on tree grajhs

or in the weakly coupled regimte< 6.,;;. In these cases sampling from the Ising model is easy, but
structural learning is also intrinsically easier.

Figure reports the success probability Rif(\) when applied to random subgraphs of a 7
two-dimensional grid. Each such graphs was obtained by varg@ach edge independently with
probability p = 0.3. Success probability was estimated by applyRig\) to each vertex o8
graphs (thus averaging ové®2 runs ofRIr(\)), usingn = 4500 samples. We scaled the regular-
ization parameter as = 26 (logp/n)'/? (this choice is motivated by the algorithm analysis and
is empirically the most satisfactory), and searched oyer

The data clearly illustrate the phenomenon discussed. ifResipe large number of samples
n > logp, when# crosses a threshold, the algorithm starts performing paoespective ofi.
Intriguingly, this threshold is not far from the critical o of the Ising model on a randomly diluted
grid O,it(p = 0.3) ~ 0.7 [15, 16].
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Figure 2: Learning uniformly random graphs of degree 4 freind models samples, usitrigjr.
Left: success probability as a function of the number of daswp for several values of. Right:
the same data plotted for several choiced wersus) as in Fig. 1, right panel.

Figure 2 presents similar data whéhis a uniformly random graph of degrée = 4, overp = 50
vertices. The evolution of the success probability witlclearly shows a dichotomy. Whehis
below a threshold, a small number of samples is sufficienetomstructG with high probability.
Above the threshold even = 10* samples are to few. In this case we can predict the threshold
analytically, cf. Lemma 3.3 below, and g&t,, (A = 4) =~ 0.4203, which compares favorably with
the data.

3 Proofs

In order to prove Theorem 1.6, we need a few auxiliary restilis convenient to introduce some
notations. IfM is a matrix andR, P are index sets then p p denotes the submatrix with row
indices inR and column indices i. As above, we let be the vertex whose neighborhood we are
trying to reconstruct and defing = 9r, S¢ = V' \ dr Ur. Since the cost functiof(¢; {z(“)}) +
All@]|1 only depend o through its components. . = {0..; }, we will hereafter neglect all the other
parameters and writéas a shorthand df. ..

Let 2* be a subgradient df¢||; evaluated at the true parameters val@és= {0, : 0,; =0, Vj ¢
or,0,;, =0, ¥j € Or}. Let 0" be the parameter estimate returned”dy(\) when the number
of samples is:. Note that, since we assumét > 0, z§ = 1. DefineQ" (0, ; {z("}) to be the
Hessian of.(6; {z(©}) andQ(8) = lim,, .o, Q™(8,; {z®}). By the law of large numberg(f) is
the Hessian ofq g log Pg o (X, | X\, ) WhereE¢ j is the expectation with respect to (8) akdis a
random variable distributed according to (8). We will denthie maximum and minimum eigenvalue
of a symmetric matrix}{/ by o< (M) ando,in (M) respectively.

We will omit arguments whenever clear from the context. Amatity evaluated at the true pa-
rameter values will be represented with,se.g. @* = Q(0*). Quantities under a depend om.
Throughout this sectio&' is a graph of maximum degrek.

3.1 Proof of Theorem 1.6

Our first auxiliary results establishes thathifs small, therf|Q%. Q%™ ' 25|00 > 1is a sufficient
condition for the failure oRIr()).

Lemma 3.1. AssuméQ%. sQ%s ~ 25)i > 1+ ¢ for somee > 0 and some 10w € V, ouin(Qlg) >
Ciin > 0, and\ < /C3. €/29A%, Then the success probabilityRfr(\) is upper bounded as
Puce < 4A2e7 04 1 2A N 05 (10)

whered, = (C2,,/100A2)e anddp = (Crnin/8A)e.

min



The next Lemma implies that, for to be ‘reasonable’ (in the sense introduced in Section }.2.2
nA? must be unbounded.

Lemma 3.2. There existM = M (K, §) > 0 for § > 0 such that the following is true: I is the
graph with only one edge between nodemdi andn\? < K, then

Pace < e—M(K,Q)p +€—n,(1—tan110)2/32 ) (11)

Finally, our key result shows that the condititi%.sQ%s 25|l < 1 is violated with high
probability for large random graphs. The proof of this résalies on a local weak convergence
result for ferromagnetic Ising models on random graphseuiom [17].

Lemma 3.3. LetG be a uniformly random regular graph of degrée> 3, ande > 0 be sufficiently
small. Then, there existsy,, (A, €) such that, fol > 0.1, (A, €), ||QEesQ%s 25| lco > 1+ € with
probability converging td asp — co.

Furthermore, for largeA, 0 (A,04) = §A™L(1 + o(1)). The constant is given byl =
tanh h)/h and h is the unique positive solution éftanh 4 = (1 — tanh? h)2. Finally, there exist
Chin > 0 dependent only oih and @ such thaiomin (Q%g) > Cmin With probability converging to
lasp — oc.

The proofs of Lemmas 3.1 and 3.3 are sketched in the nextstidoseLemma 3.2 is more straight-
forward and we omit its proof for space reasons.

Proof. (Theorem 1.6) FixA > 3,0 > K/A (whereK is a large enough constant independent of
A), ande, Cp;, > 0 and both small enough. By Lemma 3.3, for anfarge enough we can choose
aA-regular graplG, = (V = [p], E,) and a vertex € V such thatQ%. 4Q%s ' 1s|; > 1+ ¢ for
somei € V' \ r.

By Theorem 1 in [4] we can assume, without loss of generality K’Alogp for some small
constantk’. Further by Lemma 3.23\% > F(p) for someF (p) T oo asp — oo and the condition
of Lemma 3.1 on\ is satisfied since by the "reasonable” assumpfion> 0 with n. Using these
results in Eq. (10) of Lemma 3.1 we get the following upperrdmban the success probability
Pouce(Gp) < AN2p~0aK'A 4 9N o= nF(p)0 (12)
In particularPgyc.(Gp) — 0 asp — occ. O

3.2 Proofs of auxiliary lemmas

Proof. (Lemma 3.1) We will show that under the assumptions of thererand ifd = (65,04 ) =
(84,0) then the probability that thecomponent of any subgradientbfd; {z(“)})+A||¢]|; vanishes
for anyés > 0 (componentwise) is upper bounded as in Eg. (10). To simpbtation we will omit
{z®} in all the expression derived froi.

Let 2 be a subgradient gff|| atd and assum& L(0) + Az = 0. An application of the mean value
theorem yields R

V2L(0")0 — 0] =W" — A2+ R", (13)
whereW” = —VL(6*) and[R"]; = [VQL(Q(j)) — VQL(Q*)];F(Q—Q*) with 8 a pointin the line
from 6 to 6*. Notice that by definitiolV2L(8*) = Q™* = Q™(¢*). To simplify notation we will
omit thex in all Q. All Q™ in this proof are thus evaluatedgt

Breaking this expression into i and.S¢ components and sinégc = 05 = 0 we can eliminate

0 — 9% from the two expressions obtained and write

[Wgo — Ric] — Qcs(Qs) [WE — RE] + AQ4c s(Qis) 25 = A2ge . (14)
Now notice thaQ?c o (Q%g) ™! = T1 + Ts + T + Ty Where
Th = Qses[(Q3s) ™" — (Qss) 7], Tp = [Qlcs — QbeslQss ™
Ty = [Q4es — Qsesll@8s) ™ = (@Q59) 7', Ti=Q5esQbs -



We will assume that the samplés(¥)} are such that the following event holds
€ ={llQss — @sslloc < £, [|Q505 = Qsoslloc < &b [[W5/Alloc <&c}y (19)

where¢ s = C2 ¢/(16A), £ = Ciine/(8VA) andéc = Ciine/(8A). SinceEg o(Q™) = Q*
andE¢ ¢(W"™) = 0 and noticing that botl)™ andW" are sums of bounded i.i.d. random variables,
a simple application of Azuma-Hoeffding inequality uppeuhnds the probability of as in (10).

From £ it follows that omin (Q%g) > Tmin(Q%g) — Cmin/2 > Cmin/2. We can therefore lower
bound the absolute value of tii& component ofgc by
o (LIS

* —1 Wn
[@5esQss ™ Lslil=lITwilloo =1 T2.illoc =1 T3,illoc—| ==
The proof is completed by showing that the ev€raind the assumptions of the theorem imply that
each of last terms in this expression is smaller thafs. Since|[QgCSQ§S*1]iTég| >1+c¢eby
assumption, this implieg;| > 1+ ¢/8 > 1 which cannot be since any subgradient of theorm
has components of magnitude at mobst

3

A

_‘@ Hﬁ

A

where the subscriptdenotes the-th row of a matrix.

The last condition o€ immediately bounds all terms involviid” by ¢/8. Some straightforward
manipulations impIy (See Lemma 7 from [7])
VA

T < T:
|| 11||oof 02 ||QSS QSS”OOv || 2%||oof Ciuin

min

N@%cs — Rseslilloo s

T3, 00 < Cg Q55 = Qssllooll|@ses — Qseslilloo s

and thus all will be bounded by/8 when& holds. The upper bound dt™ follows along similar
lines via an mean value theorem, and is deferred to a longsioveof this paper. O

Proof. (Lemma 3.3.) Let us state explicitly the local weak convaggeresult mentioned in Sec. 3.1.
Fort € IN, let T(¢t) = (Vi, ET) be the regular rooted tree bfienerations and define the associated

Ising measure as
1 T;Tj ’I"
[ 6(z) = 7 H el it H el (16)
T.0 (1,7)€EET 1€0T(t)
Here 0T (¢) is the set of leaves of (¢) and h* is the unique positive solution of = (A —
1) atanh {tanh # tanh h}. It can be proved using [17] and uniform continuity with respto the
‘external field’ that non-trivial local expectations withapect tquq ¢(z) converge to local expecta-
tions with respect tai] , (), asp — oo.

More precisely, leB,.(¢) denote a ball of radiusaround node € G (the node whose neighborhood
we are trying to reconstruct). For any fixedthe probability thaB,.(¢) is not isomorphic tor (¢)
goes to) asp — oo. Letg(zg, (4)) be any function of the variables By.(¢) such thay(zg ;) =
g(—gBT(t)). Then almost surely over graph sequenGgf uniformly random regular graphs with
p nodes (expectations here are taken with respect to the nesg4y) and (16))

plirgo Eco{9(Xe, 1)} = Et(),04{9(X70)} - (17)

The proof consists in considering. ¢Q%5s '25); for t = dist(r,4) finite. We then write
Q55w = Ed{gir(X, )} and(Qges)u = E{g”( ., ())} for some functiong..(X ) and
apply the weak convergence result (17) to these expeciatMte thus reduced the calculation of
[Q%.sQ%s ™~ "25]: to the calculation of expectations with respect to the treasuare (16). The latter
can be implemented explicitly through a recursive procegdwith simplifications arising thanks to
the tree symmetry and by takitgs>> 1. The actual calculations consist in a (very) long exeraise i
calculus and we omit them from this outline.

The lower bound om,in (Q%g) is proved by a similar calculation. O
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