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Abstract

We consider the problem of learning the structure of Ising models (pairwise bi-
nary Markov random fields) from i.i.d. samples. While several methods have
been proposed to accomplish this task, their relative merits and limitations remain
somewhat obscure. By analyzing a number of concrete examples, we show that
low-complexity algorithms systematically fail when the Markov random field de-
velops long-range correlations. More precisely, this phenomenon appears to be
related to the Ising model phase transition (although it does not coincide with it).

1 Introduction and main results

Given a graphG = (V = [p], E), and a positive parameterθ > 0 the ferromagnetic Ising model on
G is the pairwise Markov random field

µG,θ(x) =
1

ZG,θ

∏

(i,j)∈E

eθxixj (1)

over binary variablesx = (x1, x2, . . . , xp). Apart from being one of the most studied models in
statistical mechanics, the Ising model is a prototypical undirected graphical model, with applications
in computer vision, clustering and spatial statistics. Itsobvious generalization to edge-dependent
parametersθij , (i, j) ∈ E is of interest as well, and will be introduced in Section 1.2.2. (Let us
stress that we follow the statistical mechanics conventionof calling (1) an Ising model for any graph
G.)

In this paper we study the following structural learning problem: Given n i.i.d. samplesx(1),
x(2),. . . , x(n) with distributionµG,θ( · ), reconstruct the graphG. For the sake of simplicity, we
assume that the parameterθ is known, and thatG has no double edges (it is a ‘simple’ graph).

The graph learning problem is solvable with unbounded sample complexity, and computational re-
sources [1]. The question we address is: for which classes ofgraphs and values of the parameterθ is
the problem solvable under appropriate complexity constraints? More precisely, given an algorithm
Alg, a graphG, a valueθ of the model parameter, and a smallδ > 0, the sample complexity is
defined as

nAlg(G, θ) ≡ inf
{
n ∈ N : Pn,G,θ{Alg(x(1), . . . , x(n)) = G} ≥ 1 − δ

}
, (2)

wherePn,G,θ denotes probability with respect ton i.i.d. samples with distributionµG,θ. Further,
we let χAlg(G, θ) denote the number of operations of the algorithmAlg, when run onnAlg(G, θ)
samples.1

1For the algorithms analyzed in this paper, the behavior ofnAlg andχAlg does not change significantly if we
require only ‘approximate’ reconstruction (e.g. in graph distance).
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The general problem is therefore to characterize the functionsnAlg(G, θ) andχAlg(G, θ), in par-
ticular for an optimal choice of the algorithm. General bounds onnAlg(G, θ) have been given in
[2, 3], under the assumption of unbounded computational resources. A general charactrization of
how well low complexity algorithms can perform is thereforelacking. Although we cannot prove
such a general characterization, in this paper we estimatenAlg andχAlg for a number of graph mod-
els, as a function ofθ, and unveil a fascinating universal pattern:when the model (1) develops long
range correlations, low-complexity algorithms fail.Under the Ising model, the variables{xi}i∈V

become strongly correlated forθ large. For a large class of graphs with degree bounded by∆, this
phenomenon corresponds to a phase transition beyond some critical value ofθ uniformly bounded in
p, with typically θcrit ≤ const./∆. In the examples discussed below, the failure of low-complexity
algorithms appears to be related to this phase transition (although it does not coincide with it).

1.1 A toy example: the thresholding algorithm

In order to illustrate the interplay between graph structure, sample complexity and interaction
strengthθ, it is instructive to consider a warmup example. The thresholding algorithm reconstructs
G by thresholding the empirical correlations

Ĉij ≡ 1

n

n∑

ℓ=1

x
(ℓ)
i x

(ℓ)
j for i, j ∈ V . (3)

THRESHOLDING( samples{x(ℓ)}, thresholdτ )
1: Compute the empirical correlations{Ĉij}(i,j)∈V ×V ;
2: For each(i, j) ∈ V × V

3: If Ĉij ≥ τ , set(i, j) ∈ E;

We will denote this algorithm byThr(τ). Notice that its complexity is dominated by the computation
of the empirical correlations, i.e.χThr(τ) = O(p2n). The sample complexitynThr(τ) can be bounded
for specific classes of graphs as follows (the proofs are straightforward and omitted from this paper).
Theorem 1.1. If G has maximum degree∆ > 1 and if θ < atanh(1/(2∆)) then there exists
τ = τ(θ) such that

nThr(τ)(G, θ) ≤ 8

(tanh θ − 1
2∆)2

log
2p

δ
. (4)

Further, the choiceτ(θ) = (tanh θ + (1/2∆))/2 achieves this bound.
Theorem 1.2. There exists a numerical constantK such that the following is true. If∆ > 3 and
θ > K/∆, there are graphs of bounded degree∆ such that for anyτ , nThr(τ) = ∞, i.e. the
thresholding algorithm always fails with high probability.

These results confirm the idea that the failure of low-complexity algorithms is related to long-range
correlations in the underlying graphical model. If the graphG is a tree, then correlations between far
apart variablesxi, xj decay exponentially with the distance between verticesi, j. The same happens
on bounded-degree graphs ifθ ≤ const./∆. However, forθ > const./∆, there exists families of
bounded degree graphs with long-range correlations.

1.2 More sophisticated algorithms

In this section we characterizeχAlg(G, θ) andnAlg(G, θ) for more advanced algorithms. We again
obtain very distinct behaviors of these algorithms depending on long range correlations. Due to
space limitations, we focus on two type of algorithms and only outline the proof of our most chal-
lenging result, namely Theorem 1.6.

In the following we denote by∂i the neighborhood of a nodei ∈ G (i /∈ ∂i), and assume the degree
to be bounded:|∂i| ≤ ∆.

1.2.1 Local Independence Test

A recurring approach to structural learning consists in exploiting the conditional independence struc-
ture encoded by the graph [1, 4, 5, 6].

2



Let us consider, to be definite, the approach of [4], specializing it to the model (1). Fix a vertexr,
whose neighborhood we want to reconstruct, and consider theconditional distribution ofxr given its
neighbors2: µG,θ(xr |x∂r). Any change ofxi, i ∈ ∂r, produces a change in this distribution which
is bounded away from0. Let U be a candidate neighborhood, and assumeU ⊆ ∂r. Then changing
the value ofxj , j ∈ U will produce a noticeable change in the marginal ofXr, even if we condition
on the remaining values inU and in anyW , |W | ≤ ∆. On the other hand, ifU * ∂r, then it is
possible to findW (with |W | ≤ ∆) and a nodei ∈ U such that, changing its value after fixing all
other values inU ∪ W will produce no noticeable change in the conditional marginal. (Just choose
i ∈ U\∂r andW = ∂r\U ). This procedure allows us to distinguish subsets of∂r from other sets
of vertices, thus motivating the following algorithm.

LOCAL INDEPENDENCETEST( samples{x(ℓ)}, thresholds(ǫ, γ) )
1: Select a noder ∈ V ;
2: Set as its neighborhood the largest candidate neighborU of

size at most∆ for which the score function SCORE(U) > ǫ/2;
3: Repeat for all nodesr ∈ V ;

The score function SCORE( · ) depends on({x(ℓ)}, ∆, γ) and is defined as follows,

min
W,j

max
xi,xW ,xU ,xj

|P̂n,G,θ{Xi = xi|XW = xW , XU = xU}−

P̂n,G,θ{Xi = xi|XW = xW , XU\j = xU\j , Xj = xj}| . (5)

In the minimum,|W | ≤ ∆ andj ∈ U . In the maximum, the values must be such that

P̂n,G,θ{XW = xW , XU = xU} > γ/2, P̂n,G,θ{XW = xW , XU\j = xU\j , Xj = xj} > γ/2

P̂n,G,θ is the empirical distribution calculated from the samples{x(ℓ)}. We denote this algorithm
by Ind(ǫ, γ). The search over candidate neighborsU , the search for minima and maxima in the
computation of the SCORE(U) and the computation of̂Pn,G,θ all contribute forχInd(G, θ).

Both theorems that follow are consequences of the analysis of [4].

Theorem 1.3. Let G be a graph of bounded degree∆ ≥ 1. For everyθ there exists(ǫ, γ), and a
numerical constantK, such that

nInd(ǫ,γ)(G, θ) ≤ 100∆

ǫ2γ4
log

2p

δ
, χInd(ǫ,γ)

(G, θ) ≤ K (2p)2∆+1 log p .

More specifically, one can takeǫ = 1
4 sinh(2θ), γ = e−4∆θ 2−2∆.

This first result implies in particular thatG can be reconstructed with polynomial complexity for
any bounded∆. However, the degree of such polynomial is pretty high and non-uniform in∆. This
makes the above approach impractical.

A way out was proposed in [4]. The idea is to identify a set of ‘potential neighbors’ of vertexr via
thresholding:

B(r) = {i ∈ V : Ĉri > κ/2} , (6)

For each noder ∈ V , we evaluate SCORE(U) by restricting the minimum in Eq. (5) overW ⊆ B(r),
and search only overU ⊆ B(r). We call this algorithmIndD(ǫ, γ, κ). The basic intuition here is
thatCri decreases rapidly with the graph distance between verticesr andi. As mentioned above,
this is true at smallθ.

Theorem 1.4. LetG be a graph of bounded degree∆ ≥ 1. Assume thatθ < K/∆ for some small
enough constantK. Then there existsǫ, γ, κ such that

nIndD(ǫ,γ,κ)(G, θ) ≤ 8(κ2 + 8∆) log
4p

δ
, χIndD(ǫ,γ,κ)

(G, θ) ≤ K ′p∆∆ log(4/κ)
α + K ′∆p2 log p .

More specifically, we can takeκ = tanh θ, ǫ = 1
4 sinh(2θ) andγ = e−4∆θ 2−2∆.

2If a is a vector andR is a set of indices then we denote byaR the vector formed by the components ofa

with index inR.
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1.2.2 Regularized Pseudo-Likelihoods

A different approach to the learning problem consists in maximizing an appropriate empirical likeli-
hood function [7, 8, 9, 10, 13]. To control the fluctuations caused by the limited number of samples,
and select sparse graphs a regularization term is often added [7, 8, 9, 10, 11, 12, 13].

As a specific low complexity implementation of this idea, we consider theℓ1-regularized pseudo-
likelihood method of [7]. For each noder, the following likelihood function is considered

L(θ; {x(ℓ)}) = − 1

n

n∑

ℓ=1

log Pn,G,θ(x
(ℓ)
r |x(ℓ)

\r ) (7)

wherex\r = xV \r = {xi : i ∈ V \ r} is the vector of all variables exceptxr andPn,G,θ is defined
from the following extension of (1),

µG,θ(x) =
1

ZG,θ

∏

i,j∈V

eθijxixj (8)

whereθ = {θij}i,j∈V is a vector of real parameters. Model (1) corresponds toθij = 0, ∀(i, j) /∈ E
andθij = θ, ∀(i, j) ∈ E.

The functionL(θ; {x(ℓ)}) depends only onθr,· = {θrj , j ∈ ∂r} and is used to estimate the neigh-
borhood of each node by the following algorithm,Rlr(λ),

REGULARIZED LOGISTIC REGRESSION( samples{x(ℓ)}, regularization(λ))
1: Select a noder ∈ V ;
2: Calculatêθr,· = arg min

θr,·∈R
p−1

{L(θr,·; {x(ℓ)}) + λ||θr,·||1};

3: If θ̂rj > 0, set(r, j) ∈ E;

Our first result shows thatRlr(λ) indeed reconstructsG if θ is sufficiently small.

Theorem 1.5. There exists numerical constantsK1, K2, K3, such that the following is true. LetG
be a graph with degree bounded by∆ ≥ 3. If θ ≤ K1/∆, then there existλ such that

nRlr(λ)(G, θ) ≤ K2 θ−2 ∆ log
8p2

δ
. (9)

Further, the above holds withλ = K3 θ ∆−1/2.

This theorem is proved by noting that forθ ≤ K1/∆ correlations decay exponentially, which makes
all conditions in Theorem 1 of [7] (denoted there by A1 and A2)hold, and then computing the
probability of success as a function ofn, while strenghtening the error bounds of [7].

In order to prove a converse to the above result, we need to make some assumptions onλ. Given
θ > 0, we say thatλ is ‘reasonable for that value ofθ if the following conditions old:(i) Rlr(λ)
is successful with probability larger than1/2 on any star graph (a graph composed by a vertexr
connected to∆ neighbors, plus isolated vertices);(ii) λ ≤ δ(n) for some sequenceδ(n) ↓ 0.

Theorem 1.6. There exists a numerical constantK such that the following happens. If∆ > 3,
θ > K/∆, then there exists graphsG of degree bounded by∆ such that for all reasonableλ,
nRlr(λ)(G) = ∞, i.e. regularized logistic regression fails with high probability.

The graphs for which regularized logistic regression failsare not contrived examples. Indeed we will
prove that the claim in the last theorem holds with high probability when G is a uniformly random
graph of regular degree∆.

The proof Theorem 1.6 is based on showing that an appropriateincoherence conditionis necessary
for Rlr to successfully reconstructG. The analogous result was proven in [14] for model selection
using the Lasso. In this paper we show that such a condition isalso necessary when the underlying
model is an Ising model. Notice that, given the graphG, checking the incoherence condition is
NP-hard for general (non-ferromagnetic) Ising model, and requires significant computational effort
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Figure 1: Learning random subgraphs of a7 × 7 (p = 49) two-dimensional grid fromn = 4500
Ising models samples, using regularized logistic regression. Left: success probability as a function
of the model parameterθ and of the regularization parameterλ0 (darker corresponds to highest
probability). Right: the same data plotted for several choices ofλ versusθ. The vertical line
corresponds to the model critical temperature. The thick line is an envelope of the curves obtained
for differentλ, and should correspond to optimal regularization.

even in the ferromagnetic case. Hence the incoherence condition does not provide, by itself, a clear
picture of which graph structure are difficult to learn. We will instead show how to evaluate it on
specific graph families.

Under the restrictionλ → 0 the solutions given byRlr converge toθ∗ with n [7]. Thus, for large
n we can expandL aroundθ∗ to second order in(θ − θ∗). When we add the regularization term
to L we obtain a quadratic model analogous the Lasso plus the error term due to the quadratic
approximation. It is thus not surprising that, whenλ → 0 the incoherence condition introduced for
the Lasso in [14] is also relevant for the Ising model.

2 Numerical experiments

In order to explore the practical relevance of the above results, we carried out extensive numerical
simulations using the regularized logistic regression algorithmRlr(λ). Among other learning algo-
rithms,Rlr(λ) strikes a good balance of complexity and performance. Samples from the Ising model
(1) where generated using Gibbs sampling (a.k.a. Glauber dynamics). Mixing time can be very large
for θ ≥ θcrit, and was estimated using the time required for the overall bias to change sign (this is a
quite conservative estimate at low temperature). Generating the samples{x(ℓ)} was indeed the bulk
of our computational effort and took about50 days CPU time on Pentium Dual Core processors (we
show here only part of these data). Notice thatRlr(λ) had been tested in [7] only on tree graphsG,
or in the weakly coupled regimeθ < θcrit. In these cases sampling from the Ising model is easy, but
structural learning is also intrinsically easier.

Figure reports the success probability ofRlr(λ) when applied to random subgraphs of a7 × 7
two-dimensional grid. Each such graphs was obtained by removing each edge independently with
probability ρ = 0.3. Success probability was estimated by applyingRlr(λ) to each vertex of8
graphs (thus averaging over392 runs ofRlr(λ)), usingn = 4500 samples. We scaled the regular-
ization parameter asλ = 2λ0θ(log p/n)1/2 (this choice is motivated by the algorithm analysis and
is empirically the most satisfactory), and searched overλ0.

The data clearly illustrate the phenomenon discussed. Despite the large number of samples
n ≫ log p, whenθ crosses a threshold, the algorithm starts performing poorly irrespective ofλ.
Intriguingly, this threshold is not far from the critical point of the Ising model on a randomly diluted
grid θcrit(ρ = 0.3) ≈ 0.7 [15, 16].
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Figure 2: Learning uniformly random graphs of degree 4 from Ising models samples, usingRlr.
Left: success probability as a function of the number of samplesn for several values ofθ. Right:
the same data plotted for several choices ofλ versusθ as in Fig. 1, right panel.

Figure 2 presents similar data whenG is a uniformly random graph of degree∆ = 4, overp = 50
vertices. The evolution of the success probability withn clearly shows a dichotomy. Whenθ is
below a threshold, a small number of samples is sufficient to reconstructG with high probability.
Above the threshold evenn = 104 samples are to few. In this case we can predict the threshold
analytically, cf. Lemma 3.3 below, and getθthr(∆ = 4) ≈ 0.4203, which compares favorably with
the data.

3 Proofs

In order to prove Theorem 1.6, we need a few auxiliary results. It is convenient to introduce some
notations. IfM is a matrix andR, P are index sets thenMR P denotes the submatrix with row
indices inR and column indices inP . As above, we letr be the vertex whose neighborhood we are
trying to reconstruct and defineS = ∂r, Sc = V \ ∂r ∪ r. Since the cost functionL(θ; {x(ℓ)}) +
λ||θ||1 only depend onθ through its componentsθr,· = {θrj}, we will hereafter neglect all the other
parameters and writeθ as a shorthand ofθr,·.

Let ẑ∗ be a subgradient of||θ||1 evaluated at the true parameters values,θ∗ = {θrj : θij = 0, ∀j /∈
∂r, θrj = θ, ∀j ∈ ∂r}. Let θ̂

n
be the parameter estimate returned byRlr(λ) when the number

of samples isn. Note that, since we assumedθ∗ ≥ 0, ẑ∗S = 1. DefineQn(θ, ; {x(ℓ)}) to be the
Hessian ofL(θ; {x(ℓ)}) andQ(θ) = limn→∞ Qn(θ, ; {x(ℓ)}). By the law of large numbersQ(θ) is
the Hessian ofEG,θ log PG,θ(Xr|X\r) whereEG,θ is the expectation with respect to (8) andX is a
random variable distributed according to (8). We will denote the maximum and minimum eigenvalue
of a symmetric matrixM by σmax(M) andσmin(M) respectively.

We will omit arguments whenever clear from the context. Any quantity evaluated at the true pa-
rameter values will be represented with a∗, e.g. Q∗ = Q(θ∗). Quantities under a∧ depend onn.
Throughout this sectionG is a graph of maximum degree∆.

3.1 Proof of Theorem 1.6

Our first auxiliary results establishes that, ifλ is small, then||Q∗
ScSQ∗

SS
−1ẑ∗S ||∞ > 1 is a sufficient

condition for the failure ofRlr(λ).

Lemma 3.1. Assume[Q∗
ScSQ∗

SS
−1ẑ∗S ]i ≥ 1+ǫ for someǫ > 0 and some rowi ∈ V , σmin(Q

∗
SS) ≥

Cmin > 0, andλ <
√

C3
minǫ/29∆4. Then the success probability ofRlr(λ) is upper bounded as

Psucc ≤ 4∆2e−nδ2
A + 2∆ e−nλ2δ2

B (10)

whereδA = (C2
min/100∆2)ǫ andδB = (Cmin/8∆)ǫ.
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The next Lemma implies that, forλ to be ‘reasonable’ (in the sense introduced in Section 1.2.2),
nλ2 must be unbounded.
Lemma 3.2. There existM = M(K, θ) > 0 for θ > 0 such that the following is true: IfG is the
graph with only one edge between nodesr andi andnλ2 ≤ K, then

Psucc ≤ e−M(K,θ)p + e−n(1−tanh θ)2/32 . (11)

Finally, our key result shows that the condition||Q∗
ScSQ∗

SS
−1ẑ∗S ||∞ ≤ 1 is violated with high

probability for large random graphs. The proof of this result relies on a local weak convergence
result for ferromagnetic Ising models on random graphs proved in [17].
Lemma 3.3. LetG be a uniformly random regular graph of degree∆ > 3, andǫ > 0 be sufficiently
small. Then, there existsθthr(∆, ǫ) such that, forθ > θthr(∆, ǫ), ||Q∗

ScSQ∗
SS

−1ẑ∗S ||∞ ≥ 1 + ǫ with
probability converging to1 asp → ∞.

Furthermore, for large∆, θthr(∆, 0+) = θ̃ ∆−1(1 + o(1)). The constant̃θ is given byθ̃ =

tanh h̄)/h̄ and h̄ is the unique positive solution ofh̄ tanh h̄ = (1 − tanh2 h̄)2. Finally, there exist
Cmin > 0 dependent only on∆ andθ such thatσmin(Q

∗
SS) ≥ Cmin with probability converging to

1 asp → ∞.

The proofs of Lemmas 3.1 and 3.3 are sketched in the next subsection. Lemma 3.2 is more straight-
forward and we omit its proof for space reasons.

Proof. (Theorem 1.6) Fix∆ > 3, θ > K/∆ (whereK is a large enough constant independent of
∆), andǫ, Cmin > 0 and both small enough. By Lemma 3.3, for anyp large enough we can choose
a∆-regular graphGp = (V = [p], Ep) and a vertexr ∈ V such that|Q∗

ScSQ∗
SS

−11S |i > 1 + ǫ for
somei ∈ V \ r.

By Theorem 1 in [4] we can assume, without loss of generalityn > K ′∆log p for some small
constantK ′. Further by Lemma 3.2,nλ2 ≥ F (p) for someF (p) ↑ ∞ asp → ∞ and the condition
of Lemma 3.1 onλ is satisfied since by the ”reasonable” assumptionλ → 0 with n. Using these
results in Eq. (10) of Lemma 3.1 we get the following upper bound on the success probability

Psucc(Gp) ≤ 4∆2p−δ2
AK′∆ + 2∆ e−nF (p)δ2

B . (12)

In particularPsucc(Gp) → 0 asp → ∞.

3.2 Proofs of auxiliary lemmas

Proof. (Lemma 3.1) We will show that under the assumptions of the lemma and if̂θ = (θ̂S , θ̂SC ) =

(θ̂S , 0) then the probability that thei component of any subgradient ofL(θ; {x(ℓ)})+λ||θ||1 vanishes
for anyθ̂S > 0 (component wise) is upper bounded as in Eq. (10). To simplifynotation we will omit
{x(ℓ)} in all the expression derived fromL.

Let ẑ be a subgradient of||θ|| at θ̂ and assume∇L(θ̂) + λẑ = 0. An application of the mean value
theorem yields

∇2L(θ∗)[θ̂ − θ∗] = Wn − λẑ + Rn , (13)

whereWn = −∇L(θ∗) and[Rn]j = [∇2L(θ̄
(j)

)−∇2L(θ∗)]Tj (θ̂− θ∗) with θ̄
(j)

a point in the line

from θ̂ to θ∗. Notice that by definition∇2L(θ∗) = Qn∗ = Qn(θ∗). To simplify notation we will
omit the∗ in all Qn∗. All Qn in this proof are thus evaluated atθ∗.

Breaking this expression into itsS andSc components and sincêθSC = θ∗SC = 0 we can eliminate
θ̂S − θ∗S from the two expressions obtained and write

[Wn
SC − Rn

SC ] − Qn
SCS(Qn

SS)−1[Wn
S − Rn

S ] + λQn
SCS(Qn

SS)−1ẑS = λẑSC . (14)

Now notice thatQn
SCS(Qn

SS)−1 = T1 + T2 + T3 + T4 where

T1 = Q∗
SCS [(Qn

SS)−1 − (Q∗
SS)−1] , T2 = [Qn

SCS − Q∗
SCS ]Q∗

SS
−1 ,

T3 = [Qn
SCS − Q∗

SCS ][(Qn
SS)−1 − (Q∗

SS)−1] , T4 = Q∗
SCSQ∗

SS
−1 .
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We will assume that the samples{x(ℓ)} are such that the following event holds
E ≡ {||Qn

SS − Q∗
SS ||∞ < ξA, ||Qn

SCS − Q∗
SCS ||∞ < ξB , ||Wn

S /λ||∞ < ξC} , (15)

whereξA ≡ C2
minǫ/(16∆), ξB ≡ Cminǫ/(8

√
∆) andξC ≡ Cminǫ/(8∆). SinceEG,θ(Q

n) = Q∗

andEG,θ(W
n) = 0 and noticing that bothQn andWn are sums of bounded i.i.d. random variables,

a simple application of Azuma-Hoeffding inequality upper bounds the probability ofE as in (10).

FromE it follows that σmin(Qn
SS) > σmin(Q

∗
SS) − Cmin/2 > Cmin/2. We can therefore lower

bound the absolute value of theith component of̂zSC by

|[Q∗
SCSQ∗

SS
−11S ]i|−||T1,i||∞−||T2,i||∞−||T3,i||∞−

∣∣∣
Wn

i

λ

∣∣∣−
∣∣∣
Rn

i

λ

∣∣∣− ∆

Cmin

(∣∣∣
∣∣∣
Wn

S

λ

∣∣∣
∣∣∣
∞

+
∣∣∣
∣∣∣
Rn

S

λ

∣∣∣
∣∣∣
∞

)
,

where the subscripti denotes thei-th row of a matrix.

The proof is completed by showing that the eventE and the assumptions of the theorem imply that
each of last7 terms in this expression is smaller thanǫ/8. Since|[Q∗

SCSQ∗
SS

−1]Ti ẑn
S | ≥ 1 + ǫ by

assumption, this implies|ẑi| ≥ 1 + ǫ/8 > 1 which cannot be since any subgradient of the1-norm
has components of magnitude at most1.

The last condition onE immediately bounds all terms involvingW by ǫ/8. Some straightforward
manipulations imply (See Lemma 7 from [7])

||T1,i||∞ ≤ ∆

C2
min

||Qn
SS − Q∗

SS ||∞ , ||T2,i||∞ ≤
√

∆

Cmin
||[Qn

SCS − Q∗
SCS ]i||∞ ,

||T3,i||∞ ≤ 2∆

C2
min

||Qn
SS − Q∗

SS ||∞||[Qn
SCS − Q∗

SCS ]i||∞ ,

and thus all will be bounded byǫ/8 whenE holds. The upper bound ofRn follows along similar
lines via an mean value theorem, and is deferred to a longer version of this paper.

Proof. (Lemma 3.3.) Let us state explicitly the local weak convergence result mentioned in Sec. 3.1.
For t ∈ N, let T(t) = (VT, ET) be the regular rooted tree oft generations and define the associated
Ising measure as

µ+
T,θ(x) =

1

ZT,θ

∏

(i,j)∈ET

eθxixj

∏

i∈∂T(t)

eh∗xi . (16)

Here ∂T(t) is the set of leaves ofT(t) and h∗ is the unique positive solution ofh = (∆ −
1) atanh {tanh θ tanhh}. It can be proved using [17] and uniform continuity with respect to the
‘external field’ that non-trivial local expectations with respect toµG,θ(x) converge to local expecta-
tions with respect toµ+

T,θ(x), asp → ∞.

More precisely, letBr(t) denote a ball of radiust around noder ∈ G (the node whose neighborhood
we are trying to reconstruct). For any fixedt, the probability thatBr(t) is not isomorphic toT(t)
goes to0 asp → ∞. Let g(xBr(t)) be any function of the variables inBr(t) such thatg(xBr(t)) =

g(−xBr(t)). Then almost surely over graph sequencesGp of uniformly random regular graphs with
p nodes (expectations here are taken with respect to the measures (1) and (16))

lim
p→∞

EG,θ{g(XBr(t))} = ET(t),θ,+{g(XT(t))} . (17)

The proof consists in considering[Q∗
ScSQ∗

SS
−1ẑ∗S ]i for t = dist(r, i) finite. We then write

(Q∗
SS)lk = E{gl,k(X

Br(t)
)} and(Q∗

ScS)il = E{gi,l(X
Br(t)

)} for some functionsg·,·(X
Br(t)

) and
apply the weak convergence result (17) to these expectations. We thus reduced the calculation of
[Q∗

ScSQ∗
SS

−1ẑ∗S]i to the calculation of expectations with respect to the tree measure (16). The latter
can be implemented explicitly through a recursive procedure, with simplifications arising thanks to
the tree symmetry and by takingt ≫ 1. The actual calculations consist in a (very) long exercise in
calculus and we omit them from this outline.

The lower bound onσmin(Q
∗
SS) is proved by a similar calculation.
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