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Abstract— A novel counter architecture, called Counter
Braids, has recently been proposed for per-flow counting on
high-speed links. Counter Braids has a layered structure and
compresses the flow sizes as it counts. It has been shown that
with a Maximum Likelihood (ML) decoding algorithm, the
number of bits needed to store the size of a flow matches
the entropy lower bound. As ML decoding is too complex to
implement, an efficient message passing decoding algorithm has
been proposed for practical purposes.

The layers of Counter Braids are decoded sequentially, from
the most significant to the least significant bits. In each layer,
the message passing decoder solves a sparse signal recovery
problem. In this paper we analyze the threshold dimensionality
reduction rate (d-rate) of the message passing algorithm, and
prove that it is correctly predicted by density evolution.

Given a signal in R
n

+ with nε non-vanishing entries, we prove
that one layer of Counter Braids can reduce its dimensionality
by a factor 2.08 · ε log (1/ε) + O(ε). This essentially matches
the rate for sparse signal recovery via L1 minimization, while
keeping the overall complexity linear in n.

I. INTRODUCTION

Per-flow measurement on high-speed links is known to be

a technologically challenging problem [1], [2]. Over a period

of the order of a few minutes at a 10-Gbps link, millions

of flow sizes need to measured. Each flow is divided into

packets that interleave with each other. Counter updates are

initiated when packets arrive. The inter-arrival time between

packets can be as short as 40 nanoseconds for a 10-Gbps

link, and the link speed is expected to rise sharply in the

future.

The large number of flows and rapid arrival of packets

imply that per-flow measurement requires a large array of

counters that can be updated at very high speed. However,

large memories with high-speed accesses are infeasible with

current technology, hence accurate per-flow measurement

with small memory space is needed. We refer the reader

to [3] for a detailed description of the problem and previous

approaches.

A novel counter architecture, called Counter Braids (CB),

has recently been proposed [3], [4] to count with only a

few bits per flow. CB uses less space as it compresses the

flow sizes as it counts. It was shown in [4] that with a

Maximum Likelihood (ML) decoding algorithm, the number

of bits needed to store the size of a flow matches the entropy

lower bound. For implementation, a low-complexity message

passing decoding algorithm was proposed in [3].
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Counter Braids has a layered structure with the least

significant bits of the flow sizes contained in the bottom-most

layer, and the most significant bits in the topmost layer. The

message passing algorithm decodes each layer sequentially,

from the top to the bottom. More details on the architecture

of CB, layered decoding, and overall performance can be

found in [3], [4].

A. Comparison with Compressed Sensing

Compressed sensing [5], [6] reduces below Nyquist rate

the number of samples needed to recover sparse signals.

In other words, it reduces the dimensionality of signal

known to be sparse, using suitable non-adaptive projections.

Counter Braids, on the other hand, compresses a signal with

decreasing digit entropy: it reduces the actual number of bits

needed to store the signal and achieves the Shannon entropy

lower bound.

Interestingly, decoding each layer of CB also solves a di-

mensionality reduction problem. By reducing the number of

counters in each layer, and assigning an appropriate number

of bits per counter, CB achieves an overall reduction in bits.

In this way, CB performs compression via dimensionality

reduction.

In order to differentiate between the compression rate and

the dimensionality reduction rate, we introduce the notations:

The dimensionality reduction rate or, for short, d-rate β. In

our context, it is the number of counters per flow in a single

layer of CB.

The compression rate or, for short, rate r. In our context, it

is the total number of bits per flow in CB.

In this paper, we focus on the decoding of a single-layer

using message passing and address the following question:

What is the optimal dimensionality reduction rate

(d-rate) achievable for a given sparsity under the

message passing algorithm proposed in [3]?

The results in this paper are exact counterparts of

the “weak threshold” for non-negative signals defined by

Donoho and Tanner in [7]. The latter determines (in the

large dimension limit) the optimal dimensionality reduction

factor that allows for most signals of a given sparsity to

be recovered exactly, using random gaussian measurement

matrices and L1 minimization recovery algorithm. Let us

stress that the present scheme has two advantages with

respect to the one in [7]: (i) The measurement matrix is itself

sparse, and hence each measurement can be taken in O(1)
operations; (ii) The message passing recovery algorithm

has complexity O(n). In view of these considerations, it is



surprising that the Counter Braids threshold turns out to be

extremely close to the one by Donoho and Tanner.

Remark. Threshold of the same order as that by Donoho

and Tanner is obtained using expander graph arguments by

Berinde and Indyk in [8] and by Xu and Hassibi in [9].

However, tight bounds on constants are difficult to obtain as

is characteristic of expansion arguments. In conjunction with

the sparse measurement matrix, L1 minimization recovery

algorithm is used in [8] and a recovery algorithm with O(n)
complexity is used in [9].

B. Main Results

Given a vector f ∈ R
n
+ with nε non-vanishing entries, we

refer to ε as the sparsity parameter. The d-rate, sparsity pair

(β, ε) is achievable under message passing (MP-achievable)

if there exists a sequence of graphs {Gn} of size n → ∞
such that: (1) The d-rate of Gn converges to β as n → ∞;

(2) The error probability for recovering ε-sparse vectors goes

to 0 as n → ∞.

Our aim is to determine the optimal tradeoff between

rate and sparsity under low complexity message passing

decoding. We thus define

β∗(ε) = inf
{
β : (β, ε) is MP achievable

}
. (1)

A first step toward the determination of β∗(ε) is in

the following results. The next theorem characterizes the

achievable threshold in the sparse regime.

Theorem 1. Let κ∗ = 1/(log 2)2 ≈ 2.08137. Then, for any

ε < 1/2

β∗(ε) ≤ κ∗ ε log(1/ε) . (2)

Notice that, as ε → 0, [7] proves that random gaussian

matrices achieve, in conjunction with L1 minimization, d-

rate equal to β(ε) ≈ 2ε log(1/ε).

In the dense regime, a better bound (and better architecture

to achieve it) is provided by the following

Theorem 2. For any ε ∈ [0, 1] we have

β∗(ε) ≤
√

ε . (3)

Figure 1 compares the upper bounds on β∗(ε) with the

threshold by Donoho and Tanner [7]. The latter is reproduced

by linearly interpolating sample points listed in [7] since the

expression is not explicit, and the curve is a lower bound of

the actual threshold.

Let us finally emphasize an important technical point.

While the proofs of [3] where written in the case of a flow

vector f with iid entries, they indeed hold for most determin-

istic vectors as well (this corresponds to the weak threshold

setting of [7]). Indeed enough randomization is provided by

the random bipartite graphs that define Counter Braids, as

the graph distribution is symmetric under permutation of the

flows.
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Fig. 1. Comparison between the dimensionality reduction rate
achieved via Gaussian matrices and L1 minimization (dashed [7])
and the one proved in the present paper (continuous).

II. PROOF OVERVIEW

We start by specifying the single-layer message passing

algorithm and some useful notations. There are three parts

to the proof: density evolution threshold, exchange of limit,

and degree distribution optimization. The corresponding the-

orems are stated in Section II-C.

A. Single-Layer Message Passing Algorithm

Consider a sparse random bipartite graph with flow nodes

on the left and counter nodes on the right, as shown in Figure

2. The vector f denotes flow sizes and c denotes counter

values. We have

ca =
∑

i∈∂a

fi,

where ∂a denotes all flows that connect to counter a. The

decoding problem is to estimate f given c.

Fig. 2. Message passing on a bipartite graph with flow nodes
(circles) and counter nodes (rectangles.)

We consider the following message passing algorithm

specified in Exhibit 1. The algorithm is iterative. In the tth

iteration, the message from counter node a to flow node

i is denoted by µai(t) and the message from flow node i
to counter node a is denoted by νia(t). At the end of T
iterations, flow estimates, denoted by f̂i(T ), are computed

for each of the flows.



Exhibit 1: The Message Passing Decoding Algorithm

1: Initialize

2: fmin = minimum flow size;

3: νia(0) = 0 ∀i and ∀a;

4: ca = ath counter value

5: Iterations

6: for iteration number t = 1 to T

7: µai(t) = max
{(

ca −
∑

j 6=i νja(t − 1)
)

, fmin

}
;

8: νia(t) =

{
minb6=a µbi(t) if t is odd,

maxb6=a µbi(t) if t is even.

9: Final Estimate

10: f̂i(T ) =

{
mina{µai(T )} if T is odd,

maxa{µai(T )} if T is even.

B. Notations

We define the sparse bipartite graph ensemble. Let the

number of flow nodes be n, and the number of counter nodes

be m. First, we define degree distributions.

Definition 1. (Degree distribution) Let Λi be the number of

flow nodes with degree i, such that
∑

i Λi = n. We call Li =
Λi/n the node-perspective distribution, and its generating

function:

L(x) =

∞∑

i=1

Lix
i.

Similarly, let Pi be the number of counter nodes with

degree i such that
∑

i Pi = m. We call Ri = Pi/n the

node-perspective distribution for the counter nodes, and its

generating function:

R(x) =
∞∑

i=1

Rix
i.

Since the number of edges originating from flow nodes are

the same as that from counter nodes, we require

Λ′(1) = P ′(1).

Define the edge-perspective degree distribution

λ(x) =

∞∑

i=1

λix
i−1 =

L′(x)

L′(1)

ρ(x) =
∞∑

i=1

ρix
i−1 =

R′(x)

R′(1)

λi is the probability that a uniformly random edge is con-

nected to a flow node of degree i (thus connected to (i− 1)
other edges).

Definition 2. The random bipartite graph G(n, λ, ρ) is

defined as follows. The graph includes n flow nodes and

m counter nodes. The flow nodes have degree distribution

L(x), with L0 = L1 = 0, i.e. flow nodes have at least degree

2 and bounded maximum degree. Similarly, counter nodes

have degree distribution R(x). A node of degree i has i
sockets from which the i edges emanate, hence there are

Λ′(1) = P ′(1) sockets on each side. Label the sockets on

each side with the set [Λ′(1)] = {1, · · · , Λ′(1)}. Let σ be

a uniformly random permutation on [Λ′(1)]. Associate σ to

a bipartite graph by connecting the i-th socket on the flow

side to the σ(i)-th socket on the counter side.

Definition 3. (Error Probability) We denote by

P(λ,ρ)(t; n) = EG(n,λ,ρ)P(fi 6= f̂i(t)) the expected

error probability under message passing decoding after t
iterations for a random graph from the ensemble G(n, λ, ρ).
Whenever clear from the context we shall omit the subscript

(λ, ρ).

Let ε be the sparsity parameter defined as the proportion

of flows with sizes more than fmin, which is the same as the

proportion of positive non-vanishing terms in a non-negative

signal. The non-minimum flow sizes can have arbitrary

magnitudes and no distribution is assumed.

C. Proof of Main Results

For a given pair of degree distribution, we can obtain the

threshold for ε below which the asymptotic expected error

probability, obtained by first letting n go to infinity and then

letting t go to infinity, is zero and above which it is strictly

positive.

Theorem 3. Given a degree distribution pair (λ, ρ), let

f(x) = ελ(1 − ρ(1 − λ(1 − ρ(1 − x)))).

The threshold of ε associated with the degree distribution λ,

call it ε∗, is defined as

ε∗(λ, ρ) ≡ sup
{
ε : lim

t→∞
lim

n→∞
P(λ,ρ)(t; n) = 0

}
.

We have

(i) ε∗ ≡ sup{ε ∈ (0, 1] : x = f(x) has no solution,

x ∈ (0, 1]}
(ii) ε∗ ≡ inf{ε ∈ (0, 1] : x = f(x) has a solution

x ∈ (0, 1]}

Achievable pairs (β, ε), however, are defined by first

letting t go to infinity and then n go to infinity. Hence we

need to show that the density evolution threshold coincides

with the achievable threshold.

Theorem 4. Let P(t; n) be the expected error probability

under message passing decoding, for a random graph in the

ensemble G(n, λ, ρ). Then

lim
t→∞

lim
n→∞

P(t; n) = lim
n→∞

lim
t→∞

P(t; n).

This implies that for a given degree distribution pair (λ, ρ),
for all ε < ε∗(λ, ρ),

lim
n→∞

lim
t→∞

P(t; n) = 0 (4)



and for all ε > ε∗(λ, ρ), and the degree distribution pair

(λ, ρ) has bounded degrees,

lim
n→∞

lim
t→∞

P(t; n) > 0. (5)

Hence, we can optimize the density evolution threshold

over graph ensembles to upper bound the optimal d-rate

β∗(ε).

Theorem 5. Let κ∗ = 1/(log 2)2 ≈ 2.08137. Then, for any

ε < 1/2, there exists a sequence of degree distribution pairs

(λk, ρk) with d-rate

lim
k→∞

βk = κ∗ ε log(1/ε) ,

and with density evolution threshold limk→∞ ε∗(λk, ρk) > ε.

Theorem 6. For any ε ∈ [0, 1], there exists a sequence of

degree distribution pairs (λk, ρk) with d-rate

lim
k→∞

βk =
√

ε ,

and with density evolution threshold limk→∞ ε∗(λk, ρk) > ε.

Theorem 5 and 6, together with Theorem 4, complete the

proof for Theorem 1 and 2.

The rest of the paper is organized as follows. We prove

Theorem 3 in Section III and Theorem 4 in Section IV.

Theorem 5 and 6 are shown in Section V. We conclude in

Section VI.

III. DENSITY EVOLUTION THRESHOLD

We shall show the following theorem, which yields the

density evolution equation for the message passing decoder.

Theorem 3 is then obtained in a similar way as in [10].

Theorem 7. Consider a degree distribution pair (λ, ρ) with

the flow node-perspective degree distribution L(x). Let x0 =
1 and for t ≥ 0 let

xt =

{
λ(1 − ρ(t − xt−1)) if t is odd,

ελ(1 − ρ(1 − xt−1)) if t is even.
(6)

Then for t ≥ 0,

limn→∞ P(λ,ρ)(t; n) =
{

L(1 − ρ(1 − xt−1)) if t is odd,

εL(1 − ρ(1 − xt−1)) if t is even.
(7)

A version of Theorem 7 is stated in [3] with the counter

degree distribution ρ restricted to the Poisson distribution.

We present the proof for the general version in this paper.

In order to prove Theorem 7, we first show that as n → ∞,

the error probability after t iterations of the message passing

algorithm on G(n, λ, ρ) converges to the error probability at

the root of a finite tree ensemble Tt(λ, ρ). We then write the

density evolution equation on the tree ensemble Tt(λ, ρ) to

compute P(λ,ρ)(t; n) recursively.

Definition 4. (Tree Ensemble) The tree ensemble Tt(λ, ρ) is

the distribution over bipartite trees recursively constructed as

follows. T1(λ, ρ) is a random tree rooted at flow node i with

degree distribution L(x), and each of its children counter

nodes having offspring distribution ρ(x). To sample from

Tt(λ, ρ), l ≥ 2, first sample an element from Tt−1(λ, ρ). Next

substitute each of its leaf flow node with a flow node with

offspring distribution λ(x). Finally, substitute each of its leaf

counter node with a counter node having degree distribution

ρ(x).

Definition 5. (Error Probability for Tree Ensemble) For

the tree ensemble, assign counter values on one element T of

the ensemble as follows. Given an arbitrary flow size vector

with sparsity ε, set all counter node values to be the sum

of its neighboring flow nodes. Let PT (λ,ρ)(t) = P(fi 6= f̂i)
be the expected error probability under the same message

passing decoding algorithm at the root of the random tree

Tt(λ, ρ).

Standard local convergence arguments (cf. for instance

Theorem 3.4.9 in [10]) imply the following.

Lemma 1. (Convergence to Tree Ensemble)Consider the

sequence of graph ensemble G(n, λ, ρ) with increasing n
under t iterations of message passing decoding. Then

lim
n→∞

P(λ,ρ)(t; n) = PT (λ,ρ)(t).

Note that all incoming messages to a node in the tree

ensemble are independent. Using the anti-monotonicity prop-

erty (Lemma 2 in [3]), we can write the density evolution

equation. We reproduce the lemma below, followed by the

lemma on density evolution.

Lemma 2. Anti-monotonicity Property. If ν and ν′ are

such that for every i and a, νia(t − 1) ≤ ν′
ia(t − 1) ≤ fi,

then νia(t) ≥ ν′
ia(t) ≥ fi. Consequently, since f̂ (0) = 0,

f̂(2t) ≤ f component-wise and f̂(2t) is component-wise non-

decreasing. Similarly f̂(2t + 1) ≥ f and is component-wise

non-increasing.

Lemma 3. Consider a degree distribution pair (λ, ρ) with

the flow node-perspective degree distribution L(x). Let ε be

the proportion of flows that are not of the minimum size. Let

x0 = 1 and for t ≥ 0 let

xt =

{
λ(1 − ρ(t − xt−1)) if t is odd,

ελ(1 − ρ(1 − xt−1)) if t is even.
(8)

Then for t ≥ 0,

PT (λ,ρ)(t) =

{
L(1 − ρ(1 − xt−1)) if t is odd,

εL(1 − ρ(1 − xt−1)) if t is even.
(9)

Proof. Let xt be the probability that the message originating

from the root of Tt(λ, ρ) is incorrect, and yt be the proba-

bility that the message going from a counter node towards

the root of Tt(λ, ρ) is incorrect.

Since νia(0) is initialized to 0 for all i and a, x0 = 1.

Let us consider a counter-to-flow message emitting from

a counter node of degree k. By definition of the algorithm,

the message is in error if at least one of the (k−1) incoming

message is in error. By assumption of the tree ensemble, all

incoming messages are independent, hence

yt = 1 − (1 − xt−1)
k−1.



With probability ργ,k, the edge connects to a counter node

with degree k, it follows that the expected error probability

of a counter-to-flow message in the t-th iteration is

yt =
∑

k

ργ,k(1 − (1 − xt−1)
k−1)

= 1 − ρ(1 − xt−1). (10)

Next let us consider a flow-to-counter message emitting

from a flow node of degree k. If t is odd, by Lemma 2,

µai(t) ≥ fi. Since νia(t) = minb6=a µbi(t), it is in error

only if all of the k − 1 incoming messages are in error. By

assumption of the tree ensemble,

xt = yk−1
t .

Averaging over the distribution of k, we have

xt = λ(yt) = λ(1 − ρ(1 − xt−1)).

If t is even, by Lemma 2, µai(t) ≤ fi. In addition, by

definition of the algorithm, µai(t) ≥ fmin. Since νia(t) =
maxb6=a µbi(t), it is in error only if fi 6= fmin and all of the

k − 1 incoming messages are in error. Averaging over the

distribution of k, we have

xt = ελ(yt) = ελ(1 − ρ(1 − xt−1)).

To compute PT (λ,ρ)(t), we only need to replace the

edge-perspective distribution λ(x) with the node-perspective

distribution L(x), and we get (9).

Together, Lemma 1 and Lemma 3 yield Theorem 7.

IV. EXCHANGE OF LIMIT

We present the proof for Theorem 4 in two parts, for (4)

and (5) respectively.

To show (4) for ε < ε∗(λ, ρ), we only need to observe

that the algorithm is monotonic, i.e., a correct message stays

correct. This follows directly from the anti-monotonicity

property (Lemma 2). With the observation, we obtain that

for any δ, there exists an N such that for all n > N ,

lim
t→∞

P(t; n) ≤ P(t; n) ≤ δ.

The first inequality follows from the monotonicity and the

second inequality follows from the definition of the density

evolution threshold ε∗, which yields

lim
t→∞

lim
n→∞

P(t; n) = 0.

To show (5) for ε > ε∗(λ, ρ), we introduce the “peeling

decoder” as follows. It is not a practical decoder as it

assumes partial knowledge of the indices of flows of size

fmin. However it is easy to check that it is equivalent to the

message passing decoding algorithm.

Peeling Decoder

Consider the following residual graph illustrated in Figure

3. Each edge and flow node in the original decoding graph

are duplicated, and connected to the check nodes from two

sides. The messages on the left edges are lower bounds,

computed at even iterations, and the messages on the right

edges are upper bounds, computed at odd iterations. The

residual graph consists of edges on which the messages are

incorrect (different from true flow sizes).

f

u
f


l


c


Fig. 3. Residual graph.

Let f l be the flow nodes on the left, fu be the flow nodes

on the right and c be the counter nodes. Let el denote the

edges on the left and eu denote the edges on the right. Each

edge is indexed by the flow node and counter node it is

attached to. We define the complement set of an edge eu
i,a

(el
i,a) as edges el

j,a (eu
j,a) where j is any index other than i.

Figure 4 shows edge e and its complement set, with other

edges in dashed lines. An edge is “removable” if all edges

in its complement set have been removed.

e


Fig. 4. Complement set of edge e.

The procedure of the peeling decoder is as follows.

1. Initialize the residual graph with the decoding graph

duplicated on both sides of check nodes: an edge

connects f l
i to ca and fu

i to ca if fi and ca are adjacent

on the message passing decoding graph. Next remove

all nodes f l whose true flow size is fmin, and all the

edges el connected to them.

2. Remove one “removable” edge from eu chosen uni-

formly from all “removable” edges of eu. Remove the

node fu this edge connects to, together with all other

edges connected to fu.

3. Remove all “removable” edges from el. Each edge

removed peels the flow node f l it connects to, together

with all other edges connected to f l.

4. Repeat 2 and 3.

The process stops when there is no more “removable”

edges in eu. The decoding is successful if all edges in the

graph are removed.

In principle, we can write differential equations that de-

scribe the evolution of the residual graph and recover the

density evolution equation, as done in [11] for the erasure

channel decoding. This would show the validity of the

exchange of limits. However, it becomes tedious as we deal



e


Fig. 5. d1 = d3 = 0, d2 > 0.

with upper and lower bounds in our algorithm. We use an

alternative approach for the proof.

Instead of starting with a complete graph and investigate

the asymptotic (in n) error probability after the peeling

decoder stops, we start by running the message passing

decoder for a large, but finite, number of iterations. For large

enough n, we get a residual graph whose degree distributions

are arbitrarily close to those given by density evolution. In

particular, the fraction of “removable” nodes is arbitrarily

close to 0, and the fraction of incorrect messages is large.

Next we run the peeling decoder on this residual graph, and

show that at each step, the expected fraction of “removable”

nodes is decreasing, until it becomes 0. Hence when the

peeling decoder stops, the fraction of incorrect messages

hardly changes, and we have finished the proof. The details

are as follows.

For a given n and its residual graph, let the number of

edges from f l (fu) to c whose flow node degree is i be

F l
i (Fu

i ). A counter node has three degrees associated to

it: the degree of edges to f l, denoted by d1, the degree of

edges to fu, denoted by d2, and the degree of edges that are

duplicated on both sides, denoted by d3. Let the number of

edges from f l (fu) to c with d1 = i, d2 = j and d3 = k be

Cl
i,j,k (Cu

i,j,k).

For given degree distributions λ and ρ with bounded max-

imum degree lmax and rmax, choose an arbitrary ε > ε∗. We

know that the density evolution curve intersects the diagonal

at two points. Let the gradient at the larger intersection be

1 − δ, δ > 0. Let the degree distributions corresponding to

the density evolution limit be F̂ l
i , F̂u

i , Ĉl
i,j,k, Ĉu

i,j,k. Run the

message passing decoder for a large number of iterations,

say T iterations, such that maxi |F l
i − F̂ l,T

i | < δ1, and

the same holds for F̂u,T
i , Ĉl,T

i,j,k and Ĉu,T
i,j,k (we shall write

the bounds for F l
i only, assuming the same holds for the

rest). The uniform convergence of F l
i can be shown using∑

i F̂ l
i < Λ′(1) and the monotonicity of

∑lmax

i=j F̂ l
i in j.

Using density evolution result, we obtain that for large

enough n, maxi |F l
i − F̂ l,T,n

i | < δ1 + δ2. Next we use the

peeling decoder on the residue graph with degrees F̂ l,T,n
i ,

F̂u,T,n
i , Ĉl,T,n

i,j,k and Ĉu,T,n
i,j,k . We omit the superscript T and

n to lighten the notations.

We start by specifying the degrees of the removable edges.

Figure 5 and 6 illustrate the two cases when edges become

removable :

1) d1 = d3 = 0, d2 > 0, all du edges are removable;

2) d3 = d1 = 1, only 1 edge is removable.

e


Fig. 6. d3 = d1 = 1.

Next, we specify the degrees of an edge in el upon the

removal of which generates new removable edges in eu.

There are 3 cases:

1) d1 = 2, d2 = i, d3 = 1 or 2. Suppose we have d3 = 1
after the removal, this generates 1 new removable edge.

2) d1 = 1, d2 = i, d3 = 1. This generates i − 1 new

removable edges.

3) d1 = 1, d2 = i, d3 = 0. This generates i new removable

edges.

We compute the degree distribution of the residual graph

at the density evolution limit. Let the limit be x, we have

from Theorem 3

ελ(1 − ρ(1 − λ(1 − ρ(1 − x)))) = x.

Let y = 1 − ρ(1 − x), u = λ(y), z = 1 − ρ(1 − u).

Let D = Λ′(1). The initial numbers of edges of relevant

degrees are:

F l
i = Dελiz

i−1

Fu
i = Dλiy

i−1

Cl
2,i,2+ Cl

2,i,1 =

D
∑

l

ρl

(
l − 1

1

)(
l − 1

i − 1

)
x2(1 − x)l−2ui(1 − u)l−i

Cl
1,i,1 = D

∑

l

ρl

(
l − 1

i − 1

)
x(1 − x)l−1ui(1 − u)l−i

Cl
1,i,0 = D

∑

l

ρl

(
l − 1

i

)
x(1 − x)l−1ui(1 − u)l−i,

Cu
i,2,2 + Cu

i,2,1, Cu
i,1,1 and Cu

i,1,1 are defined analogously

with x and u exchanged.

We start with the above degree distribution, and we are

interested in the expected change in the number of removable

edges after we run step 2 and 3 of the peeling decoder once.

Let the number of removable edges in el be Rl and that in

eu be Ru. Due to symmetry, we only need to consider the

change in the number of removable edges in eu.

For a check node degree distribution C and a flow node

degree distribution F , let

ϕ(C) =
∑

i

(Ci,2,2 + Ci,2,1 + (i − 1)Ci,1,1 + iCi,1,0),

φ(F ) =

∑
i(i − 1)Fi

(
∑

i Fi)2
,

we have



E[Ru(1) − Ru(0)|F̂ l(0), F̂u(0), Ĉl(0), Ĉu(0)]

=
[
ϕ(Ĉu(0))φ(F̂u(0))

] [
ϕ(Ĉl(0))φ(F̂ l(0))

]
− 1

= [ϕ(Cu(0))φ(Fu(0))]
[
ϕ(Cl(0))φ(F l(0))

]

−1 + O

(
1

n

)

=

[
xu(−ρ′(1 − u))

yλ′(y)

u2

] [
ux(−ρ′(1 − x))

εzλ′(z)

x2

]

−1 + O

(
1

n

)
(11)

≤ −δ + O

(
1

n

)

where the first term in (11) is the gradient of the density

evolution recursion at the intersection, which is equal to 1−δ.

Further, with t ≤ n(δ1 + δ2), which is the maximum

number of iterations the peeling decoder can run before

stopping, with the set Ru decreasing at each iteration,

E[Ru(t + 1) − Ru(t)|F̂ l(t), F̂u(t), Ĉl(t), Ĉu(t)]

=
[
ϕ(Ĉu(t))φ(F̂u(t))

] [
ϕ(Ĉl(t))φ(F̂ l(t))

]
− 1

≤ −δ + K(δ1 + δ2)

< 0

since we can make T and n large enough so that δ1 + δ2 is

small.

Using Wormald’s differential equation approach (Theorem

C.28, [10]), we obtain that when the peeling decoder stops,

lim
n→∞

P(λ,ρ)(t; n) > x − δ1 − δ2 > 0.

Since the output of the peeling decoder is equivalent to

the message passing decoder with l → ∞, we have shown

Theorem 4.

V. ENSEMBLE OPTIMIZATION

A. Proof of Theorem 5

First, we define the ensemble GP(n, λ, γ), where the n flow

nodes have degree distribution λ, and the counter nodes have

a Poisson degree distribution with mean γ. The number of

counter nodes is hence Λ′(1)/γ, and the graph is formed by

letting each edge select a counter node uniformly at random.

The desired rate is achieved by considering graphs from

the ensemble GP(n, λ, γ) with γ = a/ε and λ(x) = xl(ε) (i.e.

all variable nodes have regular degree l(ε) + 1,) with l(ε) ≡
b log(1/ε). We will choose a and b independent of ε such that

the density evolution recursion (6) yields xt → 0 as t → ∞,

thus proving the thesis with rate β(ε) = (b/a)ε log(1/ε). The

desired proportionality constant is obtained by optimizing the

rate over a and b as expressed below

κ∗ ≡ min
{

b/a : e−a + e−1/b = 1
}

. (12)

It is easy to see that the minimum is achieved at a = (1/b) =
log 2.

Now we show that a and b satisfying the condition in

(12) yield xt → 0 as t → ∞. It is convenient to rewrite the

density evolution recursion in terms of the rescaled variable

yt ≡ xt/ε, and of L = log(1/ε):

yt =

{
(1 − e−ayt−1)bL if t is odd,

e−L (1 − e−ayt−1)bL if t is even.
(13)

with initial condition y0 = 1. The condition e−a+e−1/b = 1
implies that (1 − e−a)bL = e−L, hence y1 = e−L.

For t ≥ 2 we use the inequality 1 − e−x ≤ x to get

yt ≤
{

(ayt−1)
bL if t is odd,

e−L (ayt−1)
bL if t is even.

(14)

Hence, for t ≥ 1, and t odd, defining α = b log(1/a), we

get

yt+2 ≤ e−αL+(1−α)bL2

y
(bL)2

t . (15)

We get limt→∞ yt = 0 if (bL)2 > 1 and

e−αL+(1−α)bL2

y
(bL)2

1 < y1. Since y1 = e−L, we get the

two conditions{
bL > 1 ,
(bL)2 − (1 − α)(bL) − (1 − α) > 0 .

(16)

Obviously both conditions are satisfied for large enough L =
log(1/ε), which proves the thesis for ε small enough. With

the values a and b chosen above, ( a = 1/b = log 2 ), we get

α = − log log(2)/ log(2) ≈ 0.52877. It is then easy to check

that the second condition is implied by the first, which is in

turn equivalent (for b = 1/(log 2) ) to ε < 1/2.

B. Proof of Theorem 6

We make use of results from the optimization of LDPC

code ensembles over the erasure channel [10]. The corre-

sponding density evolution recursion reads

xt = ε̃λ(1 − ρ(1 − xt−1)).

Notice that this is exactly the same as the density evolution

recursion for our message passing algorithm at even itera-

tions. The following is a rephrasing of a result first proved

in [12]:

Let βn be the ratio of the number of check nodes to the

number of variable nodes. There exists a sequence of degree

distribution pairs (λk, ρk) with limk→∞ βk = ε̃∗ such that

xt → 0 for all ε̃ < ε̃∗.

In particular, along this sequence of graphs, λk(1−ρk(1−
x)) → x/ε̃∗ uniformly for x ∈ [0, 1] as k → ∞.

Using this sequence of degree distribution pairs with ε̃∗ =√
ε, we have

fk(x) = ελk(1 − ρk(1 − λk(1 − ρk(1 − x))))

=
√

ελk(1 − ρk(1 − x)) + ok(1)

= x + ok(1)

uniformly for x ∈ [0, 1] as k → ∞. Since fk(x) is strictly

increasing in ε, for any ε′ < ε we can take k large enough

so that fk(x) < x for all x ∈ [0, 1]. Therefore ε is an

lower bound of the asymptotic threshold ε∗(λk, ρk) for this

sequence where the corresponding d-rate βk → ε̃∗ =
√

ε.



VI. CONCLUSION

We analyzed the achievable dimensionality reduction rate

for a single-layer Counter Braids and found it to be very

close to Donoho and Tanner threshold for non-negative

signals with the L1 minimization recovery algorithm. Since

the complexity of message-passing algorithm is essentially

linear, it is a more efficient solution to non-negative sparse

signal recovery than L1 minimization.

Future work includes determining lower bounds on the di-

mensionality reduction rate under message passing decoding.

More importantly, the analysis of dimensionality reduction

rate will be a step towards analyzing the compression rate

of Counter Braids with the message passing algorithm.
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