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Abstract—How many random entries of ann x na, rank  focus here on the Netflix Challenge dataset [3]. This dataset
r matrix are necessary to reconstruct the matrix within an  concerns a se€ of approximately5 - 10° customers and
accuracy 6? We address this question in the case of a random R of 2 - 10* movies. For about0® customer-movie pairs

matrix with bounded rank, whereby the observed entries are . . . .
chosen uniformly at random. We prove that, for any s > 0, (»@) € FE, the corresponding rating (an integer between
C(r,8)n observations are sufficient. andb5) is provided. The challenge consists in predicting the
Finally we discuss the question of reconstructing the matsi  ratings of 106 non-revealed customer-movie pairs within a
efficiently, and demonstrate through extensive simulations that root mean square error smaller tha8563.
this task can be accomplished immPoly(logn) operations, for One possible approach consists in considering the
small rank. - . . .
customer-movie matriM (or a rescaled version of it) and
I. INTRODUCTION AND MAIN RESULTS assuming that it has low rank to predict the requested entrie
Indeed, a simple coordinate descent algorithm that mirgmiz

the energy function

A. Problem definition

Let M be ann x m matrix of rank (at most) and assume
that ne uniformly random entries oM are revealed. Does Z (Mia — (UV)i.0)? + MUJIE + M|V]E 2
this knowledge allow to approximately reconstriut® (i,a)€E

The answer is negative unless the matrix has some specifit,ides good predictions (within the Netflix competitidn,
structure. In this paper we assume thvits arandom rankr oo | \ced by SimonFunk).
matrix, i.e. M = U -V whereU is an x r matrix with iid In general, the matrix completion problem is not convex,
entries andv an independent x m matrix with iid entries. g the descent algorithm is not guaranteed to converge to
The distributions of the entries df and V are denoted, ¢ original matrixM even if this is the unique rank ma-

respectively ago andqo. trix consistent with the observations. A possible alteueat

The metric we shall consider is the root mean square errgpqists in relaxing the rank constraint, by looking indtea
(RMSE). If {M; . } are the entries d1, andM is its estimate for a matrix M

X M of minimal nuclear norm (recall that the
based on the observed entries, we have nuclear norm ofM is the sum of the absolute values of

~ 1 ~ 1/2 its singular values). The problem then becomes convex and
D(M, M) = {% Z Mio — Mi’“F} : (1) indeed reducible to semidefinite programming. In [4] it was
e shown that this relaxation indeed recovers the original low
Notice that this coincides, up to a factor, with the distainee rank matrix M, given that a sufficient number of random
duced by the Frobenius nor(M, M) = [[M—M|[r/\/nm.  linear combinations of its entries are revealed.

In the following we shall denote b} > i, j, k,... the set  The case in which a random subset of the entries is
of rows of M and byC' > a,b, ¢, ... its set of columns. The revealed (which is relevant for collaborative filtering) sva
subset of revealed entries will be denotedBY- R x C.  treated in [5]. This paper proves that the convex relaxagon
tight with high probability if € > C'rn'/>logn. In particu-

_ __ lar this implies two statementg) Fore > C rn'/® logn, ne
Low rank matrices have been proposed as statisticglndom entries uniquely determine a random rankatrix.

models to describe a number of complex data sourceg;) This matrix is the unique minimum of a semidefinite
For instance, the matrix of empirical correlations amongogram.

stock prices in a market is approximately low rank if price

fluctuations are driven by a few underlying mechanisms [1fc- Main results

A completely different application is provided by the matri  The results briefly reviewed above leave open several key

of square distances amomgsensors ir8 dimension, which jssues:

has rank- = 5 [2]. 1. Why is it necessary to obsen@(n®/°) entries to
Low rank matrices have been proposed as a model for  yeconstruct a rank-matrix, that haso(n) degrees of

collaborative filtering data. As a concrete example we shall  freedom?

2. As the Netflix challenge shows, it is not realistic
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trade-off between RMSE distortion and number ofThe caseM; , = 0 can be treated separately but, for the sake
observations? of simplicity we shall assume that the distributipg ¢ do
3. In general, semidefinite programming &%) com-  not have mass of.
plexity [6]. This is affordable up to» ~ 102, but This observation suggests a simple matrix completion
way beyond current capabilities when~ 10> as in  algorithm: Recursively look for & x 2 minor wit a unique
modern datasets. unknown entry and complete it according to the rvle;, =
In this paper we address the first two points and shoM;..M;»/M; .. As anticipated above, this algorithm has
that O(n) observations are sufficient to reconstruct a lovd nice graph-theoretic interpretation. Consider the higgar
rank matrix within any positive distortion. graphG = (R, C, E) with vertices corresponding to the row
and columns ofM and edges for the observed entries. If
2 x 2 minor has a unique unknown entry, it means that
he corresponding verticese R, b € C' are connected by
a length3 path in G. Hence the algorithm recursively adds
edges toG connecting distancg-vertices.

Theorem I.1. Let M = U -V be a random rank- matrix
with n rows andna columns and assume the distributions o
U, andVy , to have support if—1, 1]. Let E be a random
subset ofne entries in R x C. Then, with high probability,
any matrix rankr matrix M such that|M; , — M, .| < A
for all (i,a) € E, and with factorsJ; i, V. € [—1,1], also

satisfies n=100 —
D(M, M) < A + 2 & /2 10g(108) 3) o n-10000 |
b) —_— ) 16 | 4
wheree =¢/(1 + a)r. 14F
Notice that the termA in the above inequality is un- L2r
avoidable. Since we are looking for matrices that match the 2 1|
observed entries only within precisidx, we cannot hope for 087
a RMSE smaller tham\. In the second term, the factar 0.6
corresponds to the maximal distance between matrix entries 04}
in the present model, while the-dependent factor tends 02l
to 0 ase — oo. Notice thate is exactly the number of 0 ‘ ‘ ‘ ‘ ‘ "
observations per degree of freedom. 0 1 2 3 4 5 6 7 8
The proof of this statement is given in Section IlI, which €

also provides a much more accurate upper bound. The Iatﬁég-thl- Ltearr}indg trar:_dom( rarr]l_ll- mdatgcetsr.] The continuous line
i _| . ; Ha it IS € optuma Istortuon (acnieve Yy € recursive COIIIK{ME
is —however— not straightforward t_o evaluqte.Whne it sael algorithm). Data points correspond to @(n) complexity local
that small RMSE cannot be achieved with less tiéam) search algorithm.

observed matrix elements, Section IV proves a quantitative

lower bound of this form. After at mostO(n?) operations the process described halts
In Section V we address the question of efficient repn 3 graph that s a disjoint union of cliques, correspontting
construction and demonstrate tiia¢n log ) operations are the connected components@ Each edge corresponds to a
sufficient to reconstruct random low rank matrices with;orrecﬂy predicted matrix entry. Clearly, in the largeimit
rank r < 4, from O(n) entries. Indeed such performancegne only components witl)(n) matter (as they have (n?)
are achieved by a straightforward stochastic local sear@ages)_ Itis a fundamental result in random graph theoty tha
algorithm that we refer to as WalkRank or by a coordinatghere is no such component fer< 1/\/a. Fore > 1/\/a
descent algorithm. A formal analysis of these algorithmis Withere is one such component involving approximatedyin

be presented in a future publication. Finally, in Section VIg andm( vertices inC, where(¢, ¢) is the unique positive
we use these results to compare random low rank matricgg|ytion of

and the Netflix dataset.

Before dwelling into the intricacies of the full problem, £=1—e ¢, C=1—e"%¢, (4)
the next Section discusses a particularly simple but perhap o )
instructive case: rank = 1. This analysis implies the following result.
I1. A WARMUP EXAMPLE Proposition I.1. LetM = U-V be a random rank matrix,

If M has rankl, most of the questions listed aboveand denpte by (c), C(e.) the '?‘rgesgso'“t'on Of. Ea. (4.)' Then
thlere exists an algorithm witlv(n?) complexity achieving,

have a S|mple answer with a suggestive graph-theoretlc\,%Ith high probability, RMSE
Interpretation.

Assume to knows entries of the matribM that belongto  p(m, M) = /1 — £(e)C(e) Do + O(y/(logn)/n).  (5)

the same x 2 minor. Explicitly, for two row indices, j € R

and two column indices, b € C, the entriedV; ,, M; ., M;,  where Dy = /E(V2)E(U?). Further, if the entriesU;, V,
are known. Unles; , = 0, the fourth entry of the same have symmetric distribution, then no algorithm does achiev
minor is then uniquely determineld,; , = M, .M, /M, ..  smaller distortion.



Proof. The mentioned distortion is achieved by the recursiveroof. Define Z¢ (A, §) (G is the bipartite graph with edge
completion algorithm, whereby matrix element correspondset £') as the number of matricdgl of the form (6) such
ing to vertex pairs in distinct components are predicted tthat:
vanish. This is optimal if the matrix element distribution i

: " . (1) My
symmetric. Indeed the conditional matrix element distribu
tion remains symmetric even given the observations.

—Al\7li,a| < A for all (i,a) € E;
(2) D(M,M) > 4.

This can be written as
For massive datasets evérnin?) complexity is unafford-
able. Figure 1 compares the minimal distortion guaranteed; (A, d) = Z H I(|i@; - T — a2 - 0] < A) -, (10)
by Proposition 1l.1 with the performances of the WalkRank {@:,0a}€C(6) (i,a)€E
algorithm described in Section V. Here the facttts V,
where chosen uniformly if+1, —1}. where C(§) is the set of vectors that satisfy conditid®)

above. We further define the settypical instancegM, E),
I1l. UPPERBOUND AND PROOF OFTHEOREM .1 Typ(+) through the following conditions:

In this section we prove the upper bound on distortion (@) Letdy(-) be the type of factot), namelyny (@) is
stated in Theorem I.1. The proof proceeds in three stepst. Fir the number of row indices € R such thati. — @
we will consider the case in which the factor entrigg;, Then for (M, E) € Typ(y), we haveD(9U||p0)l< . :

V.o are supported on a finite set, and prove a (tighter) upperb) Analogously, for the type of factoV we require
bound via a counting argument. Then we’ll use a quantization D(Ov]|g0) < 7-

argument to generalize this bound to the continuous case
Finally, we simplify our bound to get the pleasing expres-

sion in Theorem 1.1. Unhappily this simplification entails a

worsening of the bound.

(c) Finally, letfg(-, -) be the edge type, i.ewclg (i, V)
is the number of edge§, a) € E such thati; = 4
andu, = ¥. We then requird (v ||po-qo) < v (where
Do - qo is the product distribution o@, ).

A. The discrete case By standard arguments [7] we haR¢Typ(v)} — 1 for any
We start by introducing a couple of new notations. Givepositivey asn — co. We then define

a row indexi € R, we let@) = (U; 1,...,U;,) be thei-th .

row of U. Analogously, fora € C, let #° be thea-th column Za(A,6) = Za(A,0)I((M, E) € Typ(y)) . (11)

of V. We then have

According to lemma l11.2, the expectation ﬁG(A,d)
vanishes as: tends to infinity foré > d(e,«, A). Since
We also writeii) = (uf,,...,u?,)anddd = (v2,,...,00,) P{Typ(y)} — 1 and using Markov inequality, this implies

for the components of these vectors. These are assumed tdlvat nlingo P{Zs(A,d) > 0} = 0. In conclusion, any matrix
iid’s with distributionsp, (for @) andgo (for ) supported [ ihat satisfie$M7;,,,—l\7|m| < Aforall (i,a) € Eresultsina

on a finite setdy C R with |Ay[ = N points. Typical  gistance metric smaller thaife, a, A) with high probability,
examples areds = {—1,+1} or Agar1 = {—Me,—~(M — 45, tends to infinity. O
1)e,...,(M — 1)e, Me}). Our basic counting estimate is

stated below.

M; o =i - 0. (6)

K3 a

Lemma lll.2. For anyd > 0(e,a, A) there existsy > 0

Proposition Ill.1. Let A > 0 and M be a random rank- such that Lim EE,M{Z\G(A,(S)} —0

r matrix with factors supported iMy. Then, with high
probability any ranks matrix M with factors supported in proof. Z;(A, §) is a random variable where the randomness
Ay that satisfiesMi, — Mia| < A for all (i,a) € E also  comes from the matrix elements; , and the choice of

satisfiesD(M, M) < d(e, o, A) + 0, (1), where the sampling se&. Since E is uniformly random, we can
— take any realization oM = U -V from the typical set
o(e,a, A) = 3 d(p,q) : ,q) >0}. (7 . o . . L
(60, 8) peD(sz(E)eD(qO;{ (Pq) = 9alp.0) b @ according to iidpy and iid gg. Given one such realization
) _of U = (a@,...,a° dv = (@,...,7°), th h
Here thesup over p (over g) is taken over the space of dis- 0" Uh (u.l’ ; ’ug\)/l a_n 0.9 (vﬁ’ ﬁvﬁ) go I’O_l:lg
tributions D(po) (respectivelyD(qo)) over (Ay)" x (Ay)"  © the estimationsM = UV, whereU = (i, .., &)
andV = (v1,...,7,). Now group the set of assignments

= 20\ _ o (=0 ; = 20y
S“(‘fl;‘))t;‘ a'tr%gfu(gégo%z;sp g(u e)a(rrienspﬁcgvelgﬁaiéUéZfi)n; d by andV that have the same empirical distribution, and let
o ' bp gin=q. )gla(ﬁ,ﬁo) and ¢(v,7°) denote the joint distribution. Then,

d =R, |i-7—ad 21"/ 8) the number of different assignments with same empirical
(0r) = B - 5= ®) " distribution (p, ) is " (H(P) -0 +m{H-H(w0)) . For
and each distribution paifp, ¢) that satisfy condition (2) above,
_ we fix the factorsU and V and compute the probability
=H(p) — H H(q)— H 9 e o .
¢a(p,q) (p) = H (po) + fé[ q(q)qo qéqO)H Y —0( ) that they satisfies condition (1). Denoting BY; ,{---} =
+ € Bpy g log Py {7 — @ - ] <A | @, 0%}, Egm{---I((E,M) € Typ(7))} the expectation restricted to



(E,M) € Typ(y), we have 2err(8)) + 2err(8) + 0, (1), whered (e, , A) is defined as
, in Eq. (7) anderr(d) is the quantization error which only
emiZc(A,0)} depends ord.

5 , , . ,
(| - 5, — @ - 3| < A) Proof. Let M° be the quantized version of the original matrix

= EI
EM M, which is defined as follows. Defing € (A45)" and@’

U;,0, }EC(9) (3,0 . . R .
. f e (H)( <P . (As)" to be the quantized version @f andd, respectively,
= > e A plpo)tmH(alao). where; is thei-th row of U and 4, is thea-th columnV.
PGDC(IIEO)J)Iig(fIO) Then,M? is defined as,
p:q)=

5§ _ 5 =
Mm—ui -7, .

Ep{ [[ 1@ g0 — @ - &) < A)

( Note thatM?  satisfiegM; , —M? | < err(5). Analogously,
i,a)€E ’ ’

oIAefinel\A/Ics to be the quantized version of the estimated matrix
To compute the expectation in the last inequality, we loak at M. Then, theM?® andM? satisfy|M? , —M? | < A+2err(6)
typical realization of” and partition it into subset§E 0},  for all (i,a) € E.

for (@°,7°) € (An)"x (An)", defined as follows(i, a) € E Let d(e,a, A) be the upper bound in proposition IlI.1.
isin Eqo g0 if @ = @° andd = ¢°. By definition|Ezo | =  Then, the distortion is bounded with high probability by
nelg (i, ). FurtherEgo g is uniformly random given its . N PO
size.(Withirz the typical sefyp(v), g (o, v)) is close to D(M,M) < D(M,M°) + D(M°,M°) + D(M®, M)

po(i°)qo(°). We thus get < o6, a, A+ 2err(d)) + 2err(d) . (13)
Note that twice the quantization error is addedAosince
E% H I(|@; - T, — @2 - ] < A) now we only havelM?, — M?,| < A + 2err(6) for all
(i,a)EE (i,a) € E. O
= II Eru 0 I o, —a) -8 < A) C. Simplified bound
@, (8,0)€Eg0 70 The (tighter) upper bound in proposition Ill.1 is not easily
4 1 e{li-v. —a-@ <Al 170}"€9E(ﬁ0ﬂ70> . computed. To get a bound that can be analyzed, we relax the
gt Ce T constraintp, > 0 and get a relaxed or simplified upper
o bound oné(e, , A). Furthermore, this simplified upper
Finally, we get, bound is used to prove theorem I.1.
Epm{Za(A,0)} < e Z endaPa) Proposition 1ll.4. For all ¢ > 0, a > 0 and A > 0, we
PED(P0),9€D(q0) have
d(p,q)>6

12) (60, A) <
- — — 1/2
wherex(y) — 0 asy — 0. For (p, q) that satisfiesi(p, ¢) > {32 B (82 ~ A?)exp <_H(p|p0) + aH(q|q0)) } ’

€

(e, a, A), we know thatpa (p, g) < 0 by definition. Hence,
for v small enoughg > d(¢, «) is a sufficient condition for

lim Egm{Zc(A,d)} = 0. 0 whered(e, o, A) is defined as in proposition 113 (p|po) =
e ’ max {H(p)}~H(po), H(glgo) = max {H(q)}~H(q),
pED(po) q€D(qo0)

andd = max{|i - v — u° - °|}.

B. General distributions via quantization Y
&yoof. Define the upper boundl (¢, v, A) as

Above tighter upper bound can be generalized to matric
in theorem |.1 via quantization argument. In this section(_;“(eyayA) = sup {d(p,q) : ¢%(p,q) >0}, (14)
we’'re interested in recovering a continuous real valuedimat p€D(po),a€D(qo0)

M fromAsampAIes of its entries. First, we estimate it USinthereD(po) D(po) andd(p, q) are defined in Eq. (7). The

factors Ui, Vi, supported in the continuous alphabetyny gifference is the relaxed constraint functiol, defined
Then, the distortion is bounded using the upper bound frogy

section Ill-A via quantization. 2 i(p.q)?

.y U T TIT - p7 q
Proposition 11.3. Let A > 0 and M be a random rank- @A (p,q) = H(p|po) + aH (q|qo0) + € log (ﬁ) :
r matrix with factors supported in continuous bounded d-A

alphabetA.. Let A5 be discrete quantized alphabet df, By Jensen's and Markov inequalityp4 (p,q) is larger
with maximum quantization error less than2. M is the than ¢a(p,q). This implies that the supremum in
rank-- estimation with factors supported id.. Then, with the simplified upper bound is taken over a larger set
high probability, any matriiv that satisfiegM;, —M;,| < A of distributions than the tighter upper bound, hence

—=Uu

for all (i,a) € E also satisfiesD(M,M) < §(¢,a, A + we have §(c,a, A) < § (e,,A). And after some



computation, it's easy to show thad (e,a,A) = distortion.
-2 2 — — 1/2 N
& — (@ =A%) exp (<1 [Hplpo) + oF o))} . DM W)

which concludes the proof. log N 1/2
< {4r2 — (472 — (A +2r6)?) <exp <_gT)>} +2rd
€

This simplified upper bound can be generalized, in the

1
same manner, to the continuous support case. The following {(A + 2r8) + 472 (1 —exp (_IO%VN)) } ’ + 28
example illustrates this generalization and introducesids €

necessary in the proof of theorem I.1. log N 3
- : C <A+4ré+2r(1-— ——
For the original matrixM = U-V, assume the distributions — Aot < P ( € >>
of U;, and Vy, to have support ind; = {-1,—-1 + log N 1
d,...,1—20,1}. Also, the factors of the rank-solution M < A+4rd +2r ( — )

are supported on the same discrete set. Then, the simplified

upper bound is given by Remember N is defined as the alphabet $#¢g, where the
discrete alphabetl; = {—1,-1+4,---,1— 4,1} is used.
Fixing § = % we can minimize the right hand side of

gu(e, a,A) = the last ineq_u.alit.y with respect to the alphab'et dizeSince
12 the exact minimizer cannot be represented in a closed form,
(A2 4 (42 — A?) (1 — exp {_k’%N})) 7 we use instead an approximate minimiZér= [4\/?1 +1,
€ which results in
D(M, M)
where N = |4s] and € = ¢/(1 + a)r. Note that = 3
eli%oqu(e,a,A) = A, which means that we cannot get < Ao 4 + log([‘l\@] +1)
RMSE smaller tham\. - [4\/2:‘ €
The maximum quantization error associated with , is o 1
r(6—46%/4), which happens when all the entriesityfand 7 <A+ — {1 + (log ([4\@} + 1)) }
arel—4§/2 and quantized ta. For simplicity,err(d) = rd is \2/2
used. Combined with Eq. (13), we have a simple analytical <A+ —7;10%(10%7 , (15)
upper bound on the distortion when the original matrix and Ve
the estimation have continuous suppprt, 1]. where the last inequality in (15) is true far> 1.5. This

is practical since we are typically interested in the region
where 128(199) <1.
ve ]

IV. LOWERBOUND

When the number of observed elements is smaller than
O(n), high distortion is inevitable. In this section we derive
a quantitative lower bound which supports this observation

Proposition IV.1. LetM = U-V be a random rank= matrix
with n rows andna columns and assume the distributions of
U, andVy, to have support if—1,1], and E a random
subset ofne row-column pairs. Then, with high probability,

0 N io 160 1(‘)00 any ranks matrix M such that|M; , — M; ,| = 0 for all
(i,a) € E, also satisfies
Fig. 2. The upper bound in Eq. (13) with simplified upper bound D(M, |\7|) >é.em¢ (16)

5" (eaA), for « =1 and A = 0 and a few values of the rank
wherec¢ is a strictly positive constant that only depends on
the rankr and the initial distributiongpy and qo.

Proof. Think of the following algorithm which has clearly

better performance than any other that satisfies the assump-

tions. Consider the bipartite grapf = (R,C,E) with
Proof of Theorem I.1From the example above, we canvertices corresponding to the row and columnshbfand
compute the simplified upper bound directly to bound thedges for the observed entries. For every pair of row and



columnindiceqi, a), i € R anda € C, thatis not connected which counts the number of observatiokl, that are not

by an edge, we do the following. If degree ©fa) is less described by the current assignment.

than r, we assume that all the neighbors of nadé:) is The algorithm initializes the vectofgi; }, {#, } to random
known and make MMSE estimation af (¢2). If degree of iid values and then alternates between two type of moves.
1 (a) is greater tham — 1, we assign the correct value of The first are greedy moves, described here in the case of
@? (¢9). With high probability the resulting RMSE is greaterfactors.

thand(e, o) as defined below.

Greedy movelJ factors

S, 0) =1 —(1—-6)(1—0)e, (17) 1: Sample a column indeke C uniformly;
(60) = V= ) ) 2:  Find @t that minimizesC({u;, ¥, }) overu;;
=l -k 3. Setu; — u™
where ¢ = P{degree(i) < r} = e, ¢ =
=0 k! Greedy moves foW factors are defined analogously.
r—1 —k The second type of move potentially increases the cost
€/ —€e/a ~
P{degree(a) < r} = Z %e /® and ¢ = fynction.
k=0 ’
min{E{a} - (0 — )}, E{(7} — @) - 07}}. Here,a; and Walk move
¥ represent the MMSE estimate @f and#? respectively, 1. Sample(i,a) € E s.t.|u; - U, — Mia| > A;
assuming that — 1 neighbors and corresponding edges are 2: Find«™ - 03> such that@}™ - 7)™ — Mo | < A
known. 3: Setu; — @}, andv, — 7"
Without loss of generality, assume > 1. Then, we can

WalkRank recursively executes one of these moves, choos-

simplify above bound to get, Eq. (16 O : . I .
plity 9 a. (16) ing a walk move with probabilityp, and a greedy one with
probability 1 — p. The parametep can be optimized over,
and we foundp ~ 0.1 to be a reasonable choice.
4 : . .
Simplified Upper Bound——
___________ Upper Bound------ 2.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
oL Lower Bound:---- ] n=100 ——
2f N=1000 - 1
18l n=10000 x|
1r ] 16}
................. 14¢
05} 1 1.2}
Lo Ll
0.25 1 08}
o 0.6
0.125 | 04l
0.1 1 10 100 1000 o2r
0

_ o 0 1 2 3 4 5 6 7 8
Fig. 3. The upper bound(e, a, A), the simplified upper bound
5"(e,, A) and the lower bound(e, @) for rankr = 2, a = 1,

A = 0. Hére the factord),;, Vi, take values in{—1,0, 1}. Fig. 4. Performances of the WalkRank algorithm on random rank 2

matrices. The bold line is a lower bound on the distortioraoted
by the maximum likelihood algorithm.

V. EFFICIENT MATRIX COMPLETION In Figures 4 to 6 we present the distortion achieved by
the WalkRank algorithm, averaged ovéd instances. We

entries determine a random low rank matrix within ar'S€d factors with entries; i, Vi, uniformly distributed in
arbitrarily small RMSE. How hard is it to find such a matrix?_{+17 —1}. Itis clear that the resulting dlst_ortlon is essentially
In this section we present a numerical investigation usinfjdependentof over two orders of magnitude and decreases

a low complexity stochastic local search algorithm that w&aPidly with e. _ _ .
called WalkRank. We compare these numerical results with an analytical

wer bound on the distortion achieved by a maximum
ikelihood algorithm. The latter fills each unknown positio

In the previous sections we proved th@(n) random

WalkRank is inspired to successful local search algorith
for constraint satisfaction problem, such as WalkSAT [8]. I.

is particularly suited to low-rank matrices whose factdys, n M. W'th Its most I.|kely value. W.h'le thgre'exsts no
V. , take values in a finite set y. The algorithm tries to find practical implementation of the maximum likelihood rule,
aséignments of the vectols:, 7.}, and {7, ) we can provide a sharp lower bound on its performances

that minimize the cost function using techniques explained in [9]. It appears that, for low
values of the rank, WalkRank achieves the same distortion
C{u;,v,}) = Z I(|t; - Ug — Myg| > A), (18) as maximum likelihood, provided it is given one or two more
(i,a)EE entries per column/row.
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Fig. 5. Performances of the WalkRank algorithm on random ranlig. 7. Typical evolution of the cost function under the WalkRank
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Fig. 6. Performances of the WalkRank algorithm on random rank 16l

4 matrices.

The complexity of one WalkRank step is independent of
the matrix size (but grows with the rank). The results in
Figures 4 to 6 were obtained with a number of steps slightly
superlinear im. In Fig. 7 we show the evolution of the cost
function for averaged ovel0 instances fomn = 103 to 10°,

r =3 ande = 8. The number of steps per variable required ® 1000 2000 3000 4000 5000 6000 7000 8000 900010000
to reach the asymptotic value increases mildly with A

reasonable conjecture is that the number of steps scaes lig. 8. Evolution of the fit error (top frame) and prediction error
n-Poly(logn). (lower frame) for fitting three matrices with a rarskmodel. The
curves are obtained using coordinate descent in the factors

VI. BACK TO THE NETFLIX DATA

As shown in the last section, local search algorithms 3. A random rank3 matrix (for Fig. 8) or rank5 matrix
efficiently fit low rank matrices of very large dimensions, (for Fig. 9), with set of revealed entries as above.
using few observations. They therefore provide an efficieRthe fit error is defined by restricting the average in Eq. (1)
tool for checking whether a dataset is well described by thg (i,a) € E. The prediction error is instead obtained by

random low rank model. _ ~averaging ove(i,a) ¢ E. In the case of the Netflix matrix
In Figures 8 and 9 we compare the evolution of fit anghe |atter was estimated by hidintp® entries from the
prediction error for three matrices with= m = 5 - 103: dataset, and averaging over those.
1. A submatrix of the Netflix dataset given by the first We used a coordinate descent algorithm in the factors
5-10% movies and customers. {d;}, {v,}, with regularized cost function given by Eq. (2).

2. A matrix with the same subsét of revealed entries, In agreement with the results of previous sections, random
each of them chosen uniformly at random[4nal, +1].  low rank matrices are efficiently fitted with small fittirnd
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Fig. 9. As in Figure 8, but for a rank model.
prediction error. The difference with iid entries is strigi

The fit error decreases only slowly over time, while the
prediction error actually increases. As expected, redeale

entries do not provide any information on the hidden ones.

Netflix data lie somewhat in between: both fit and prediction
error decrease over time, albeit not as sharply as for genuin
low rank matrices.
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