
Sparse Solution of Underdetermined Linear Equations

by Stagewise Orthogonal Matching Pursuit

David L. Donoho 1, Yaakov Tsaig 2, Iddo Drori 1, Jean-Luc Starck 3

March 2006

Abstract

Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NP-hard
in general. We show here that for systems with ‘typical’/‘random’ Φ, a good approximation to the
sparsest solution is obtained by applying a fixed number of standard operations from linear algebra.

Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the
signal into a negligible residual. Starting with initial residual r0 = y, at the s-th stage it forms
the ‘matched filter’ ΦT rs−1, identifies all coordinates with amplitudes exceeding a specially-chosen
threshold, solves a least-squares problem using the selected coordinates, and subtracts the least-
squares fit, producing a new residual. After a fixed number of stages (e.g. 10), it stops. In contrast
to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in
StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g.
10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse
solutions, such as `1 minimization and OMP, and so is attractive for solving large-scale problems.

We use phase diagrams to compare algorithm performance. The problem of recovering a k-sparse
vector x0 from (y, Φ) where Φ is random n × N and y = Φx0 is represented by a point (n/N, k/n)
in this diagram; here the interesting range is k < n < N . For n large, StOMP correctly recovers (an
approximation to) the sparsest solution of y = Φx over a region of the sparsity/indeterminacy plane
comparable to the region where `1 minimization is successful. In fact, StOMPoutperforms both `1
minimization and OMP for extremely underdetermined problems.

We rigorously derive a conditioned Gaussian distribution for the matched filtering coefficients
at each stage of the procedure and rigorously establish a large-system limit for the performance
variables of StOMP . We precisely calculate large-sample phase transitions; these provide asymptot-
ically precise limits on the number of samples needed for approximate recovery of a sparse vector by
StOMP .

We give numerical examples showing that StOMP rapidly and reliably finds sparse solutions in
compressed sensing, decoding of error-correcting codes, and overcomplete representation.

Keywords: compressed sensing, decoding error-correcting codes, sparse overcomplete representation.
phase transition, large-system limit. random matrix theory. Gaussian approximation. `1minimization.
stepwise regression. thresholding, false discovery rate, false alarm rate. MIMO channel, mutual access
interference, successive interference cancellation. iterative decoding.

Acknowledgements This work was supported by grants from NIH, ONR-MURI, a DARPA BAA,
and NSF DMS 00-77261, DMS 01-40698 (FRG) and DMS 05-05303.

1: Department of Statistics, Stanford University, Stanford CA, 94305
2: Institute for Computational Mathematics in Engineering, Stanford University, Stanford CA, 94305
3: DAPNIA/SEDI-SAP, Service d’Astrophysique, Centre Europeen d’Astronomie/Saclay, F-91191Gif-
sur-Yvette Cedex France.

1

1 Introduction

The possibility of exploiting sparsity in signal processing is attracting growing attention. Over the years,
several applications have been found where signals of interest have sparse representations and exploiting
this sparsity offers striking benefits; see for example [11, 28, 26, 25, 7]. At the ICASSP 2005 conference a
special session addressed the theme of exploiting sparsity, and a recent international workshop, SPARS05,
was largely devoted to this topic.

Very recently, considerable attention has focused on the following Sparse Solutions Problem (SSP).
We are given an n×N matrix Φ which is in some sense ‘random’, for example a matrix with iid Gaussian
entries. We are also given an n-vector y and we know that y = Φx0 where x0 is an unknown sparse
vector. We wish to recover x0; however, crucially, n < N , the system of equations is underdetermined
and so of course, this is not a properly-stated problem in linear algebra. Nevertheless, sparsity of x0 is
a powerful property that sometimes allows unique solutions. Applications areas for which this model is
relevant include:

App1: Compressed Sensing. x0 represents the coefficients of a signal or image in a known basis which
happens to sparsely represent that signal or image. Φ encodes a measurement operator, i.e. an
operator yielding linear combinations of the underlying object. Here n < N means that we collect
fewer data than unknowns. Despite the indeterminacy, sparsity of x0 allows for accurate recon-
struction of the object from what would naively seem to be ‘too few samples’ [17, 8, 48].

App2: Error Correction. Information is transmitted in a coded block in which a small fraction of the
entries may be corrupted. From the received data, one constructs a system y = Φx0; here x0

represents the values of errors which must be identifed/corrected, y represents (generalized) check
sums, and Φ represents a generalized checksum operator. It is assumed that the number of errors
is smaller than a threshold, and so x0 is sparse. This sparsity allows to perfectly correct the gross
errors [9, 48, 28].

App3: Sparse Overcomplete Representation. x0 represents the synthesis coefficients of a signal y, which
is assumed to be sparsely represented from terms in an overcomplete expansion; those terms are
the columns of Φ. The sparsity allows to recover a unique representation using only a few terms,
despite the fact that representation is in general nonunique [43, 11, 21, 20, 50, 51].

In these applications, several algorithms are available to pursue sparse solutions; in some cases attractive
theoretical results are known, guaranteeing that the solutions found are the sparsest possible solutions.
For example, consider the algorithm of `1 minimization, which finds the solution to y = Φx having
minimal `1 norm. Also called Basis Pursuit (BP) [11], this method enjoys some particularly striking
theoretical properties, such as rigorous proofs of exact reconstruction under seemingly quite general
circumstances [21, 35, 32, 7, 16, 8, 17, 18]

Unfortunately, some of the most powerful theoretical results are associated with fairly heavy com-
putationally burdens. The research reported here began when, in applying the theory of compressed
sensing to NMR spectroscopy, we found that a straightforward application of the `1 minimization ideas
in [17, 58] required several days solution time per (multidimensional) spectrum. This seemed prohibitive
computational expense to us, even though computer time is relatively less precious than spectrometer
time.

In fact, numerous researchers have claimed that general-purpose `1 minimization is much too slow
for large-scale applications. Some have advocated a heuristic approach, Orthogonal Matching Pursuit
(OMP), (also called greedy approximation and stepwise regression in other fields) [43, 52, 53, 55, 54],
which though often effective in empirical work, does not offer the strong theoretical guarantees that
attach to `1 minimization. (For other heuristic approaches, see [50, 51, 29].)

In this paper we describe Stagewise Orthogonal Matching Pursuit (StOMP), a method for approx-
imate sparse solution of underdetermined systems with the property either that Φ is ‘random’ or that
the nonzeros in x0 are randomly located, or both. StOMP is significantly faster than the earlier methods
BP and OMP on large-scale problems with sparse solutions. Moreover, StOMPpermits a theoretical
analysis showing that StOMP is similarly succcessful to BP at finding sparse solutions.

Our analysis uses the notion of comparison of phase transitions as a performance metric. We con-
sider the phase diagram, a 2D graphic with coordinates measuring the relative sparsity of x0 (number

2

of nonzeros in x0/number of rows in Φ), as well as the indeterminacy of the system y = Φx (number of
rows in Φ/number of columns in Φ). StOMP ’s large-n performance exhibits two phases (success/failure)
in this diagram, as does the performance of BP. The “success phase” (the region in the phase diagram
where StOMPsuccessfully finds sparse solutions) is large and comparable in size to the success phase for
`1 minimization. In a sense StOMP is more effective at finding sparse solutions to large extremely under-
determined problems than either `1 minimization or OMP; its phase transition boundary is even higher
at extreme sparsity than the other methods. Moreover, StOMP takes a few seconds to solve problems
that may require days for `1 solution. As a result StOMP is well suited to large-scale applications. Indeed
we give several explicitly worked-out examples of realistic size illustrating the performance benefits of
this approach.

Our analysis suggests the slogan

noiseless underdetermined problems behave like noisy well-determined problems,

i.e. coping with incompleteness of the measurement data is (for ‘random Φ’) similar to coping with Gaus-
sian noise in complete measurements. At each StOMPstage, the usual set of matched filter coefficients
is a mixture of ‘noise’ caused by cross-talk (non-orthogonality) and true signal; setting an appropriate
threshold, we can subtract identified signal, causing a reduction in cross-talk at the next iteration. This
is more than a slogan; we develop a theoretical framework for rigorous asymptotic analysis. Theorems
1-3 below allow us to track explicitly the successful capture of signal, and the reduction in cross-talk,
stage by stage, rigorously establishing (asymptotic) success below phase transition, together with the
failure that occurs above phase transition. The theory agrees with empirical finite-n results.

Our paper is organized as follows. Section 2 presents background on the sparse solutions problem;
Section 3 introduces the StOMPalgorithm and documents its favorable performance; Section 4 develops a
performance measurement approach based on the phase diagram and phase transition. Section 5 analyzes
the computational complexity of the algorithm. Section 6 develops an analytic large-system-limit for
predicting phase transitions which agree with empirical performance characteristics of StOMP . Section
7 develops the Gaussian noise viewpoint which justifies our thresholding rules. Section 8 describes the
performance of StOMPunder variations [adding noise, of distribution of nonzero coefficients, of matrix
ensemble] and documents the good performance of StOMPunder all these variations.

Section 9 presents computational examples in applications App1-App3 that document the success
of the method in simulated model problems. Section 10 describes the available software package which
reproduces the results in this paper and Section 11 discusses the relationship of our results to related
ideas in multiuser detection theory and to previous work in the sparse solutions problem.

2 Sparse Solution Preliminaries

Recall the Sparse Solutions Problem (SSP) mentioned in the introduction. In the SSP, an unknown
vector x0 ∈ RN is of interest; it is assumed sparse, which is to say that the number k of nonzeros is
much smaller than N . We have the linear measurements y = Φx0 where Φ is a known n by N matrix,
and wish to recover x0.

Of course, if Φ were a nonsingular square matrix, with n = N , we could easily recover x from y;
but we are interested in the case where n < N . Elementary linear algebra tells us that x0 is then
not uniquely recoverable from y by linear algebraic means, as the equation y = Φx may have many
solutions. However, we are seeking a sparse solution, and for certain matrices Φ, sparsity will prove a
powerful constraint. Some of the rapidly accumulating literature documenting this phenomenon includes
[21, 20, 32, 55, 56, 50, 51, 8, 18, 16, 57, 58, 48].

For now, we consider a specific collection of matrices where sparsity proves valuable. Until we say
otherwise, let Φ be a random matrix taken from the Uniform Spherical ensemble (USE); the columns of
Φ are iid points on the unit sphere Sn−1 [16, 17]. Later, several other ensembles will be introduced.

3 Stagewise Orthogonal Matching Pursuit

StOMPaims to achieve an approximate solution to y = Φx0 where Φ comes from the USE and x0 is
sparse. In this section, we describe its basic ingredients. In later sections we document and analyse its

3

Matched Filter

!

"
T
r
s

Hard Thresholding/
Subset Selection

!

j : cs(j) > ts{ }

Set Union

!

I
s"1# J

s

Projection

!

"I s

T
"I s()

#1

"I s

T
y

Interference
Construction

!

"x
s

!

+

!

"
!

y

!

r
s

!

c
s

!

J
s

!

I
s

!

x
s

!

"x
s

!

ˆ x
S

!

I
s"1

Figure 1: Schematic Representation of the StOMP algorithm.

performance.

3.1 The Procedure

StOMPoperates in S stages, building up a sequence of approximations x0, x1, . . . by removing detected
structure from a sequence of residual vectors r1, r2, Figure 1 gives a diagrammatic representation.

StOMPstarts with initial ‘solution’ x0 = 0 and initial residual r0 = y. The stage counter s starts at
s = 1. The algorithm also maintains a sequence of estimates I1, . . . , Is of the locations of the nonzeros
in x0.

The s-th stage applies matched filtering to the current residual, getting a vector of residual correlations

cs = ΦT rs−1,

which we think of as containing a small number of significant nonzeros in a vector disturbed by Gaussian
noise in each entry. The procedure next performs hard thresholding to find the significant nonzeros; the
thresholds, are specially chosen based on the assumption of Gaussianity [see below]. Thresholding yields
a small set Js of “large” coordinates:

Js = {j : |cs(j)| > tsσs};

here σs is a formal noise level and ts is a threshold parameter. We merge the subset of newly selected
coordinates with the previous support estimate, thereby updating the estimate:

Is = Is−1 ∪ Js.

We then project the vector y on the columns of Φ belonging to the enlarged support. Letting ΦI denote
the n× |I| matrix with columns chosen using index set I, we have the new approximation xs supported
in Is with coefficients given by

(xs)Is
= (ΦT

Is
ΦIs

)−1ΦT
Is
y.

The updated residual is
rs = y − Φxs.

We check a stopping condition and, if it is not yet time to stop, we set s := s + 1 and go to the next
stage of the procedure. If it is time to stop, we set x̂S = xs as the final output of the procedure.

Remarks:

4

1. The procedure resembles Orthogonal Matching Pursuit (known to statisticians as Forward Stepwise
Regression). In fact the two would give identical results if S were equal to n and if, by coincidence,
the threshold ts were set in such a way that a single new term were obtained in Js at each stage.

2. The thresholding strategy used in StOMP(to be described below) aims to have numerous terms
enter at each stage, and aims to have a fixed number of stages. Hence the results will be different
from OMP.

3. The formal noise level σs = ‖rs‖2/
√
n, and typically the threshold parameter takes values in the

range 2 ≤ ts ≤ 3.

4. There are strong connections to: stagewise/stepwise regression in statistical model building; succes-
sive interference cancellation multiuser detectors in digital communications and iterative decoders
in error-control coding. See the discussion in Section 11.

Our recommended choice of S (10) and our recommended threshold-setting procedures (see Section
3.4 below) have been designed so that when x0 is sufficiently sparse, the following two conditions are
likely to hold upon termination:

• All nonzeros in x0 are selected in IS .

• IS has no more than n entries.

The next lemma motivates this design criterion. Recall that Φ is sampled from the USE and so
columns of Φ are in general position. The following is proved in Appendix A.

Lemma 3.1 Let the columns of Φ be in general position. Let IS denote the support of x̂S. Suppose that
the support I0 of x0 is a subset of IS. Suppose in addition that #IS ≤ n. Then we have perfect recovery:

x̂S = x0. (3.1)

3.2 An Example

We give a simple example showing that the procedure works in a special case.
We generated a coefficient vector x0 with k = 32 nonzeros, having amplitudes uniformly distributed

on [0, 1]. We sampled a matrix Φ at random from the USE with n = 256, N = 1024, and computed a
linear measurement vector y = Φx0. Thus the problem of recovering x0 given y is 1 : 4 underdetermined
(i.e. δ = n/N = .25), with underlying sparsity measure ρ = k/n = .125. To this SSP, we applied
StOMPcoupled with the CFAR threshold selection rule to be discussed below. The results are illustrated
in Figure 2.

Panels (a)-(i) depict each matched filtering output, its hard thresholding and the evolving approxi-
mation. As can be seen, after 3 stages a result is obtained which is quite sparse and, as the final panel
shows, matches well the object x0 which truly generated the data. In fact, the error at the end of the
third stage measures ‖x̂3−x0‖2/‖x0‖2 = 0.022, i.e. a mere 3 stages were required to achieve an accuracy
of 2 decimal digits.

3.3 Approximate Gaussianity of Residual MAI

At the heart of our procedure are two thresholding schemes often used in Gaussian noise removal. (N.B.
at this point we assume there is no noise in y!) To explain the relevance of Gaussian ‘noise’ concepts,
note that at stage 1, the algorithm is computing

x̃ = ΦT y;

this is essentially the usual matched filter estimate of x0. If y = Φx0 and x0 vanishes except in one
coordinate, the matched filter output x̃ equals x0 perfectly. Hence z = x̃ − x0 is a measure of the
disturbance to exact reconstruction caused by multiple nonzeros in x0. The same notion arises in digital
communications where it is called Multiple-Access Interference (MAI) [60]. Perhaps surprisingly - because
there is no noise in the problem - the MAI in our setting typically has a Gaussian behavior. More

5

200 400 600 800 1000
−1

−0.5

0

0.5

1
(a) Matched filtering

200 400 600 800 1000
−1

−0.5

0

0.5

1
(b) Hard thresholding

200 400 600 800 1000
−1

−0.5

0

0.5

1

(c) Approximate solution x
1
, ||x

1
 − x

0
||

2
 = 0.41

200 400 600 800 1000
−1

−0.5

0

0.5

1
(d) Matched filtering

200 400 600 800 1000
−1

−0.5

0

0.5

1
(e) Hard thresholding

200 400 600 800 1000
−1

−0.5

0

0.5

1

(f) Approximate solution x
2
, ||x

2
 − x

0
||

2
 = 0.12

200 400 600 800 1000
−1

−0.5

0

0.5

1
(g) Matched filtering

200 400 600 800 1000
−1

−0.5

0

0.5

1
(h) Hard thresholding

200 400 600 800 1000
−1

−0.5

0

0.5

1

(i) Approximate solution x
3
, ||x

3
 − x

0
||

2
 = 0.022

Figure 2: Progression of the StOMPalgorithm. Panels (a),(d),(g): successive matched filtering outputs
c1,c2, c3; Panels (b),(e),(h): successive thresholding results; Panels (c),(f),(i): successive partial solutions.
In this example, k = 32, n = 256, N = 1024.

specifically, if Φ is a matrix from the USE and if n and N are both large, then the entries in the MAI
vector z have a histogram which is nearly Gaussian with standard deviation

σ ≈ ‖x0‖2/
√
n. (3.2)

The heuristic justification is as follows. The MAI has the form

z(j) = x̃(j)− x0(j) =
∑
j 6=`

〈φj , φ`〉x0(`).

The thing we regard as ‘random’ in this expression is the matrix Φ. The term ξj
k ≡ 〈φj , φk〉 measures the

projection of a random point on the sphere Sn−1 onto another random point. This random variable has
approximately a Gaussian distribution N(0, 1

n). For Φ from the USE, for a given fixed φj , the different
random variables (ξj

k : k 6= j) are independently distributed. Hence the quantity z(j) is an iid sum of
approximately normal r.v.’s, and so, by standard arguments, should be approximately normal with mean
0 and variance

σ2
j = V ar[

∑
j 6=`

ξj
`x0(`)] = (

∑
j 6=`

x0(`)2) · V ar(ξj
1) ≈ n−1‖x0‖2

2

Setting σ2 = ‖x0‖2/n, this justifies (3.2).
Computational experiments validate Gaussian approximation for the MAI. In Figure 3, Panels (a),(d),(g)

display Gaussian QQ-plots of the MAI in the sparse case with k/n = .125, .1875 and .25, in the Uniform
Spherical Ensemble with n = 256 and N = 1024. In each case, the QQ-plot appears straight, as the
Gaussian model would demand.

Through the rest of this paper, the phrase Gaussian approximation means that the MAI has an
approximately Gaussian marginal distribution. (The reader interested in formal proofs of Gaussian
approximation can consult the literature of multiuser detection e.g. [46, 61, 12]; such a proof is implicit
in the proofs of Theorems 1 and 2 below. The connection between our work and MUD theory will be
amplified in Section 11 below).

Properly speaking, the term ‘MAI’ applies only at stage 1 of StOMP . At later stages there is residual
MAI, i.e. MAI which has not yet been cancelled. This can be defined as

zs(j) = x0(j)− φT
j rs/‖PIs−1φj‖2

2, j 6∈ Is−1;

6

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(a) USE, k = 32

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(d) USE, k = 32

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(g) USE, k = 32

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(b) RSE, k = 48

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(e) RSE, k = 48

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(h) RSE, k = 48

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(c) URP, k = 64

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(f) URP, k = 64

−0.1 0 0.1

−0.01

0

0.01

N(0,1/n)

z

(i) URP, k = 64

Figure 3: QQ plots comparing MAI with Gaussian distribution. Left column: k/n = .125, middle
column: k/n = .1875, right column: k/n = .25. Top row: USE, middle row: RSE, bottom row: URP.
The RSE and URP ensembles are discussed in Section 8. The plots all appear nearly linear, indicating
that the MAI has a nearly Gaussian distribution.

the coordinates j ∈ Is−1 are ignored at stage s - the residual in those coordinates is deterministically 0.
Empirically, residual MAI has also a Gaussian behavior. Figure 4 shows quantile-quantile plots for the

first few stages of the CFAR variant, comparing the residual MAI with a standard normal distribution.
The plots are effectively straight lines, illustrating the Gaussian approximation. Later, we provide
theoretical support for a perturbed Gaussian approximation to residual MAI.

3.4 Threshold Selection

Our threshold selection proposal is inspired by the Gaussian behavior of residual MAI. We view the
vector of correlations cs at stage s as consisting of a small number of ‘truly nonzero’ entries, combined
with a large number of ‘Gaussian noise’ entries. The problem of separating ‘signal’ from ‘noise’ in such
problems has generated a large literature including the papers [24, 27, 26, 1, 23, 37], which influenced
our way of thinking.

We adopt language from statistical decision theory [39] and the field of multiple comparisons [38].
Recall that the support I0 of x0 is being (crudely) estimated in the StOMPalgorithm. If a coordinate
belonging to I0 does not appear in IS , we call this a missed detection. If a coordinate not in I0 does
appear in IS we call this a false alarm. The coordinates in IS we call discoveries, and the coordinates
in IS\I0 we call false discoveries. (Note: false alarms are also false discoveries. The terminological
distinction is relevant when we normalize to form a rate; thus the false alarm rate is the number of false
alarms divided by the number of coordinates not in I0; the false discovery rate is the fraction of false
discoveries within IS .)

We propose two strategies for setting the threshold. Ultimately, each strategy should land us in a
position to apply Lemma 3.1: i.e. to arrive at a state where #IS ≤ n and there are no missed detections.
Then, Lemma 3.1 assures us, we perfectly recover: x̂S = x. The two strategies are:

• False Alarm Control. We attempt to guarantee that the number of total false alarms, across all
stages, does not exceed the natural codimension of the problem, defined as n− k. Subject to this,
we attempt to make the maximal number of discoveries possible. To do so, we choose a threshold
so the False Alarm rate at each stage does not exceed a per-stage budget.

• False Discovery Control. We attempt to arrange that the number of False Discoveries cannot exceed

7

4 2 0 2 4
2

1

0

1

2

N(0,1)
z

(a) Stage no. 1

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(b) Stage no. 2

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(c) Stage no. 3

4 2 0 2 4
2

1

0

1

2

N(0,1)

z
(d) Stage no. 4

4 2 0 2 4
2

1

0

1

2

N(0,1)
z

(e) Stage no. 5

4 2 0 2 4
2

1

0

1

2

N(0,1)

z

(f) Stage no. 6

Figure 4: QQ plots comparing residual MAI with Gaussian distribution. Quantiles of residual MAI at
different stages of StOMPare plotted against Gaussian quantiles. Near-linearity indicates approximate
Gaussianity.

a fixed fraction q of all discoveries, and to make the maximum number of discoveries possible subject
to that constraint. This leads us to consider Simes’ rule [2, 1].

The False Alarm Control strategy requires knowledge of the number of nonzeros k or some upper
bound. False Discovery Control does not require such knowledge, which makes it more convenient for
applications, if slightly more complex to implement and substantially more complex to analyse [1]. The
choice of strategy matters; the basic StOMPalgorithm behaves differently depending on the threshold
strategy, as we will see below.

Implementation details are available by downloading the software we have used to generate the results
in this paper; see Section 10 below.

4 Performance Analysis by Phase Transition

When does StOMPwork? To discuss this, we use the notions of phase diagram and phase transition.

4.1 Problem Suites, Performance Measures

By problem suite S(k, n,N) we mean a collection of Sparse Solution Problems defined by two ingredients:
(a) an ensemble of random matrices Φ of size n by N ; (b) an ensemble of k-sparse vectors x0. By standard
problem suite Sst(k, n,N) we mean the suite with Φ sampled from the uniform spherical ensemble, with
x0 a random variable having k nonzeros sampled iid from a standard N(0, 1) distribution.

For a given problem suite, a specific algorithm can be run numerous times on instances sampled from
the problem suite. Its performance on each realization can then be measured according to some numerical
or qualitative criterion. If we are really ambitious, and insist on perfect recovery, we use the performance
measure 1{x̂S 6=x0}. More quantitative is the `0-norm, ‖x̂S − x0‖0, the number of sites at which the two
vectors disagree. Both these measures are inappropriate for use with floating point arithmetic, which
does not produce exact agreement. We prefer to use instead `0,ε, the number of sites at which the
reconstruction and the target disagree by more than ε = 10−4. We can also use the quantitative measure
relerr2 = ‖x̂S − x0‖2/‖x0‖2, declaring success when the measure is smaller than a fixed threshold (say
ε).

For a qualitative performance indicator we simply report the fraction of realizations where the qual-
itative condition was true; for a quantitative performance measure, we present the mean value across
instances at a given k, n,N .

8

Figure 5: Phase Diagram for `1 minimization. Shaded attribute is the number of coordinates of recon-
struction which differ from optimally sparse solution by more than 10−4. The diagram displays a rapid
transition from perfect reconstruction to perfect disagreement. Overlaid red curve is theoretical curve
ρ`1 .

4.2 Phase Diagram

A phase diagram depicts performance of an algorithm at a sequence of problem suites S(k, n,N). The
average value of some performance measure as displayed as a function of ρ = k/n and δ = n/N . Both of
these variables ρ, δ ∈ [0, 1], so the diagram occupies the unit square.

To illustrate such a phase diagram, consider a well-studied case where something interesting happens.
Let x1 solve the optimization problem:

(P1) min ‖x‖1 subject to y = Φx.

As mentioned earlier, if y = Φx0 where x0 has k nonzeros, we may find that x1 = x0 exactly when k
is small enough. Figure 5 displays a grid of δ − ρ values, with δ ranging through 50 equispaced points
in the interval [.05, .95] and ρ ranging through 50 equispaced points in [.05, .95]; here N = 800. Each
point on the grid shows the mean number of coordinates at which original and reconstruction differ by
more than 10−4, averaged over 100 independent realizations of the standard problem suite Sst(k, n,N).
The experimental setting just described, i.e. the δ − ρ grid setup, the values of N , and the number of
realizations, is used to generate phase diagrams later in this paper, although the problem suite being
used may change.

This diagram displays a phase transition. For small ρ, it seems that high-accuracy reconstruction is
obtained, while for large ρ reconstruction fails. The transition from success to failure occurs at different
ρ for different values of δ.

This empirical observation is explained by a theory that accurately predicts the location of the
observed phase transition and shows that, asymptotically for large n, this transition is perfectly sharp.
Suppose that problem (y,Φ) is drawn at random from the standard problem suite, and consider the event
Ek,n,N that x0 = x1 i.e. that `1 minimization exactly recovers x0. The paper [19] defines a function
ρ`1(δ) (called there ρW) with the following property. Consider sequences of (kn), (Nn) obeying kn/n→ ρ
and n/Nn → δ. Suppose that ρ < ρ`1(δ). Then as n→∞

Prob(Ekn,n,Nn
) → 1.

On the other hand, suppose that ρ > ρ`1(δ). Then as n→∞

Prob(Ekn,n,Nn
) → 0.

The theoretical curve (δ, ρ`1(δ)) described there is overlaid on Figure 5, showing good agreement between
asymptotic theory and experimental results.

9

Figure 6: Phase diagram for CFAR thresholding. Overlaid red curve is heuristically-derived analytical
curve ρFAR (see Appendix B). Shaded attribute: number of coordinates wrong by more than 10−4

relative error.

4.3 Phase Diagrams for StOMP

We now use phase diagrams to study the behavior of StOMP . Figure 6 displays performance of StOMPwith
CFAR thresholding with per-iteration false alarm rate (n− k)/(S(N − k)). The problem suite and un-
derlying problem size, N = 800, are the same as in Figure 5. The shaded attribute again portrays
the number of entries where the reconstruction misses by more than 10−4. Once again, for very sparse
problems (ρ small), the algorithm is successful at recovering (a good approximation to) x0, while for less
sparse problems (ρ large), the algorithm fails. Superposed on this display is the graph of a heuristically-
derived function ρFAR, which we call the Predicted Phase transition for CFAR thresholding. Again the
agreement between the simulation results and the predicted transition is reasonably good. Appendix
B explains the calculation of this predicted transition, although it is best read only after first reading
Section 6.

Figure 7 shows the number of mismatches for the StOMPalgorithm based on CFDR thresholding
with False Discovery Rate q = 1/2. Here N = 800 and the display shows that, again, for very sparse
problems (ρ small), the algorithm is successful at recovering (a good approximation to) x0, while for less
sparse problems ρ large, the algorithm fails. Superposed on this display is the graph of a heuristically-
derived function ρFDR, which we call the Predicted Phase transition for CFDR thresholding. Again the
agreement between the simulation results and the predicted transition is reasonably good, though visibly
not quite as good as in the CFAR case.

5 Computation

Since StOMPseems to work reasonably well, it makes sense to study how rapidly it runs.

5.1 Empirical Results

Table 1 shows the running times for StOMP equipped with CFAR and CFDR thresholding, solving an
instance of the problem suite Sst(k, n,N). We compare these figures with the time needed to solve
the same problem instance via `1 minimization and OMP. Here `1 minimization is implemented using
Michael Saunders’ PDCO solver [49]. The simulations used to generate the figures in the table were all
executed on a 3GHz Xeon workstation, comparable with current desktop CPUs.

Table 1 suggests that a tremendous saving in computation time is achieved when using the StOMPscheme
over traditional `1 minimization. The conclusion is that CFAR- and CFDR- based methods have a large

10

Figure 7: Phase diagram for CFDR thresholding. Overlaid red curve is heuristically-derived curve ρFDR

(see Appendix B). Shaded attribute: number of coordinates wrong by more than 10−4 relative error.

Problem Suite (k,n,N) `1 OMP CFAR CFDR
(10,100,1000) 0.97 0.37 0.02 0.03

(100,500,1000) 22.79 0.79 0.42 0.32
(100,1000,10000) 482.22 7.98 5.24 3.28
(500,2500,10000) 7767.16 151.81 126.36 88.48

Table 1: Comparison of execution times (in seconds) for instances of the random problem suite
Sst(k, n,N).

domain of applicability for sparsely solving random underdetermined systems, while running much faster
than other methods in problem sizes of current interest.

5.2 Complexity Analysis

The timing studies are supported by a formal analysis of the asymptotic complexity. In this analysis, we
consider two scenarios.

• Dense Matrices. In this scenario, the matrix Φ defining an underdetermined linear system is
an explicit n×N dense matrix stored in memory. Thus, applying Φ to an N -vector x involves nN
flops.

• Fast Operators. Here, the linear operator Φ is not explicitly represented in matrix form. Rather,
it is implemented as an operator taking a vector x, and returning Φx. Classical examples of this
type include the Fourier transform, Hadamard transform, and Wavelet transform, just to name
a few; all of these operators are usually implemented without matrix multiplication. Such fast
operators are of key importance in large-scale applications. As a concrete example, consider an
imaging scenario where the data is a d × d array, and Φ is an n by d2 partial Fourier operator,
with n = µd2 proportional to d2. Direct application of Φ would involve nd2 = O(d4) operations,
whereas applying a 2-D FFT followed by random sampling would require merely O(d2 log(d)) flops;
the computational gain is evident. In our analysis below, we let V denote the cost of one application
of a linear operator or its adjoint (corresponding to one matrix-vector multiplication).

In fact, as we will now see, the structure of the StOMPalgorithm makes it a prime choice when fast
operators are available, as nearly all its computational effort is invested in solving partial least-squares
systems involving Φ and ΦT . In detail, assume we are at the s-th stage of execution. StOMP starts by
applying matched filtering to the current residual, which amount to one application of ΦT , at a cost

11

of nN flops. Next, it applies hard-thresholding to the residual correlations and updates the active set
accordingly, using at most 2N additional flops. The core of the computation lies in calculating the
projection of y onto the subset of columns ΦIs , to get a new approximation xs. This is implemented via
a Conjugate Gradient (CG) solver [34]. Each CG iteration involves application of ΦIs

and ΦT
Is

, costing
at most 2nN + O(N) flops. The number of CG iterations used is a small constant, independent of n
and N , which we denote ν. In our implementation we use ν = 10. Finally, we compute the new residual
by applying Φ to the new approximation, requiring an additional nN flops. Summarizing, the total
operation count per StOMPstage amounts to (ν + 2)nN + O(N). The total number of StOMPstages,
S, is a prescribed constant, independent of the data; in the simulations in this paper we set S = 10.

Readers familiar with OMP have by now doubtless recognized the evident parallelism in the algorith-
mic structure of StOMPand OMP. Indeed, much like StOMP , at each stage OMP computes residual
correlations and solves a least-squares problem for the new solution estimate. Yet, unlike StOMP , OMP
builds up the active set one element at a time. Hence, an efficient implementation would necessarily main-
tain a Cholesky factorization of the active set matrix and update it at each stage, thereby reducing the
cost of solving the least-squares system. In total, k steps of OMP would take at most 4k3/3+knN+O(N)
flops. Without any sparsity assumptions on the data, OMP takes at most n steps, thus, its worst-case
performance is bounded by 4n3/3+n2N+O(N) operations. A key difference between StOMP and OMP
is that the latter needs to store the Cholesky factor of the active set matrix in its explicit form, taking
up to n2/2 memory elements. When n is large, as is often the case in 2- and 3-D image-reconstruction
scenarios, this greatly hinders the applicability of OMP. In contrast, StOMP has very modest storage
requirements. At any given point of the algorithm execution, one needs only store the current estimate
xs, the current residual vector rs, and the current active set Is. This makes StOMPvery attractive for
use in large-scale applications.

Table 2 summarizes our discussion so far, offering a comparison of the computational complexity of
StOMP , OMP and `1 minimization via linear programming (LP). For the LP solver, we use a primal-
dual barrier method for convex optimization (PDCO) developed by Michael Saunders [49]. The estimates
listed in the table all assume worst-case behavior. Examining the bounds in the dense matrix case closely,
we notice that StOMP is the only algorithm of the three admitting quadratic order complexity estimates.
In contrast, OMP and PDCO require cubic order estimates for their worst-case performance bound.
Therefore, for large scale problems StOMP can dominate due to its simple structure and efficiency. In
the case where fast operators are applicable, StOMPyet again prevails; it is the only algorithm of the
three requiring a constant number (S · (ν + 2)) of matrix-vector multiplications to reach a solution.

Algorithm Dense Matrices Fast Operators
StOMP S(ν + 2)nN +O(N) S(ν + 2) · V +O(N)
OMP 4n3/3 + n2N +O(N) 4n3/3 + 2n · V +O(N)
`1 min. with PDCO S(2N)3/3 +O(nN) 2N · V +O(nN)

Table 2: Worst-Case Complexity Bounds for StOMP , OMP and PDCO. S denotes the maximum number
of stages, ν denotes the maximum number of CG iterations employed per stage of StOMP, and V stands
for the cost of one matrix-vector product (implemented as a fast operator).

To convey the scale of computational benefits in large problems, we conduct a simple experiment in
a setting where Φ can be implemented as a fast operator. We consider a system y = Φx where Φ is
made from only n = δN rows of the Fourier matrix. Φ can be implemented by application of a Fast
Fourier Transform followed by a coordinate selection. Table 3 gives the results. Clearly the advantage
of StOMP is even more convincing.

Problem Suite (k,n,N) `1 OMP CFAR CFDR
SPFE (500,10000,20000) 237.69 53.64 2.07 3.16
SPFE (1000,20000,50000) 810.39 299.54 5.63 9.47

Table 3: Comparison of execution times (in seconds) in the random partial Fourier suite SPFE(k, n,N).
Because of the fast operator, StOMPoutperforms OMP.

12

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Early Terminations

δ

P
ro

ba
bi

lit
y

of
 E

ar
ly

 T
er

m
in

at
io

n

n = 400
n=800
n=1600

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Missed Detections

δ

F
ra

ct
io

n
T

ru
ly

 N
on

N
ul

l M
is

se
d

n = 400
n=800
n=1600

Figure 8: Empirical Transition Behaviors, varying n. (a) Fraction of cases with termination before stage
S. (b) Fraction of missed detections. Averages of 1000 trials with n = 400, 800, 1600 and k = bρnc,
N = bn/δc, δ = 1/4 and ρ varying. Sharpness of each transition seems to be increasing with n.

To make the comparison still more vivid, we point ahead to an imaging example from Section 9.1
below. There an image of dimensions d× d is viewed as a vector x of length N = d2. Again the system
y = Φx where Φ is made from only n = δN rows of the Fourier matrix. One matrix-vector product costs
V = 4N logN = 8d2 log d.

How do the three algorithms compare in this setting? Plugging-in S = 10, ν = 10, and V as above, we
see that the leading term in the complexity bound for StOMP is 960 · d2 log d. In contrast, for OMP the
leading term in the worst-case bound becomes 4δ3

3 d6 + 16δd4 log d, and for `1 minimization the leading
term is 16d4 log d. The computational gains from StOMP are indeed substantial. Moreover, to run OMP
in this setting, we may need up to δ2

2 d
4 memory elements to store the Cholesky factorization, which

renders it unusable for anything but the smallest d. In Section 9.1, we present actual running times of
the different algorithms.

6 The Large-System Limit

Figures 6 and 7 suggest phase transitions in the behavior of StOMP , which would imply a certain
well-defined asymptotic ‘system capacity’ below which StOMPsuccessfully finds a sparse solution, and
above which it fails. In this section, we review the empirical evidence for a phase transition in the
large-system limit and develop theory that rigorously establishes it. We consider the problem suite
S(k, n,N ;USE,±1) defined by random Φ sampled from the USE, and with y generated as y = Φx0,
where x0 has k nonzero coefficients in random positions having entries ±1. This ensemble generates a
slightly ‘lower’ transition than the ensemble used for Figures 6 and 7 where the nonzeros in x0 had iid
Gaussian N(0, 1) entries.

6.1 Evidence for Phase Transition

Figure 8 presents results of simulations at fixed ratios δ = n/N but increasing n. Three different
quantities are considered: in panel (a), the probability of early termination, i.e. termination before stage
S = 10 because the residual has been driven nearly to zero; in panel (b) the missed detection rate, i.e.
the fraction of nonzeros in x0 that are not supported in the reconstruction x̂S . Both quantities undergo
transitions in behavior near ρ = .2.

Significantly, the transitions become more sharply defined with increasing n. As n increases, the
early termination probability behaves increasingly like a raw discontinuity 1{k/n≥ρF AR(n/N)} as n→∞,
while the fraction of missed detections properties behave increasingly like a discontinuity in derivative
(k/n−ρFAR(n/N))+. In statistical physics such limiting behaviors are called first-order and second-order
phase transitions, respectively.

13

(k, n, N) ρ1 ρ2 ρ3 ρ4 d1 d2 d3 d4 ν1 ν2 ν3 ν4
(70,280,800) 0.250 0.130 0.074 0.041 1.000 0.773 0.630 0.521 2.857 2.630 2.487 2.377

(105,420,1200) 0.250 0.130 0.075 0.043 1.000 0.775 0.633 0.524 2.857 2.632 2.490 2.381
(140,560,1600) 0.250 0.131 0.075 0.043 1.000 0.776 0.632 0.522 2.857 2.633 2.489 2.379
(210,840,2400) 0.250 0.130 0.075 0.043 1.000 0.776 0.630 0.522 2.856 2.632 2.486 2.378
(78,280,800) 0.279 0.158 0.106 0.078 1.000 0.778 0.643 0.546 2.857 2.635 2.499 2.403

(117,420,1200) 0.279 0.157 0.104 0.073 1.000 0.781 0.646 0.546 2.857 2.638 2.502 2.403
(156,560,1600) 0.279 0.159 0.105 0.076 1.000 0.782 0.645 0.545 2.857 2.639 2.502 2.401
(235,840,2400) 0.280 0.159 0.106 0.076 1.000 0.778 0.644 0.542 2.856 2.635 2.501 2.399

Table 4: Dimension-normalized ratios ρs, ds, νs. Problems of different sizes (k, n,N) with identical ratios
of ρ = k/n and δ = n/N . Note similarity of entries in adjacent rows within each half of the table. Top
half of table: just below phase transition; bottom half: just above1 phase transition.

(k, n,N) α1 α2 α3 α4 β1 β2 β3 β4

(70,280,800) 0.041 0.035 0.032 0.031 0.481 0.429 0.444 0.421
(105,420,1200) 0.040 0.035 0.032 0.033 0.479 0.423 0.424 0.480
(140,560,1600) 0.040 0.035 0.032 0.031 0.478 0.428 0.427 0.481
(210,840,2400) 0.040 0.036 0.031 0.031 0.478 0.423 0.429 0.485
(78,280,800) 0.039 0.034 0.029 0.028 0.434 0.331 0.261 0.221

(117,420,1200) 0.038 0.033 0.029 0.030 0.436 0.341 0.295 0.248
(156,560,1600) 0.038 0.033 0.030 0.028 0.429 0.341 0.277 0.225
(235,840,2400) 0.039 0.033 0.030 0.028 0.433 0.332 0.278 0.220

Table 5: Dimension-normalized detector operating characteristics αs, βs. Problems of different sizes
(k, n,N) with identical ratios of ρ = k/n and δ = n/N . Note similarity of entries in adjacent rows within
each half of the table. Top half of table: just below phase transition; bottom half: just above phase
transition.

6.2 Evidence for Intensivity

In statistical physics, a system property is called intensive when it tends to a stable limit as the system size
increases. Many properties of StOMP , when expressed as ratios to the total system size, are intensive.
Such properties include: the number of detections at each stage, the number of true detections, the
number of false alarms, and the squared norm of the residual rs. When sampling from the standard
problem suite, all these properties - after normalization by the problem size n - behave as intensive
quantities.

Table 4 illustrates this by considering 6 different combinations of k, n,N , all six at the same value of
determinacy δ = n/N , in two groups of three, each group at one common value of ρ. Within each group
with common values of δ = n/N and ρ = k/n, we considered three different problem sizes n.

Stage s of StOMPconsiders an ns-dimensional subspace, using ks nonzeros out of Ns possible terms,
where

ks = k −#true discoveries prior to stage s,
ns = n−#discoveries prior to stage s,
Ns = N −#discoveries prior to stage s.

The table presents dimension-normalized ratios ρs = ks/n, ds = ns/n, νs = Ns/n. If these quantities
are intensive, they will behave similarly at the same stage even at different problem sizes. The evidence
of the table suggests that they are indeed intensive.

Also important in what follows are two threshold detector operating characteristics: the stage-specific
false-alarm rate

αs = Prob{|〈φj , rs〉| > tsσs|j ∈ Ic
0 ∩ Ic

s−1}

and the stage-specific correct detection rate

βs = Prob{|〈φj , rs〉| > tsσs|j ∈ I0 ∩ Ic
s−1}.

There is also evidence of intensivity for these quantities; see Table 5.

14

6.3 Limit Quantities

We have seen that the dimension-normalized quantities ρs = ks/ns and ds = ns/n are empirically nearly
constant for large n. We now present a theoretical result to explain this.

For our result, we fix S > 0 and consider the CFAR algorithm designed for that specified S. We
also fix ρ, δ ∈ (0, 1). Let k = kn = bρnc, Nn = bn/δc. Run StOMP on an instance of the problem suite
S(k, n,N ;USE,±1). Let ‖rs‖2 denote the norm of the residual at stage s.

Recall the notation p.lim for limit in probability; a sequence of random variables (vn : n ≥ 1) has the
nonstochastic limit v̄ in probability, written v̄ = p.limn→∞ vn, if, for each ε > 0, Prob{|vn− v̄| > ε} → 0
as n→∞. In the result below, let ks,n denote the random quantity ks on a problem from the standard
suite at size n. Similarly for rs,n,ds,n, ns,n, αs,n, βs,n. Also, if ns,n = 0, the iteration stops immediately,
and the monitoring variables at that and all later stages up to stage S are assigned values in the obvious
way: rs,n = 0, βs,n = 0, αs,n = 0, etc.

Theorem 1 Large-System Limit. There are constants σ̄s, µ̄s depending on s = 1, . . . , S, on δ and
on ρ, so that

σ̄2
s = p.lim

n→∞
‖rs,n‖2

2/n, µ̄s = p.lim
n→∞

‖rs,n‖2
2/ks,n, s = 1, . . . , S.

We also have large-system limits in probability for the detector operating characteristics

ᾱs = p.lim
n→∞

αs,n, β̄s = p.lim
n→∞

βs,n, s = 1, . . . , S,

where the limits depend on s, δ and ρ. Finally, the normalized dimensions also have large-system limits:

ρ̄s = p.lim
n→∞

ks,n/ns,n, d̄s = p.lim
n→∞

ns,n/n, s = 1, . . . , S,

with limits depending on δ and on ρ.

See Appendix C for the proof. It is best studied after first becoming familiar with Section 7.

6.4 The Predicted Phase Transition

Fix a small η > 0; we say that StOMP is successful, if at termination of the S-stage StOMPalgorithm,

• the active set IS contains all but a fraction η of the elements of I0:

|I0\IS | ≤ η|I0|; and

• the active set IS contains no more than n elements:

|IS | ≤ (1− η)n.

Lemma 3.1 motivates this definition (in the case η = 0). When this property holds, it is typically the
case that x̂S ≈ x0, as experiments have shown.

The existence of large-system limits allows us to derive phase transitions in the ‘Success’ property; the
corresponding curves ρFAR and ρFDR decorate Figures 6 and 7. Empirically, these transitions happen
at about the same place as apparent transitions for other candidate definitions of ‘Success’, such as exact
equality x̂S = x0. The key point is that the transitions in this property can be calculated analytically,
and are rigorously in force at large n, whereas empirical phase transitions are simply interpretations.

This analytic calculation works by tracking the large-system limit variables (ρ̄s, d̄s, ν̄s, σ̄s) as a function
of s; thus we use dimension-normalized units, 1 ↔ n, ρ↔ k, 1/δ ↔ N , and this state vector is initialized
to (ρ, 1, 1/δ, ρ).

The heart of the calculation is an iteration over s = 1, . . . , S. At stage s, we first calculate the model
false alarm rate and the model true detect rate:

ᾱs = p.lim
n→∞

Prob{|〈φj , rs〉| > tsσs,n|j ∈ Ic
0 ∩ Ic

s−1}, (6.1)

15

Method δ = .05 δ = .10 .15 .20 .25 .35 .50 .65 .80
Empirical 0.1250 0.1562 0.1792 0.2000 0.2225 0.2607 0.3212 0.3663 0.3852

Theoretical 0.1247 0.1498 0.1703 0.1869 0.2076 0.2518 0.2913 0.3567 0.4008

Table 6: Empirical and Theoretical Phase Transitions. Comparisons at several values of indeterminacy
δ. Top half of table: empirical calculation (N = 1600); bottom half: theoretical calculation.

β̄s = p.lim
n→∞

Prob{|〈φj , rs〉| > tsσs,n|j ∈ I0 ∩ Ic
s−1}. (6.2)

This part of the calculation requires theoretical developments from the next section; specifically Corol-
laries 7.1,7.2. We then update the limit quantities in the obvious way:

d̄s = d̄s−1 − β̄sρ̄s − ᾱs(ν̄s − ρ̄s),

ρ̄s+1 = ρ̄s(1− β̄s), ν̄s+1 = ν̄s − ᾱs(ν̄s − ρ̄s) + (ρ̄s+1 − ρ̄s).

The calculation announces success if, at or before stage S,

d̄s ≥ η, ρ̄s ≤ ηρ.

Otherwise, it announces failure.
This calculation evaluates a specific parameter combination (δ, ρ) for success or failure. We are really

interested in the boundary ρFAR,S(δ) which separates the ‘success’ region from the ‘failure’ region. By
binary search, we obtain a numerical approximation to this boundary.

In this calculation, there is no notion of problem size n; in principle the calculation is applicable to
all large problem sizes. The assumption being made is that certain variables (such as the empirical false
alarm rate) are intensive, and, though random, can be approximated by a limit quantity. This has been
established for the relevant variables by Theorem 1.

Table 6 compares the calculations made by this approach with the results of a StOMPsimulation.
The degree of match is apparent. The difference between the empirical transition and the theoretical
prediction is smaller than the width of the transition; compare Figure 8. Since the empirical transition
point is not a sharply defined quantity, the degree of match seems quite acceptable.

7 The Conditioned Gaussian Limit

Underlying Theorem 1 and the subsequent phase-transition calculations is a particular model for the
statistical behavior of coefficients 〈φj , rs〉. We now introduce and derive that model.

7.1 The Conditioned Gaussian Model

Our model considers the quantities 〈φj , rs〉 driving the StOMPalgorithm. There are two kind of behav-
iors: one for j 6∈ I0 – the null case – and one for j ∈ I0 – the non-null case.

7.1.1 Null Case

Define jointly Gaussian random variables Z0,Z1,. . . , ZS , with means zero and variances σ̄2
s defined by

Theorem 1. The variances are decreasing: σ̄2
s > σ̄2

s+1. The random variables have the covariance
structure

Cov(Zu, Zs) = σ̄2
max(u,s).

That is to say, the process (Zs : s = 1, . . . , S) behaves as a time-reversed martingale.
Consider the coefficient 〈φj , rs〉 obtained by matched filtering of the s-th residual, and suppose that j

is a truly null coordinate, i.e. j is not in the support of x0. For a random variable X let L(X) denote the
probability law of X. Consider the (USE,±) problem suite with given values of δ = n/N and ρ = k/n,
and n large. Our conditioned Gaussian model says that, in the CFAR case

L(〈φj , rs〉|j 6∈ I0 ∪ Is−1) ≈ L(Zs||Zi| < tσ̄i, i = 1, ..., s− 1).

16

In words, we model each null coefficient as a certain Gaussian random variable conditioned on certain
non-exceedance events involving other, correlated random variables. In particular, we do not model it
simply as a Gaussian random variable (except if s = 1). To enforce this distinction, we let Z̃s denote the
random variable Zs conditioned on {|Zi| < tσ̄i, i = 1, ..., s− 1}.

7.1.2 Non-Null Case

Define jointly Gaussian random variables X0,X1,...,XS , with means µ̄s and variances σ̄2
s again deriving

from Theorem 1. There is again the covariance appropriate to a time-reversed martingale:

Cov(Xu, Xs) = σ̄2
max(u,s).

Consider now the coefficient 〈φj , rs〉 obtained by matched filtering of the s-th residual, where j is a
truly non-null coordinate, i.e. j is not in the support of x0. Consider again the standard problem suite
with given values of δ and ρ and n large. The conditioned Gaussian model says that

L(〈φj , rs〉|j ∈ I0 ∩ Ic
s−1) ≈ L(Xs||Xi| < tσ̄i, i = 1, ..., s− 1).

In words, we model each non-null coefficient at stage s as a certain nonzero-mean Gaussian random
variable conditioned on a certain sequence of non-exceedances at earlier stages in the sequence. In this
case, the conditioning event looks the same as in the non-null case; however the random variables Xi do
not have mean zero. We let X̃s denote the random variableXs conditioned on {|Xi| < tσ̄i, i = 1, ..., s−1}.

7.1.3 The Gaussian Approximation

The CG model, which will later be seen to be highly accurate, explains why the Gaussian approximation
sometimes works. The model has the following consequence. Let pZ̃s

(z) denote the marginal probability
density of the CG variable Z̃s and let gσ̄s

(z) denote the probability density of a Gaussian N(0, σ2
s).

Under a simple normal approxmation, we would have pZ̃s
(z) ≈ gσ̄s(z). Under our model,

ps(z) =
Prob{|Z1| < tσ̄1, . . . , |Zs−1| < tσ̄s−1|Zs = z}gσ̄s(z)

Prob{|Z1| < tσ̄1, . . . , |Zs−1| < tσ̄s−1}
.

We have the identity pZ̃s
(z) = λs(z)gσ̄s

(z), where

λs(z) =
Prob{|Z1| < tσ̄1, . . . , |Zs−1| < tσ̄s−1|Zs = z}

Prob{|Z1| < tσ̄1, . . . , |Zs−1| < tσ̄s−1}
.

A parallel definition for the random variables X̃s sets

ξs(x) = pX̃s
(x)/pXs

(x).

In Figure 9 Panel (a) we display exact results for λs under our model, with a choice of σ̄ obtained from
analyzing the case δ = .2, ρ = .2. As one can see, each λs is effectively 1 near zero, and drops to zero in
the tails. In this case, each underlying σ̄s is small and each gσ̄s

is effectively concentrated over the region
where λs is nearly 1. Hence the Gaussian approximation to the conditioned Gaussian model is not bad,
for the parameters ρ and δ underlying this situation. Panel (b) depicts ξs with a choice of µ̄, τ̄ obtained
from analyzing the case δ = .2, ρ = .2. Now we have only a vaguely Gaussian shape.

7.2 Derivation of the Model

The first part of this section will prove:

Theorem 2 Let Z̃s be as defined in Section 7.1.1. Then, for w ∈ R,

P{〈φj , rs〉 ≤ w| j 6∈ I0 & j 6∈ Is−1} → P{Z̃s ≤ w}, n→∞, s = 1, . . . , S.

We immediately gain a formula for computing the limiting threshold false-alarm probability:

17

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
s
(z) for µ=0

s=2
s=3
s=4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

ξ
s
(z) for µ ≠ 0

s=2
s=3
s=4

Figure 9: Density Correction Factors. (a) λs(z), the factor multiplying the standard normal density
to get the conditioned Gaussian density, null case. (b) ξs(z), the factor multiplying the (non-standard)
normal density to get the conditioned Gaussian density, nonnull case. Here s = 2, 3, 4 δ = 1/4 and ρ = .2.

Corollary 7.1
ᾱs = P{|Z̃s| ≥ tsσ̄s}. (7.3)

The comparable result in the Non-null case is:

Theorem 3 Let X̃s be as defined in Section 7.1.1. Then

P{〈φj , rs〉 ≤ w| j ∈ I0 & j 6∈ Is−1} → P{X̃s ≤ w}, n→∞.

We obtain a formula for computing the limiting threshold correct detection rate:

Corollary 7.2
β̄s = P{|X̃s| ≥ tsσ̄s} (7.4)

The formulas (7.3) and (7.4) explain how to perform in principle the calculations (6.1)-(6.2) needed
for calculating phase transitions in Section 6.4. For complete documentation of the calculation procedure,
see Section 10.

7.2.1 Null Case

Suppose we are given a deterministic vector v0 ∈ Rn and a sequence of deterministic orthoprojectors
Q1, Q2, Q3, . . . , where Q1 = Id. We are given a random vector ψ0 Gaussian distributed with mean zero
and diagonal covariance matrix 1

nIn. Define vi = Qiv0.

Lemma 7.1 Define random variables Zs = 〈ψ0, vs〉, s = 1, . . . , S. Then (Zs, s = 1, . . . , S) is a jointly
Gaussian sequence, with mean zero, variances σ2

s = ‖vs‖2
2/n and covariances Cov(Zs, Zu) = σ2

max(s,u).

This is self-evident, and we omit the proof.
Now introduce the random variable

φ0 = ψ0/‖ψ0‖2. (7.5)

Of course φ0 is a random point on Sn−1, in fact uniformly distributed.

Lemma 7.2 Define random variables Ws = 〈φ0, vs〉, s = 1, . . . , S. For fixed S, the sequence (Ws, s =
1, . . . , S) is asymptotically well-approximated by a joint Gaussian sequence (Zs), with variances σ2

s =
‖vs‖2

2/n and covariances Cov(Zs, Zu) = σ2
max(s,u). More precisely, for a sequence εn depending on n

only, E(Ws − Zs)2/σ2
s ≤ εn → 0, n→∞.

18

Proof. Of course, the Gaussian sequence we have in mind is just (Zs) introduced above, linked to
Ws by (7.5). Then Ws − Zs = Zs(‖ψ0‖−1

2 − 1). Now
√
n · ‖ψ0‖2 has a χn distribution, so that ‖ψ0‖1

converges in probability to 1 as n→∞. In fact, using the analytic expression for the χ2
n density in terms

of beta functions, one can show that E(‖ψ0‖2 − 1)4 → 0. Moreover EZ4
s = 3σ̄4

s . Hence

E(Ws − Zs)2 = EZ2
s (‖ψ0‖−1

2 − 1)2 ≤ (EZ4
s)1/2 · (E(‖ψ0‖−1

2 − 1)4)1/2 → 0, n→∞.

Putting εn = (3E(‖ψ0‖−1
2 − 1)4)1/2 gives the claimed result. �

It is useful to restate the last lemma. LetH1,...,s;n(w1, . . . , ws;σ) denote the joint distribution function
of W1,. . . ,Ws, conditional on σ1 = ‖v1‖2/

√
n,. . . , σs = ‖vs‖2/

√
n. Let G1,...,s;n(w1, . . . , ws;σ) denote

the joint distribution function of Z1,. . . ,Zs, again conditional on σ1 = ‖v1‖2/
√
n,. . . , σs = ‖vs‖2/

√
n.

Then the last lemma implies

H1,...,s;n(w1, . . . , ws;σ) → G1,...,s;n(w1, . . . , ws;σ), n→∞.

However, a certain degree of uniformity is present, which will be important for us. In the following result,
σ = (σ1, . . . , σs), and σ > 0 means σ1 > 0, σ2 > 0, . . . , σs > 0.

Lemma 7.3 The family of functions H1,...,s;n(w1, . . . , ws;σ) is uniformly continuous in w, uniformly in
n > n0, locally uniformly at each σ > 0. The family G1,...,s(w1, . . . , ws;σ) is uniformly continuous in w
and locally uniformly continuous in σ at each σ > 0.

The result is a tedious exercise using standard ideas and we omit the proof.
Suppose that we have a sample (y,Φ) from the standard problem suite and that the random variable

φ0 introduced above is stochastically independent of (y,Φ). Suppose that StOMPhas been run through
s− 1 stages. Recall the values y, r1, r2 etc. produced by the StOMPalgorithm, and condition on those
results, defining v0 = y, v1 = r1, etc. As φ0 is a random point on Sn−1 but not a column in the
matrix Φ, the probability distribution of 〈φ0, rs〉, conditional on y, r1, ... is exactly that of Ws above,
with parameters σ1 = ‖y‖1/

√
n, σ2 = ‖r2‖2/

√
n, etc. Now let ps,n(σ) denote the probability density of

σ = (σ1, . . . , σs) induced by StOMP , and let Ps,n denote the corresponding probability measure. Let
F1,...,s;n denote the joint cumulative distribution function of the random variables 〈φ0, y〉, 〈φ0, r2〉, . . . ,
〈φ0, rs〉. Then we have the exact formula

F1,...,s;n(w1, . . . , ws) =
∫
H1,...,s;n(w1, . . . , ws;σ)ps,n(σ)dσ. (7.6)

Now by Theorem 1 there exist constants σ̄s so that, for ε > 0,

P{|σ̄1 − ‖y‖2/
√
n| < ε, |σ̄s − ‖rs‖2/

√
n| < ε, s = 2, . . . , S} → 1. (7.7)

Combining this with the uniform equicontinuity of Lemma 7.3 and the scale mixture identity (7.6), we
conclude that

F1,...,s;n(w1, . . . , ws) → G1,...,s;n(w1, . . . , ws; σ̄), n→∞. (7.8)

Of course φ0 is of no interest to us per se. Consider now a column φj from Φ, and suppose that j is
both a null coordinate – j 6∈ I0 – and a surviving coordinate at stage s – j 6∈ Is−1. It might seem that
〈φj , rs〉 would have the same distribution as 〈φ0, rs〉 but this is only true for s = 1. At later stages s > 1
of the algorithm, 〈φj , rs〉 behaves as Ws subjected to conditioning:

L(〈φj , rs〉|j 6∈ I0 ∪ Is−1) = L(〈φ0, rs〉||〈φ0, ri〉| < tσi, i = 1, . . . , s− 1) (7.9)

We now make the observation that probabilities of hyper-rectangles can be computed simply from the
joint cumulative distribution function. We state without proof an elementary fact:

Lemma 7.4 Let U1,. . . ,Us denote random variables with joint cumulative distribution function H1,...,s(u1, . . . , us).
The rectangle probability R1,...,s(u1, . . . , us;H1,...,s) ≡ Prob{|Ui| < ui, i = 1, . . . , s} can be expressed as a
linear combination

R1,...,s(u1, . . . , us;H1,...,s) =
∑
±i

c1,...,s(±1, . . . ,±s)H1,...,s(±1u1, . . . ,±sus),

19

with coefficients c1,...,s(±1, . . . ,±s). The rectangle probability Qs
1,...,s−1(u1, . . . , us) ≡ Prob{Us ≤ us, |Ui| <

ui, i = 1, . . . , s− 1} similarly has a representation

Qs
1,...,s−1(u1, . . . , us;H1,...,s) =

∑
±i

cs1,...,s−1(±1, . . . ,±s)H1,...,s(±1u1, . . . ,±s−1us−1, us).

It follows that, if we have a sequence H1,...,s;n of such CDF’s converging uniformly to a limit CDF H1,...,n,
then we also have convergence of the corresponding rectangle probabilities just mentioned.

A conditional probability is a ratio of two such terms:

Prob{Zs ≤ w||Zi| < wi, i = 1, . . . , s} =
Qs

1,...,s−1(w1, . . . , ws−1, w;G1,...,s)
R1,...,s−1(w1, . . . , ws−1;G1,...,s−1)

The probability law given on the right-hand side of (7.9) has cumulative distribution function

F̃1,...,s;n(w) = Prob{〈φ0, rs〉 ≤ w||〈φ0, ri〉| < tσi, i = 1, . . . , s− 1}

Invoking Lemmas 7.4 and 7.3, as well as (7.7), we get

F̃1,...,s;n(w) =
∫
Qs

1,...,s−1(tσ1, . . . , tσs−1, w;G1,...,s;n(·;σ))
Rs

1,...,s−1(tσ1, . . . , tσs−1;G1,...,s−1;n(·;σ))
ps,n(σ)dσ

→
Qs

1,...,s−1(tσ̄1, . . . , tσ̄s−1, w;G1,...,s(·; σ̄))
Rs

1,...,s−1(tσ̄1, . . . , tσ̄s−1;G1,...,s−1(·; σ̄))
, n→∞,

= Prob{Zs ≤ w||Zi| < tσ̄i, i = 1, . . . , s− 1}.

The middle step invoked the fact that, in the sense of convergence in probability, G1,...,s;n(·;σ) →P

G1,...,s(·; σ̄) in uniform norm, locally uniformly in σ > 0.

7.2.2 Non-null Case

The technical side of the argument parallels the null case, and we will not repeat it. The only point we
clarify here is the calculation of the means µs and standard deviations τs.

For this calculation, we propose to model y as a
∑
±iψi, where the ±i are arbitrary signs, and ψi

are Gaussian random vectors. This model corresponds to ‘Gaussianizing’ the SSP instance (y,Φ)
A vector v uniformly distributed on the unit sphere in Rn is Gaussianized by multiplying it by an

independent scalar random variable n−1/2χn where χn is Chi-distributed on n degrees of freedom. The
resulting vector n−1/2χn · v is distributed N(0, In).

Now apply such Gaussianization independently to each of the columns of Φ, producing the columns of
a matrix Ψ, the vector y = Ψx0 has indeed the distribution of

∑
±iψi . We will make some computations

using this Gaussianization; the result, exactly true in the Gaussian case, is asymptotically correct for the
original pre-Gaussianization model. The same approach was used, less explicitly, in the last subsection.
Gaussianization has also been heavily used in the Banach space literature; see also [16, 17] for examples
in the present spirit.

We start with a typical Bayesian calculation.

Lemma 7.5 Suppose that ψ1,. . . ,ψk are Gaussian vectors in Rn distributed N(0, 1
nIn). Suppose that

y =
∑k

1 ψi. Given y, ψ1 has a Gaussian conditional distribution:

L(ψ1|y) = N(y/k,
k − 1
k

1
n
In).

We omit the proof of this well-known fact. Consider now a deterministic vector v0 and deterministic
orthoprojectors Q1, Q2, . . . , QS , yielding vectors vi = Qiv0 ∈ Rn. Because projections of Gaussians are
Gaussian and linear combinations of Gaussians are Gaussian, we immediately obtain:

Lemma 7.6 Let ψ0 be a random vector in Rn with Gaussian distribution N(v0/k, k−1
k

1
nIn). Define

random variables Xs = 〈ψ0, vs〉. Their marginal distribution is precisely

L(Xs) = N(‖vs‖2
2/k,

k − 1
k

1
n
‖vs‖2

2).

20

We again omit the elementary proof. Consider now φ0 = ψ0/‖ψ0‖2. In parallel with Lemma 7.2 we
have:

Lemma 7.7 Define the family of random variables Vs = 〈φ0, vs〉, s = 1, . . . , S. This family is well
approximated by the Gaussian random variables Xs defined above. In fact, for a sequence εn depending
only on n, E(Xs − Vs)2/V ar(Vs) ≤ εn → 0.

Clearly, the above elements can be combined to give our result, in much the same fashion that used
in the null case can be carried out in the present case. Let

H̃1,...,s;n(w) = Prob{〈φ0, rs〉 ≤ w||〈φ0, ri〉| < tσi, i = 1, . . . , s− 1}.

Define Gaussian random variables X̄s with mean µ̄s and variance σ̄2
s . Let X̃s denote the random variable

X̄s conditional on the event {|X̄1| ≤ tσ̄1, . . . , |X̄s−1| ≤ tσ̄s−1}. By the same approach as in the null case
we obtain:

H̃1,...,s;n(w) → P{X̃s ≤ w}, n→∞.

µ̄s = p.lim
n→∞

‖rs,n‖2
2/ks,n, σ̄2

s = p.lim
n→∞

ks,n − 1
ks,n

· ‖rs,n‖2
2/n.

Here of course the presence of the factor ks,n−1
ks,n

does not affect the limit, as ks,n will eventually be large
with overwhelming probability. This completes our proof of Theorem 3. �

8 Variations

8.1 How Many Stages?

In the experiments reported here, we chose S = 10 stages. Our main consideration in choosing the
number of stages is the speed of the resulting algorithm. Obviously, choosing S smaller or larger would
modify the speed and modify the phase transition diagram, and so give us a larger or smaller range of
effectiveness. Because we make available the code that performed our experiments (see Section 10), it is
straightforward to study variations on the procedure described here.

8.2 Varying Coefficient distributions

The phase transitions displayed in Section 4 were computed assuming the nonzero coefficients have a
Gaussian distribution. The phase transitions in Section 6 assumed the nonzero coefficients in x0 have a
symmetric distribution on {±1}. There are small differences, with the Gaussian coefficients leading to
transitions at higher values of ρ. We have of course tried other distributions as well. Experiments in
Figure 10, Panel (a) show the case of a uniform distribution on the coefficients, while Figure 10, Panel
(b) illustrates the power law case. We conjecture that, among coefficient distributions, the worst phase
transition is approximately given by the sign case, where we have worked to give a rigorous theory.

8.3 Noisy Data

The methods discussed above extend quite naturally to the case of data contaminated with white Gaus-
sian noise. Indeed, suppose that our observations y obey

y = Φx+ ξ

where ξ denotes an iid N(0, η2) noise. The matched filter will obey the same conditioned normal app-
proximation, with different variances. Hence, to the extent that our approach was applicable before, it
remains applicable. We remark, however, that CFDR seems most appropriate in the noisy case.

Figure 11 displays the performance of CFDR thresholding in the noisy case. The transition behavior
is less clear-cut than in the noiseless case. It seems to indicate graceful smoothing out of the sharp
transition seen in the noiseless case.

21

Figure 10: Phase Diagrams for CFAR thresholding when the nonzeros have nonGaussian distributions.
Panel (a) uniform amplitude distribution; Panel (b) Power law distribution x0(j) = c/j, j = 1, . . . , k.
Compare to Figure 6. Shaded attribute: number of entries where reconstruction misses by 10−4.

Figure 11: Performance of CFDR thresholding, noisy case. Relative `2 error as a function of indetermi-
nacy and sparsity. Performance at signal-to-noise ratio 10. Shaded attribute gives relative `2 error of
reconstruction. Signal-to-Noise ratio is ‖x0‖2/‖ΦT ξ‖2.

22

8.4 Other Matrix Ensembles

Our attention has focused on the case where Φ is a random matrix, generated from the uniform spherical
ensemble. Similar results follow immediately for two closely related ensembles:

URPE Uniform Random Projection ensemble. Φ contains the first n rows of an N by N random
orthogonal matrix [8]; and

GE Gaussian ensemble. The entries of Φ are iid N(0, 1/n).

In fact we have already used (more than once) the fact that GE and USE are intimately related. Matrices
in the two ensembles differ only by the normalization of the columns – a member of URP can be
obtained by sampling from the Gaussian ensemble and normalizing the columns to unit length. Also,
the close relationship of URPE and GE is quite evident by viewing one as produced from the other
by a Gram-Schmidt process on the rows. Figure 3 Panels(c),(f), and (i) show that for the URPE, the
MAI for matched filtering obeys the Gaussian approximation. Extensive experiments have shown that
StOMPhas the same behavior at the URPE, GE, and USE, but we omit details for reasons of space.
Scripts generating such experiments are included in the software publication; see Section 10.

More interestingly, we considered other random ensembles, the most well-known ones being

• Random Signs ensemble. The entries of the matrix are ±1/
√
n, the signs chosen randomly.

• Partial Fourier ensemble. n rows are chosen at random from an N by N Fourier matrix.

• Partial Hadamard ensemble. n rows are chosen at random from an N by N Hadamard matrix.
(Possible only for certain N).

These are important for various applications of compressed sensing. For each ensemble, we found
that the Gaussian approximation applies. Figure 3 Panels(b),(e), and (h) illustrate the MAI for matched
filtering at the RSE. Thus, we propose StOMP for such ensembles as well.

9 Stylized Applications

We now illustrate the performance of StOMP and the thresholding strategies.

9.1 Compressed Sensing

Recently, there has been considerable interest both from theorists [33, 7, 17, 8] and from practitioners
[42, 47, 31, 40, 41] in the possibility of dramatically reducing the ‘number of samples’ that ‘have to be
measured’ in various remote sensing problems. In effect, one views the problem as one of reconstructing
a high-dimensional vector x0 ∈ RN from a low-dimensional data sample y ∈ Rn, which is obtained
from x0 by linear sampling. Here although N samples ‘seem to be needed’ according to standard linear
algebra, everything we have shown in this paper (as well as the cited prior work) shows that n < N
samples can suffice to get either an exact or approximate reconstruction of x0.

We now study the performance of StOMPand the thresholding strategies in concrete instances,
inspired by applications in spectroscopy and imaging.

9.1.1 Bumps

Our first example uses the object Bumps from the Wavelab package [5], rendered with N = 4096 samples.
This object, shown in panel (a) of Figure 12, is a caricature of signals arising in NMR spectroscopy, char-
acterized by a few localized peaks. Such signals are known to have wavelet expansions with relatively few
significant coefficients. We considered a Compressed Sensing (CS) scenario where nCS = 640 sensed sam-
ples are taken, reflecting random linear combinations of the wavelet coefficients of Bumps. The details are
the same as for hybrid CS in [58]. In our simulations, we compared the performance of StOMP equipped
with CFDR and CFAR thresholding to that of Basis Pursuit (i.e. `1 minimization) and Matching Pursuit
(i.e. OMP). The results are summarized in Figure 12. Evidently, the accuracy of reconstruction is com-
parable for all the algorithms used. However, the speed of the two StOMP implementations is unrivaled

23

500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6
(a) Signal Bumps, N = 4096

1000 2000 3000 4000
0

2

4

6
(b) Hybrid CS with BP

1000 2000 3000 4000
0

2

4

6
(b) Hybrid CS with OMP

1000 2000 3000 4000
0

2

4

6
(c) Hybrid CS with CFDR thresholding

1000 2000 3000 4000
0

2

4

6
(d) Hybrid CS with CFAR thresholding

Figure 12: Reconstruction of Bumps with hybrid CS. Panel (a): Signal Bumps, with 4096 samples;
Panel (b): Reconstruction with BP (`1), ‖xBP − x0‖2/‖x0‖2 = 0.037, tBP = 1062 sec.; Panel (c):
Reconstruction with OMP, ‖xOMP − x‖2/‖x0‖2 = 0.037, tOMP = 37 sec.; Panel (d): Reconstruction
with CFDR, ‖xCFDR − x‖2/‖x0‖2 = 0.037, tCFDR = 2.8 sec.; Panel (e): Reconstruction with CFAR,
‖xCFAR − x‖2/‖x0‖2 = 0.037, tCFAR = 2.6 sec.

by BP or OMP; compare the 2.6 seconds required by StOMPwith CFAR to generate a solution, with
the 37 seconds needed by OMP, or nearly 18 minutes of computation time entailed by `1 minimization.
As for the results appearing in Table 1, all the simulations described in this section were obtained on a
3GHz Xeon workstation.

We now consider a larger-scale example in 2 dimensions. Figure 13(a) shows a synthesized image
of 2-D Gaussian spectra, created in the following manner. 40 Gaussians were generated with standard
deviations randomly varying, amplitudes drawn from an exponential distribution, and positions i.i.d
uniform. The image is discretized on a grid of 256× 256 pixels. We applied multiscale CS as in [58]. We
used a wavelet basis and formed a matrix Φ which gathered random linear combinations of the coefficients
in the 3 finest wavelet scales (see [58] for details). The total number of sensed samples was nCS = 13004
(here the number of pixels N = 2562 = 65536). Figure 13, panels (b)-(d), present reconstruction
results for BP, CFDR and CFAR, respectively. (We did not consider OMP in our simulations; it seems
impractical to apply in such large-scale applications, due to memory constraints.) All 3 algorithms
produced faithful reconstructions. However, careful investigation of the error and timing measurements
reveals that CFDR and CFAR outperformed BP in terms of both speed and accuracy.

9.1.2 Mondrian

We now consider a ‘geometric’ example. Panel (a) of Figure 14 displays a photograph of a painting
by Piet Mondrian, the Dutch neo-plasticist. This image has a relatively sparse expansion in a tensor
wavelet basis, and therefore is suitable for CS. (This test image, while of a relatively simple geometric
nature, still presents a challenging trial, as its wavelet expansion is not very sparse. In fact, out of
262144 wavelet coefficients, there are only 798 coefficients with magnitude smaller than 10−2.) More
‘naturalistic’ images would be equally fitting candidates, provided they admit sparse representations in
an appropriate basis/frame (such as the Curvelets frame, for instance).

Much as with the 2-D Bumps image, we used the Mondrian image in a Multiscale CS setting, applied
to the 4 finest scales of the wavelet expansion. A total of nCS = 69834 sensed samples were used overall.
Since N = 5122 = 262144, this stands for roughly one quarter of the original dimension of the data.
Figure 14, panels (b)-(d) have reconstruction results. Indeed, all three algorithms performed well in terms

24

Figure 13: Reconstruction of 2-D Bumps with Multiscale CS. Panel (a): 2-D Gaussian spectra, on a
256 × 256 grid; Panel (b): Reconstruction with BP (`1), ‖xBP − x0‖2/‖x0‖2 = 0.13, tBP = 40 sec.;
Panel (c): Reconstruction with CFDR, ‖xCFDR − x0‖2/‖x0‖2 = 0.12, tCFDR = 16 sec.; Panel (d):
Reconstruction with CFAR, ‖xCFAR − x0‖2/‖x0‖2 = 0.05, tCFAR = 32 sec.

of reconstruction accuracy. Of the three, `1 minimization produced the most accurate reconstruction,
as measured by `2 distance to the original. It did so, however, at an outstanding cost; over 30 hours
of computation were required by BP (with the PDCO solver [49]) to reach a solution. In contrast,
StOMPwith CFAR produced a result of comparable accuracy in just over a minute. (Observant readers
may notice that here data size is comparable to the 2-D spectra example, but the computation time
required by direct `1 minimization is significantly larger. The cause is our specific implementation of BP.
The primal-dual barrier method favors solution vectors which contain many exact zeros.)

We find it instructive to take a closer look at the reconstruction results in the wavelet domain. To
that end, we zoomed in on a horizontal slice of 100 wavelet coefficients at one scale below the finest, as
displayed in panel (a) of 15. Comparing the reconstruction results of the iterative thresholding algorithms
with the original slice of coefficients reveals a great deal about their performance when the underlying
signal is not sufficiently sparse. Both CFDR and CFAR successfully recovered the significant coefficients,
while keeping the rest of the coefficients at zero. In fact, it makes sense to view the small coefficients as
the result of digitization noise, in which case the thresholding algorithms are actually removing noise,
while remaining faithful to the original signal. In contrast, `1 minimization tends to exacerbate the noise
under insufficient sparsity conditions, as was discussed in detail in [58]. In short, StOMP is a dependable
choice even beyond its region of success.

9.2 Error Correction

Virtually every digital communication system employs error-control coding as an integral part of its
operation. There is elegant coding theory showing showing how to encode n items in a block of N
transmitted numbers with the ability to correct up to k arbitrary errors; unfortunately for general linear
coding schemes the task of identifying the k most likely sites for the errors is known to be NP-hard [3].
Lately, there has been much interest in developing good fast decoding schemes. The literature in IEEE
Transactions on Information Theory on message passing decoding and turbo decoding is literally too
volumnious to charcterize. Recently, Candès and Tao pointed out that `1-minimization/sparsity ideas
have a role to play in decoding linear error-correcting codes over Z [8, 48]. Naturally, it follows that
StOMPalso has an opportunity to contribute.

Here is the experimental mise en place. Assume θ is a digital signal of length n, with entries ±1,

25

(a) Original Image

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b) Multiscale CS with BP

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(c) Multiscale CS with CFDR

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(d) Multiscale CS with CFAR

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Figure 14: Reconstruction of 2-D imagery with Multiscale CS. Panel (a): Mondrian painting, 512× 512
pixels; Panel (b): Reconstruction with BP (`1), ‖xBP − x‖2/‖x‖2 = 0.32, tBP 30 hours.; Panel (c):
Reconstruction with CFDR, ‖xCFDR − x‖2/‖x‖2 = 0.42, tCFDR = 16 sec.; Panel (d): Reconstruction
with CFAR, ‖xCFAR − x‖2/‖x‖2 = 0.36, tCFAR = 64 sec.

20 40 60 80 100

−200

−100

0

100

(a) Horizontal slice of wavelet coefficients at scale 7

20 40 60 80 100

−200

−100

0

100

(b) Reconstruction with BP

20 40 60 80 100

−200

−100

0

100

(c) Reconstruction with CFDR

20 40 60 80 100

−200

−100

0

100

(d) Reconstruction with CFAR

Figure 15: Zoom in on a horizontal slice of wavelet coefficients. Panel (a): Original horizontal slice of
coefficients, at scale 7; Panel (b): Reconstruction with BP; Panel (c): Reconstruction with CFDR; Panel
(d): Reconstruction with CFAR.

26

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

B
E

R

k

(a) ITSP with CFAR, avg. time = 0.55 secs

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

B
E

R

k

(b) ITSP with CFDR, avg. time = 0.21 secs

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

B
E

R

k

(c) BP, avg. time = 146 secs

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

B
E

R

k

(d) OMP, avg. time = 13.9 secs

Figure 16: Performance of decoders with varying noise sparsity. (a) CFAR thresholding; (b) CFDR
thresholding; (c) Basis Pursuit; (d) OMP. Vertical axes: Bitwise Error Rate. Horizontal axes: Number
of Errors. Coding Redundancy: 3.

representing bits to be transmitted over a digital communication channel. Prior to transmission, we
encode θ with an ECC constructed in the following manner. Let Q be a ‘random’ orthogonal matrix of
size R · n × R · n, where R is the redundancy factor of the code. Partition Q =

[
E DT

]
, where E is

the Rn× n ‘encoding matrix’ and D is the (R− 1)n×Rn ‘decoding matrix’. Then, the encoding stage
amounts to computing x = Eθ, with x the encoded signal, of length Rn. At the decoder, we receive
r = x + z, where z has nonzeros in k random positions, and the nonzero amplitudes are Gaussian iid
N(0, σn). In words, the signal is sent over a sparse noisy channel. There are no assumed bounds on noise
power. The minimum `1-norm decoder solves

(EC1) min ‖α‖1 subject to Dα = Dr;

Call the solution α̂. At the output of the decoder, we compute

θ̂ = sgn(ET (r − α̂)).

The key property being exploited is the mutual orthogonality of D and E. Specifically, note that
Dr = D(Eθ + z) = Dz. Hence, (EC1) is essentially solving for the sparse error patten.

Figure 16 presents results of tests at redundancy R = 4 and decoded data length n = 256. We
performed each experiment multiple times while varying the noise sparsity k. At each instance, we
recorded the Bitwise error rate (BER) and the decoding time. For comparative purposes, we repeated the
experiment using Basis Pursuit and OMP. The results are summarized in plots showing BER as a function
of noise sparsity; see panels (a)-(d) of Figure 16. In terms of BER, BP prevailed, decoding successfully
even when gross errors contaminated more than half the received signal values. Yet, StOMP with CFAR
thresholding came remarkably close to the performance of true `1 minimization. And it did so in a
fraction of the time needed by BP; compare the average decoding time of 0.55 seconds required by
StOMPto 146 seconds needed by BP.

Actually StOMP can outperform `1 decoding in terms of error-resistance at very small δ. Consider
Figure 17. It presents the results of a similar experiment, in a slightly different setting. Here we set
n = 4096 and R = 17/16, i.e. we choose a long blocklength code with very little redundancy. The phase
diagram in Figure 6 shows that at δ = 1/16, ρFAR(δ) > ρ`1(δ), and so StOMPdecoding is predicted to
outperform `1 decoding at such low redundancy. In our experiment, both CFAR and CFDR thresholding
performed better than `1 minimization and OMP in terms of BER. Again, comparing timing measures,
we see that StOMPruns at about 1/100th the time needed by BP. To summarize, StOMP provides a
rapid, yet dependable, alternative to costly `1 minimization.

27

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

B
E

R

k

(a) CFAR, avg. time = 0.045 secs

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

B
E

R

k

(b) CFDR, avg. time = 0.047 secs

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

B
E

R

k

(c) BP, avg. time = 40.8 secs

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

B
E

R

k

(d) OMP, avg. time = 1.58 secs

Figure 17: Performance of Decoders in a setting with small coding redundancy 1/16. (a) CFAR thresh-
olding; (b) CFDR thresholding; (c) Basis Pursuit; (d) OMP.

9.3 Component Separation in Overcomplete Systems

We consider now the problem of separating a signal into its harmonic and impulsive components; see
also [11, 21]. In detail, assume we have a signal y of length n, known to admit sparse synthesis by a few
selected sinusoids and a few spikes, with a total of k such components. Formally, we have y = [I F]x,
where I is an n× n identity matrix, F is an n× n Fourier matrix, and x is a 2n coefficient vector. [21]
established bounds on the sparsity k, under which `1 minimization successfully recovers the coefficient
vector x in this underdetermined setting. Here we investigate the performance of StOMPas an alternative
to direct `1 minimization.

Figure 18(a) shows a signal y of length n = 512, consisting of 2 harmonic terms perturbed by 32
spikes, with amplitudes drawn at random from a normal distribution N(0, 1/2), for a total of k = 34
nonzero synthesis coefficients in the time-frequency dictionary. The spike and sinusoid components of y
are plotted individually in panels (b) and (c). We solved this underdetermined system using StOMP with
CFAR and CFDR thresholding. Results are portrayed in the second and third rows of Figure 18. Both
thresholding strategies perfectly recovered the synthesis coefficients in 4 stages, validating our claim that
StOMP is a fast alternative to `1 minimization.

10 Reproducing our Results

The phrase reproducible research [5, 22] describes a discipline for publication of computational research
together with a complete software environment reproducing that research. In that spirit, all the figures
appearing in this paper can be reproduced using the SparseLab library for Matlab. SparseLab is a col-
lection of Matlab functions and scripts, developed at Stanford University, available freely on the internet
at http://www-stat.stanford.edu/̃ sparselab. It includes an array of tools to solve sparse approximation
problems, supplemented with detailed examples and demos. SparseLab has been used by the authors to
create all the figures and tables used in this article, and the toolbox contains scripts which will reproduce
all the calculations of this paper.

11 Related Work

We briefly discuss several significant precursors to this work.

28

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(a) Original Signal, n = 512

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(b) Time Component

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(c) Frequency Component

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(d) CFAR Solution

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(e) Time Component of CFAR Solution

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(e) Frequency Component of CFAR Solution

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(f) CFDR Solution

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(g) Time Component of CFDR Solution

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5
(h) Frequency Component of CFDR Solution

Figure 18: Time-Frequency Separation with StOMP . Top row: Original signal, with its time and fre-
quency components; Middle row: Corresponding output of StOMP with CFAR thresholding; Middle row:
Corresponding output of StOMPwith CFDR thresholding.

11.1 Statistical Modelling

Statisticians have, since the advent of automatic computing, developed a very large of model building
strategies. These include forward stepwise regression and screening regressions, both closely related to
the present work.

In our notation, the statistical modelling problem goes as follows. One is given data y = Φx+ξ where
ξ is Gaussian noise, y is the response, the columns of Φ are predictors and x is a vector of coefficients. It
is believed that most potential predictors are irrelevant, and that only a few predictors should be used,
but it is not known which ones these are likely to be. Equivalently, most of the coefficients in x are zero,
but the positions of the nonzeros are unknown.

Forward stepwise regression simply selects the predictor having best correlation with the current
residual at each stage and adds it to the current model, which it then fits by least-squares. This
procedure has been used extensively by persons of our acquaintance for more than 50 years; it is the
same thing we have called OMP in this paper (a term that arose in signal processing about 15 years
ago). The method of screening regressions selects all predictors having a significant correlation with the
original signal; this is the same as stage one of StOMP . No doubt over the last 5 decades many people
have tried iterative screening regressions at least on an informal basis.

What is different in our proposal? Here, our data may be noiseless; the underlying ‘matrix of
predictors’ (here Φ) must however be random, e.g. generated with random independent columns. This
randomness of Φ alone is somehow responsible for the phenomena described here.

Our work shows that stagewise model building – seemingly ad hoc and hard to analyze – can, if
the underlying matrix of predictors is random, have impressive theoretical properties. It suggests that
stagewise model building in Gaussian linear modeling and perhaps elsewhere may have provably good
properties.

11.2 Digital Communications

Also mentioned earlier is the connection between our calculations and several key notions in multi-user
detection theory. Randomly-spread CDMA systems can be thought of as posing the problem of solving
y = Φx0 where x0 is a transmitted binary vector, y is the received vector and Φ is a rectangular array
with random entries. This is like our problem, except (a) x0 need not be sparse; and (b) Φ need not
have more columns than rows.

In the MUD literature, the idea that z = x0 − ΦT y looks like Gaussian noise is clearly established
in the work of Poor, Verdú, and others [46, 61, 12, 36]. Also, the idea that sophisticated multistage

29

algorithms can be applied to successively reduce MAI – e.g. onion-peeling schemes [10] or iterative
decoders [4, 6, 13] - is completely consistent with our approach in this paper: stagewise least-squares
projection when the nonzeros in x0 have a power-law distribution is something like onion-peeling; `1
minimization is something like a Bayesian maximum a posteriori iterative decoder. Finally the specific
analysis technique we have developed – the conditioned Gaussian limit – bears some resemblance to
density evolution schemes used in the MUD/CDMA literature, eg [4, 6, 13, 30].

However, there are important differences in the problem, the primary one being that in the binary
CDMA case the vector x0 is not sparse and takes known values ±1, which cause important differences
in results. Also (perhaps) the study of very large N and n is less of interest in CDMA at the moment.

11.3 Component Separation

The immediate inspiration for this paper was extensive work by Jean-Luc Starck and Michael Elad
[50, 51] who attacked very large-scale problems in image processing and component separation. They
found that by stagewise application of hard thresholding, residualization, and matched filtering, they
could often obtain results comparable to `1 optimization but much more rapidly. Our paper arose from
Starck’s insistence that such an approach was essential to attacking very large scale problems with N in
the millions, and demanded theoretical attention. Focusing on the special case of ‘random’ Φ, we found
his insistence to be prophetic.

11.4 Mathematical Analysis

The mathematical developments in this paper, and the form of the StOMP algorithm itself, arise from
a lemma in the paper [16, Section 5] by one of the authors. That lemma concerned behavior of random
linear programs, and was originally developed in order to show that `1-minimzation can find sparse
solutions when Φ is drawn from USE; the authors noticed that it implicitly introduces the conditioned
Gaussian model developed here.

11.5 Fine Points

Two small but essential points:

• The notion of phase transition considered here is weaker than notions often mentioned in connection
with the study of `1 optimization. As the papers [18, 19] may help clarify, much of the literature
discusses the notion of strong equivalence of `1 and `0; in this notion that for a given Φ, every
sparse x0 generates a problem (y,Φ) for which the `1 solution is the unique sparsest solution
[21, 20, 16, 32, 35, 48, 55, 8, 9]. In contrast, in discussing `1 minimization in Section 4.2 above,
we used the notion of weak equivalence, which says that equivalence holds for the typical sparse x0

(rather than for every sparse x0) .

In the setting of random matrices Φ sampled from the uniform spherical ensemble, independently of
x0, strong equivalence is not the relevant notion, even though it has attracted the most theoretical
attention. If Φ is random and x0 is fixed in advance, then x0 is overwhelmingly likely to be typical
for the realized Φ. The empirically observable phase transition is thus the weak transition, whose
theoretical large-system transition point for `1 minimization was derived in [19] and is given by the
curve in Figure 5. For parallel discussion see [54].

The notion discussed here for StOMP is still weaker, because our probabilistic theory only stud-
ies approximate reconstruction of typical x0. Hence it might seem that the phase transition for
StOMPmapped out here is less useful in practice than the weak equivalence transition for `1 min-
imization. Despite this, empirically we have found that for N = 1600, below its phase transition
curve StOMPyields reconstructions which are numerically just as accurate as `1 minimization yields
below its phase transition curve.

• Iterative thresholding is an algorithm which, like StOMP , successively strips structure out of a
residual vector; like StOMP , it computes the vector of current correlations cs = ΦT rs and applies
a threshold; however, instead of orthogonal projection to remove detected structure, it uses a

30

relaxation strategy rs+1 = rs − λ · A · Threshold(cs), subtracting structure associated to columns
surviving thresholding.

The use of alternating thresholding to obtain sparse solution has been extensively deployed by
Starck and co-workers [50, 51] and studied by Daubechies and co-workers [15]. An early reference
applying a kind of alternating thresholding to seek sparse solutions to underdetermined systems was
Coifman and Wickerhauser (1993) [14]. To our knowledge, the alternating thresholding approach
has yielded today’s most successful applications of large-scale sparse solutions [40, 41, 50, 51].

StOMP is subtly, but crucially different; our inspiration is the idea that for Gaussian random
matrices Φ (and their close relatives), selection followed by projection affords certain definite prob-
abilistic structure, which we have exposed and analyzed carefully here, in Theorems 1,2, and 3.
The initially similar-sounding proposals for alternating soft and hard thresholding do not seem to
offer any comparably strong analytic framework.

12 Summary

We described a simple algorithm for obtaining sparse approximate solutions of certain underdetermined
systems of linear equations. The StOMPalgorithm iteratively thresholds, selects and projects. It selects
nonzeros by thresholding the output of the matched filter applied to the current residual signal, where
the threshold is set above the mutual interference level. It projects the residual on a lower-dimensional
subspace complementary to the span of the selected nonzeros.

StOMP is effective when the matrix Φ and/or the object x0 render the multiple access interference
approximately Gaussian. Relying on such Gaussianity, we proposed two natural strategies for threshold
selection, one based on false alarm rate control and one based on false discovery rate control.

We rated the success of this approach using the phase diagram and showed that, in the standard
problem suite, for either thresholding rule the phase diagram has two phases – success and failure –
with a narrow transition zone between them. The transition zone shrinks in size as the problem size
grows. For each method, the “success phase” of StOMP is comparable in size to the “success phase”
of `1 minimization. Computational experiments showed that within the intersection of the two success
phases, StOMP can deliver results comparable to l1 minimization with dramatically less computation.
Also, in numerous examples StOMP runs much faster than standard greedy approximation (matching
pursuit).

Supporting the practical advantages of StOMP is a theoretical framework that accurately derives the
boundary of the success phase. This boundary can be regarded as a well-defined asymptotic “sampling
theory” for StOMP ; to reconstruct a sparse vector by StOMP , an asymptotically precise number of
samples will be required.

StOMPextends naturally to noisy data, and also extends to underdetermined systems outside the
‘random’ ones where the method was derived, important examples being the partial Fourier ensemble and
pairs of incoherent orthogonal bases such as (Dirac,Fourier). Stylized applications in compressed sensing,
suppression of impulsive noise, and time-frequency separation are given, and software is available.

Appendices

A: Proof of Lemma 1

Consider the restriction x̃S = xS |IS
, i.e. ‘throw away’ the entries in xS lying outside IS . By hypothesis

all the entries that are thrown out are zero, and the residual from StOMP is zero, so y = ΦIS
x̃S .

Similarly, consider the restriction x̃0 = x0|IS
, i.e. form the vector x0 with entries outside of IS thrown

away. Since by hypothesis, x0 is supported inside IS , we also have y = ΦIS
x̃0.

Hence 0 = ΦIS
(x̃S − x̃0). By hypothesis the columns of Φ are in general position, so there is no

nontrivial relation 0 = ΦIS
ṽ where #IS < n and ṽ is a column vector compatible with ΦIS

. Hence
x̃S = x̃0 and also xS = x0. �

31

B: Heuristic Phase Transition Calculation for the Standard Ensemble

We have found that the following heuristic model can be used to derive a predicted phase transition
curve that qualitatively matches the behavior of the empirical phase transition in the standard problem
suite. We use notation paralleling the notation of Section 6.

Under this heuristic, the normalized coefficients 〈φi, rs〉/‖Qsφi‖2 for i ∈ Ic
s−1 act as random samples

from a Gaussian mixture distribution:

(1− ε̃s)N(0, σ̃2
s) + ε̃sN(0, 1).

where ε̃s = ks/Ns and σ̃s =
√
ks/ns.

We therefore define
α̃s = P{|N(0, σ̃2

s)| > ts · σ̃s},

and
β̃s = P{|N(0, 1)| > ts · σ̃s}.

We start with (ρ̃1, d̃1, ν̃1, σ̃1) = (ρ, 1, 1/δ, ρ) and apply the obvious updating formulas

d̃s+1 = d̃s − α̃s(ν̃s − ρ̃s)− β̃sρ̃s

ρ̃s+1 = ρ̃s − (1− β̃s)ρ̃s

ν̃s+1 = ν̃s − (1− α̃s)(ν̃s − ρ̃s) + (ρ̃s+1 − ρ̃s)

σ̃s+1 =

√
ρ̃s+1

d̃s+1

.

If, at or before stage S, we achieve d̃s > η and ρ̃s < η · ρ, we declare StOMPto be successful at that
given (δ, ρ).

For CFAR thresholding, ts is constant, set to the 1−αS/2 quantile of the standard normal distribution,
where αS = 1− (1−δ

1−ρδ)1/S . For CFDR thresholding, ts is variable, set to the solution of

P{|N(0, σ̃2
s)| > tσ̃s}

P{|N(0, 1)| > tσ̃s}
=

ε̃s
1− ε̃s

· q

1− q
.

Here q is the assumed false discovery rate; we used 1/2 in all our work.
These heuristic formulas cannot be precisely correct, for two reasons: (i) they omit the effect of

conditioning caused by earlier stages, as discussed in Section 7 – the underlying coefficient distribution
is a mixture, but not of normal distributions; and (ii) the pseudo-standard deviation is merely a crude
upper bound; the true value reflects considerations from random matrix theory.

However, if the variance σ̃s drops very rapidly with increasing s, often this heuristic is reasonably
accurate.

C: Proof of Theorem 1

By state vector hs,n we mean a four-tuple

hs,n = (
ks,n

n
,
ns,n

n
,
Ns,n

n
,
‖rs‖2

2

n
), 1 ≤ s ≤ S + 1;

note that this is a random variable. For s = 1 we have

h1,n = (
kn

n
, 1,

Nn

n
,
‖y‖2

2

n
);

while later steps depend on the specific realization (y,Φ) and the progress of the algorithm. Note that if
at step ` < S, n`,n = 0, so the algorithm must stop prior to planned termination, we put, by definition

hs,n = h`,n, ` ≤ s ≤ S + 1.

The distance between two state vectors d(h, h′) is just the Euclidean distance between the 4-tuples.

32

By history Hs,n we mean the sequence of state vectors up to stage s,

Hs,n = (h1,n, . . . , hs,n).

This is again a random variable. By distance between two histories we mean the maximal distance
between corresponding states of the history:

d(Hs,H
′
s) = max

1≤`≤s
d(h`, h

′
`).

We now observe that all the quantities αs,n, . . . , νs,n defined in the statement of Theorem 1 are
uniformly continuous functions of the history Hs+1,n. Therefore, it is sufficient to prove that there exists
a large-system limit for the history HS+1,n, i.e. that, given (δ, ρ), there is HS+1(δ, ρ) so that for each
ε > 0,

Pn{d(HS+1,n, H̄S+1) > ε} → 0, n→∞. (12.1)

This can be done inductively, as follows. First, for s = 1, recall that we assume y =
∑k

`=1±`φi`
. We

have, by elementary calculations,

p.lim
n→∞

‖y‖2
2/n = lim

n→∞
kn/n = ρ.

This proves:

Lemma 12.1 (Large-system limit, s = 1) Let n/Nn → δ and kn/n→ ρ as n→∞. Then

p.lim
n→∞

h1,n = h̄1(δ, ρ) ≡ (ρ, 1, δ−1, ρ). (12.2)

Hence, the inductive process is begun. Below we will show that there is a deterministic sequence (h̄s :
s = 2, . . . , S + 1) obeying

h̄s+1 = h̄s −∆s(H̄s), s = 1, . . . , S, (12.3)

for certain 4-tuple-valued functions ∆s of s-step histories; for each ε > 0, this sequence obeys

Pn{d(hs+1,n, h̄s+1) > 2ε|d(hs,n, h̄s) < ε} → 0, n→∞, s = 1, . . . , S, (12.4)

then (12.1) follows.
To establish (12.4) we consider in turn each individual component h̄s(`), ` = 1, . . . 4. The first three

components share much in common, owing to the similar relations

ks+1 = ks − |Js ∩ I0|, (12.5)

ns+1 = ns − |Js|,

and
Ns+1 = Ns − |Js|.

Consider the first component hs,n(1) = ks,n/n. In the next subsection we prove the following:

Lemma 12.2 Suppose either that s = 1 or that s > 1 and (12.4) has been proven for 1 ≤ ` ≤ s− 1. Let
X̃s denote the conditioned Gaussian random variable defined as in Section 7 by the sequences (µ̄` : 1 ≤
` ≤ s) and (σ̄` : 1 ≤ ` ≤ s), where

µ̄s = h̄s(4)/h̄s(1), σ̄s =
√
h̄s(4). (12.6)

Then
ks+1,n

n
=
ks,n

n
(1− P{|X̃s| > tσ̄s}) + op(1), n→∞. (12.7)

33

Now of course P{|X̃s| > tσ̄s} depends on the limit history H̄s; so it makes sense to write ∆s,1(H̄s) ≡
h̄s(1) · P{|X̃s| > tσ̄s}. Exploiting the result ks,n/n →P h̄s(1) which we regard as proved at a previous
stage of the argument, we rewrite (12.7) as

h̄s+1(1) = h̄s(1)−∆s,1(H̄s), s = 1, . . . , S.

We can argue very similarly for the second and third components of the state vector, ns/n and Ns/n.
Put ε̄s = h̄s(1)/h̄s(3), ν̄s = h̄s(3), and define

∆s,2(H̄s) = ν̄s ·
[
(1− ε̄s) · P{|Z̃s| > tσ̄s}+ ε̄s · P{|X̃s| > tσ̄s}

]
,

where X̃s is a conditioned Gaussian random variable defined by (µ̄s) and (σ̄s) as in (12.6), and where
Z̃s is a conditioned Gaussian random variable with the same σ̄-sequence but with means µ = 0. This
defines a continuous function of s-step histories, and putting ∆s,2 = ∆s,3 one can show

h̄s+1(`) = h̄s(`)−∆s,`(H̄s), s = 1, . . . , S, ` = 2, 3.

However, the arguments being so similar to those behind Lemma 12.2, we omit them.
This leaves only the need to argue for the fourth and final component of the state vector. Now the

analog of (12.5) is
‖rs+1‖2

2 = ‖rs‖2
2 − cTs (ΦT

Js
ΦJs)

−1cs,

where
cs = ΦT

Js
rs,

and ΦJs is the submatrix of Φ with columns from Js = {j : |cs| > tσs}. The subsection after next proves

Lemma 12.3 Suppose either that s = 1 or that s > 1 and that (12.4) has been proven for 1 ≤ ` ≤
s− 1. Let X̃s denote the conditioned Gaussian random variable defined as in Section 7 by the sequences
(µ̄` : 1 ≤ ` ≤ s) and (σ̄` : 1 ≤ ` ≤ s), obeying (12.6). Similarly, let Z̃s be a conditioned Gaussian
random variable defined as in Section 7 by µ̄` = 0 and by (σ̄` : 1 ≤ ` ≤ s) again as in (12.6). Put
ε̄s ≡ h̄s(1)/h̄s(3), and define the mixture density

ps(x) = (1− ε̄s) · pZ̃s
(x) + ε̄s · pX̃s

(x).

Put ν̄s ≡ hs(3) and

Γs(H̄s) = ν̄s ·
∫
x21{|x|>tσ̄s}ps(x)dx;

and, with d̄s ≡ h̄s(2), set

∆s,4(H̄s) ≡
Γs(H̄s)

d̄s+1 + Γs(H̄s)/σ̄2
s

.

Then
n−1‖rs+1‖2

2 = n−1‖rs‖2
2 −∆s,4(H̄s) + op(1), n→∞.

It follows that
h̄s+1(4) = h̄s(4)−∆s,4(H̄s), s = 1, . . . , S.

This completes the proof of (12.3)-(12.4). �

The Role of Interleaving in Theorems 1,2,3.

We have stated Theorems 1, 2, and 3 in the body of our paper as if they are independent propositions,
proved separately. Actually we only present arguments to prove them in an interleaved, sequential fashion.

We think of the 3 theorems as 3S + 1 ‘little’ theorems, call them little Theorem 1`, ` = 1, . . . , S + 1,
and little Theorems 2`, 3`, ` = 1, . . . , S. Thus little Theorem 11 yields the special case s = 1 of ‘big’
Theorem 1. Little Theorem 12 yields the special case s = 2, etc. This decomposition of the original ‘big’
theorems into component theorems involves slightly different hypotheses than the original ones; in fact

34

our proof of little Theorem 1s depends on exploiting the conclusions previously established in proving
little Theorems 1s−1, 2s−1, and 3s−1.

Thus, our proofs really show that, once little Theorem 11 is proved, little Theorems 21 and 31 can be
proved.

Then, little Theorem 12 can be proved, followed by little Theorems 22 and 32.
In general, for s > 1, our proof of little Theorem 1s requires that all the little Theorems 1`, for

1 ≤ ` < s be proved as well as the little Theorems 2` and 3`, for 1 ≤ ` < s. We felt it best from an
expository viewpoint to hide this interleaving until now. The interleaving has finally become explicit in
the statement of Lemmas 12.2-12.3 above.

Analysis of ks/n

|Js ∩ I0| =
∑

i∈Ic
s−1∩I0

1{|〈φi,rs〉|>tσs}

=
ks∑

`=1

V`,s,

say.
Now the (φj : j ∈ I0) are independent identically distributed random vectors. Membership in Ic

s−1 is
a condition imposed symmetrically on all of the random vectors in (φj : j ∈ Ic

s−1 ∩ I0). It follows that,
conditional on Is−1, these are conditionally exchangeable random variables, which proves:

Lemma 12.4 Conditional on Hs,n, the (V`,s : ` = 1, . . . , ks) are exchangeable random variables.

Exchangeability allows easy characterisation of the mean and variance of n−1
∑

` V`. Now

E(V`,s|Hs) = Pn{|〈φi, rs〉| > tσs|i ∈ I0 ∩ Ic
s−1, I0, Is−1}.

so
E(n−1

∑
`

V`,s|Hs) =
ks

n
· Pn{|〈φi, rs〉| > tσs|i ∈ I0 ∩ Ic

s−1, I0, Is−1 };

meanwhile,

V ar(n−1

ks,n∑
`=1

V`,s|Hs) = ks/n
2 · V ar(V1,s|Hs) + (k2

s − ks)/n2Cov(V1,s, V2,s|Hs).

We now use interleaving. We assume that little Theorems 1`,2`, 3` have all been proved, for 1 ≤ ` ≤ s
and we are trying to prove little Theorem 1s+1. Combining Theorems 1s and 3s we obtain

Lemma 12.5 With X̃s as in the statement of Lemma 12.2,

lim
n→∞

Pn{|〈φi, rs〉| > tsσs|i ∈ I0 ∩ Ic
s−1, I0, Is−1} = P{|X̃s| > tσ̄s}.

We omit the proof of the following technical lemma.

Lemma 12.6
0 = p.lim

n→∞
Cov(V1,s, V2,s|Hs,n).

Combining these lemmas proves Lemma 12.2 �

35

Analysis of ‖rs‖2
2/n

It is enough to show that for d̄s ≡ h̄s(2),

p.lim
n→∞

n−1cTs (ΦT
Js

ΦJs
)−1cs =

Γs(H̄s)
d̄s+1 + Γs(H̄s)/σ̄2

s

. (12.8)

We may choose coordinates in Rns so that rs is aligned with e1, the standard unit vector. Then in fact
c̃Ts ≡ cTs /‖rs‖2 is the first row of ΦJs and so, letting BJs denote the ns − 1× |Js| matrix consisting of all
but the first row of ΦJs ,

‖rs+1‖2
2 − ‖rs‖2

2 = cTs (c̃sc̃Ts +BT
Js
BJs

)−1cs.

The matrix Φ almost has Gaussian iid entries in the following sense. Let D be an ns-by-ns diagonal
matrix with diagonal entries independently and identically distributed as n−1/2

s ×χns , where χd denotes
the usual χ-distribution on d degrees of freedom; in addition let D be stochastically independent of Φ.
Then ΦD is a random matrix with Gaussian iid N(0, 1/n) entries.

Hence, conditionally on Is−1, the entries in the matrix Ψ = BJs
DJs

are iid Gaussian random variables.
Although we omit details, clearly our problem approximately reduces to studying

cTs (c̃sc̃Ts + ΨT Ψ)−1cs.

Invoke now the Sherman-Morrison formula: for a column vector w and a compatible nonsingular matrix
A,

wT (wwT +A)−1w =
wTA−1w

1 + wTA−1w
.

Note now that Ψ is stochastically independent of cs. Pick an orthogonal matrix V ∈ SO(ks) whose
first column is proportional to cs and which is randomly sampled from the canonical uniform measure
on SO(ks) subject to this constraint. Also let V be stochastically independent of Ψ. Define Ψ̃ = ΨV .
Now e1 ∝ V cs and by a simple computation,

cTs (ΨT Ψ)−1cs = ‖cs‖2(Ψ̃T Ψ̃)−1
11 .

At the same time, Ψ̃ has iid Gaussian N(0, 1/n) entries.
Some well-known facts about random Gaussian matrices allow us to study the random diagonal entry

(Ψ̃T Ψ̃)−1
1,1; compare the following restatement of results of Bai and Yin quoted in [60]. We omit the proof.

Lemma 12.7 Let Wn be a pn × qn matrix with entries i.i.d. N(0, 1/n). Let (pn − qn)/n → γ > 0 as
n→∞. Then

p.lim
n→∞

(WT
n Wn)−1

1,1 =
1
γ
.

In the case of interest to us, pn = |Ic
s−1| while qn = |Js|. Hence, pn − qn = |Ic

s | and γ = d̄s+1.
We now again use interleaving. We assume that little Theorems 1`,2`, 3` have all been proved, for

1 ≤ ` ≤ s and we are trying to prove the part of little Theorem 1s+1 referring to the fourth component
of h̄s+1. Restating little Theorems 2s and 3s we obtain that the typical component of cs at indices
i ∈ I0 ∩ Ic

s−1 has approximately the probability distribution of X̃s, while the typical component of cs at
indices i ∈ Ic

0 ∩ Ic
s−1 has approximately the probability distribution of Z̃s. Hence

‖cs,n‖2
2 =

∑
i

〈φi, rs〉21{|〈φi,rs〉|>tσs}

=
∑

i∈Ic
0∩Ic

s−1

+
∑

i∈I0∩Ic
s−1

∼ (Ns − ks)
∫
z21{|z|>tσ̄s}pZ̃s

(z)dz + ks

∫
x21{|x|>tσ̄s}pX̃s

(x)dx

∼ n · ν̄s ·
∫
x21{|x|>tσ̄s}ps(x)dx ∼ n · Γs(H̄s).

Lemma 12.8 With X̃s as in the statement of Lemma 12.2, We have

p.lim
n→∞

‖cs,n‖2
2/n = Γs(H̄s).

Combining the above yields (12.8). �

36

References

[1] F. Abramovich, Y. Benjamini, D.L. Donoho and I.M. Johnstone (2006) Adapting to unknown spar-
sity by controlling the False Discovery Rate. in press, Annals of Statitsics.

[2] Y. Benjamini and Y. Hochberg (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, Series B. 57, pp. 289–300.

[3] E.R.Berlekamp, R.J.McEliece, and H.C.A. van Tilborg. (1978) On the inherent intractability of
certain coding problems. IEEE Trans. Info. Thry., 24:384–386, 1978.

[4] J. Boutros and G. Caire (2002) Iterative multiuser joint decoding: unified framework and asymptotic
analysis. IEEE Trans. Info. Thry. 48 1772-

[5] J. Buckheit and D. L. Donoho (1995) WaveLab and reproducible research, in A. Antoniadis, Editor,
Wavelets and Statistics, Springer.

[6] G. Caire, R. Müller and T. Tanaka (2004) Iterative multiuser joint decoding: optimal power alloca-
tion and low-complexity implementation. IEEE Trans. Info. Thry. 50(9), pp. 1950–1973.

[7] E.J. Candès, J. Romberg and T. Tao. (2004) Robust Uncertainty Principles: Exact Signal Recon-
struction from Highly Incomplete Frequency Information. To Appear, IEEE Trans. Info. Thry.

[8] E.J. Candès and T. Tao. (2004) Near Optimal Signal Recovery From Random Projections: Universal
Encoding Strategies? To Appear, IEEE Trans. Info. Thry.

[9] E.J. Candès and T. Tao. (2005) Decoding via Linear Programming. IEEE Trans. Info. Thry.

[10] Naftali Chayat and Shlomo Shamai (1999) Convergence properties of iterative soft onion peeling. in
Proc. 1999 IEEE Info. Thry. Workshop, Kruger National Park, South Africa.

[11] S. Chen, D. Donoho, and M.A. Saunders (1999) Atomic Decomposition by Basis Pursuit. SIAM J.
Sci Comp., 20(1), pp. 33–61.

[12] E. Chong, J. Zhang, and D. Tse (2001) Output MAI distribution of linear MMSE multiuser receivers
in DS-CDMA systems. IEEE Trans. Info. Thry. 47(3), pp. 1128–1144.

[13] S.Y. Chung, T.J. Richardson and R.L. Urbanke (2001) Analysis of Sum-Product decoding of low-
density parity-check codes using a Gaussian approximation. IEEE Trans. Info Thry. 47(2), pp.
657–670.

[14] Ronald R. Coifman and Mladen Victor Wickerhauser (1993) Wavelets and adapted waveform anal-
ysis: A toolkit for signal processing and numerical analysis. In Different Perspectives on Wavelets,
Ingrid Daubechies, editor. number 47 in Proceedings of Symposia in Applied Mathematics, American
Mathematical Society. Providence, Rhode Island.

[15] I. Daubechies, M. Defrise and C. De Mol (2004) An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint Comm. Pure Applied Mathematics 57, 1413 - 1457.

[16] D.L. Donoho (2004) For most large underdetermined systems of linear equations, the minimal `1-
norm solution is also the sparsest solution. Submitted. Com.. Pure Appl. Math., to appear 2006.

[17] D.L. Donoho (2004) Compressed sensing. IEEE Trans. Info. Thry., to appear 2006.

[18] D.L. Donoho (2005) Neighborly Polytopes and the Sparse Solution of Underdetermined Systems of
Linear Equations. To appear, IEEE Trans. Info. Thry..

[19] D.L. Donoho (2005) High-dimensional centrosymmetric polytopes with neighborliness proportional
to dimension. to appear, Discrete and Computational Geometry, 2006.

[20] D.L. Donoho and M. Elad (2003) Optimally Sparse Representation from Overcomplete Dictionaries
via `1 norm minimization. Proc. Natl. Acad. Sci. USA, 100(5), pp. 2197–2002.

37

[21] D.L. Donoho and X. Huo (2001) Uncertainty Principles and Ideal Atomic Decomposition. IEEE
Trans. Info. Thry. 47(7), pp. 2845-62.

[22] D.L. Donoho and X. Huo (2004) BeamLab and Reproducible Research. International Journal of
Wavelets, Multiresolution and Information Processing, 2(4), pp. 391–414.

[23] D.L. Donoho and J. Jin (2006) Asymptotic Minimaxity of False Discovery Rate Thresholding for
Exponential Data. Ann. Statist., to appear.

[24] D.L. Donoho and I.M. Johnstone (1994) Minimax risk over `p-balls for `q-error. Probability Theory
and Related Fields 99, pp. 277–303.

[25] D.L. Donoho and I.M. Johnstone (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika,
81, pp. 425–455.

[26] D.L. Donoho, I.M. Johnstone, A.S. Stern and J.C. Hoch (1992) Maximum Entropy and the Nearly
Black Object (with discussion). Journal of the Royal Statistical Society, Series B, 54(1), pp. 41–81.

[27] D.L. Donoho and I.M. Johnstone (1995) Adapting to unknown smoothness via wavelet shrinkage.
J. Amer. Statist. Assoc., 90, pp. 1200–1224.

[28] D.L. Donoho and B.F. Logan (1992) Signal Recovery and the Large Sieve. SIAM Journal of Applied
Math, 52, pp. 577–591.

[29] M. F. Duarte, M.B. Wakin and R.G. Baraniuk (2005) Fast Reconstruction of Piecewise Smooth
Signals from Random Projections (Online Proc. SPARS Workshop, Nov. 2005)

[30] H. El Gamal and A.R. Hammons, Jr. (2001) Analyzing the Turbo decoder using the Gaussian
Approximation. IEEE Trans. Info. Thry., 47(2), pp. 671–686.

[31] Ray Freeman and Eriks Kupce (2003) New Methods for Fast Multidimensional NMR. Journal of
Biomolecular NMR, 27, pp. 101–113.

[32] Jean-Jacques Fuchs (2002) On Sparse Representations in Arbitrary Redundant Bases. IEEE Trans.
Info. Thry, 50(6), pp. 1341–44.

[33] A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan and M. Strauss (2002) Near-optimal sparse
Fourier representations via sampling. Proc 34th ACM symposium on Theory of Computing, pp.
152–161, ACM Press.

[34] G. Golub and C. van Loan (1996) Matrix computations, third edition, The Johns Hopkins University
Press, London.

[35] R. Gribonval and M. Nielsen (2003) Sparse Representations in Unions of Bases. IEEE Trans. Info.
Thry 49(12), pp. 1320–25.

[36] D. Guo, S. Verdú and L. Rasmussen (2002) Asymptotic normality of linear multiuser receiver out-
puts. IEEE Trans. Info. Thry. 48(12), 3080-3095.

[37] I.M. Johnstone and B.W. Silverman (2004) Needles and straw in haystacks: empirical Bayes esti-
mates of possibly sparse sequences. Annals of Statistics, 32, pp. 1594–1649.

[38] Y. Hochberg and A. Tamhane (1987) Multiple Comparison Procedures, John Wiley & Sons, New
York.

[39] E. Lehmann and J. Romano (2003) Testing Statistical Hypotheses (3rd edition), Springer, New York.

[40] M. Lustig, J.H. Lee, D.L. Donoho and J.M. Pauly (2004) Faster Imaging with Randomly Perturbed
Spirals and L1 Reconstruction. Proc. of the ISMRM 13th annual meeting.

[41] M. Lustig, J.M Santos, D.L. Donoho and J.M. Pauly (2006) Rapid MR Angiography with Randomly
Under-Sampled 3DFT Trajectories and Non-Linear Reconstruction. Proc. of the SCMR 9th annual
Scientific meeting, to appear.

38

[42] M.W. Maciejewski, A.S. Stern, G.F. King and J.C. Hoch (2006) Nonuniform Sampling in Biomolec-
ular NMR. Handbook of Modern Magnetic Resonance, Graham A. Webb, Springer.

[43] S. Mallat and Z. Zhang (1993) Matching Pursuit with time-frequency dictionaries, IEEE Transac-
tions on Signal Processing, 41(12), pp. 3397–3415.

[44] P. McCullagh (1987) Tensor Methods in Statistics, Chapman and Hall.

[45] A. Paulraj, R. Nabar and D. Gore (2003) Introduction to Space-Time Wireless Communications,
Cambridge University Press.

[46] H.V. Poor and S. Verdú (1997) Probability of error in MMSE multiuser detection. IEEE Trans.
Info. Thry. 43(3), pp. 858–871.

[47] D. Rovnyak, D.P. Frueh, M. Sastry, Z.J. Sun, A.S. Stern, J.C. Hoch and G. Wagner (2004) Ac-
celerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and
maximum entropy reconstruction. Journal of Magnetic Resonance, 170(1), pp. 15–21.

[48] M. Rudelson and R. Vershynin (2005) Geometric approach to error-correcting codes and reconstruc-
tion of signals. Technical report, Dept. of Mathematics, Univ. of California at Davis.

[49] M. A. Saunders (2002) PDCO: Primal-Dual interior method for Convex Objectives. Available at:
http://www.stanford.edu/group/SOL/software/pdco.html

[50] J.-L. Starck, M. Elad and D.L. Donoho (2004) Redundant Multiscale Transforms and their Appli-
cation for Morphological Component Analysis. Advances in Imaging and Electron Physics, 132.

[51] J.-L. Starck, M. Elad and D.L. Donoho (2005) Image Decomposition Via the Combination of Sparse
Representation and a Variational Approach. IEEE Trans. Image Proc., 14(10), pp. 1570–1582.

[52] V.N. Temlyakov (1999) Greedy algorithms and m-term approximation, J. Approx. Theory, 98, pp.
117–145.

[53] V.N. Temlyakov (2003) Nonlinear methods of approximation. Found. Comput. Math., 3, pp. 33–107.

[54] J.A. Tropp and A. Gilbert (2005) Signal Recovery from Partial Information by Orthogonal Matching
Pursuit. Manuscript.

[55] J.A. Tropp (2003) Greed is Good: Algorithmic Results for Sparse Approximation. IEEE Trans Info.
Thry. 50(11), pp. 2231–42.

[56] J.A. Tropp (2004) Just Relax: Convex programming methods for Subset Selection and Sparse
Approximation. Manuscript.

[57] Y. Tsaig and D.L. Donoho (2005) Breakdown of equivalence between the minimal `1-norm solution
and the sparsest solution. EURASIP Journal of Applied Signal Processing, in press.

[58] Y. Tsaig and D.L. Donoho (2005) Extensions of compressed sensing. EURASIP Journal of Applied
Signal Processing, in press.

[59] D.N.C. Tse and S. Verdú (2000) Optimum asymptotic multiuser efficiency of randomly spread
CDMA, IEEE Trans Info. Thry., 46(7), pp. 2718–2722.

[60] S. Verdú. (1998) Multiuser Detection. Cambridge University Press.

[61] S. Verdú and S. Shamai (1999) Spectral efficiency of CDMA with random spreading. IEEE Trans.
Info. Thry. 45(2), pp. 622–640.

39

