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Abstract

Consider a d × n matrix A, with d < n. The problem of solving for x in y = Ax is
underdetermined, and has many possible solutions (if there are any). In several fields it is
of interest to find the sparsest solution – the one with fewest nonzeros – but in general this
involves combinatorial optimization.

Let ai denote the i-th column of A, 1 ≤ i ≤ n. Associate to A the quotient polytope P
formed by taking the convex hull of the 2n points (±ai) in Rd. P is centrosymmetric and is
called (centrally) k-neighborly if every subset of k + 1 elements (±il

ail
)k+1
l=1 are the vertices

of a face of P .
We show that if P is k-neighborly, then if a system y = Ax has a solution with at most

k nonzeros, that solution is also the unique solution of the convex optimization problem
min ‖x‖1 subject to y = Ax; the converse holds as well.

This complete equivalence between the study of sparse solution by `1 minimization and
neighborliness of convex polytopes immediately gives new results in each field. On the one
hand, we get new families of neighborly centrosymmetric polytopes, by exploiting known
results about sparsity of `1 minimization; on the other, we get new limits on the ability
of `1 minimization to find sparse solutions, by exploiting known limits on neighborliness of
centrally symmetric polytopes.

Weaker notions of equivalence between `1 and sparse optimization have also been studied
recently. These are equivalent to other interesting properties of the quotient polytope. Thus,
suppose the columns of A are in general position. Consider the vectors having k < d/2
nonzeros that are simultaneously the sparsest solution of y = Ax and the minimal `1 solution.
These make up a fraction 1 − ε of all vectors with k nonzeros if and only if the quotient
polytope P has at least 1− ε as many k-dimensional faces as the regular cross polytope Cn.
Combining this with recent work on face numbers of randomly-projected cross-polytopes,
we learn that for large d, the overwhelming majority of systems of linear equations with d
equations and 4d/3 unknowns have the following property: if there is a solution with fewer
than .49d nonzeros, it is the unique minimum `1 solution.

A stylized application in digital communication is sketched; for large n, it is possible to
transmit n/4 pieces of information using a codeword of length n with immunity to .49n gross
errors in the received codeword, if the signs and sites of the gross errors are random, and
with immunity to .11n gross errors chosen by a malicious opponent. The receiver uses `1

minimization.

Key Words and Phrases: Centrosymetric Polytopes. Centrally-Neighborly Polytopes.
Underdetermined Systems of Linear Equations. `1 optimization. Combinatorial Optimization.
Signal Recovery with Gross Errors. Breakdown Point.
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1 Introduction

Consider an underdetermined system of linear equations y = Ax, where y ∈ Rd, x ∈ Rn, A
is an n × d matrix, d < n, y is known and x is unknown. If there are any solutions to this
system, there are many. However, in numerous fields, driven by parsimony, one wants to find
the sparsest solution – the one with fewest nonzeros. Formally, one wants to solve

(P0) min ‖x‖0 subject to y = Ax.

where the 0-‘norm’ ‖x‖0 counts the number of nonzeros. Because of the extreme non-convexity of
the zero-‘norm’, (P0) is NP-hard in general; it fact it contains various combinatorial optimization
problems (knapsack, satisfiability) as special cases. However, as we will see below, there has
recently been a great deal of interest spurred by the realization that for many matrices A, the
sparsest solution – if it is sufficiently sparse – is available by `1 minimization, namely by solving

(P1) min ‖x‖1 subject to y = Ax.

This is a convex optimization problem and can be considered tractable. The phenomenon of
interest is that for certain matrices A, whenever the solution to (P0) is sufficiently sparse, it is
also the solution of (P1). As a general label, we call this phenomenon `1/`0 equivalence. For
literature, see [10, 9, 12, 14, 17, 23, 4].

This paper develops an understanding of this equivalence phenomenon based on ideas from
the theory of convex polytopes; the books of Grünbaum [18] and Ziegler [26] are typical starting
points. Specifically, we associate to the matrix A the convex polytope P = AC where C ⊂ Rn

is the n-dimensional cross-polytope, characterized equally as the convex hull of the signed unit
basis vectors ±ei with i = 1, . . . n and as the `1 ball in Rn:

‖x‖1 ≤ 1.

The polytope P is centrosymmetric, and is called k-neighborly if, whenever we take k+1 vertices
not including an antipodal pair, the resulting vertices span a face of P . Thus, all sensible ways
of combining vertices create valid faces.

(Note: the notion of neighborliness we discuss here is the one appropriate to centrally-
symmetric polytopes – hence the proviso ‘not including an antipodal pair’. It is discussed in, for
example, [21, 22, 3]. For asymmetric polytopes one can use the simpler notion of neighborliness
without this proviso; see, for example [15, 16, 18]. The notion we consider is sometimes called
‘centrally neighborly’ e.g. [19]. Unless we say otherwise, only the ‘centrosymmetric interpreta-
tion’ is intended.)

In Section 3 we connect neighborliness to the question of `1/`0 equivalence.

Theorem 1 Let A be a d× n matrix, d < n. These two properties of A are equivalent:

• The quotient polytope P has 2n vertices and is k-neighborly,

• Whenever y = Ax0 has a solution x0 having at most k nonzeros, x0 is the unique optimal
solution of the optimization problem (P1).

1.1 Corollaries

In short, two areas of scholarly work – `1/`0 equivalence and neighborliness of polytopes –
are tightly connected. In Section 4, we use Theorem 1 to immediately transfer several results
from one area to the other one. To cite a very simple example, we use known results on `1/`0

equivalence in so-called incoherent dictionaries to get
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Corollary 1.1 Let ai denote the i-th column of A. Suppose that ‖ai‖2 = 1, 1 ≤ i ≤ n and

|〈ai, aj〉| ≤ 1/(2k − 1), i 6= j;

then P = AC is k-neighborly.

There are many examples of matrices with d < n satisfying this condition; a simple example is
the concatenation of the d by d identity matrix with a d by d Hadamard matrix, making a d×n
matrix A = [IH] with n = 2d. The corollary implies that P is

√
d/2-neighborly. Actually, the

quotient polytope is roughly .9
√

d-neighborly, as we discuss in Section 4 below.
It is of course more interesting to consider polytopes which are even more highly neighborly,

perhaps proportional to d. To do this, we apply known results on `1/`0 equivalence with large
random A with d and n. In this result, d and n are increasing to ∞ together in a proportional
way.

Corollary 1.2 Let 0 < δ < 1, and let n tend to infinity along with d = dn = bδnc, and let
A = Ad,n be a random d by n matrix whose columns are iid random points on Sd−1. There is
ρ = ρ(δ) > 0 so that, with overwhelming probability for large n, P = AC is ρd-neighborly.

In this corollary, P is the convex hull of a random set of points together with their antipodes.
The points are uniformly-distributed on the sphere. This is a natural model of ‘uniform random
centrosymmetric polytope’ in dimension d with 2n vertices. From that perspective, Corollary 1.2
shows that ‘most’ centrosymmetric polytopes have neighborliness ‘proportional to dimension’.
Prior to this result, there appears to be no work in the polytope literature implying neighborliness
proportional to dimension when n is some multiple of d. For example, from Schneider’s work
[22], we can get k-neighborliness for k ≈ .23d, but only for n = d + O(1), d large.

One can go in the other direction, getting results on sparse solution from results on neigh-
borliness. In Section 4 we point out that bounds on neighborliness of centrosymmetric polytopes
by McMullen and Shephard [21] imply the following

Corollary 1.3 Let n− 2 ≥ d > 2. Then if, with the matrix A, `1 minimization correctly finds
all sparse solutions having ≤ k nonzeros,

k ≤ b(d + 1)/3c. (1.1)

This establishes what seems, to the author, a surprising limit on the sparsity level at which `1

minimization can solve `0 problems. While the upper bound k < d/2 can be easily seen without
knowledge of polytopes, (1.1) is much stronger and unlikely to have been stumbled across.

Thus the connection we establish with Theorem 1 opens new insights in each area.

1.2 Other Notions of Equivalence

Students of `1/`0 equivalence have also used weaker notions of correspondence between solutions
of the two problems – correspondence between the solutions for most x with ≤ k nonzeros, rather
than for all x with ≤ k nonzeros. Below we describe the two main such notions which have
been proposed, and show that each one is equivalent to an interesting property of the quotient
polytope.

One of these weaker notions - local equivalence - asks that, for a given I ⊂ {1, . . . , n}, every
x supported in I is both the sparsest solution to y = Ax and the minimal `1 solution. This
turns out equivalent to saying that the section of P by the linear span of (±iai : i ∈ I), is
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|I|-neighborly. In consequence, most sets I of size k are sets of local equivalence if and only if
most k-dimensional ‘intrinsic’ sections are k-neighborly.

The other notion - individual equivalence - asks that, for a fraction 1− ε of vectors x with k
nonzeros, x is both the sparsest solution to y = Ax and the minimal `1 solution. If the columns
of A are in general position, this turns out equivalent to saying that P has at least 1− ε times
as many (k − 1)-faces as C.

Each of these weaker `1/`0 equivalences suggests notions of weak neighborliness. Existing
results immediately yield examples of centrosymmetric polytopes with low degree of neighborli-
ness but high degree of weak neighborliness. Thus for example, applying results of [10, 12] with
the breakthrough of Candès-Romberg-Tao [4] we conclude:

Corollary 1.4 Let d be a perfect square. The quotient polytope P generated by A = [I F ]
with I the d × d identity and F the real d × d Fourier matrix is not

√
d-neighborly. But most

k-dimensional intrinsic sections are k-neighborly for k ≈ cd/ log(d), for a certain c > 0.

In the other direction, the above equivalences allow methods for counting faces of quotient
polytopes to give new insights into sparsity properties of `1 optimization. In [8], the author
refines tools developed to count faces of randomly-projected polytopes and develops a series of
results implying precise quantitative bounds on the strong and weak neighborliness of P = AC
when A is a random orthoprojector, and d is proportional to n. These results from counting
polytope faces imply the strongest known results on the combinations k, n, d for which `1/`0

equivalence is highly likely. As a simple example:

Corollary 1.5 There is δ0 < 1 with the following property. Let n and dn tend to ∞ together
so that dn = bδ · nc, where δ0 < δ < 1. Let k = k(n) obey k/d ≤ .49.

Let y = Ax0, where x0 contains nonzeros at k sites selected uniformly at random, with signs
chosen uniformly at random (amplitudes can have any distribution), and where A is a uniform
random orthoprojector from Rn to Rd.

With overwhelming probability for large n, the minimum `1 norm solution to y = Ax is also
the sparsest solution, and is precisely x0.

In this result .49 can be replaced by any other number < 1/2. Numerical evidence provided
in [8] shows that δ0 ≈ .7. This justifies the claim in the abstract that, for large n, among all
underdetermined systems with n unknowns and 3n/4 equations and which admit a solution with
≤ .49n nonzeros, the overwhelming majority have a minimal `1 solution which is unique and
which is also the sparsest solution. Section 7 gives further discussion, and numerical evidence.

Section 8 describes a stylized application: transmitting n/4 pieces of information over a
channel subject to .49n randomly-triggered gross errors or .11n maliciously-chosen gross errors,
with perfect recovery by `1 minimization.

1.3 Contents

Sections 2 and 3 prove Theorem 1, while Section 4 explains how Corollaries 1.1-1.3 follow
from Theorem 1 and existing results. Section 5 defines local equivalence between `1 and `0

optimization, proves equivalence to sectional neighborliness, and relates this to Corollary 1.4.
Section 6 defines individual equivalence between `1 and `0 optimization, and proves that (when
the columns of A are in general position) this equivalence is prevalent if and only if P has
nearly as many k-faces as C. Section 7 discusses random projection and other random linear
systems and proves Corollary 1.5. Section 8 discusses applications to ‘perfect recovery’ of signals
corrupted by overwhelming, impulsive noise.
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2 Preliminaries

Before beginning the proof, we make a few obvious observations connecting (P1) with the poly-
tope P . Note that the value function of (P1) is a function of y ∈ Rd; we call this the quotient
norm:

Q(y) = val(P1) = inf ‖x‖1 subject to y = Ax.

The quotient polytope P = AC is also the unit ball for this norm:

P = {y : Q(y) ≤ 1}.

Indeed, the cross-polytope C is the set of x with `1 norm bounded by 1. Q(y) ≤ 1 just in case
y is the image Ax of such an x; but this means Q(y) ≤ 1 exactly in AC = P .

The unit ball for this norm can also be characterized as the set of y realizable as convex
combinations of signed columns of A. The reader will find it instructive to prove the following.

Lemma 2.1 Consider the problem of representing y ∈ Rd as a convex combination of the signed
columns (a1,−a1, . . . , an,−an). This problem has a solution if and only if val(P1) ≤ 1. If this
problem has a unique solution then (P1) has a unique solution for this y.

We now fix notation concerning convex polytopes; see [18] for more details. In discussing the
(closed, convex) polytope P , we commonly refer to its vertices v ∈ vert(P ) and k-dimensional
faces F ∈ Fk(P ). v ∈ P will be called a vertex of P if there is a linear functional λv separating
v from P\{v}, i.e. a value c so that λv(v) = c and λv(x) < c for x ∈ P , x 6= c. We write conv for
the convex hull operation; thus P = conv(vert(P )). Vertices are just 0-dimensional faces, and
a k-dimensional face is a set F for which there exists a separating linear functional λF , so that
λF (x) = c, x ∈ F and λF (x) < c, x 6∈ F . Faces are convex polytopes, each one representable
as the convex hull of a subset vert(F ) ⊂ vert(P ); thus if F is a face, F = conv(vert(F )). A
k-dimensional face will be called a k-simplex if it has k + 1 vertices. Important for us will be
the fact that for k-neighborly polytopes, all the low-dimensional faces are simplices.

It is standard to define the face numbers fk(P ) = #Fk(P ). We also need the simple obser-
vation that

vert(AC) ⊂ A vert(C), (2.1)

which implies
F`(AC) ⊂ AF`(C), 0 ≤ ` < d; (2.2)

and so the numbers of vertices obey

f0(AC) ≤ f0(C). (2.3)

3 Equivalence

We now turn to the proof of Theorem 1.

3.1 Basic Insights

In our opinion there are two insights, which we record as lemmas. The first is the importance
and convenience of having simplicial faces of P .

Lemma 3.1 (Unique Representation). Consider a k-face F ∈ Fk(P ) and suppose that F
is a k-simplex. Let x ∈ F . Then
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[a] x has a unique representation as a convex combination of vertices of P .

[b] This representation places nonzero weight only on vertices of F .

Conversely, suppose that F is a k-dimensional closed convex subset of P with properties [a] and
[b] for every x ∈ F . Then F is a k-simplex and a k-face of P .

Proof. Let v1, . . . , vN be the vertices of P . As F is a simplex, it has k + 1 vertices; without
loss of generality take these as v1, . . . , vk+1. The vertices of F are affinely independent; hence
there is a unique representation of x ∈ F as a convex combination of the vertices.

The fact that F is a face implies the existence of a linear functional λ and constant c so that
λ(v1) = . . . λ(vk+1) = c while for other vertices λ(vi) < c, i > k + 1 . Suppose there were a
convex combination x =

∑
i βivi placing nonzero weight on i > k + 1. Then

λ(x) =
k+1∑
i=1

βiλ(vi) +
N∑

i=k+2

βiλ(vi)

<
k+1∑
i=1

βic +
N∑

i=k+2

βic = c,

but λ(x) < c contradicts x ∈ F . Hence there is no such convex combination.
For the converse direction, assumption [a] implies that F does not meet the interior of P ,

since throughout the interior, the representation by convex combination is nonunique. Hence
F is a subset of some k-face of P - G, say. Now the uniqueness property [a] can hold on a
k-dimensional subset of G only if G is a simplex, for we need the vertices of G to be affinely
independent. Similarly, the weighting property [b] can hold on the k-dimensional set F only if
F contains at least the vertices of G. As F ⊂ G but vert(G) ⊂ F we conclude F = G, i.e. F is
a k-simplex and a k-face of P . 2

The second insight: neighborliness can be thought of as saying that the k − 1-faces of P
are simply images under A of the faces of C – nothing more complicated for the face lattice is
allowed, even though for non-neighborly polytopes it would be expected.

Lemma 3.2 (Alternate Form of Neighborliness). Suppose the centrosymmetric polytope
P = AC has 2n vertices and is k-neighborly. Then

∀` = 0, . . . , k − 1, ∀ F ∈ F`(C), AF ∈ F`(AC). (3.1)

Conversely, suppose that (3.1) holds; then P = AC has 2n vertices and is k-neighborly.

Proof. Since P has 2n vertices, (2.1)-(2.3) tell us that these must be exactly the ±ai.
Now each set of k disjoint indices i1, . . . ik 1 ≤ i` ≤ n, and k signs σ` ∈ {+1,−1} ` = 1, . . . k

determines a face F of the cross-polytope C. Let ei be the i-th canonical unit basis vector in
Rn. Then

F = conv{σ1ei1 , . . . , σkeik}.
Let ai denote the i-th column of A. Then

AF = conv{σ1ai1 , . . . , σkaik}.

We have seen that the σ`ai` are vertices of P , and by the neighborliness assumption, their convex
hull makes a face of P . But this convex hull is just AF which therefore makes a face of AC.

In the converse direction, note that (3.1) for ` = 0 exactly says that AC has 2n vertices.
Note that for ` = k−1 (3.1) tells us that, for each set of k disjoint indices i1, . . . ik, 1 ≤ i` ≤ n,

and k signs σ` ∈ {+1,−1}, conv({σ`ail : 1 ≤ ` ≤ k}) is a face of P . This is exactly the definition
of k-neighborly. 2
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3.2 Main Result, Forward Direction

At last we turn to the proof of Theorem 1, in the forward direction. We suppose that P is
k-neighborly, that x0 has at most k nonzeros, and show that the minimal `1-norm solution is
precisely x0. We assume without loss of generality that the problem is scaled so that ‖x0‖1 = 1.

Now since x0 has at most k nonzeros, it belongs to a k-dimensional face F of the cross-
polytope: F ∈ Fk(C). Hence y belongs to AF , which, by neighborliness and Lemma 3.2, is a
k-dimensional face of P . Now, by Lemma 3.1, y has a unique representation by the vertices of
P , which is a representation by the vertices of AF only, and which is unique. But x0 already
provides such a representation. It follows that x0 is the unique representation for y obeying

‖x‖1 ≤ 1.

Hence it is the unique solution of (P1). 2

3.3 Main Result, Converse Direction

We now go in the converse direction, and suppose that A has the property that, if y = Ax0 with
x0 having fewer than k nonzeros, then x0 is the unique solution to the instance of (P1) generated
by y. We then derive that P has 2n vertices and is k-neighborly.

By considering the case k = 1 with every xi = ±ei, we learn that in each case the corre-
sponding yi = Axi belongs to P and is uniquely representable among convex combinations of
(±jaj)j by ±ai. This implies by Lemma 3.1 above that each yi is a vertex of P , so P has at
least 2n vertices. Since by (2.3) the number of vertices of P = AC is at most the number of
vertices of C, we see that P has exactly 2n vertices.

Consider now a collection of k disjoint indices i1, . . . ik, 1 ≤ i` ≤ n, and k signs σ` ∈ {+1,−1}.
By hypothesis, for every x0 which can be generated

x0 =
∑

`

α`σ`ei` ,

with α` ≥ 0 and
∑

` α` = 1 the corresponding problem (P1) based on y = Ax0 has a unique
solution, equal to x0. Since this latter problem has a unique solution, there is (by Lemma 2.1)
a unique solution to the problem of representing each such y as a convex combination of signed
columns of A, and that solution is provided by the corresponding x0. By the converse part of
Lemma 3.1, AF is a face in Fk(AC).

Combining the last two paragraphs with the converse part of Lemma 3.2, we conclude that
P has 2n vertices and is k-neighborly. 2

4 Corollaries

We now explain how Theorem 1 yields Corollaries 1-3. To simplify our discussion, we introduce
terminology:

Definition 1 The Equivalence Breakdown Point of the matrix A, EBP (A), is the maximal
number N such that, for every x0 with fewer than N nonzeros, the corresponding vector y = Ax0

yields problems (P1) and (P0) with identical unique solutions, both equal to x0.

With this terminology, Theorem 1 can be restated so:

P is k-neighborly iff EBP (A) > k. (4.1)

Corollary 1 flows from the following result, proved recently by several different authors.
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Theorem 4.1 [10, 9, 12, 14, 17, 23] Suppose that ‖ai‖2 = 1, 1 ≤ i ≤ n and

|〈ai, aj〉| ≤ M, i 6= j;

then EBP (A) > (M−1 + 1)/2.

Corollary 1.1 follows by setting M = 1/(2k−1). For an example, let H be a d×d Hadamard
matrix. Then A = [IH] yields M = 1√

d
, and we get that P = AC is k-neighborly with

k = d
√

d/2e.
The dependence of EBP (A) on d in Theorem 4.1 is partially disappointing; something

proportional to d would be more interesting. In that direction, the following result implies the
‘neighborliness-proportional-to-dimension’ of Corollary 2.

Theorem 4.2 [7] Let Ad,n have its columns sampled iid from the uniform distribution on the
sphere Sd−1. Fix δ ∈ (0, 1). There is ρ = ρ(δ) > 0 so that for d ≥ δn,

Prob{EBP (Ad,n) > ρd} → 1, n →∞.

Corollary 1.2 follows on noting (4.1). The proof in [7] gives only very crude estimates of ρ(δ),
which are absurdly small. Emmanuel Candès has used different methods (see Theorem 7.1
below) to estimate ρ but again with a very small value as the result. In contrast – see Section
7 below – polytope methods; allow to show that for δ = .5, ρ ≥ .089.

Now we turn in the other direction, and establish Corollary 1.3. We invoke the following
result of McMullen and Shephard [21]:

Theorem 4.3 Let P be a centrosymmetric d-polytope with d ≥ 2 and n ≥ d + 2. If P is
k-neighborly, we have

k ≤ bd + 1
3

c.

Corollary 1.3 follows on noting (4.1). We believe that while most students of `1/`0 equivalence
would expect that getting k close to 1/2 could be challenging, none would have claimed that it’s
actually impossible, even in small-scale cases. Yet that’s the necessary implication.

5 Local Equivalence and Sectional Neighborliness

The notion of equivalence between `1 and `0 discussed above is very strong; it holds for any
x0 with at most k nonzeros. Two weaker notions of `1/`0 equivalence make sense, where we
consider most rather than all x0 of a certain form. Each is equivalent to an interesting property
of the quotient polytope P . In the next sections we discuss each of these in turn. We start with
a notion equivalent to neighborliness of low-dimensional sections.

5.1 Sets of Local Equivalence

Fix the number of nonzeros k in x0; the support I of x0 can be any of the
(
n
k

)
possible choices.

Definition 2 We say there is local equivalence (between `1 and `0 optimization) at a given
support I ⊂ {1, . . . , n} if, for every x0 supported in I, the corresponding problems (P0) and
(P1) generated by y = Ax0 both have x0 as their unique solution. A set I having this property
is called a set of local equivalence.
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The adjective ‘local’ emphasizes the possibility that `1/`0 equivalence can hold for some
support sets while failing on others. Note if EBP (A) > k, then every support set of size ≤ k is
a set of local equivalence. Hence the EBP notion is seen to be ‘global’ rather than local.

Since the `1/`0 equivalence phenomenon was first identified, it has been recognized that global
equivalence can be far stronger than local equivalence [10]. Indeed, there is the possibility that
for a given matrix A, EBP (A) � k while ‘most’ support sets I of size k exhibit local equivalence
[10, Final Section].

A simple and important example is offered by the d by 2d matrix

A = [I F ]

where I is the d by d identity and F is the d by d real Fourier transform matrix. This example
arises in attempting to represent a signal as a sum of ‘spikes’ and sinusoids. Although there is no
unique way to do this – the system y = Ax is underdetermined – [10] showed that, if a signal y
is made from fewer than

√
d/2 spikes and sinusoids, then (P1) will precisely recover those terms.

The
√

d/2 bound can be of the right order for global equivalence. [10] shows that if d is
a perfect square, EBP (A) ≤

√
d; [12, 13] shows that EBP (A) ≈ .9

√
d. Hence, (P1) is only

guaranteed to recover the sparsest solution in the Identity/Fourier case if it has somewhat fewer
than

√
d nonzeros.

In a breakthrough, Candès, Romberg, and Tao [4] showed that most support sets I of size
k ∼ cd/ log(d) are sets of local equivalence; here c is an absolute constant. Thus the size of
subsets under which we can typically have local equivalence may be dramatically larger than
the size under which we have global equivalence, at least for this specific class of matrix.

The result of [4] can be interpreted probabilistically, as saying that if a set of at most k
spikes and sinusoids is chosen uniformly at random, and if k ≤ cd/ log(d), then – even though a
representation by sums of spikes and sinuosids is nonunique in general, with overwhelming prob-
ability `1 minimization will recover the specific combination of spikes and sinusoids generating
the signal, no matter what the amplitudes and/or polarities in the combination might be.

Definition 3 We say that sets of size k are typically sets of local equivalence, with
typicality coefficient (1− ε), when a fraction ≥ (1− ε) of all possible support sets I of size k are
sets of local equivalence.

Thus for A = [IF ] and d a perfect square, by [10] some sets of size
√

d are not sets of local
equivalence, while by [4], for each ε > 0, and for large d, sets of size k ≈ cd/ log(n) are typically
sets of local equivalence.

5.2 Neighborliness of Intrinsic Sections

Local equivalence can be related to properties of intrinsic sections of the quotient polytope
P = AC, defined as follows. Suppose that P has 2n vertices. Pick a set K of k vertices which
does not contain an antipodal pair. This set spans a k-dimensional linear subspace VK of Rd.
Consider the section

PK = P ∩ VK ;

this is a polytope with vertices chosen from among the members of K and their antipodes. We
call this an intrinsic section because, in distinction to arbitrary or random sections, it involves
an intrinsic property of the polytope – the subspaces spanned by vertices; this is independent of
the coordinate system. There are exactly as many intrinsic sections as there are subspaces VK .
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We say that such a section PK is a cross-polytope if it has 2|K| vertices and is centrally |K|-
neighborly. The terminology makes sense, as it forces PK to be equivalent to a one-one affine
transformation of the |K|-dimensional regular cross-polytope. We say that a given intrinsic
section PK is neighborly if it is a cross-polytope.

The reader may check that if P = AC has 2n vertices and every intrinsic section is neighborly,
then P is neighborly. Hence behavior uniform across all intrinsic sections offers nothing new;
but typical behavior across most sections can be different than uniform behavior. Indeed,

Theorem 2 Suppose that P = AC has 2n vertices. These two properties are equivalent:

• Among the k-dimensional intrinsic sections of the quotient polytope P , a fraction 1− ε are
neighborly.

• Among sets of size k, a fraction 1− ε are sets of local equivalence.

In words, when supports of size k are typically sets of local equivalence, then k-dimensional
intrinsic sections are typically k-neighborly.
Proof. Observe that, if K is a set of |K| vertices of P not including an antipodal pair, it can be
written as (±iai)i∈I for some subset I. The subspace VK actually depends only on the indices
i ∈ I and not on the signs ±i. By abuse of terminology, we write this subspace as VI and the
corresponding section as PI . Hence, there is a one-to-one correspondence between the possible
k-dimensional intrinsic sections of P and the possible support sets I of size k.

We now apply Lemma 5.1, showing that for each specific subset I there is complete equiva-
lence between local equivalence at I and neighborly section by VI . 2

Lemma 5.1 I is a set of local equivalence if and only if the corresponding |I|-dimensional
intrinsic section PI is a cross-polytope.

Proof. In one direction, suppose I is a set of local equivalence; we show that PI is a cross-
polytope.

By assumption, any y formed by linear combinations of the columns (ai)i∈I in fact has a
unique representation by such terms; this is obtained by using (P1). Consider the set QI of
all such vectors y which can be formed by linear combinations of columns (ai)i∈I with sums
of absolute coefficients at most 1. This is simply the affine image of an I-dimensional cross-
polytope. That image must be one-to-one because the elements of QI by assumption have unique
representations as convex combinations of the columns. Hence QI is a cross-polytope. We claim
that QI = PI , thus proving that PI is a cross-polytope, and so the section by VI is neighborly.
To establish our claim, note that QI ⊂ PI . Indeed QI ⊂ VI , as QI is in the convex hull of the
(±iai)i∈I At the same time, QI is in the convex hull of all the (±iai : 1 ≤ i ≤ n), placing it
inside P . Hence QI ⊂ VI ∩P = PI . However, PI ⊂ QI ; indeed the vertices of PI are among the
signed columns (ai)i∈I , so vert(PI) ⊂ QI , so PI = conv(vert(PI)) ⊂ conv(QI) = QI .

In the other direction, suppose that PI is a cross-polytope. We take any x0 supported in I,
generate y = Ax0 and show that the minimum `1 solution to y = Ax is precisely x0.

Without loss of generality, assume ‖x0‖1 = 1. Then y is in PI . In fact, it is on the boundary
of PI , so it lies in some (|I| − 1)-dimensional face F of PI . As PI is a cross-polytope, F is
simplicial. Applying now Lemma 3.1, we conclude that y is uniquely representable, among all
convex combinations of all signed columns of A, which of course must be as y = Ax0. Hence x0

must be the unique `1 solution. 2
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5.3 Discussion

To compress the above discussion, we propose additional terminology (compare [24]):

Definition 4 The Local Equivalence Breakdown Point of the matrix A, LEBPε(A), is
the largest N so that a fraction ≥ 1− ε of all sets I of size < N are sets of local equivalence.

Clearly LEBP0(A) = EBP (A).

Definition 5 We say that the polytope P is (k, ε)-sectionally neighborly if all but a fraction
≤ ε of intrinsic k-dimensional sections are k-neighborly.

Evidently, (k, 0)-sectionally neighborly is the same as k-neighborly. With this additional
terminology, we have the correspondence:

LEBPε(A) > k ⇔ P = AC is (k, ε)-sectionally neighborly;

this contains (4.1) as a special case by setting ε = 0.
Summarizing the discussion concerning the quotient polytope based on A = [IF ] when d is

a perfect square, we have, for ε > 0 and large d,

EBP (A) <
√

d, and LEBPε(A) ≥ cd/ log(d).

Alternatively, P = AC is not
√

d-neighborly, but it is overwhelmingly likely to be (cd/ log(d), ε)-
sectionally neighborly for large d. This proves Corollary 1.4.

Section 7 considers the case where A is a high-dimensional random projection, and gives
numerical information about neighborliness and sectional neighborliness. In that case also we
observe marked differences between neighborliness and sectional neighborliness, although both
can be proportional to d.

6 Individual Equivalence and Face Numbers

6.1 Individual Equivalence

We say there is individual equivalence (between `1 and `0 optimization) at a specific x0 when,
for that x0, the result y = Ax0 generates instances of (P1) and (P0) which both have x0 as the
unique solution. In such a case we say that x0 is a point of individual equivalence.

While in general the situation of describing such points may be very complicated, under a
simplifying assumption a good deal can be said intelligibly. We say that the columns of A are
in general position in Rd if there is no nontrivial linear relation Ax = 0 where x has fewer than
d nonzeros. While this sounds innocuous, it is not universal; when d is a perfect square, it fails
for the example A = [IF ] discussed above. On the other hand it succeeds for random A.

Under this assumption, the face structure of the quotient polytope is very simple.

Lemma 6.1 Suppose the columns of A are in general position. Then for k < d − 2, the k-
dimensional faces of P = AC are all simplicial.

Proof. Suppose, to the contrary, that there were some k-dimensional face of P with more than
k + 1 vertices. As the vertices of P are among the signed columns of A, there would then be
k +2 signed columns of A lying in some k-flat. If k < d− 2 this violates general position. Hence
there is no such k-dimensional face. Hence the k-dimensional faces have k + 1 or fewer vertices.
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But we can only have a k-dimensional face, if we have at least k + 1 vertices; hence the face
must have precisely k + 1 vertices, i.e. it is simplicial. 2

General position allows equivalence to be checked empirically.

Lemma 6.2 Suppose that the columns of A are in general position. Suppose that (P1) has a
solution x1 with fewer than d/2 nonzeros; then x1 is a point of individual equivalence.

The practical meaning of this lemma: if we know A to be in general position and we find
ourselves in a situation where (P1) has a solution with fewer than d/2 nonzeros, then we have
actually found the solution of (P0).
Proof. Indeed, without loss of generality, suppose ‖x1‖1 = 1, otherwise simply rescale. Then
y = Ax1 sits on the boundary of P . Let k + 1 be the number of nonzeros in x1. The point x1

sits in the relative interior of a k-face F of the cross-polytope, Lemma 6.3 below shows that AF
is a simplicial face of P . Then Lemma 3.1 implies that x1 must be the unique solution to (P1).

We claim that x1 must also be the unique solution to (P0). Indeed, suppose there were a
different solution x0 to (P0), also with k < d/2 nonzeros. Then we would have A(x1 − x0) = 0.
This would supply a set of fewer than d columns of A obeying a nontrivial linear relation,
contradicting general position. 2

Lemma 6.3 (Dichotomy) Suppose the columns of A are in general position. Let F be a
k-dimensional face of the cross-polytope C ⊂ Rn, k < d/2. Then

• If the relative interior of AF meets the boundary of P , then AF is a simplicial face of P .

• If the relative interior of AF meets the interior of P = AC then the relative interior of
AF does not meet the boundary of P , and AF is not part of any face of P .

Proof. This is a consequence of a still simpler fact. Any line L intersects the interior of the
polytope P in a relatively open line segment S, say, which may be empty. The closure of this
line segment intersects the boundary of P in the relative boundary of S. Such an S cannot
contain a relative interior point which is not also an interior point of P .

To apply this, note that general position of the columns of A implies that AF is a simplex.
Consider a point y relatively interior to AF . Lemma 6.4 below shows that every relatively
interior point z of the simplex AF not equal to y can be represented as a convex combination
between y and at most k vertices of F , with positive weights on y and on at least some vertices
of F . We can rewrite this representation as

z = αy + (1− α)
k∑

i=1

βivi

where the vi are vertices of AF and α ∈ (0, 1), βi ≥ 0,
∑

i βi = 1. This gives us a representation
of z as a relatively interior point of the line segment from y to a boundary point b =

∑k
i=1 βivi

on some (k−1)-face of the simplex. Since y is in the relative interior of AF , and the line segment
lies in AF , it has a continuation beyond the endpoint y which still lies in relint(AF ). Let S
denote the maximal such continuation. z and y are both relatively interior points of S. Hence
by the previous paragraph, either they are both interior points of P or neither is an interior
point of P .

Suppose now that AF contains an interior point of P , call this point y; it is in the relative
interior of AF . The above observation shows that all other relative interior points of AF are
also interior points. Similarly, if AF contains a relatively interior point y which is not interior
to P then no other relative interior points of AF are interior to P . 2
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Lemma 6.4 Given a point y in the relative interior of a k-simplex P , any other relatively
interior point z can be represented as a convex combination of y with at most k vertices of P ,
with positive weights on y and on at least some vertices of P .

Geometrically, the lemma says that we may dissect P = conv(v1, . . . , vk+1) into k+1 simplices
Pi = conv(v1, . . . , vi−1, y, vi+1, . . . , vk+1), with y as a vertex for each one. This is a standard
idea in simplicial subdivision. We omit the details.

6.2 Discreteness of Individual Equivalence

While one might imagine that success or failure of individual equivalence varies arbitrarily with
the point under consideration, in fact it is much more constrained.

Lemma 6.5 Suppose that x0 has fewer than d/2 nonzeros. The property of individual equiva-
lence depends only on the support of x0 and on the sign of x0 on its support.

This result must have been implicitly observed by numerous authors, it has also been dis-
cussed explicitly – e.g. [10, 20]. We give here a proof illustrating the viewpoint of this article.
The proof also builds up a viewpoint needed in the next result. It assumes that the columns of
A are in general position.
Proof. Let y = Ax0. Without loss of generality, let ‖x0‖1 = 1. As x0 has (say) k + 1 nonzeros,
it belongs to the relative interior of a k-face F of C defined by the support of x0 and sign pattern
of x0 on its support. The Dichotomy Lemma 6.3 says that either AF is a simplicial face of P
or relint(AF ) is interior to P .

If AF is a face of P , then because AF is simplicial, Lemma 3.1 shows that x0 is the unique
solution to the instance of (P1) posed by y. As x0 has fewer than d/2 nonzeros, by Lemma 6.2
it is a point of local equivalence.

If AF is not a face of P , the Dichotomy Lemma says that the relative interior of AF is
interior to P . At any point interior to P , val(P1) < 1. Hence x0 is not the solution of (P1).

These assertions depend only upon whether AF is a face of P or not. They are true simul-
taneously for all x belonging to the relative interior of a given face F . Hence these assertions
only depend on the support and sign pattern of x0. 2

In view of this discreteness, we can define a sensible notion of ‘typicality ’ for individual
equivalence. Let I be a subset of {1, . . . , n} of size k and let (σi)i∈I be a sequence of signs ±1.
We call (I, σ) a signed support. There are 2k

(
n
k

)
signed supports of size k.

Definition 6 Given a d×n matrix A, we say that a fraction ≥ (1− ε) of all vectors x with
k nonzeros are points of local equivalence if individual equivalence holds for a fraction ≥ (1− ε)
of all signed supports of size k.

A practical computer experiment can be conducted to test the typicality of individual equiv-
alence, and has been carried out by numerous authors, including [10, 4, 24]. One generates a
sparse vector x0 with random signs on its support, creates y = Ax0, and solves (P1). Then one
checks whether the solution of (P1) is again x0. ε can be estimated as the fraction of computer
experiments where failure occurs. Experiments of this kind reveal that for A = [IU ] with U a
random orthogonal d × d matrix, individual equivalence is typical for k < .25d [10]. Similarly
that for A = [IF ] with F the real Fourier d × d matrix, individual equivalence is typical for
k < .25d [4]. For random orthoprojectors A, with n = 2d and d large, for k < .3d, individual
equivalence is typical, while for k > .35d, individual equivalence is atypical [24].
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It is also worth remarking that local equivalence says that for any choice of signs on a given
support, `1/`0 equivalence will hold, while individual equivalence says that for a specific choice
of signs, equivalence will hold. The requirement of uniformity over choices of sign makes local
equivalence hard to verify, but also very powerful when it holds.

6.3 Individual Equivalence and Face Numbers

Typicality of individual equivalence can be posed using completely classical language.

Theorem 3 Let the columns of A be in general position. These statements are equivalent for
k < d/2:

• The face numbers of AC and C agree within a factor 1− ε:

(1− ε)fk−1(C) ≤ fk−1(AC) ≤ fk−1(C).

• A fraction ≥ (1− ε) of all vectors with k nonzeros are points of individual equivalence.

Proof. A given signed support of size k corresponds uniquely to a k−1 face F of C. Individual
equivalence at the given signed support occurs if and only if AF is a face of P . By (2.2), the
faces of P are a subset of the AF where F is a face of C. Hence the identity

#(signed supports giving equivalence)
#(signed supports of size k)

=
fk−1(AC)
fk−1(C)

.

2

Of course, counting faces of polytopes is an old story. This result points to a perhaps
surprising probabilistic interpretation. Suppose that the columns of A are in general position.
We randomly choose a vector x with k < d/2 nonzeros in such a way that all arrangements of
the nonzeros are equally likely and all signs on the nonzero coefficients are equally likely. We
then generate y = Ax. If the quotient polytope P has 99% as many k-faces as C, then there
is a 99% chance that x is both the unique sparsest representation of y and also the minimal
`1 representation of y. This is a quite simple and, it seems, surprising outcome from mere
comparison of face counting.

However, we should note that counting faces is important for neighborliness also. The
companion paper [8] proves that

P = AC is centrally k-neighborly iff f`(P ) = f`(C), ` = 0, 1, . . . , k − 1.

Hence we have the appealing picture that our strongest, uniform notion of `1/`0-equivalence
reduces to exact equality of k − 1 dimensional face numbers while our weakest, average-case
notion reduces to agreement of those same face numbers to within (1± ε) factors.

6.4 Discussion

To compress the above discussion, we propose additional terminology (compare [24]):

Definition 7 The Individual Equivalence Breakdown Point of the matrix A, IEBPε(A),
is the largest N so that a fraction ≥ 1 − ε of all x with < N nonzeros are points of local
equivalence.

Obviously IEBP0(A) = EBP (A).
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Definition 8 We say that the polytope P is (k, ε)-facially neighborly if all but a fraction ≤ ε
of k-sets of vertices span k − 1-faces of P .

Again (k, 0)-facial neighborliness is the same as k-neighborliness. With this additional ter-
minology, we have the correspondence that, if k < d/2 and if the columns of A are in general
position,

IEBPε(A) > k ⇔ P = AC is (k, ε)-facially neighborly;

this contains (4.1) as a special case by setting ε = 0. We obviously also have

EBP (A) ≤ LEBPε(A) ≤ IEBPε(A). (6.1)

Applying known results in `1/`0 equivalence, we immediately get many examples of polytopes
with nearly as many faces as the cross-polytope, but with varying degrees of sectional and/or
ordinary neighborliness. Thus A = [IF ] yields quotient polytopes with .9

√
d-neighborliness and

(cd/ log(d), ε)-sectional neighborliness. Neither of these is ‘proportional to dimension’. However,
numerical experiments show that the facial-neighborliness is indeed ‘proportional to dimension’;
see [4, 24].

7 Randomly-Projected Cross-Polytopes

We now focus attention on the case where A is a uniformly-distributed random orthogonal
projection from Rn into Rd. We suppose throughout that d = dn = bδnc, and consider the
high-dimensional setting n →∞.

7.1 Relevant Results About `1/`0 equivalence

Solution of equations y = Ax with A a random projection has been studied by Candès and Tao,
who proved the following:

Theorem 7.1 [5] Let Ad,n be a uniform random projection. Fix δ ∈ (0, 1). There is ρ = ρ(δ) >
0 so that for d ≥ δn,

Prob{EBP (Ad,n) > ρd} → 1, n →∞.

In short, `1/`0 equivalence holds up to a threshold which is proportional to dimension. By
Theorem 1, this implies that randomly-projected cross-polytopes are neighborly proportional to
dimension.

This result should be compared to Theorem 4.2 above, from [7]; the two results may be
regarded as basically interchangeable. The bounds to emerge from the proofs [5, 7] of these
results are both quite small. Candès claims to be able to show ρ > 1/1000 for moderate δ.
Donoho did not even bother to mention to others an estimate deriving from his proof. As we
will see, polytope methods can do much better.

In contrast, computational experiments in `1/`0 equivalence, described in [24], paint a far
rosier picture; for example, they show most x with ≤ .3d nonzeros are points of individual
equivalence. Moreover, these numerical experiments agree with the theoretical evidence from
polytope methods.
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7.2 Results about Projections of Polytopes

Over the years, several authors have considered the properties of randomly-projected polytopes,
in particular their face numbers. [25] and [1] considered randomly-projected simplices, and [2]
considered randomly-projected cross-polytopes. The different authors used different assump-
tions on n and d, and developed a variety of useful tools and representations. For example,
Affentranger and Schneider [1] and Börözcky and Henk [2] considered d fixed, n → ∞ while
Vershik and Sporyshev pioneered the n-proportional-to-d case.

(Aside: the author of this article considers it remarkable that anyone was interested in
random projections of cross-polytopes or in the high-dimensional n proportional to d case prior
to this article. One of the main purposes here is to explain why study of projected cross-
polytopes might be important. Apparently there are far-seeing researchers who need no such
motivation!)

In [8], Donoho studied A which are uniformly-distributed random orthogonal projections
from Rn into Rd, in the proportional-to-dimension case where k ∼ ρd and d ∼ δn. He made
various asymptotic estimates of face numbers of P = AC. In some sense this is a cross-breeding
of the problem posed by Börözcky and Henk, with the high-dimensional asymptotic of Vershik
and Sporyshev.

Fix ε > 0. [8] describes a lower bound ρN (δ) on the neighborliness threshold. For ρ < ρN (δ).
there is overwhelming probability for large n that P = AC is bρdc-neighborly. It also describes a
lower bound ρS(δ) on the sectional neighborliness threshold. For ρ < ρS(δ). with overwhelming
probability for large n, most ρd-sections are ρd-neighborly. The bound ρS(δ) is substantially
larger than ρN (δ), signalling that for these random polytopes, typical sectional neighborliness
may be substantially better than uniform sectional neighborliness.

The paper also studies the face numbers fk(AC), asking for the range of k so that these face
numbers are approximately the same as those of C. [8] derives a threshold ρF (δ) > 0 so that
for ρ < ρF (δ), the bρdc-dimensional face numbers of AC are the same as those of C, to within a
factor (1 + o(1)). Informally, this describes the fraction k/d at which ‘phase transition’ occurs
from (k, ε)-facial neighborliness to non-neighborliness.

Because of (6.1), we know that ρN (δ) ≤ ρS(δ) ≤ ρF (δ). Fixing some small ε > 0, we have
with overwhelming probability for large d that

P = AC is (ρ̃N · d)-neighborly, and
(ρ̃S · d, ε)-sectionally neighborly, and
(ρ̃F · d, ε)-facially neighborly;

here ρ̃N ≡ ρN (δ)− ε, ρ̃S ≡ ρS(δ)− ε, and ρ̃F ≡ ρF (δ)− ε obey

0 < ρ̃N ≈ ρN (δ) < ρ̃S ≈ ρS(δ) < ρ̃F ≈ ρF (δ).

Some numerical information is provided in Table 1 below. Two key points emerge:

• ρN , the smallest of the three, is still fairly large, perhaps surprisingly so. While it tends to
zero as δ → 0, it does so only at a logarithmic rate; and for moderate δ it is on the other
of .1. This justifies our labelling prior results, like ρ = 1/1000 in Theorem 7.1 ‘small’.

• ρF , the largest of the three, is substantially larger than either ρN or ρS . The fact that it
‘crosses the line ρ = 1/2’ for δ near .75 is noteworthy; this is the source of Corollary 1.5.

16



Table 1: Numerical Results Using Methods from [8].

δ = .1 δ = .25 δ = .5 δ = .75 δ = .9
ρN .049 .065 .089 .117 .140
ρS .10 .14 .19 .24 .29
ρF .18 .25 .38 .52 .66

7.3 Probabilistic `1 − `0 Equivalence

We now interpret the thresholds ρF , ρC and ρN through the lens of `1/`0 equivalence.
To interpret ρF , fix ε > 0 and suppose that k = k(n) obeys k/d < min(ρF (δ), 1/2)− ε. Let

x0 have k nonzeros at sites chosen uniformly at random, and also with signs chosen uniformly
at random. We generate the corresponding y = Ax0. With overwhelming probability for large
n, the minimal `1-norm solution of y = Ax is also the sparsest solution, and both are equal to
x0. Since ρF (δ) > 1/2 for δ > δ0, and we may take ε < .01, this proves Corollary 1.5.

To interpret ρS , we now assume the more restrictive condition that k/d < ρS(δ)− ε. Let x0

have k nonzeros at sites chosen uniformly at random; the signs need not be chosen at random.
We again have `1-`0 equivalence with overwhelming probability for large n. However, the sparsity
requirement is higher than before, as ρS(δ) < min(ρF (δ), 1/2).

Turning now to ρN , we suppose that k/d < ρN (δ)− ε. Let x0 have k sites which need not be
chosen at random; the amplitudes and signs of the nonzeros need not be chosen at random. We
again have `1-`0 equivalence with overwhelming probability for large n. This time, the sparsity
requirement is even higher, as ρN (δ) < ρS(δ).

Hence the difference between ρF , ρS , and ρN indicates the ‘price we pay’ for not having
random signs and/or locations for the nonzeros in x. In this sense, all three natural measures
of neighborliness of polytopes appear to have their own unique and interesting implications for
finding sparse solutions of linear equations.

8 Perfect Signal Recovery Despite Malicious Errors

So far our discussion has been abstract and general. We now provide a brief example which may
help motivate the interest in, and applicability of such results, and the appearance of numerous
papers about `1/`0 equivalence in Information Theory and Signal Processing journals.

For n large and divisible by 4, generate a random orthogonal n by n matrix U . Form a d by
n matrix A with d = b3n/4c by taking the first d rows of U . At the same time generate its m
by n orthocomplement B by taking the last m = n− d rows of U .

The matrix B can be used as part of a stylized communications scheme which is highly
robust against gross errors. Suppose we wish to communicate a block of m pieces of information
(numbers) to a remote receiver. We represent this information as an m-vector α, and we transmit
the noiseless signal S = BT α. The receiver gets a distorted signal R = BT α + z. In digital
communications terminology, B defines a ‘constellation’, but this time in the space Rn of n-
blocks rather than in the so-called I,Q-plane.

The receiver solves the minimum `1 problem

(L1) min
a
‖R−BT a‖1.

Let α̂ denote any minimizer.

17



It turns out that if a majority of the distortions in z are zero then typically, there is perfect
recovery: α̂ = α, with no errors, despite the fact that there is no constraint on the size of the
distortion z; in particular it can be arbitrarily more energetic than the undistorted signal. This
reflects the strong nonlinearity of (L1); it is able to preserve weak signals in the presence of
strong distortion.

Corollary 8.1 Let the distortion z have at most krss = .49n nonzeros, and suppose that the
positions and signs of those nonzeros are random and uniformly distributed (the amplitudes of
the nonzeros can be chosen in a signal dependent, in fact malicious way). With overwhelming
probability for large n

α̂ = α.

Here the probability refers to the joint distribution on matrices B, and signed support of the
distortion. Note that the amplitudes of the nonzeros can depend on the signal and in fact can
be much larger than the transmitted signal. Informally, this communications scheme is robust
against .49n overwhelming errors with random sites and polarities. The subscript rss reminds
us of the random sites/signs constraint.

Suppose now that the distortion is not random, but is chosen by a malicious opponent with
knowledge of the constellation matrix B, and even of the transmitted signal S. However, the
distortion must be nonzero in a controlled number kmal of sites.

Corollary 8.2 With overwhelming probability for large n, the random matrix B has the property
that, for every disturbance z containing at most kmal = .11n nonzeros.

α̂ = α.

Informally, this communications scheme is robust against .11n maliciously-chosen gross er-
rors. Here we mean that both the sites of the errors, and even the values at those sites can be
chosen in a signal-dependent way – for example, they can occur in bursts.

Candès recently informed the author of results with Tao [6] along the lines of Corollary
8.2; however, seemingly without comparably strong information about the size of the allowable
degree of malicious contamination kmal. The above Corollaries complement [6] by giving precise
and perhaps unexpectedly strong quantitative information and by describing behavior with both
randomly-sited and maliciously-sited distortions. An earlier set of ‘perfect recovery’ results using
a matrix B of sinusoids rather than a random matrix B, allowed about n/π nonzeros in the
distortion but required that the nonzeros obey stronger pattern restrictions; see [11].

These Corollaries follow easily from the polytope neighborliness results discussed in the
previous section. The constants m = n/4 and k = .11n actually derive from Table 1.

To see this, define y = AR and consider the problem (P1). y ∈ Rd and x ∈ Rn as usual.

Lemma 8.1 The solution sets of (L1) and (P1) are in one-to-one correspondence. If x1 is a
solution to (P1) then α̂ = B(R− x1) is a solution to (L1) and vice-versa.

Proof. The matrices A and B are complementary orthoprojectors. Hence a given vector R
in Rn is uniquely determined by the pair AR, BR. Now if x is feasible for (P1), Ax = y = AR.
Rewriting a = B(R− x) as BR = a + Bx, and noting that ABT = 0 we have

R = AT AR + BT BR = AT Ax + BT (Ba + Bx) = BT a + x.

So an x ∈ Rn feasible for (P1) is in one-to-one correspondence with an a ∈ Rm so that R =
BT a + x. In short we can make an identification of variables z = x; noting that the objective
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of (L1) is in fact ‖z‖1 while that of (P1) is ‖x‖1, we see that the two problems are in complete
correspondence, both as regarding the set optimized over and the value of the objective on the
feasible set. 2

We now apply our earlier discussion of (P1). Suppose that the received signal R = BT α + z
suffered a disturbance z with k nonzeros. Applying Lemma 8.1, y = AR is then representable
using an x with k nonzeros; where actually the representing x = z. If ‖z‖0 = k < EBP (A),
then the minimal `1 solution to y = Ax is unique and equal to the sparsest solution, which has
x1 = z. But then the solution α̂ to (L1) is unique and equal to BT (R − x1) = BT (R − z) = α.
In short there is perfect recovery.

Turning now to Table 1, we read off that, for δ = .75, ρN (δ) ≈ .014. Thus with overwhelming
probability for large n, a d×n random orthoprojector with d = dn and d/n ∼ 3/4 yields a .11n-
neighborly quotient polytope for large n. Applying Theorem 1, there is overwhelming probability
for large n that EBP (A) ≥ .11n. Corollary 8.2 follows.

A similar argument holds for Corollary 8.1. We simply look in Table 1, note that ρF (δ) ≈
.52 > .5, and apply the appropriate Theorems and Lemmas above.

Other results are possible for other combinations of (d, n, m) by choosing other ratios δ = d/n
and looking up the corresponding result either in Table 1 if it is listed here, or else in [8] if it is
not.

Observe the connection between polytope theory and signal recovery. Facial neighborliness
translates into immunity to gross errors at positions and signs chosen at random, while central
neighborliness translates into immunity to gross errors even when the positions and signs are
chosen maliciously.
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[17] Rémi Gribonval and Morten Nielsen. Sparse representations in unions of bases. IEEE
Trans. Inform. Theory, 49(12):3320–3325, 2003.
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