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Abstract

We present a simple and efficient algorithm for randomly
generating simple graphs without small cycles. These
graphs can be used to design high performance Low-Density
Parity-Check (LDPC) codes. For any constant k, a <

1/2k(k + 3) and m = O(n'™®), our algorithm generates an
asymptotically uniform random graph with n vertices, m
edges, and girth larger than k in polynomial time. To the
best of our knowledge this is the first polynomial-algorithm
for the problem.

Our algorithm generates a graph by sequentially adding
m edges to an empty graph with n vertices. Recently,
these types of sequential methods for counting and random
generation have been very successful [35, 18, 11, 7, 5, 6].

1 Introduction

We present efficient algorithms for generating random
simple graphs with cycles of size larger than a constant
k. The main motivation for this work comes from the
design of high performance Low-Density Parity-Check
(LDPC) codes [31].

For positive integers m,n, k, our algorithm gener-
ates a random graph with n vertices and m edges that
has no cycles with length less than or equal to k& us-
ing O(n?m) operations. The algorithm starts with an
empty graph and sequentially adds m edges between
pairs of non-adjacent vertices. In every step of the pro-
cedure, an edge can be added between two distinct ver-
tices ¢ and j that are of distance at least k. The prob-
ability of adding an edge between ¢ and j, denoted by
Dij, changes in every step of the algorithm. In order to
get a uniform sampling, p;; should be proportional to
the number of extensions of the current graph to graphs
with m edges that contain (ij) and have no small cy-
cles. The algorithm estimates the number of such valid
extensions by computing the expected number of small
cycles if the rest of edges are added uniformly at random
(see Sections 3 and 4 for more details).

We show that our algorithm produces an asymp-
totically uniform sample when k is a constant and
m = O(n'T®) with o < 1/2k(k +3). To the best of our
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knowledge this is the first polynomial-time algorithm
for the problem. The analysis uses Janson’s inequal-
ity for obtaining a close approximation of the number
valid extensions of a partially constructed graph. This
method goes beyond the Poisson approximations that
is typically used when the number of the edges is linear
(see [2] for more details).

From a theoretical perspective, our work is related
to the following problem. Given a graph property P
that is preserved by removal of any edge from the
graph. A random mazximal P-graph is obtained from
n isolated vertices by randomly adding those edges
(at each stage choosing uniformly among edges whose
inclusion would not destroy property P) until no further
edges can be added. The question of finding the number
of edges of a random maximal P-graph for several
properties P is well studied [33, 16, 38, 8, 27]. In
particular, when P is the property that the graph has
girth greater than k, [27] shows that the above process
of sequentially growing the graph leads to graphs with
m= O(nl‘Fﬁ logn) edges.

Unfortunately, these random maximal P-graphs
may have distribution that are far from uniform. In
fact it has been shown (e.g. [36]) that when P is the
property of having no triangle, the maximal triangle
free graphs are close to bipartite. =~ We show that
our new algorithm guarantees asymptotically uniform
distribution at the expense of reducing the number of
edges to m = O(nHm).

Recently, sequential algorithms have been shown,
empirically ([11, 7]) and theoretically ([35, 18, 6, 5]),
to be very successful for designing fast algorithms for
counting and generating random graphs with given de-
grees. The current paper builds on this line of research
and develops mainly two new ideas. For the design, in-
stead of starting from a biased heuristic and calculating
and canceling its bias we use Poisson approximations to
obtain the correct p;;’s. For the analysis, we use convex
functions and Janson’s inequality for controlling the ac-
cumulated error and obtaining a tighter bound than the
concentration results used in [5, 18].

1.1 Application in designing LDPC Codes It
has been shown that LDPC codes can approach Shan-



non capacity asymptotically for large size codes, when
their associated graph representations (Tanner graphs)
are selected uniformly at random from the set of bipar-
tite graphs with a properly optimized degree sequences
[12, 21]. However, in practice, the maximum graph size
is between 10 and 10° (depending on the delay sensi-
tivity and on the hardware constraints). In this range,
it is well known that the existence of a small number of
subgraphs with a certain structure (in particular, small
cycles) spoil the code performances [28, 30, 20].

Different approaches have been developed within
the coding theory community to deal with this prob-
lem. For example, deterministic constructions of graph
sequences with large girth [26, 32] have been studied.
However, numerical studies have shown that known de-
terministic constructions can have poor performance
[22]. From a theoretical point of view, no deterministic
graph sequence is known that asymptotically outper-
forms random graphs.

One can also stick to random constructions and
grow the graph by adding random edges sequentially
while avoiding short cycles. This method has been
very popular in practice and is known by the name of
progressive edge growth (PEG) algorithm [14]. We will
describe the main intuition behind PEG and show its
limitations with respect to two standard performance
measures for the codes: (i) bit error rate or expected
fraction of wrong bits; and (ii) block error rate or
probability that at least one bit in the message was
received incorrectly.

Let Citer be the maximum rate achievable by ran-
dom LDPC codes (empirically Citer is indistinguish-
able from the channel capacity). It is known that uni-
formly random graphs contain a random number (of
order O, (1)) of cycles of size k or smaller. These cycles
are responsible for non-vanishing block error probability
that is bounded away from 0 at small noise. The main
goal of PEG is to reduce this error, to a value that van-
ishes with k, by removing the cycles of length up to k.
But the final distribution of PEG is not necessarily uni-
form which may affect the other performance measure
(bit error rate). In fact preliminary simulations suggest
that our new algorithm produces codes with lower bit
error rate.

In this paper we define the first code generation
algorithm that overcomes both problems. We show
that there exists a graph sequence that (1) can be
generated efficiently; (2) has vanishing bit error rate
at any rate below Citer (this follows by the standard
density evolution analysis [31] using optimized degree
sequences [12, 21]); and (3) has girth larger than k
(therefore has low block error rate probability).

For the sake of simplicity we will present the rele-

vant calculations only for the problem of generating ran-
dom (not necessarily bipartite) graphs that have large
girth. Then for LDPC design, we will define the algo-
rithm for generating bipartite graphs with given degree
sequences. Generalizing proofs to this case is cumber-
some but is conceptually straightforward.

1.2 Organization of the Paper. The rest of the
paper is organized as follows. In Section 2, we provide
the setup and necessary definitions. In Section 3, we
describe the new algorithm for randomly generating
large-girth graphs, and state the main result. In Section
4 we explain the intuition behind the algorithm, and
present its application to LDPC codes in Section 5.
Finally the analysis of the algorithm and its running
time are discussed in Section 6. To the interest of space
some of the proofs are presented in the longer version
of the paper [4].

2 Definitions and Problem Statement

The girth of a graph G is defined to be the length
of its shortest cycle. Let G, ,, denote the set of all
simple graphs with m edges over n vertices and let
Gn,m,k C Gy m be the set of graphs with girth greater
than k. In this paper we assume that k is a constant.
We want to sample a uniformly random graph G from
Gp,m k- This is a relatively easy problem for m = O(n)
and in this paper our focus is on the difficult case of
m = O(n'*T®) for some small o > 0.

A nalve approach would be to start with an empty
graph Gy with no edges over the vertex set V =
{1,2,...,n} and sequentially add pairs (ij) chosen
uniformly at random (without replacement) among all
pairs (ij) that are not yet selected. Repeating the
edge addition m times leads to a uniformly random
member of G, that has girth larger than k, with
probability bounded away from 0. Re-running the whole
m steps a sufficiently large number of times, yields
a polynomial-time algorithm for uniformly randomly
generating graphs in Gy, when m = O(n). This
approach does not work for the case of m = O(n'*?)
since the success probability is of the order e=™". For he
applications to coding theory, even the case m = O(n)
is very challenging in practice since n is very large.

3 Algorithm and Main Result

Our sequential algorithm to sample from Gy, ,,, , works
as follows.

Algorithm S

(1) Set Gy to be the graph over vertex set V =
{1,2,...,n} and with no edges. For ¢t =0,...,m—



1, repeat the following steps:

— If there is no edge (i) such GrU(i5) € Gy 41,k
(adding any edge to G; creates a small cycle),
stop and return FAIL.

— Otherwise, consider the probability distribu-
tion p(ij|G:) given by equation (3.1) below
on the set of all edges (ij). Sample an edge
(17) with distribution p(ij|G:) and set Gy41 =
Gy U (7).

(2) If the algorithm does not FAIL before t = m — 1,
return G,

Let M; and M7 be the adjacency matrix of the
partially constructed graph G and its complement G¢
respectively. Let also S; be the adjacency matrix of
all edges (ij) such that Gy U (ij) € Gy 141,5. Define a
probability distribution on the set of all pairs (ij) and
represent it by a symmetric matrix Pg, = [p(ij|Gt)]

defined by
(3.1)

1 . —t ’
PGt:Z(G StQGXp Z( th) ‘|

Here Z(Gy) is a normalization constant. Symbols ® and
exp represent the coordinate-wise multiplication and
exponentiation of square matrices. i.e. for nxn matrices
A, B, C the expression A = B®C (A = éxp(B)) means
that for all 1 S ’L,_] S n we have Qi3 = bijcij (aij = ebij).

The main intuition for defining the probabilities
p(ij|G¢) through matrix multiplication is explained in
Section 4.

By construction Gy, € Gy m k. Let Pg(G) denote
the probability that algorithm S does not FAIL and
returns a graph G € Gy, . Let also Py denote the
uniform probability on the set Gy k; ie. Py(G) =
|Gy k|7t Our goal is to show that Pg(G) and Py (G)
are very close to each other and for that we will use the
total variation metric.

Definition The total variation distance between two
(not necessarily normalized) measures P and Q on a set
S is defined by:

drv (P,Q) =sup {|P(A) — Q(4)| : AcC S}.

Our main result is the following:

THEOREM 3.1. For m = n't® and constant k > 3 such
that o < [2k(k +3)]", the failure probability of algo-
rithm S is o(1). Moreover, the algorithm generates all

but o(|Gp m.k|) graphs in G, m k with equal probability
asymptotically. In particular we will show that:

lim dTV(]P)Sa]P)U) =0.
We will prove Theorem 3.1 in Section 6. We will also
discuss an implementation of algorithm S in Subsection
6.2 that has an expected running time of O(n?m).

4 The Intuition Behind Algorithm S

Define the execution tree T of the naive algorithm
described in Section 2 as follows. Consider a rooted
m-level tree where the root (the vertex in level zero)
corresponds to the empty graph in the beginning of
the algorithm and level r vertices correspond to all
couples (G,,m.) where G, is a partial graph that can
be constructed after r steps, and m, is an ordering of its
r edges. There is a link in T between a partial graph
(Gy,m) from level r to a partial graph (Gyi1,mr41)
from level r + 1 if G, C G,41 and 7., w41 coincide
on the first r positions. Any path from the root to a
leaf at level m of T corresponds to one possible way of
generating a random graph in Gy, .

Let us denote those partial graphs G, that have
girth greater than k& by “valid” graphs. Our goal is to
reach a valid leaf in T, uniformly at random, by starting
from the root and going down the tree. It is known
that [34] in order to achieve this goal, at any step r, one
needs to choose G,11 = G, U {(ij)} with probability
proportional to the number of valid leaves of T that
are descendant of (G,i1,7,41) (see [5] for a similar
analysis in more details). Denote this probability by
P(Grg1, Try1)-

The main technical contribution of this paper is de-
riving a new approximation p(G,41,m,+1) for the true
probabilities p(Gyy1, Tr41), selecting (Gry1, mp41) with
probability p(G4+1,7r+1), and controlling the accumu-
lated error H:l:_ol [D(Grs1, 1) /P(Grg1s Trgn)]-

Consider a random variable ng(G,41, 7r+1) that is
the number of cycles of length at most k in a leaf
chosen uniformly at random from the descendants of
(Gyrg1,mr41) in T. First we use Janson’s inequality
[2] to show that the distribution of ng(Gri1,mri1)
behaves like Poisson.  That is the probability of
Nk (Gry1,mr+1) = 0 (i.e. reaching a valid leaf) is ap-
proximately exp (—E[ni(Gri1,7r41)]). That explains
how p(Gri1,mr41) is calculated.

Furthermore, instead of calculating the error
P(Gry1, Tr41)/P(Gri1, mr41)] for each r and then
bounding the accumulated error, we look at the final
product, simplify it, and then find a bound for it. For
this problem, the standard method of bounding each
term separately, leads to much larger error terms and



is not sufficient for deriving our final result. In order
to make the implementation easier, it is not hard to
see that the terms E[ng(G,41,7-4+1)] can be approxi-
mated by matrix multiplication (more precisely by en-

¢
tries of the matrix S5 | <Mt + m—’fﬁMf) used in equa-

(3)
tion (3.1)). These claims will be rigorously proven in
Section 6. We believe that this idea is applicable for
the analysis of similar random generation algorithms

beyond their existing correctness ranges.

5 Application to LDPC codes

The ideas described above can be used to generate
random bipartite graphs with given degree sequences.
Such graphs define the standard ensemble for irregular
LDPC codes. Here we will show how to modify the
algorithm for this application without repeating its
cumbersome, but conceptually simple, analysis.

Consider two sequences of positive integers 7 =
T1,...,7p and ¢ = c1,..., ¢y, for degrees of the vertices
such that e = " 7 = > ¢;. We would like
to generate a random bipartite graph G(Vi,V2) with
degree sequence (7,¢), (i.e. for Vi = {uy,...,un}, Vo =
{v1,...,vm} we need deg(u;) = r; and deg(v;) = ¢;)
that has also girth greater than & (assume k is an even
number). We denote the set of all such graphs by Gz z k.
The algorithm is a natural generalization of Algorithm
S where the probabilities p(ij|G;) are adjusted to obtain
the elements of set Gr g .

Algorithm Bip-S

(1) Set Gy to be a graph over vertex sets V; =
{u1,...,un}, Vo = {v1,..., v} and with no edges.
Let also # = {f1,...,7,} and é = {é1,...,ém} be
two ordered set of integers that are initialized by
r=7and ¢ =¢ Fort=0,...,e—1, repeat the
following steps:

— If there is no suitable edges, i.e. For any edge
(u;v7), the graph G, U (u;v;) has a cycle of
lenght at most k, stop and return FAIL.

— Consider  the  probability  distribution
q(uv;|Gy) given by equation (5.2) below
on the set of all edges (u;v;). Sample an edge
(u;vj) with distribution ¢(u;v;|Gy) and set
Gt+1 = Gt @] (’U,ﬂ)j).

(2) If the algorithm does not halt before t = e — 1,
return Ge.

Here each probability ¢(u;v;|G;) is an approximation
to the probability that a uniformly random extension of

graph G; has girth larger than k. In order to find this
approximation, we will consider a configuration model
representation for the graphs with degree sequence (7, ¢)
(see [9] for the definition of configuration model). Then
we use the argument of Section 4, to find the following
Poisson approximation for g(u;v;|Gy):

fiéjefEk(Gt,uivj)

(52) Z(Gy)

q(uivi|G) =

where Z(G,) is a normalization constant, and #;, &;, de-
note the remaining degrees of 7 and j. Furthermore,
Ek(Gtv Ui Uj) = Efiﬁ v€ECay ]I{(uivj)e’y}a(’yv Gt, uivj)
where Co, is the set of all simple cycles of length
2r in the complete bipartite graph on vertices of Vj
and Vb, and a(v, Gy, uv;) is roughly the probabil-
ity that v is in a random extension of G;. More
precisely a(v, Gy, uvj) is a product of the three

—t— 1
%7 Hu[G’y b(’u,g,’}/,Gt,Ui’Uj), and

HWE’Y b(vs,7, G, u;v;) where b(ug, v, G, u;v;) is equal
to 1,7, or 7¢(#¢—1) depending on whether both, one, or
none of the adjacent edges to ue in  are in Gy U (u;v;)
respectively. b(vs, v, Gy, u;v;) is defined similarly.

We defer a more complete discussion of the codes
generated by this algorithm to a complete version of
the paper. Here we limit ourselves to a few remarks:
(1) Several definitions have been proposed for the sub-
structures responsible for the decoding errors at high
signal-to-noise ratio. Our algorithm can be adapted to
exclude any of these substructures (instead of cycles) as
well. (2) In any of these definitions, the cycles play a
dominant role. Therefore the above algorithm should
be a good starting point. (3) In practical code design
it can be preferable to partially structure the ensemble
for facilitating the layout (as, for instance, in proto-
graph codes [31]). Our graph generation procedure can
be adapted to partially structured ensembles as well.

terms

6 Analysis

The aim of this section is to prove Theorem 3.1. The
most challenging part of the proof is to show that Pg(G),
probability of generating a graph G by Algorithm S, is
not less than Py (G), the uniform probability, for almost
all graphs G in Gy, ;m k. In fact, the two parts of the
proof of Theorem 3.1 are given below. There is also a
brief analysis of the running time of the algorithm which
is discussed in Subsection 6.2.

Lower bound for Pg. The probability of gen-
erating a typical graph in Gy, % is at least a con-
stant fraction of the uniform probability. More pre-
cisely we will show that for all but o(|G,, m.k|) graphs
G € Gumi: Ps(G) > (1—0(1))Py(G) where the term
o(1) goes to zero quickly as n goes to infinity. Proof



of the lower bound covers almost all of this section and
as we can see in the next paragraph the main theorem
follows easily from it.

Proof of dry(Ps,Py) = o(l). Once the above
lower bound is given to us it is not hard to show
that Ps and P are close to each other in total vari-
ation metric. This part is an straightforward alge-
braic calculation. We just need to apply the trian-
gle inequality to the definition of dry (Pg,Py) and ob-
tain dTV (Ps,PU) S ZG€G71,7n,k |P5(G) — ]PU(G)| Then
depending on whether Pg(G) > Py(G) or Pg(G) <
(1—0(1))Py (G) we bound the term |Ps(G)—Py (G)| dif-
ferently. Let D C Gy, i be the set of graphs G where
the Ps(G) < (1 — o(1))Py(G) and let B C Gy, i be
the set of all graphs G with Pg(G) < Py(G). Now
assuming the lower bound on Pg given above the fol-

lowing facts hold: (i) |D| = (|Gnmk|) (ii) For
G € B\D : [Ps(G) —Pu(G)| = Ps(G) — Py(G) <
o(1)Py(G).
(6.3) > IPs(G) - Pu(G)] =
GEGy m &
> (Ps(G)—Pu(G)+2 Y [Ps(G) —Pu(G)| =
GEGyp ik GeB
> Ps(G)=Pu(@)+2 Y [Ps(G) —Pu(G)
GEGp m ik GeB\D
+2 ) |Ps(G) —Pu(G))
GeBND
< Z Ps(G) — Z Pu(G)
GEGy m & G€EGy m &
D> Pu(G)+2) 1
GeB GeD
< 1—Ps(FAIL) — 14 0o(1) + o(1)
< o(1) — Ps(FAIL) < o(1).

Moreover, since the left hand side of the equation
(6.3) is non-negative then the probability of failure of
the algorithm S , denoted by Pg(FAIL), is o(1). This
finishes proof of Theorem 3.1. [ |

6.1 Lower Bound For Ps(G) This proof contains
five main steps and the most important ones are the
Steps 4 and 5. Before entering the details we give
a high level description of the analysis. Since the
probabilities of selecting the edges (denoted by p(ij|G+)
) are calculated by a Poisson approximation, they are
—E¢(ij
E.(ij) or Ei(rs) refers to the expected number of
elements in a family of cycles (see Step 2 for the details).
We partition the union of these families of cycles for
all steps of the algorithm into two subsets depending
on whether they are from a numerator term FEy(ij)

of the form Where each random variable

or a denominator term E;(rs). We also consider a
third set of cycles corresponding to non-suitable pairs
(referred to by forbidden pairs in Step 3 below). The
probability Ps(G) can be shown to be proportional to
51152+ where each of S1, Sy and S is a function of
the cycles in a unique family among the three families
discussed above. We will show a combinatorial 1 to 1
correspondence between the cycles appearing in Sy, So,
and the ones appearing in S3 with negative signs. This
simplifies the summation S; + S5 4+ S3 and produces the
desired lower bound independent of the graph G.

Step 1: Using Jensen’s Inequality. The first
step is to write an expression for the probability that
the algorithm S does not fail and returns a fized graph
G € Gy m,x. Note that algorithm S sequentially adds
edges to an empty graph to produce a graph with
m edges. Hence for the fixed graph G there are m)!
permutations of the edges of G that can be generated by
algorithm S and each permutation can have a different
probability. Let 7 be any permutation of the edges of G
(i.e. a one-to-one mapping from {1,...,m} to the edges
of G), and let GT be the graph having V' as vertex set
and {m(1),...,7(t)} as edge set. This is the partial
graph that is generated after ¢ steps of the algorithm S
conditioned on having 7 as output. Now we can write
Ps(G) = 3, 177 p(n(t + 1)|GF). Assuming that =
is a uniformly random permutation then the term )
can be replaced by m!E,; where E, is expectation with
respect to the uniformly random permutations. Thus
we have

(6.4)

Ps(G) = m!E, {Hp t+1|G’T)}
m—1

= m!E, exp { Z log p(m

(t+ 1)|G?)}
t=0
m—1
> mlexp { Z E, log p(w(t + 1)|Gf)}

t=0

where the inequality is by Jensen’s inequality for the
convex function e*.

Step 2: Estimate for the probabilities p(w(t +
1)|GT). Recall from Section 4, that in algorithm S, after
t steps, the probability of adding an edge (i) to a par-
tially constructed graph G} should be proportional to
the number of uniformly random extensions of G U (ij)
to a graph in Gy, . Using the Poisson approxima-
tion this number is roughly proportional to e~ F+(Gt:ij)
where Ej(G,ij) is defined to be the expected number



of simple cycles' of length at most k if we add m —t—1
random edges to Gy U (ij). Define N = (}). It is easy to

see that Ek(Gt,ij) = Zf:3 Z;g Ngg’(ij)qtr_l_g where

qt = and N, Gt (9) is the number of simple cycles in
the complete graph on V that have length r, and include
(i) and exactly ¢ other edges of G;.

In fact the rigorous statement is given by the
following lemma and its proof is given in [4].

LEMMA 6.1. For any non-zero probability terrnkg(ij;|G§)
we have p(ij|Gy) > Z(ét)e—Ek(GwJ)—O(n )
where Z(Gy) = 3, e Be(Ger) s q summation over
all suitable pairs (rs) at step t.

Note 1. In the definition of p(ij|G:) in Section 3 we
used matrix multiplication to count number of cycles
which counts non-simple cycles as well. This is because
it makes the implementation of the algorithm easier.
For the analysis it is convenient to work with simple
cycles and the above lemma provides the comparison
that we need between these two methods of counting

cycles.

Step 3: Algebraic modifications. Now we use
the estimates given by Lemma 6.1 in equation (6.4) to
obtain:

m—1
Ps(G) > mlexp | — > Ex Ex(G7,7(t+1))
t=0

m—1
— Y Exlog Z(GF) — O(n*F+3F ey

t=0

By condition o < [(k(k +3) +1)]”" the third term of
the exponent is o(1). Now we are going to simplify the
second term of the exponent. Let us define Zp(GT) =
N —t—Y*  F.(GT) where F.(GF) is number of all
forbidden (unsuitable) pairs at step ¢. Now we drop the
reference to G7) for simplicity and obtain:

logZ = logZy+log(Z/Zy)

v s F,

= log |(N=0)(1 = ==2-7) | +10g(Z/20)
(a) Sk L F,
< log(N —t)— ]G;jt + log(Z/Z)

(b) k F.
< log(N —t)— E% +1log(Z/Zy)

where (a) uses log(l — z) < —z for x € [0,1] and (b)
uses N —t < N. Using the above we will the following

TCycles that do not repeat a vertex or edge.

modified lower bound for Pg(G):

m—1

6.5) Ps(G) > %e Z E.Ey(GT, m(t 4 1))
E m-—1 m—1
1 ﬁ Z(GY)
+ = E,F.(G}) — Er log = +o(1)|.
N TZ:3 t=0 =0 Zo(GY)

To simplify the notation, we will denote the three
terms in the exponent by S1(G), S2(G), S5(G) respec-
tively. In particular: S1(G) = S 01 E,Ep(GT,m(t +

D). $:(0) = 5, P LUER(GT) and $i(6) —

> 'E, log Z((GG,,) .

Next two steps are the most important parts of
our effort in proving the inequality Pg(G) > (1 —
o(1))Pu(G).

Step 4: Simplifying the exponent S(G) +
S2(G)+S3(G). This step shows the main benefit of leav-
ing the calculation of approximation errors for p(ij|GT)
to final steps. We will show that even though the terms
Si(G) for i = 1,2,3 can be large and dependent on
graph G, their sum can be simplified to an expression
which is independent of graph G. In fact we will show
that S1 and Sy will be completely canceled by the graph
dependent parts of Ss.

First we are going to find a lower bound for the S;’s.
These lower bound are given with the following lemma.

LEMMA 6.2. Let m = n'™® and constant k > 3 be
such that oo < [2k(k + 3)] 7" then for all but o(|Gp.m k)
number of graphs G € Gy, 1 the followings hold:

(a) S1(G) > o(1) — o
S S C ()] () e SRt (1 — 0)" .
(b) $2(G) > o(1) + XF_, [Crra (G2 [, 07 do.

(c) S3(G) > o(1
PO DA

where C, 4(G) 1is set of all simple cycles of length r in
complete graph on V that include exactly ¢ edges of G.

)+
|Cre(G)|(2) ~ (r =€) [} 0°(1—0)"~*"do.

Let us start by providing a high level over view of the
proof of this lemma and for now we just focus on S1(G).
By definition $,(G) = — >1"! Ex(GF, w(t +1)). The
first approximation we use is to change the randomness
given by w. The partial graph GT is a uniformly random
subgraph of G that has exactly ¢ edges. Instead we
look at Gy which is a random subgraph of G that has
each edge of G independently with probability 8 = t/m.
The subgraph Gy has t edges in expectation which
makes it a good approximation for G7. With this

substitution, one can see that — ;161 E.Ey(GT,7(t +



1)) is roughly equal to —mEg fol dOE (G, (if)) where
(ij) is a uniformly random edge of G.

The next steps focus on expanding the Ey. FEj is
summation of the terms ¢/ —*~! for any couples (v,4j)
where 7 is a simple cycle of length r on complete graph
on V that has £ edges of Gy and (ij) is an edge of G\Gy
that is in v as well. For any fixed r, ¢ it can be shown
that the expected number of such couples is dominated
by the cases where [YNGy| = |yNG|—1 = £ that is when
(i7) is the only edge of GN~ that is not in Gy. Moreover
q: is approximately equal to (1 —8)m/N. Therefore the
contribution of the pairs (v,ij) in S1(G) for any fixed
r, ¢ (i.e. for all ¥ € C, ) is the same. Thus we obtain
the right hand side of the Lemma 6.2(a).

The above discussion is proven rigorously in [4].
Now we will show how S7 + S5 + S5 is simplified using
the above lower bounds.

Step 5: Finishing the proof of Pg > (1 —
o(1))Py. First we provide an estimate for number of
graphs in the set Gy, . Using Janson’s inequality
[2] one can obtain close approximation for number of
graphs in the set G, 5. In fact Janson’s inequality
shows the number of cycle of constant length in G,
converges to a Poisson random variable. The following
Lemma formalizes this statement.

LEMMA 6.3. Let m = n't® and constant k > 3 be
such that o < (2k — 1)7Y. Then |Gy m k| is equal to

() exp [~ 314 1C ()" +o(1)].

Where C, is the set of all simple cycles of length 7 in
the complete graph on vertices of V. Proof of Lemma
6.3 is given in Appendix A.

Next we will show that how different terms in
the lower bounds for S;’s in Lemma 6.2 cancel each
other. The main key in relating the terms in those
lower bounds of S;’s is the following equation which is
obtained using integration by parts for r —1 > ¢ > 1:

(6.6)
1 1
l—1 _ r—~ — (r — Y4 _ r—0—1
e/o 011 — 0)tdo = ( e)/o 64(1 — ) *1dp

Therefore, combining equation (6.5) and Lemma 6.2 for
all graphs G in G, ., 1 that satisfy Lemma 6.2 (all but
o(1) fraction of the elements in Gy, ., k) we obtain:

51(G)+52(G)+53(G)+o(1)

e = B
oW F 5 [Cro(@)(%)" v [o (1—6)""1de
: ©
1
(6.7) =

(V)M =Erms [Cro(@I(%)"

where the second inequality is the result of equation
(6.6) and some algebraic cancelations as follows. All
terms in the lower bound for S; with 1 < / < r —2
are canceled with the corresponding terms in the lower
bound for S3, and the £ = r — 1 term in the lower bound
of S; is canceled with the lower bound of Sy. Therefore
the uncanceled terms in S1(G)+S2(G)+S5(G) are £ =0
terms from the lower bound of Sj3.

Comparing the right hand side of the equation (6.7)
and the expression for |G, m k| given by Lemma 6.3
we see that the only difference is the use of C, o(G)
instead of C,. But note that for a cycle C' € C, the
probability that it intersects graphs G is at most r
times the probability that a fixed edge of C' intersects G
(union bound). Therefore P, ,,(C NG # 0) <rm/N =
O(n®~1). This shows the following:

m

b k
;3 |CT,O(G)|(%)T 2 TZ:S |(CT|(1 _ O(na—l))(ﬁ)r

k
> —0(n" V) £ 31 (5)"

=3 .
=o(1) +Z|<cr|(%)ﬁ

Thus, we obtain

1 ()
Ps(G) > = > (1—-0(1)) Py (G
= (¥)er DSt C1(%) = (ol Fu(@)
where (h) uses Lemma 6.3. |

6.2 Running time of the algorithm. The fact that
Algorithms S has polynomial running time is clear since
the matrix of the probabilities, Pg,, at any step can
be calculated using matrix multiplication. In fact a
naive calculation shows that Pg, can be calculated with
O(kn?) = O(n?®) operations. This is because A" for any
r takes O(rn®) operations to compute. So we obtain
the simple bound of O(n®m) for the running time of the
algorithm S. But one can improve this running time by
at least a factor n with exploiting the structure of the
matrices.

Recall that the matrix Pg, is proportional to S; ®

m—t

exp {_ ZZ;; (Mt + (Z)_th) ] Let us denote the
matrix M; + —(T)*_tth by X:. We also denote the
2

adjacency matrix of the partially constructed graph G}
at step t by A;. Notice that the adjacency matrix of
all “suitable pairs” at step ¢ (denoted by S;) is equal to
I — @(Ef;é A7) where J,, is the n by n matrix of all
ones and the operation s/lg\n(B) for any matrix B means
that the “sign” function is applied to each entry of the



matrix B. This is correct since any non-suitable pair
(ij) corresponds to a path in G of length r between 4
and j for 0 <r <k — 1. Such path forces the ij entry
of the matrix A} to be positive.

Now we can store the matrices At,...,Affl

and X7,... ,th_l at the end of each iteration and
use them to efficiently calculate A;iq,..., Afjll and
X2, th;ll. This is because the differences A;11 —

A; and X1 — Xy are very sparse matrices and hence
updating the matrix multiplications can be done with
O(n?) operations which reduces the overall running time
to O(n?m).

Since Theorem 3.1 shows that algorithm S is suc-
cessful with probability 1 — o(1) then the expected run-
ning time of the algorithm S for generating an element
of the set Gy, py 1 is O(n?m) as well. A similar idea can
extended to the algorithm Bip-S for generating LDPC
codes. We leave a detailed analysis of the running time
and implementation of these algorithms to the longer
version of the paper.
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A Estimate For |G, 1| and proof of Lemma
6.3

First we approximate the random graph model Gy, ,,
with the Erdés-Reyni model G,, ,, for p = m/N. We will
denote the probability with respect to the randomness
in G, and G, by Py, and P, ,, respectively. Let
A be the event that a random graph, selected from

G(n,p) or G(m,n), has girth greater than k. First
we will calculate the probability P, ,(Ax). Then we
will formalize the following approximation to obtain
estimates for |Gy, m. k|t Pnp(Ak) = |Grm kl/|Gnml-

A.1 Janson’s Inequality. In this section we briefly
review Janson inequality. Given a collection of ‘bad
events’ {B; i € I}, we would like to estimate
the probability ]P’( Niel Bf) assuming that the events
B¢, i € I are “almost independent”. More formally,
let B, v be real numbers such that 8 < 1 and for all
iel: P(B;) < and ZB]_NBi P(B; N B;) = 7 where
B; ~ B;j means that the events B;, B; are dependent.
Then Janson’s inequality is the following:

(1.8)
_r
g]P’ ) < P(Nyer BY <£[HP exp(2(1_6)>.

In particular, for v = o(1) we obtain: P( N;er BY) =
(14 o(1)) I Ticr P(BY)-

A.2 Finding P, ,(Ax) via Janson Inequality. By
definition, P, ,(Ax) is the probability that a random
graph G in G,, , has no cycle of length at most k. Define
the set of all cycles of length r in complete graph on V' by
C,. Let C= U’,f:3(CT and consider the set of bad events
B;, i € C where B; is the event that G contains the cycle
i. It is not difficult to see that: P(B;) = O(p®) and

N =0 (27::3 n2r72p27“71)' O(n*1)

then using Janson’s inequality (1.8) we obtain:

O(n(%*l)a*l) H P(Bf)

i€l

And since p =

HP(BiC) SPrp(dr) <e
i€C

which gives the following for oo < 1/(2k — 1):

eo® HIP’(B

1€C

eI

1€C
)+ IChllog(1 — pr)}

r=3
k
exp [0(1) =Y ICp"
r=3
where the last equality uses |C,|[p*” = O(n" n
o(1) since o < 1/2.
Finally we are ready to prove Lemma 6.3 which is
achieved by approximating |Gy, m x| through P, ,(Ag).
Proof of Lemma 6.3. Proof uses monotonicity of
the events Ay, in the random models G, , and G, ,,, (see
Lemma 1.10 in [17]). In particular for 0 < p; < ps <1

Prp (Ak) =

_ plcngth(i) )

= exp |o(l

(1.9) =

2ra—2r) —



and 0 < M7 < Ms < N the following inequalities hold:
Pp p, (Ak) > Py p, (Ag) and Py, ar, (Ak) > P, (A).

On the other hand for any 0 < ¢ < 1 the random graph
model G(n, ¢) conditioning on graphs to have exactly m
edges is equivalent to the random graph model G, .
Thus for a random graph G the following holds:

(110)  Pog(Ar) = Pug (IE(G)| = m) + Pug (IE(G)] < m)
< _i (ALIEG)| = O 4(|E(G)] = )
+ Prq (|E(G)| < m)
2 S B (Al IB(G)| = m)Ba g (1E(G)] =

l=m

+ o (1B(G) < m)
< P (A) + Pog (|E(G)| < m).

Similarly, one can obtain the following:

(L11) Py g(Ax) = Prg(Ax N{E(G)] < m})
:Z «(AL||B(G)| = O)Pn 4| E(G)] = 0)
(g Ak“E ipnq é)

=0
= Prm (Ak)Pr o (|E(G)] < m)
ZPn,m(Ak)— Prg(IE(G)] > m)

where both (a) and (b) use monotonicity. Now for a
small constant § > 0 let

148 148
m—m 2 m-4+m 2

N N
Using Héeffding’s inequality the followings hold

p1= and  py =

Pop ([E@G)>m) < &%
(112)  Po,, (|BG) <m) < e .

This is due to a variation of the Héeffding’s given in [35]
that forany 0 < ¢ < 1land 0 < 0 < 2 = gives:

2Nq

P 1@ = 4] > i) < 5

Now one can see that by taking 6 = z(m”fi’;iﬁ)

obtain:

we

o (1E@)] > m) 2 B (1B > (140N )

_3%Ng _mf
<e 1 Se 8

where (c) uses m > (1 4+ §)Ng. Similarly we can
prove the second inequality in (1.12). Thus we can use
equations (1.9), (1.11) to obtain the following bound for
Ppom(Ag):

Prom(Ak) < Prp, (Ak) + Prp, ([E(G)] < m)

k
- Z |(Cr |p£
r=3

and similarly using (1.10) we get the lower bound:

<exp |o(1)

Pr,m(Ak) = Prp, (Ak) + Prp, ([E(G)] > m)

k
mB
> o [of1) = 36|~
r=3
Let H(p) = Zf:g |C,.|p" then combining the above two
inequalities:
(113) 60(1)+H(P)—H(p1) _ eH(p)_msﬁ
Pom(Ar)
~exp[-H(p)] ~
60(1)+H(p)7H(p2) + eH(p)imTB_

Now we use H(p) = O(n*®), m = n'T and apply the
mean value theorem to H(z) to obtain |H (p) — H (p;)| =
|p—pi|H'(p) for p between p, p;. Since for H'(p) we have
H'(p) = O(n*=D%) and [p;—p| = O(n"""5" ~2), one
can simplify the equation (1.13) to obtain the following

(1.14)
explo nwﬂk—lmﬂ —7]P)n’m(Ak)
| xplo(1) + O - oA

a_n(lta)B
< eo(’ﬂk - — )'

. (1+a)8
We would like to have nFe — - 3

%2(1@ + (k- 1)a — 2 — —oo which will give
us Pp o (Ax) = 60(1)_H( ). These inequalities can be
achieved if 3 satisfies 1 o <B< W and such

exist since by assumption o < 1/(2k—1) that guarantees
the upper bound for 3 is larger than the lower bound.
Therefore

N
n,m = ]anA
G <m> m(A)

- (ﬁ ) explo(1) = H(p)

_ (Z) exp [ou) - i'“r' (%” |

This finishes the proof. [ |
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