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SUMMARY 
A survey on Mseleni joint disease in South Africa involved the scoring of pelvic X-rays of women to measure 
osteoporosis. The scores were ordinal by construction and ranged from 0 to 12. It is standard practice to use 
ordinary regression techniques with an ordinal response that has that many categories. We give evidence for 
these data that the constraints on the response result in a misleading regression analysis. McCullagh's" 
proportional-odds model is designed specifically for the regression analysis of ordinal data. We demonstrate 
the technique on these data, and show how it fills the gap between ordinary regression and logistic regression 
(for discrete data with two categories). In addition, we demonstrate non-parametric versions of these models 
that do not make any linearity assumptions about the regression function. 
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1. INTRODUCTION 

Mseleni joint disease, a crippling polyarthritic disease of unknown etiology, is localized to a small 
area in Northern Kwazulu, South Africa, and is particularly prevalent in women.'-3 A recent 
suggestion is that Mseleni joint disease may not be a single entity, but may consist of more than 
one ~ o n d i t i o n . ~ . ~  To investigate this hypothesis, X-rays of 273 women from the Mseleni area 
(X-rayed in earlier surveys) were reviewed, and the opportunity was used to screen pelvic X-rays 
for the presence or absence of osteoporosis, a demineralizing bone disease. The score (OP) is 
constructed as a sum of osteoporosis grades (G3) for the sacrum, ilium, pubis and ischium with a 
minimum of 0 and a maximum of 12. Apart from comparisons with other communities in South 
Africa, data analysis focused on a possible difference in OP between women with and without 
osteoarthrosis (OA). The confounding effect of AGE weakens a direct comparison of OP between 
the two groups, since both OA and OP have positive associations with AGE. This sets the scene 
for an analysis that adjusts for age. 

Table I presents a first attempt at an analysis by grouping the data into age categories. The two 
columns show the mean OP score in age categories for women with OA (OA positive) and women 
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Table I. Mean OP scores of AGE and OA classification. The number of subjects 
is given in parenthesis. For each age category, P-value corresponding to the 

Kruskal-Wallis two sample rank test is given 

Mean OP score P-value 
AGE OA positive OA negative (Kruskal-Wallis) 

~~ ~~~ ~ 

11-20 2.83 (6) 053 (139) 0.09 1 
21-30 3.67 (3) 1.00 (13) 0.194 
3 1-40 3.57 (14) 1.52 (27) 0.177 

51-60 8.67 (6) 3.00 (4) 0.067 
41-50 6.77 (30) 216 (31) < o.Ooo1 

without OA (OA negative), as well as the number of subjects in each category. The third column 
gives p-values for the age specific Kruskal-Wallis tests between the OA positive and negative 
groups. Only the 41-50 year category shows a significant difference at the 5 per cent level. 
However, the mean OP scores in the OA positive groups are consistently higher than in the OA 
negative group. Has this grouped analysis helped us, or is it possible that the grouping entailed 
some loss of information? 

We find that the grouped analysis has several deficiencies: 

1. the mean values and the tests to compare them depend on the choice of age categories; 
2. even if we choose the categories well, we can lose information by averaging within a category; 
3. it does not provide a summary measure of the group separation. 

There are probably a number of alternative grouped analysis techniques that would address 
problem 3, such as the Friedman test,6 or a weighted average of differences. Rather than dwell on 
these, we look at some methods that address all three. 

A natural candidate is linear regression, usually referred to as analysis of covariance in this 
context, which exploits the continuity of age when making the age adjustment. We will see, 
however, that an analysis of covariance may give misleading resalts due to the categorical nature 
of the response. 

We have several goals in this paper: 

1. to present smoothing as a non-parametric alternative to ordinary linear regression, and 

2. to highlight possible problems in the analysis of ordinal data with conventional regression 

3. to demonstrate the proportional-odds model as a solution to these problems; 
4. to describe briefly a non-parametric version of this proportional-odds model. 

thereby deduce the correct form for subsequent parametric regressions; 

techniques; 

2. METHODS AND RESULTS 

2.1. Linear regression models 

Figure 1 displays the results of several regression analyses on the observed scores (0 denotes OA 
positive or OA+, 0 denotes OA negative or OA-). The most general model, having separate 
slopes and intercepts, has the form 

OP = aoA + BOA AGE +error, OA = i- or - , (1) 
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Figure 1. Regressions of OP score against AGE for OA positive (0) and OA negative (0) groups 
The solid curves represent the non-parametric fit, model (4) in text. The dashed lines represent the separate slopes 
regression model (I), and the dashed curve the quadratic model for the OA positive group. There is a noticeable bunching 

of the OP scores in the lower left corner 

which allows a different level for O A  + and -, as well as a different age effect. The alternative of 
interest is 

(2) 
the parallel slope model, which claims the same age effect in each group. Other more restrictive 
alternatives allow no group effect at all (same intercept, same slope), and no age effect (same or 
different intercept, no p). 

Table I1 summarizes the results of fitting all these models by least squares. We see in particular 
that the effect of separate slopes over parallel lines is significant and indicates a different age effect 
for the two groups. Figure 1 also shows the fit of the model 

OP = aoA + + POA + AGE + yOA + AGE2 + error 

OP = aoA + p A G E  + error, O A  = + or - , 

OP = aOA - + BOA - AGE + error, (3) 

and Table I1 shows the quadratic effect is significant. The quadratic effect was also suggested by 
the non-parametric smoothing technique described in the next section, although admittedly one 
would likely fit a quadratic term as the first try upon suspicion of non-linearity. 

The linear model (quadratic in fact) has become rather complicated; at least its message about 
the effect of age is. Looking at Figure 1, we might feel suspicious about the bunching of the zeros in 
the younger age groups. The question that begs itself is whether the X-ray rating of zero is too 
crude to describe the apparent continuous relationship we see in the figure; would the age effect for 
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Table 11. ANOVA table for the regression models in Section 2. All F tests are based on Gaussian error 
assumption. Test 1-2 is more of an approximation than the others since for these non-parametric models: 
(1) RSS's are only approximately chi-squared distributed; (2) models are not strictly nested, and (3) RSS's are 

not strictly independent. Test 1-2 uses 2 as error, 3-4, 4-5, and 5 4  uses 6 as error term in F test 

Model 
Residual Effect Effect F 

RSS d.f. RSS d.f. ratio 

1 
2 

1-2 

3 
4 
3 4  
5 
4-5 
6 
5-6 

Non-parametric parallel curves 1 721.5 
Non-parametric separate 
curves 1658.5 
Effect of separate versus 
parallel curves 

Linear - no OA effect 2 202.3 
Linear - parallel slopes 1779.0 
Intercept effect (OA) 
Linear - separate slopes 1686.9 
Effect of separate slopes 
OA + quadratic OA - linear 1655.0 
Effect of OA + quadratic 

268.1 

265.2 

63.0 2.9 35* 

270.0 
223.3 1 .o 36.2t 

92.1 1 .o 14.9t 
269.0 

268.0 
31.9 1 .o 5 2 *  

~ ~~ 

* p < 0 0 5  
p<O.Ol 

the OA-group have continued below the 0 line and parallel to the line for OA+? To investigate 
this question, we will need to transform the response scale in some way. Before we do this, 
however, let us have a look at  the smoothing techniques mentioned above. 

2.2. Smoothing and additive models 

Although convenient, the linear model can be very restrictive as a means for modelling the effect of 
continuous scale variables such as age. A more general version of (1) is 

OP = aOA +foA(AGE) +error, OA = -t or - , (4) 
where f is some arbitrary (possibly smooth) function of AGE, with the subscript denoting a 
different function for each group. Since the models are completely separate in the two groups, let 
us see how to fit the model in either one, and thus drop the subscript OA. 

If the functionfis completely arbitrary, it seems we could fit each OP value exactly without 
error, so something is wrong. To  estimate the function we need to assume that it is smooth in some 
sense, so that locally it is roughly constant. This motivates th.e k nearest neighbour smoother 
which would estimate the function at each AGE value by the average OP score for the k points in 
the sample closest in AGE. We can do  this efficiently by moving a window from left to right, and 
updating the average as points enter and leave. 

This is a very simple smoother; a variety of more sophisticated smoothers exist, all with the same 
goal. For example, instead of using nearest neighbours, kernel smoothers give points weights that 
die down smoothly with their distances in AGE from the target AGE,, and then compute a 
weighted average of the response to obtain the fit at AGE,. One does this at  all values AGE, of 
interest. Other smoothers use the fitted values from straight lines in the k nearest neighbourhoods, 
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or even locally weighted straight lines. Smoothing splines do not explicitly use neighbourhoods; 
they simply impose a restriction on a global measure of smoothness of the function, such as the 
integrated second squared derivative. There is already a large literature on smoothers; see 
Cleveland7 for a description of the locally weighted running line smoother, and Silverman* for a 
review of spline smoothing techniques. 

The two solid curves in Figure 1 are the estimates of the functions in (4) obtained by separately 
smoothing the OP scores against AGE for the OA+ and OA- groups. They are well 
approximated by the quadratic/linear model in Section 2.1. We used a locally weighted running 
line smoother with symmetric near-neighbourhoods, with a span of 50 per cent of the data in any 
given central neighbourhood (and because of the symmetric neighbourhoods, these shrink down 
to 25 per cent at the ends). Although our choice of span seems arbitrary, we have had empirical 
success with 50 per cent spans. Fixed span smoothers allow us to compute approximate ‘degrees of 
freedom’ for the non-parametric fits, which are used in Table 11. A span of 50 per cent corresponds 
to approximately 3 to 4 d.f.I2 

It is also possible to fit non-parametric analogues of the alternative linear models described 
above, the most interesting being the model with parallel curves but different intercepts.’*’O 
Approximate ‘F’ tests have been developed to compare the different non-parametric models as 
well, and are included in Table 11; the details of their derivation, however, are beyond the scope of 
this article. To summarize the results of this and the last section, we conclude that either the 
linear/quadratic model, or equivalently the separate curve non-parametric model is appropriate if 
we model the scores themselves. 

2.3. The proportional-odds model 

We now address the question of whether the nature of the response variable might be responsible 
for the non-linear regression. At least in the grouped analysis (Table I) we used a non-parametric 
test, although a separate one in each age category. We require an analysis that enjoys the 
advantages of both the grouped analysis, as well as regression methods with their ability to 
incorporate effects. 

Many models have been proposed to extend the logistic regression model for binary data to 
categorical data with more than two outcome categories. One needs special care with ordered 
categories. The proportional-odds model is one such extension, although in our mind ideally 
suited to these data. 

The most appealing motivation for the proportional-odds model is in terms of a latent (and 
usually unobservable) continuous response variable. l s l  Specifically we assume that the observed 
data are a categorization of the underlying continuous variable. In this case it would seem that 
many of the zeros in the OA negative group are truncated low OP scores. We then model the 
location parameter of this underlying response as a function of covariates. This has the same 
flavour as ordinary regression, and will allow us to summarize the age adjusted differences in a 
similar way. The model makes very mild distributional assumptions; we assume the observed 
counts have a multinomial distribution over the 13 categories. 

Suppose the latent variable Z has a distribution F,,(z) = F(z - q) where q is a location parameter. 
Given a vector of covariates x ,  we customarily model q(x)=/Yx, and thus the conditional 
distribution of Zlx by F(z -Px) .  We do not get to see realizations of 2; rather we see where Z lies 
in the categorization (- co, a , ] ,  (al, a,], . . . , (ak-2, a,- 1], (ak- 1, co) of R,’ for some unknown at 
This induces the observed random variable Y, where Y =  k if and only if Z E (ak- ak], and thus we 
can define the cumulative probabilities yk(x) = P( Y < k I x )  = F(uk - Bx). The choice of F is not 
crucial to the model; for ease of computation we use the logistic distribution F(z)= eZ/( 1 + eZ) and 
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Figure 2. The proportional-odds modd 
The curves are plotted on the latent scale (2 or underlying continuous variate). The parallel dashed lines represent the final 
parallel slopes linear model; the solid non-linear functions represent the separate curve non-parametric model. These 
curves can be interpreted as the regression of 2 against AGE. The dashed lines are drawn at the values ti,; each region 
between dashed lines represents the range of 2 that corresponds to a given catizgory of Y. The Y-scale is labelled on the 

right vertical axis 

get the model 

logit ( Y k ( X ) )  = mk - FX, ( 5 )  

where logit (yk(x)) =log [yk(x)/(  1 - yk(x))] .  In our application Y = OP, the score ranging between 0 
and 12. We might think of the latent variable 2 as the underlying 'continuous' measurement of the 
state of osteoporosis in the patient, measured on a suitable scale. 

We make the following observations: 

1. The odds ratio yk(Xl)(l -7&))/(1 -yk(~1))~k(~2)=exp(/?'(x2 -xl)) is independent of k, and 
hence the name proportional odds. This gives the relative odds of having a score of k or less 
for two different values of the covariates, and has the same flavour as the proportional 
hazards model of  COX.'^ 

2. The model specifies that the entire distribution of 2 shifts linearly with x. This in turn implies 
a smooth shift in the histogram of Y for changes in x. In Figure 2 we see the model fitted to 
the OP data. The parallel lines show how the estimated median (or any quantile) of Z 
changes with age in the two OA groups. 

3. The logistic assumption is not crucial; in fact any symmetric bell shaped distribution would 
give very similar results. In practice we can also use the Gaussian, as in Probit analysis, 
although the logistic is computationally more attractive. If we have reason to believe that the 
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Table 111. ANOVA (analysis of deviance) table for the proportional-odds regression models 

Effect Effect 
Model Deviance D.F. deviance d.f. 

1 
2 
1-2 

3 
4 
3 4  
5 
4-5 
6 
5-6 

7 

Non-parametric parallel curves 788.0 
Non-parametric separate curves 786.3 
Effect of separate versus parallel curves 

Linear - no OA effect 814.4 
Linear -parallel slopes 789.2 
Intercept effect (OA) 
Linear - separate slopes 786.5 
Effect of separate slopes 
OA+ quadratic, OA- linear 7862 
Effects of OA+ quadratic 

Separate linear versus separate curves 

257.1 
254.2 

1.7 2.9 

260.0 
259 

258.0 

257.0 

252* 1 .o 
2.1 1 .o 
0.3 1 .o 
0.2 3.8 

* p<0.05 

underlying distribution is asymmetric, we can use alternative links such as loglog or 
complementary loglog. 

For  our data the linear model is 

logit (Yk) = ak - KOA - BOAAGE, OA = +, - (6) 
and as before, we will test if we need separate slopes, and thus if we can replace BOA with p. 

We estimate the model (6) by maximum likelihood in the multinomial family. As in the case of 
logistic regression, the algorithm is iterative although somewhat more complicated. Hastie and 
Tibshirani” describe the algorithm in detail, and represent it in an intuitive form that also allows 
easier programming. They deal with both grouped as well as ungrouped data. Their algorithm 
iterates two steps, which we summarize briefly. 

At any stage of the algorithm, current estimates of the aL)s and /? allow us to compute the fitted 
cumulative proportions Y k  for each observation (and hence at each of the observed covariate 
vectors). We then compute a vector of K - 1 standardized residuals per observation (as opposed to 
a single residual per observation in binary logistic regression). The two steps are then: 

1. We update ak by computing a weighted mean vector of these residual vectors. The weights 
(matrices) depend on the multinomial distribution as well as the derivative of the link 
function. 

(a) computing a single residual per observation. This is a weighted average of the vector of 

(b) computing a single weight per observation, which is the sum of all the weights in the 

(c) performing a weighted linear regression of this residual onto the covariates. 

2. We update the regression coefficient by: 

K - 1 residuals that uses the row sums of the weight matrices as weights; 

weight matrix; 

This algorithm converges to the maximum-likelihood solution. 
As is usual with maximum-likelihood methods, we can base tests of effect between various 

nested models on the likelihood ratio test statistic or deviances. We compare two models by 
computing the difference in their deviance scores, the difference in their degrees of freedom (d.f.), 
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Figure 3. The fitted proportional-odds model on the Y-scale 
Points on the curves represent the OP score corresponding to the fitted values from the parallel linear regression model. 
The categorization (or parallel fitted 2-values) causes the curves to bunch at the low AGE values, just as in Figure 1 

and reference to the appropriate chi-square p-value. Further details, beyond the scope of this 
article, appear Se veral standard statistical software packages have capabilities 
for fitting models of this kind. 

Figure 2 and Table I11 summarize the fit of these models to the OP data. The test for separate 
curves (and later for separate slopes) is not significant. The constant OA effect (icOA) is highly 
significant. As is the case for logistic regression analysis on binary data, we have no goodness of fit 
statistic for this model if we do not group the data; we can only compare effects between models. 

The dashed horizontal lines in the plot correspond to the fitted constants &, and hence the 
regions between these lines correspond to categories (labelled on the right of the plot). We can 
interpret the fitted regression line in two ways. On the 2-scale, we see how the median (or any 
quantile) of the underlying variable changes with the covariates. On the Y-scale, the ‘fitted median 
category’ for an observation is that category whose region contains the fitted values. 

Although the Z-score generated by the proportional-odds regression (Figure 2) appears to 
allocate negative scores for osteoporosis, it is an estimate in standardized form and so the location 
and scale are irrelevant. 

Figure 3 shows the fitted median categories for this parallel slopes linear model plotted against 
AGE, and we see the separating curve effect. It seems evident from Figure 2 that the truncation at 
category 0 and the squashing up of the transformed scores at the high categories indeed account 
for the apparent different curves seen in the analysis in the previous section and in Figure 3. 

Although not shown here, we then used the proportional-odds model further to compare the 
OP scores between two geographical AREAS: Mseleni and Manguzi (a neighbourhood area with 
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lower prevalence rates). We found that a parallel slope model was not significant (a deviance of 1.2 
for 1 d.f.). This was a relatively ‘clean’ analysis by virtue of the parallel slopes. This means that we 
can adjust the scores for AGE and OA, and then compare the adjusted scores between AREAS. 

3. THE ADDITIVE PROPORTIONAL-ODDS MODEL 

Figure 2 also contains two non-parametric curves, which we fitted first in an exploratory fashion. 
We calculated these with the use of a generalization of the proportional odds model (6). In the 

same spirit as the generalization from (1) to (4), we did this by replacing the linear component in (6) 
by a non-parametric one: 

logit (yk) = tlk - xOA -f,,(AGE), OA = + , - . (7) 
The estimation of (7) is also based on likelihood principles, and involves a suitable generalization 
of the techniques used in the previous section. Instead of a weighted linear regression in step 2 of 
the iterative pair, we perform a weighted additive regression. The details, even further beyond the 
scope of this paper, appear in Reference 11. 

The fitted non-parametric curves do seem to suggest that the OA positive group increases 
slightly faster than the OA negative group. We can perform crude deviance tests that do not 
support this (see Table 111). We summarize all the models tested in Table 111. None of the fitted 
models performs significantly better than the parallel slopes linear model, for which the constant 
OA effect is highly significant. 

4. DISCUSSION 

Epidemiologic studies often involve the analysis of discrete variables. A wealth of analysis 
techniques is available for a dichotomous (0-1) response. In the regression context, standard- 
ization techniques and logistic regression are popular. When the response has more than two 
ordered categories, the common approach is to resort to the usual interval scale techniques, such 
as linear regression. We have presented an analysis that illustrates an alternative regression 
technique: the proportional-odds model. We have used the model on data with ungrouped 
covariates; one can similarly analyse data in the form of contingency tables, where one of the 
classifications (the response) has ordered categories. 

For the example presented, we feel that the ordinary regression results mislead; we attribute the 
cause to the discrete nature of the data. In particular, the scores appear hemmed in at zero. They 
may all be recorded as zero because the X-ray screening method lacks sufficient sensitivity to 
differentiate among them. This suggests a badly categorized underlying ‘continuous’ variable, and 
hence the proportional-odds model seems appropriate. 

If we were to view the response Y as continuous, we would conclude that the error structure is 
different at the low ages. A casual glance suggests the variance is increasing with AGE, and hence 
ordinary linear regression is not appropriate. One approach in situations such as these is 
to transform the Y values to force the error structure to be approximately independent of AGE; 
a log transform might do it here. From then on one fits models and makes interpretations 
on the transformed scale. There is an art in picking the appropriate transformation. The technique 
of Box and Cox” allows one to pick automatically an appropriate transformation, and removes 
some of the subjectivity. One can also view the proportional-odds model as a form of 
transformation model for categorical data, only more general. It has a similar flavour to the 
Box-Cox method. We estimate simultaneously the linear regression and the category cutpoints 
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that define intervals for the underlying response Z. Rather than transform the discrete values of Y 
t o  another set of numbers, we transform them to  intervals. 

In contrast to the linear regression techniques, the proportional-odds regression indicates that 
the OA difference in OP scores is constant over age and significantly non-zero. This means that the 
age-related deterioration in osteoporosis occurs at the same rate in individuals with or without 
osteoarthrosis, although a t  different levels. 
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