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Abstract

We consider inexact linear equations y ≈ Φα where y is a given vector in Rn, Φ is a
given n by m matrix, and we wish to find an α0,ε which is sparse and gives an approximate
solution, obeying ‖y − Φα0,ε‖2 ≤ ε. In general this requires combinatorial optimization and
so is considered intractable. On the other hand, the `1 minimization problem

min ‖α‖1 subject to ‖y − Φα‖2 ≤ ε,

is convex, and is considered tractable. We show that for most Φ the solution α̂1,ε = α̂1,ε(y, Φ)
of this problem is quite generally a good approximation for α̂0,ε.

We suppose that the columns of Φ are normalized to unit `2 norm 1 and we place uniform
measure on such Φ. We study the underdetermined case where m ∼ An, A > 1 and prove
the existence of ρ = ρ(A) and C > 0 so that for large n, and for all Φ’s except a negligible
fraction, the following approximate sparse solution property of Φ holds: For every y having
an approximation ‖y − Φα0‖2 ≤ ε by a coefficient vector α0 ∈ Rm with fewer than ρ · n
nonzeros, we have

‖α̂1,ε − α0‖2 ≤ C · ε.

This has two implications. First: for most Φ, whenever the combinatorial optimization
result α0,ε would be very sparse, α̂1,ε is a good approximation to α0,ε. Second: suppose we
are given noisy data obeying y = Φα0 + z where the unknown α0 is known to be sparse and
the noise ‖z‖2 ≤ ε. For most Φ, noise-tolerant `1-minimization will stably recover α0 from y
in the presence of noise z.

We study also the barely-determined case m = n and reach parallel conclusions by slightly
different arguments.

The techniques include the use of almost-spherical sections in Banach space theory and
concentration of measure for eigenvalues of random matrices.
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1 Introduction

Underdetermined systems of linear equations appear naturally in many important problems in
science and technology, ranging from array signal processing to image processing to genomic
data analysis. Such systems, with fewer equations than unknowns, may have many solutions,
but often the solution of interest is the sparsest solution – the one having the fewest possible
nonzeros. In a companion paper [8], it was shown that for “most” underdetermined systems,
the sparsest solution – if it is sufficiently sparse – can be recovered uniquely by solving a convex
optimization problem, namely, by finding the solution with smallest `1 norm. Here by sufficient
sparsity, we mean that the number of nonzeros in the solution was only a certain fraction of the
number of equations.

In “most” applications in science and technology, of course, the underlying model will not
be perfectly correct and measurements will not be perfectly accurate. It is essential to use
procedures which are robust against the effects of measurement noise and modelling error. In
this paper we consider a noise-tolerant approach: searching among the many near-solutions
which satisfy the system of equations to within a specified accuracy, and selecting the near-
solution with the smallest `1 norm. We show that “most” matrices underlying underdetermined
systems have the following property. when there exists any sufficiently sparse near-solution, the
near-solution with minimal `1 norm is a good approximation to it.

1.1 Background

Now for some context. In recent years, there has been rapid development in the theory of
sparse overcomplete signal representations [5, 13, 14, 29, 30, 16]. In this literature, one attempts
to represent a signal S ∈ Rn sparsely, using an overcomplete set, for example, the union of
several orthonormal bases or frames. Formally, one has an n by m matrix Φ with columns φi,
i = 1, . . . ,m. Following [20, 2], Φ is also called the dictionary, and the φi are also called atoms; in
the cases they envisioned, Φ for example could be the concatenation of several bases (sinusoids,
wavelets, spikes, etc.). Now the problem of solving for α in the system S = Φα is in general ill-
posed, since m > n. This literature identified a class of matrices Φ where this ill-posedness could
be resolved by sparsity. For such matrices, the coherence M(Φ) = maxi6=j |〈φi, φj〉| is small.
Thus, for example, the concatenation of the sinusoid basis and the natural basis for Rn has
coherence 1/

√
n. It was found that, for noiseless observations, if the matrix Φ has appropriately

small coherence then, whenever there truly is a sparse solution S = Φα0, where α0 has at most
N ≤ (1 + M−1)/2 nonzeros, then this solution will be found, either by `1 norm minimization
[6] or by stepwise greedy approximation [29] run for N steps. Since in some interesting cases
M(Φ) = 1/

√
n, so for certain matrices Φ these results permit unique recovery of the sparsest

representation, whenever that sparsest representation has fewer than
√

n/2 nonzeros.
In a recent paper, Donoho, Elad, and Temlyakov [7], considered the stability of such rep-

resentations in the presence of noise; related results were also obtained by Tropp [30]. They
suppose we have a vector y of interest and consider the convex optimization problem

(P1,ε) min ‖α‖1 subject to ‖y − Φα‖2 ≤ ε

They suppose the vector y of interest happens to have an approximate sparse representation
‖y−Φα0‖2 ≤ ε where α0 ∈ Rm is unknown, with at most N ≤ (1+M−1)/4 nonzeros, and show
that the solution α̂1,ε of this problem obeys

‖α̂1,ε − α0‖2 ≤ 3 · ε.
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In short, although the problem is underdetermined, if there is a nearby sparse solution, the
minimal `1 near-solution will approximate it.

1.2 This Paper

In the result just cited, approximation was proven under the condition that the number of
nonzeros was at most (1 + M−1)/4. Since for an n by m matrix with m > n, the incoherence is
bounded by M ≥ 1/

√
n [5], this result accomodates at most O(

√
n) nonzeros.

In the present paper, we will establish approximation bounds under much weaker sparsity
conditions, allowing ∼ ρn nonzeros. Moreover, our results apply to “most” underdetermined
systems.

In our first result, we let Φ be n by n, so the problem is not necessarily underdetermined, and
suppose the columns are normalized by ‖φi‖2 = 1, i = 1, . . . , n. We place uniform measure on
the space Sn−1 × · · · ×Sn−1 of such matrices. The smallest singular value of Φ is then typically
of size O(1/

√
n) [10, 27], so the problem, though not underdetermined, is poorly conditioned.

Letting α̂ = Φ−1y be the usual solution of the linear equations, the best approximation bound
it obeys is of the form

‖α̂− α0‖2 ≤ c
√

n · ε.

Hence the problem gets increasingly poorly posed for large n. Standard results on approximate
sparse representation by a greedy process of incremental model building [22] also fall apart in
this case, because of the poor conditioning.

In contrast, consider the problem (P1,ε) discussed above (and in [7]). We show there are
constants ρ > 0 and C > 0 so that, when n is large, all but a vanishing fraction of such matrices
Φ have the following sparse approximation property: whenever the given data y permit a sparse
approximate solution ‖y − Φα0‖2 ≤ ε having ‖α0‖0 ≤ ρn, then the solution α̂1,ε to (P1,ε) obeys

‖α̂1,ε − α0‖2 ≤ C · ε. (1.1)

In short, although the traditional solution of the system of linear equations would at best obey
an approximation bound scaling poorly as n → ∞, the `1 penalization gives an approximation
bound with behavior Cε, in a natural sense best possible in both n and ε.

In our second result, we let Φ be n by m, with n < m < An where A > 1. Now the problem
is certainly underdetermined. With again `2-normalized columns and uniform measure on the
space of such n by m matrices, we again show the existence of ρ = ρ(A) so that, an overwhelming
fraction of n by m matrices have the sparse approximation property: whenever there is a sparse
approximate solution α0 obeying ‖α0‖0 ≤ ρn and ‖y−Φα0‖2 ≤ ε, the `1 solution approximates
α0 with the approximation bound (1.1).

An interesting aspect of our proofs is the role played by key results in the geometry of Banach
spaces; namely the spherical sections theorem (Dvoretsky, Milman, ...) and more particularly,
the refinement for octahedra, due to Kashin. We also rely on concentration of measure estimates
for singular values of random matrices, quoting heavily from work of Szarek.

Section 2 of this paper develops our results in the m = n case; Section 3 discusses the
m ≤ An case.

We indulge in a small sin of usage. We allow ourselves to say things like “n/2-dimensional”
even if n is odd. Whenever an expression such as ρn refers to a dimension or other naturally
integral quantity, we implicitly assume that, if the expression is not integral, it is rounded down.
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1.3 Potential Applications

There are two ways to view our results.
On the one hand, they say that sparse modeling in underdetermined linear systems – a vast

enterprise throughout science and technology – has a respectable intellectual justification.
In such endeavors we have a model y ≈ Φα and we believe that there is a sparse near-

solution, i.e. there is some vector α0 with relatively few nonzeros satisfying ‖y − Φα0‖2 ≤ ε.
The inaccuracy in our model might be due to measurement error or to modeling error. Call α0

the ideal sparse representation and S0 = Φα0 the ideal noiseless data.
If Φ is like “most” n-by-m matrices, then the solution to (P1,ε) is a good approximation

to the ideal noiseless representation, i.e. the representation we could recover if there were no
modeling error, no measurement error, and the equations were not underdetermined. Hence,
heuristic models based on sparse representations are not silly starting points; small violations
of sparsity and small measurement errors can be tolerated.

On the other hand, our results have an algorithmic interpretation. They say that although
sparse solution of underdetermined linear systems is in general computationally intractable, a
valuable and effective substitute is available. In many cases, we simply solve (P1,ε), and check
if the result is a sufficiently good approximation to a sparse vector. If it is not, we can be sure
there is no highly sparse near-solution to the equations. And conversely, in those same cases, if
there is a highly-sparse near-solution to the equations, it must be near the solution to (P1,ε).

Of course, in specific applications, what matters is not “most” matrices but the specific
matrix in actual use. Nevertheless, researchers using methods related to (P1,ε) in the setting
of large underdetermined systems are currently reporting good results [2, 28, 11]. Our results
provide theoretical support for their empirical success.

2 The Case m = n

Let φ1, φ2, . . . , φm be random points uniformly distributed on the unit sphere Sn−1 in Rn. Let
Φ = [φ1 . . . φm] be the matrix obtained by concatenating the corresponding column vectors. The
space of n by m matrices having columns with unit norm is, of course,

Φn,m =
←m terms →

Sn−1 × · · · × Sn−1 .

Now the probability measure we are assuming on the random matrix Φ is just the natural uniform
measure on Φn,m. Hence, probabilistic statements about properties of Φ are interpretable as
statements about the fraction of matrices Φ ∈ Φn,m with a certain property. When we say that
a property of Φ holds with overwhelming probability for large n, for example, we mean that, for
each δ > 0, for an understood sequence (n, mn) with n → ∞, the fraction of such matrices in
Φn,mn eventually exceeds 1− δ as n →∞.

For a vector S ∈ Rn we are interested in the sparsest possible representation; this is given
by:

(P0) min ‖α‖0 subject to Φα = S,

It was pointed out in [8] that if (P0) has any sparse solution, then it will have a unique sparsest
one.

Lemma 2.1 With probability 1, Φ has the following unique sparsest representation prop-
erty:
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For every vector α0 having ‖α0‖0 < n/2 the instance of (P0) generated by the
data S = Φα0 is uniquely solved by α0.

In short, it makes sense to speak of the sparsest solution to S = Φα.
Consider the sparse approximation problem

(P0,ε) min ‖α‖0 subject to ‖y − Φα‖2 ≤ ε.

and let α̂0,ε denote any minimizer. This asks for the sparsest near-solution. In the setting
considered here, [8, Section 9] was able to combine results from [7] and inequalities from [8] to
get a result which implies the following.

Corollary 2.1 Consider the setting where m = n. There exists ρ > 0 so that with overwhelming
probability for large n, the matrix Φ has the following sparse approximation property:

Whenever a vector y obeys ‖y − Φα0‖2 ≤ ε for some α0 obeying ‖α0‖0 < ρn,
then any solution to the instance of (P0,ε) generated by y obeys

‖α̂0,ε − α0‖2 ≤ 4ε.

This shows, for example, that the set of all sparse approximants with prescribed sparsity is
confined to a small neighborhood. Problem (P0,ε) is not computationally feasible in practice;
in general it requires combinatorial optimization, enumerating subsets of the m variables and
checking to see which, if any, permit an ε-approximation. We view this result merely as indicating
that the question of finding approximate sparse solutions from noisy data is well-posed.

Consider instead the convex optimization problem

(P1,ε) min ‖α‖1 subject to ‖y − Φα‖2 ≤ ε.

and let α̂1,ε denote any solution. Convexity makes P1,ε) a far more computationally appealing
problem than (P0,ε). In this section we prove the following.

Theorem 2.1 Consider the setting where m = n. There exist ρ > 0 and C > 0 so that with
overwhelming probability for large n, Φ has the following sparse approximation property:

Whenever a vector y has an approximate representation ‖y−Φα0‖2 ≤ ε, with an
α0 obeying ‖α0‖0 < ρn, then any solution to (P1,ε) obeys

‖α̂1,ε(y)− α0‖2 ≤ Cε.

Again, the notion of probability here refers to uniform measure on the space of n×n-matrices
with unit-norm columns. Hence, the above result shows that the minimal-`1 near-solution
generically approximates the sparsest near-solution, whenever that solution is sufficiently sparse.
Here by generic we mean “experienced on a set of matrices of nearly full measure”.

2.1 Proof Outline

We now describe the overall architecture of the proof, which requires several lemmas proved in
later subsections. As in [7], we first note that

‖α̂1,ε‖1 ≤ ‖α0‖1,
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since α0 is merely feasible for (P1,ε), while α̂1,ε is optimal. At the same time

‖Φα̂1,ε − Φα0‖2 ≤ 2ε,

by the triangle inequality.
We now view α̂1,ε as a perturbed version α0+β of α0, where the perturbation obeys additional

properties. Letting Bε,α0 denote the collection of perturbations β to α0 obeying

‖Φβ‖2 ≤ 2ε, ‖α0 + β‖1 ≤ ‖α0‖1,

then, indeed,
α̂1,ε − α0 ∈ Bε,α0 .

Defining then
(Qε,α0) sup ‖β‖2 subject to β ∈ Bε,α0

we must have
‖α̂1,ε − α0‖2 ≤ val(Qε,α0).

Now let I = supp(α0) and suppose without loss of generality that I = {1, . . . , |I|}. Partitioning
β = (βI , βIc), note that

‖α0 + β‖1 − ‖α0‖1 ≤ ‖βI‖1 − ‖βIc‖1.

Consider then the new optimization problem

(Rε,I) sup ‖β‖2 subject to ‖Φβ‖2 ≤ 2ε, ‖βI‖1 ≥ ‖βIc‖1.

We have val(Rε,I) ≥ val(Qε,α0).
We now define an event Ωn(ρ) - this may be viewed as a set of matrices Φ ∈ Φn,n - and show

that on this event we have
val(Rε,I) ≤ Cρε, ∀|I| < ρn. (2.1)

The event Ωn(ρ) is the intersection of 5 subevents Ωi
n, i = 1, . . . , 5, implicitly parametrized

by certain constants ρi > 0, ηi > 0.
The first three events refer to the eigenvalues of Gram matrices ΦT Φ or their submatrices

ΦT
I ΦI , where ΦI denotes the n × |I| matrix with columns taken from i ∈ I. We let λmin and

λmax denote the smallest and largest eigenvalues, with λk for intermediate ones, λmin = λ1 ≤
· · · ≤ λk ≤ · · · ≤ λmax. The singular values of Φ, ΦI etc, are just the square roots of the
corresponding eigenvalues. The events are:

Ω1
n λmin(ΦT

I ΦI) ≥ η2
1 > 0, uniformly in I with |I| < ρ1n .

Ω2
n λmax(ΦT Φ) ≤ η2

2.

Ω3
n With ` = bρ3nc, λ`(ΦT

IcΦIc) ≥ η2
3 > 0, uniformly in I with |I| < ρ3n.

In the next subsection, it is shown that, for appropriate ρi, ηi > 0, these events all have
P ((Ωi

n)c) ≤ exp(−nβi), where βi > 0, i = 1, 2, 3.
The remaining subevents require additional definitions. Our argument will turn around the

vectors
v = −ΦIβI , w = ΦIcβIc ;

they obey ‖v − w‖2 = ‖Φβ‖2 ≤ ε. To exploit this closeness, we must cope with the fact that
Φ has numerous small singular values, and deal with an associated subspace separately. We
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associate to each I a random subspace WI,0 spanned by the singular vectors associated to the
bρ4nc lowest singular values of ΦIc . There is also the random subspace VI = Range(ΦI). We also
let WI,1 denote the orthocomplement of WI,0 in Range(ΦIc), and VI,1 = VI ∩WI,1. Finally, WI,2

is the remaining orthocomplement in Rn. The vectors v and w can be resolved into components
w = w0 + w1, v = v0 + v1 + v2.

Corresponding to these, we have subspaces BI,0 and BI,1 in Rm, consisting of vectors β0, β1

solving
ΦIcβ0 = w0, ΦIcβ1 = w1.

(Recall that the n by n matrix Φ is nonsingular with probability one). Naturally, βIc = β0 +β1.
Similarly, define γ ∈ BI,0 + BI,1 by γ = γ0 + γ1, where

ΦIcγ0 = v0, ΦIcγ1 = v1.

Let CI,1 denote the subspace of all such γ1’s in BI,1.
The remaining subevents of Ωn are now definable:

Ω4
n The subspaces WI,0 and VI have positive angle, so that

6 (WI,0, VI) ≥ η4 > 0,

uniformly in |I| < ρ4n; for the definition of angle between subspaces, see (2.8) below.

Ω5
n On every subspace BI,0 + CI,1 the `1

n norm is almost-Euclidean:

1
2
‖β0 + γ1‖2 ≤

√
π

2n
· ‖β0 + γ1‖1 ≤

3
2
‖β0 + γ1‖2

uniformly over β0 ∈ BI,0, γ1 ∈ CI,1 and |I| < ρ5n.

It will be shown in later subsections that for ρ4 and ρ5 chosen appropriately, P ((Ωi
n)c) ≤

exp(−nβi), where βi > 0, i = 4, 5. Combining all this, let ρ6 = min5
i=1 ρi and β = mini βi. Set

En = ∩5
i=1Ω

i
n(ρ6),

and notice that P ((En)c) ≤ 5 · exp(−nβ). Since En is overwhelmingly likely for all large n,
assume for the rest of the proof that the event En holds.

Our goal is, once again, to estimate the value of the optimization problem (Rε,I), so we will
be interested in bounding ‖βI‖2

2 + ‖βIc‖2
2 using the control available from ‖v − w‖2 ≤ ε and

‖βIc‖1 ≤ ‖βI‖1. In the argument below ck, k = 1, . . . , 8 denote positive constants whose precise
values are not relevant for the proof itself, but may be of interest later on.

We plan to invoke the constraint ‖βI‖1 ≥ ‖βIc‖1. Using Ω1
n,

‖v‖2 ≥ η1‖βI‖2,

and so √
|I|‖v‖2/η1 ≥ ‖β‖1. (2.2)

Now

‖βIc‖1 ≥ ‖β0 + β1‖1

≥ ‖β0 + γ1‖1 − ‖β1 − γ1‖1.
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By Ω5
n ∩ Ω4

n we have

‖β0 + γ1‖1 ≥ c1

√
n · ‖β0 + γ1‖2

≥ c2

√
n · (‖β0‖2

2 + ‖γ1‖2
2)

1/2.

Applying Ω3
n,

‖β1 − γ1‖2 ≤ ‖w1 − v1‖2/η3

≤ ‖w − v‖2/η3 ≤ ε/η3.

Hence,
‖βIc‖1 ≥ c2

√
n · (‖β0‖2

2 + ‖γ1‖2
2)

1/2 −
√

nε/η3.

Now from ‖βI‖1 ≥ ‖βIc‖1 and (2.2) we have√
|I|‖v‖2/η1 ≥

√
n · (c2‖γ1‖2 − ε/η3),

yielding

ε/η3 ≥ c2‖γ1‖2 −
√
|I|
n
‖v‖2/η1.

From Ω4
n, ‖v‖2 ≤ c3‖v1‖2, and by Ω2

n, ‖v1‖2 ≤ η2‖γ1‖2. Combining these, we get

ε/η3 ≥ ‖v‖2(c2/(c3η2)−
√
|I|
n

/η1).

Picking ρ7 > 0 small enough, for |I|n < ρ7, we have, for some c4 > 0

c4ε > ‖v‖2.

We now use this bound on the size of v to control the size of both βI and βIc . We immediately
get, due to Ω1

n

‖βI‖2 ≤ ‖v‖2/η1 = c5ε.

We also easily get

‖β1‖2 ≤ η−1
3 ‖w1‖2 ≤ η−1

3 (‖v1 − w1‖2 + ‖v1‖2) ≤ η−1
3 (ε + c4ε) ≡ c6ε.

Meanwhile,

‖β0‖2 ≤ c7‖β0‖1/
√

n by (Ω5
n)

≤ c7/
√

n · (‖β0 + β1‖1 + ‖β1‖1)
= c7/

√
n · (‖βI‖1 + ‖β1‖1)

≤ c7/
√

n · (
√
|I|‖βI‖2 +

√
n‖β1‖2)

≤ c7(
√

ρ7c5 + c6)ε.

We conclude that
‖β‖2 ≤ ‖βI‖2 + ‖β0‖2 + ‖β1‖2 ≤ c8ε,

with c8 independent of n, and |I| assumed ≤ ρ7n. Hence defining ρ = min(ρ6, ρ7) and setting
Ωn(ρ) ≡ En we get (2.1). QED.
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Remark 1. It may be of interest to estimate the size of the coefficients ci used in the proof.
Note that, as ρ → 0, η1 = 1 + o(1), η2 = 1 + o(1), η3 = O(ρ3), η4 = π/2− o(1). Hence, we can
arrange so that, as ρ → 0,

c1 =
1√
2π

(1 + o(1))

c2 = c1 + o(1)
c3 = 1 + o(1)
c4 = (1− ρ)/η3 · (1 + o(1))
c5 = 1 + o(1)
c6 = 1 + c4

c7 =
√

π/2 + o(1)
c8 = (c2

5 + c2
6 + c2

7)
1/2

Here the final “output” we are interested in, Cρ ≤ c8. Notice that c8 is well-bounded, except
for the presence of the η−1

3 factor in c4. The estimate from the proof of Lemma 2.5 gives
η3 > ρ3/

√
2e. Hence, c4 ‘blows up’ as ρ3 → 0. The best control results under an alternate

asymptotic in which maxi6=3 ρi → 0 while ρ3 = const.
Remark 2. In the case ε = 0, this gives a different approach to the main result in [8] (in

the case m = n), overlapping in the use of eigenvalue bounds and spherical sections, but using
a subspace angle principle in place of the sign-embeddings in [8].

2.2 Control of Eigenvalues

We now show that one can set parameters yielding the claimed properties for Ωi
n i = 1, 2, 3.

The first Lemma, from [8], is more general than we need in this section. For later use, it
allows a range of m ≥ n, namely n ≤ m ≤ An, where A > 1; for now we need only n = m,
which is the case A = 1.

Lemma 2.2 [8] Define the event

Ωn,m,ρ,λ = {λmin(ΦT
I ΦI) ≥ λ, ∀|I| < ρ · n}.

For each ρ ∈ (0, 1/2] and A ≥ 1, there is λ = λ(ρ,A) > 0 so that along sequences of (n, m) with
m ≤ An

P (Ωn,m,ρ,λ) → 1, n →∞.

The second lemma supports our claims for Ω2
n.

Lemma 2.3 Let φi be iid uniform on Sn−1. For some β > 0 and n > n0,

P{λmax(ΦT Φ) > 3} ≤ exp(−nβ)

Proof. We use existing bounds for Gaussian iid N(0, 1
nIn) vectors and the standard rela-

tionship [24, Chapter 4] between Gaussians and uniform spherical vectors.
Szarek [27] proved that for the n × n matrix X defined with iid Gaussian entries Xij ∼

N(0, 1
n), we have

P{λmax(XT X) > 7/3} ≤ exp(−nβG), n ≥ n0. (2.3)
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As in the companion paper [8], this immediately implies results for the uniform spherical
case; we spell this out as it will be helpful again below. Let Ri be iid random variables distributed
χn/

√
n, where χn denotes the χn distribution. These can be generated by taking iid standard

normal RV’s Zij which are independent of (φi) and setting

Ri = (n−1
n∑

j=1

Z2
ij)

1/2. (2.4)

Let xi = Ri · φi; then the xi are iid N(0, 1
nIn), and we view them as the columns of X. With

R = diag((Ri)i),

λmax(XT X) = λmax(RT ΦT ΦR) ≥ ‖R−1‖2λmax(ΦT Φ), (2.5)

where ‖R−1‖ = maxi R
−1
i . Define η by (1− η)2 = 9/21, and note that on the event {maxi |Ri −

1| < η}, λmax(ΦT Φ) ≤ 3.
Now (2.4) exhibits each Ri as a function of n iid standard normal random variables, Lipschitz

with respect to the standard Euclidean metric, with Lipschitz constant 1/
√

n. Therefore, by
concentration of measure [19],

P{max
i
|Ri − 1| > η} ≤ 2n exp{−nη2/2} = 2n exp{−nβχ}, (2.6)

for βχ > 0. Hence λmax(ΦT Φ) ≤ 3, except on an event of probability bounded by exp{−nβG}+
2n exp{−nβχ}. QED

We need the Cauchy Interlace Theorem [23, 186-187].

Lemma 2.4 Let G be an n×n real symmetric matrix and let GI be the n−k by n−k principal
submatrix obtained by deleting k columns and k rows corresponding to indices i ∈ I, |I| = k.
Then for 1 ≤ ` ≤ n− k,

λ`(G) ≤ λ`(GI) ≤ λ`+k(G).

This is well-known in the case k = 1 as a consequence of the Courant-Fischer min-max
characterization of eigenvalues [17], and can be proved inductively starting from the case k = 1.

Lemma 2.5 Fix ρ < 1/2. There is β3 > 0 so that, on an event Ω3
n(ρ) with probability exceeding

1− exp(−nβ3) for n > n3,

λbρnc(Φ
T
IcΦIc) ≥ ρ2/2e ∀|I| ≤ ρn.

Proof. Now consider matrices ΦIc formed by deleting columns from 1, . . . , n which belong
to I. Applying Lemma 2.4 to G = ΦT Φ, we have for k ≥ 1,

λk(ΦT
IcΦIc) ≥ λk(ΦT Φ).

We now again use the connection between uniforms and Gaussians. Letting Ri as in (2.4) then
X = ΦR has columns which are iid N(0, 1

nIn). Analogously to (2.5),

λk(XT X) ≤ ‖R‖2λk(ΦT Φ).

Picking η =
√

2−1 we have from (2.6) that the event Ec
n ≡ {‖R‖2 > 2} has probability bounded

above by exp{−nβ) where β = 3/4− 1/
√

2 > 0.

10



Szarek [27, Theorem 1.2] shows that if X is an n by n matrix with entries iid N(0, 1
nIn),

then
P{λ1/2

k (XT X) ≤ α
k

n
} ≤ (

√
2eα)k2

. (2.7)

Picking α = 1/2e in (2.7) gives for the event Fn = {λk(XT X) ≤ 1
2e(

k
m)2}

log P (F c
n) ≤ −k2 log(2e)/2.

Picking k = ρn, we get that on an event En ∩ Fn having overwhelming probability for large n,

λρn(ΦT Φ) ≥ ρ2/(2e).

2.3 Angle Between Subspaces

As above WI,0 is the span of the ρ3n first singular vectors of Φ. By the iid character of the φi’s,
this is a random uniform subspace of dimension ρ3n inside Range(ΦIc). On the other hand,
VI = Range(ΦI), is a random uniform subspace of dimension |I| inside Rn, and independent of
WI,0. Its orthogonal projection on Range(Φc

I) splits as VI,0 + VI,1, VI,0 ⊂ WI,0, VI,1 ⊂ WI,1.
Given subspaces A and B, the angle between them is defined so

cos(6 (A,B)) = sup{ 〈a, b〉
‖a‖2‖b‖2

: a ∈ A, b ∈ B}. (2.8)

Lemma 2.6 For each η > 0, there is ρ4 > 0 so that, with overwhelming probability,

cos(6 (WI,0, VI)) ≤ η, ∀|I| < ρ4n.

To prove this, we first need a lemma about an individual pair of random subspaces.

Lemma 2.7 For sufficiently small ρ > 0, let A and B be independent random uniform subspaces
in Rn of dimension ≤ ρn. For some β > 0 and all n > n0, the angle between these subspaces
obeys

P{cos(6 (A,B)) > 3
√

ρ} ≤ exp(−nβ).

Proof. We give the argument merely for k = bρnc. Without loss of generality assume that
coordinates have been chosen so that A is just the span of the first k standard unit basis vectors.
Let xi, i = 1, . . . , k be iid Gaussian vectors N(0, 1

nIn); without loss of generality, we may take
B = span{x1, . . . , xk}. Form the random matrix X by concatenating the columns xi. Let Y be
the matrix obtained from X by Gram-Schmidt orthogonalization, and let Z be the upper k-by-k
submatrix, Then, it is well known (to statisticians, at least) that cos(6 (A,B)) is just the top
singular value of Z. To see this, note that if a and b are unit norm vectors in A and B, with u
the vector of first k-entries in a and b = Y v, then

cos(6 (A,B)) ≥ |〈a, b〉| = |u′Zv|,

and the right side is maximized at the top singular value. Hence

cos(6 (A,B)) = λmax(ZT Z)1/2.

11



Now Y = XT where T is a triangular matrix implementing Gram-Schmidt orthogonalization.
Hence, if Z̃ denotes the upper k rows of X, Z = Z̃T . The columns of Z̃ are distributed as
N(0, 1

nIk). Put Z =
√

n/k · Z̃. Then

λmax(ZT Z) = λmax(T−1Z̃T Z̃T−1) ≤ ‖T−1‖2λmax(Z̃T Z̃)

= ‖T−1‖2 · k

n
· λmax(ZT

Z).

Now Z is a ‘standard’ matrix with columns N(0, 1
kIk). Applying (2.3) (replacing n by k), we get

exponential bounds for {λmax(ZT
Z) ≥ 7/3}. Note that ‖T−1‖2 = 1/λmin(XT X). Applying (the

idea behind) Lemma 2.2, we can get (for small enough ρ) exponential bounds on {‖T−1‖2 > 9/7}.
QED.

To adapt this individual result, for one pair of random subspaces, to obtain Lemma 2.6,
which is simultaneous across many such pairs, we need the following Lemma, adapted from [8],
where it is used several times for the same purpose.

Lemma 2.8 Consider a family of events Ωn,I , indexed by subsets I ⊂ {1, . . . , n} with |I| ≤ ρn.
Suppose these obey, for a common β > 0 and n0,

P (Ωc
n,I) ≤ exp(−nβ), ∀|I| ≤ ρn, n ≥ n0.

Then for some ρ′ > 0, β′ > 0, and n′0,

P (∪|I|<ρ′nΩc
n,I) ≤ exp(−nβ′), n ≥ n′0.

Proof. Let H(p) be Shannon entropy. Then

log
(

N

ρN

)
= NH(ρ)(1 + o(1)), N →∞;

in fact, if for k < n/2, Sn,k denotes the cumulative sum

Sn,k =
(

n

1

)
+ · · ·+

(
n

k

)
then also

log Sn,ρn = nH(ρ)(1 + o(1)), n →∞.

Now
P (∪|I|≤ρnΩc

n,I) ≤
∑
|I|≤ρn

P (Ωn,I) ≤ Sn,nρ exp(−nβ).

Then
log(P (∪|I|<ρnΩc

n,I)) ≤ nH(ρ)(1 + o(1))− nβ.

Now H(ρ) → 0 as ρ → 0, so, for sufficiently small ρ′,

nH(ρ′) < nβ/2, n > n′0,

so
log(P (∪|I|≤ρ′nΩc

n,I) ≤ −n
β

2
= −nβ′, n > n′0.

QED.

Proof of Lemma 2.6. For a given η > 0, define ρ0 so that η = 3
√

ρ0. Also define events

Ωn,I = {cos(6 (WI,0, VI,1)) ≤ η}, |I| ≤ ρ0n.

Applying the individual result Lemma 2.7 to each such event, we are immediately in a position
to apply Lemma 2.8, turning “input” ρ0 into “output” ρ′. Defining ρ4 = min(ρ0, ρ

′), we are
done.
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2.4 Almost-Euclidean Sections of `1
n

The subspaces VI and WI,0 are random subspaces of Rn, and independent random variables.
Moreover, they are each uniformly distributed random subspaces. They induce subspaces BI,0

and CI , via
WI,0 = ΦIcBI,0, VI,1 = ΦIcCI .

BI,0 is a uniform random subspace of Rn−k, and CI is a uniform random subspace of the
orthocomplement of BI,0 inside Rn−k.

Such subspaces will typically give almost-Euclidean sections of the `1
n ball. As background,

Dvoretsky’s theorem [9, 24] says that every infinite-dimensional Banach space contains very
high-dimensional subspaces on which the Banach norm is essentially the Euclidean norm. With
more precision:

Definition 2.1 We say that the k-dimensional subspace A ⊂ Rn offers an ε-Euclidean section
of `1

n if

(1− ε) · ‖a‖2 ≤
√

π

2n
· ‖a‖1 ≤ (1 + ε) · ‖a‖2, ∀a ∈ A. (2.9)

Since we are taught in school that the `1
n norm and the `2

n norm are quite different, this seems
counterintuitive; but in fact “most” subspaces give almost-Euclidean sections [15, 18]. We now
push this to extremes:

Lemma 2.9 There is ρ5 > 0 so that, on an event Ω5
n, every BI,0 + CI,1 where |I| < ρ5n gives

an ε-Euclidean section of `1
n with ε = 1/2. The exception probability P ((Ω5

n)c) ≤ exp(−nβ5),
where β5 > 0.

This depends on a standard result about generating random subspaces.

Lemma 2.10 Let ` > 2k, let B be a random uniform k-dimensional subspace of R`, and let C
be a random uniform k-dimensional subspace of the orthocomplement of B in R`. Suppose that,
conditionally on the orthocomplement of B, C is independent of B. Let A = B + C. Then A is
a random uniform 2k-dimensional subspace of R`.

We omit the proof, which merely says that convolutions between uniform measures on differ-
ent Grassmanians are again uniform. We also need a known result on obtaining almost-Euclidean
sections by random subspaces.

Lemma 2.11 Fix ε > 0. There is ρ(ε) > 0 so that ρ < 1/4 and the following holds for any
k < ρn. On an event Ωn,k,ε, a random uniform 2k-dimensional subspace A of Rn−k offers an
ε-Euclidean section of `1

n. The exception Ωc
n,k,ε has probability at most exp(−nβ(ε)), n > n0.

Proof of Lemma 2.11. The proof is obtained by a straightforward adaptation of known results
[15, 24], this version, together with specifics on ρ(ε) and β(ε) has been worked out carefully in
[8, Lemma 3.2]). We omit the details. QED

Proof of Lemma 2.9. This follows by the same approach as in the proof of Lemma 2.6, where
an individual result for an individual pair of random subspaces was generalized to many pairs
of random subspaces. The individual result, Lemma 2.11, gives us ρ(1/2) > 0 for “input” to
Lemma 2.8, and we get ρ′ as “output”. Then we set ρ5 = min(ρ(1/2), ρ′). QED
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3 The Case n < m < An

We now turn to the underdetermined case in which the number of equations is still proportional
to the number of unknowns.

Theorem 3.1 Let A > 1. Consider a sequence of problems (n, mn) where n < m < An. There
exist ρ(A) > 0 and C > 0 so that for all large n, the overwhelming majority of all n × mn

matrices Φ have the following property:

For each vector y admitting an approximation ‖y − Φα0‖2 ≤ ε, by some vector
α0 obeying ‖α0‖0 < ρn, the solution of (P1,ε) obeys

‖α̂1,ε(y)− α0‖2 ≤ Cε.

3.1 Proof Outline

The proof of Theorem 3.1 has parallels to the m = n case, with a few specific differences
concerning the definition of the events Ωi

n.
The events Ωi

n, i = 1, 2 are exactly the same and the claims are the same. The support for
our claims about Ω1

n in the n < m < An case was already provided in Lemma 2.2, as noted
earlier. The support for our claims about Ω2

n is given in the following subsections.
For the third event, we must take into account the fact that Φ has m − n singular values

which are exactly zero.

Ω3
n With k = bρ3nc, and ` = m− n + k, λ`(ΦT

IcΦIc) ≥ η2
3 > 0, uniformly in I with |I| < ρ3n.

The next subsection shows that for appropriate ρ3, η3 > 0 and β3 > 0, P ((Ω3
n)c) ≤ exp(−nβ3),

n > n3.
The remaining subevents again concern the vectors

v = −ΦIβI , w = ΦIcβIc .

We again associate to each I a random subspace WI,0; this time, because of the null space of
Φ, WI,0 is associated to the m − n + bρ3nc lowest singular values of ΦIc . There is also the
random subspace VI = Range(ΦI). We also let WI,1 denote the orthocomplement of WI,0 in
Range(ΦIc), and VI,1 = VI ∩WI,1. With probability one, WI,2 the remaining orthocomplement
in Rn, is {0}. The vectors v and w can be resolved into components w = w0 + w1, v = v0 + v1.

Corresponding to this, we have subspaces BI,0 and BI,1 in Rm, consisting of vectors β0, β1

solving
ΦIcβ0 = w0, ΦIcβ1 = w1.

(Note that there is now a nullspace of ΦIc , so we additionally take BI,1 in the orthocomplement
of BI,0.) Naturally, βIc = β0 + β1. Similarly, define γ ∈ BI,0 + BI,1 by γ = γ0 + γ1, where

ΦIcγ0 = v0, ΦIcγ1 = v1.

Let CI,1 denote the subspace of all such γ1’s in BI,1. Note that, for a given w0 and w1, β1 will
be uniquely defined, but β0 will not be; similarly for γ0, γ1.

Ω4
n

‖v‖2 ≤ η4 · ‖v1‖2, ∀v ∈ VI ,

uniformly in |I| < ρ4n.
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Ω5
n

η5 ·
√

A · ‖β0 + γ1‖2 ≤ ‖β0 + γ1‖1/
√

n ≤
√

A · ‖β0 + γ1‖2

uniformly over β0 ∈ BI,0, γ1 ∈ CI,1 and |I| < ρ5n.

Later subsections support our claims that for appropriate positive ηi and ρi, these events
have probabilities exceeding 1− exp(−nβi), βi > 0, i = 4, 5. Once these claims are established,
the proof outline can go through just as in the m = n case, although the implicitly defined
constants ck, k = 1, . . . , 8 will be different.

3.2 Control of Eigenvalues

We first justify our claims for Ω2
n.

Lemma 3.1 For η2 > 0 and β2 > 0, we have

P{λmax(ΦT Φ) ≥ η2} ≤ exp(−nβ2), n > n0.

This is implied by the following Lemma about extreme singular values of nonsquare matrices,
taken from Theorem 2.13 in Davidson-Szarek [4]; the Lemma will be used elsewhere below.

Lemma 3.2 Let Z be a q by p matrix of iid N(0, 1
q ) Gaussians, p < q. Let smax(Z) denote

the largest singular value of this matrix, and smin(Z) denote the smallest singular value. Then,
with κ = p/q,

P{smax(Z) > 1 +
√

κ + t} ≤ exp(−qt2)

P{smin(Z) < 1−
√

κ− t} ≤ exp(−qt2)

Proof of Lemma 3.1. With (Ri) a collection of m independent χn/
√

n random variables,
construct X =

√
n
mdiag(R)ΦT . Then

λmax(ΦT Φ)1/2 ≤
√

A · ‖R−1‖ · smax(X).

But X is standard Gaussian N(0, 1
m). Applying Lemma 3.2 to Z = XT , with q = m and p = n,

we get
P{smax(Z) > 1 + 1/

√
A + t} ≤ exp(−mt2).

The result follows from this and (2.6). QED
We next supply the needed estimates for Ω3

n.

Lemma 3.3 For each ρ3 ∈ (0, 1) there are η3 > 0 and β3 > 0 so that

P{λm−n+ρ3n(ΦT
IcΦIc) ≥ η2

3 ∀|I| ≤ ρ3n} ≥ 1− exp(−nβ3).

This follows from a Lemma about intermediate singular values, similar to Lemma 3.2; this is
derived in El Karoui [12]:

Lemma 3.4 Let Z be a q by p matrix of iid N(0, 1
q ) Gaussians, p < q. Let s`(Z) denote the

`-th singular value where s1 = smin etc. Let σ`;p,q = Median(s`(Z)) Then

P{s`(Z) < σ`;p,q − t} ≤ exp(−qt2/2).
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The proof idea is the same one behind Davidson and Szarek’s proof for Lemma 3.2 - show
that the singular values are Lipschitz functions on Euclidean space, and then use concentration
of measure.

Proof of Lemma 3.3. We begin by observing that the Cauchy Interlace theorem reduces the
problem to considering λm−n+ρn(ΦT Φ). As in the proof of Lemma 3.1, set X =

√
n
m ·diag(R)·ΦT ,

where R contains as usual iid χn/
√

n RV’s. Then again

λm−n+`(ΦT Φ) ≥ m

n
· ‖R−1‖2 · λm−n+`(XXT ),

and again ‖R−1‖2 ≈ 1 with good exponential bounds.
Note that X is standard normal with columns N(0, 1

mIm). We now employ standard Random
Matrix Theory terminology explained more fully in e.g. El Karoui [12]. The median singular
value σ`;m,n(X) has a limit given by

σ2
`;n,m → F−1

A (p), m/n → A > 1, `/m → p, n →∞,

where FA denotes the Marčenko-Pastur distribution function, having a jump of size 1− 1/A at
0 and a density on aA = (1− 1/

√
A)2 < x < bA = (1 + 1/

√
A)2 given by

fA(x) =
A

2π

√
(bA − x)(x− aA).

Now
FA(aA + δ)− FA(aA) ≤ A

3π
δ3/2, δ > 0.

Putting δAα = (3πα/A)2/3, we get

lim inf
n→∞

σ2
An−n+Aαn ≥ aA + δAα.

Thus
P{s2

An−n+Aαn ≤ aA + δAα/2} ≤ exp(−nt2Aα/2),

where

tAα =
√

aA + δAα −
√

aA + δAα/2

≥ δAα

4(aA + δAα)1/2
≥ δ

1/2
Aα /4.

Putting now
ξAα = aA + δAα/2, βAα = (3πα/A)2/3/32,

we get
P{λAn−n+Aαn ≤ ξAα} ≤ exp(−nβAα).

Defining ζAα = (aA + δAα/2)/aA we also have

P{‖R−1‖2 > ζAα} ≤ m · exp(−n(ζAα − 1)2/2).

combining these gives the required estimates for Ω3
n, with ρ3/A = α, η3 = ξAα/ζAα = (1−

√
A)2

and β3 = min(βAα, (ζAα − 1)2/2). QED

16



3.3 Angle Between Subspaces

For each I and each v ∈ Range(ΦI), let vI,1 denote the component of v in the subspace WI,1

Lemma 3.5 There are ρ4 ∈ (0, 1/2) and η4 > 0 so that on an event Ω4
n

‖v‖2 ≤ η4‖vI,1‖2 ∀v ∈ VI , |I| ≤ ρ4n,

and P ((Ω4
n)c) ≤ exp(−nβ4), n > n0.

Geometrically, this says that every WI,0 makes an angle with its corresponding VI which is
well-bounded away from 0.

We begin by considering an individual result, for one specific I. W0,I and VI are independent
uniform random subspaces of Rm of appropriate dimensions. Applying the same reasoning as
in Lemma 2.7, we get

Lemma 3.6 Let A be a random m− n + k-dimensional subspace of Rm and let B be an inde-
pendent random k-dimensional subspace of Rm. For every η > 0 sufficiently small, there exist
β > 0, n0 so that

P{cos(6 (A,B)) > 1− η} ≤ exp(−nβ), n > n0.

Proof. As in Lemma 2.7, we let X be an m× k matrix of iid Gaussians N(0, 1
m), let Y be the

result of Gram-Schmidt orthonormalization, and let Z be the first m − n + k rows of Y . We
need an upper bound on the top singular value of the matrix Z. We consider instead the matrix

Z̃ based on the upper m − n + k rows of X. We note that Z̃ =
√

m−n+k
m · Z, where Z again

has iid Gaussian entries, now standardized so that columns have expected length 1. For such
matrices, we invoke Lemma 3.2 and get that for the top singular value, the event

{smax(Z) > 1 +
√

k/(m− n + k) + t}

has probability bounded by exp(−(m − n + k)t2). We conclude that the top singular value for
Z̃ obeys

smax(Z̃) > (1 + t)(
m− n + k

m
)1/2 +

√
k

m

with probability bounded by exp(−(m− n + k)t2). Choose η ∈ (0, 1/A) so that

(1− η)1/2 > (1− 1/A)1/2,

then for small enough ρ < 1/2,

(1− η)1/2 − (1− 1/A + ρ/A)1/2 >
√

ρ/A;

and we can define t > 0 by the solution to

(1− η)1/2 = (1 + t)(1− 1/A + ρ/A)1/2 +
√

ρ/A.

Then the event
{smax(Z̃) > (1− η)1/2}

has probability bounded by exp(−n(A − 1)t2). Now Z = Z̃T , where T is again the triangular
matrix that implements Gram-Schmidt on the columns of X and so

smax(Z) ≤ smax(Z̃)‖T‖
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Again ‖T‖ ≤ 1/smin(X). Invoking again Lemma 3.2 we have that

smin(X) ≥ 1−
√

ρ/A− t

except on an event of probability ≤ exp(−mt2/2). Picking ρ also small enough that

1−
√

ρ/A > (1 + η)−1/2

we get P{‖T‖ > (1 + η)1/2} ≤ exp(−nβ), for β > 0. Combining these we get

cos(6 (A,B)) ≤ smax(Z̃)‖T‖ ≤ (1− η)1/2 · (1− η)1/2,

except on an event of probability ≤ exp(−n(A− 1)t2) + exp(−nβ). QED

Proof of Lemma 3.5. Since
‖v‖2

2 = ‖v0‖2
2 + ‖v1‖2

2

while
‖v0‖2 ≤ cos(6 (WI,0, VI))‖v‖2,

we get
‖v‖2 ≤ (1− cos2(6 ))−1/2‖v1‖.

Applying Lemma 2.8 together with Lemma 3.6 gives that for some η > 0, on an event Ω4
n

cos(6 (WI,0, VI)) ≤ 1− η, |I| < ρ4n.

Hence Lemma 3.5 holds with η4 = 1/(2η − η2). QED

3.4 Equivalence to Euclidean Norm

We now discuss equivalence between the Euclidean norm and the `1 norm on the subspaces BI,0

and CI,1.

Lemma 3.7 For small enough ρ5 > 0 there is η5 > 0 so that, on an event Ω5
n,

η5

√
A · ‖β0 + γ1‖2 ≤ ‖β0 + γ1‖1/

√
n ≤

√
A · ‖β0 + γ1‖2

uniformly over β0 ∈ BI,0, γ1 ∈ CI,1 and |I| < ρ5n. The probability of the exceptional event
(Ω5

n)c is bounded by exp(−nβ) for n > n0, where β > 0.

Recall that in the previous case m = n, we showed that sections were almost spherical, i.e.
that the constants in such norm equivalence statements could be made close to 1. In that case,
the subspaces involved were of small dimension relative to the ambient space Rm. Now we are
considering cases where the subspaces are of substantial dimension > ((A− 1)/A)m relative to
m. We no longer get equivalence between `1 norms and `2 norms with constants close to 1, but
we still get equivalence. The insight that this can happen goes back to Kashin [18].

A convenient expression for this phenomenon has been developed in Pisier’s book [24, Chap-
ter 6]; it is based on the volume ratio notion introduced by Szarek [25], and shows that random
subspaces will work (which is what we need).
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Lemma 3.8 Let ` < m and let U be a random uniform (m − `)-dimensional subspace of Rm.
On an event Em we have the norm equivalence

cl,m‖u‖2 ≤ ‖u‖1/
√

m ≤ ‖u‖2 ∀u ∈ U,

with
1/cl,m = (8e)

m
m−` .

The exception probability P (Ec
m) ≤ 2−m.

This immediately implies the following result for one single pair BI,0, CI,1.

Lemma 3.9 For ρ ∈ (0, 1/2) set ηρ = c`,m, where ` = bm− n + 2ρnc. On an event Ωn,I ,

ηρ

√
A‖β0 + γ1‖2 ≤ ‖β0 + γ1‖1/

√
n ≤

√
A‖β0 + γ1‖2

uniformly over β0 ∈ BI,0, γ1 ∈ CI,1. The probability of the exceptional event (Ωn,I)c is bounded
by 2−n.

Proof of Lemma 3.7. Fix a ρ ∈ (0, 1/2) as provided by Lemma 3.9. Set η5 = ηρ

√
A. Apply

Lemma 2.8 with ρ as input, getting ρ′ as output. Set ρ5 = ρ′ and η5 =
√

Aηρ. QED.
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