
Shrinking Trees

Trevor Hastie
Daryl Pregibon

AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07947

July 30, 1990 ∗

Abstract

Tree-based models provide an alternative to linear models for classification and regres-
sion data. They are used primarily for exploratory analysis of complex data or as a
diagnostic tool following a linear model analysis. They are also used as the end prod-
uct in certain applications, such as speech recognition, medical diagnoses, and other
instances where repeated fast classifications are required or where decision rules along
coordinate axes facilitate understanding and communication of the model by practition-
ers in the field.

Historically the key problem in tree-based modeling is deciding on the right size
tree. This has been addressed by applying various stopping rules in the tree growing
process, and more recently, by applying a pruning procedure to an overly large tree.
Both approaches are intended to eliminate ‘over-fitting’ the data, especially as regards
using the tree for prediction.

The approach taken in this paper provides yet another way to protect against over-
fitting. As in the pruning case, we start with an overly large tree, but rather than cut off
branches which seem to contribute little to the overall fit, we simply smooth the fitted
values using a process called recursive shrinking. The shrinking process is parameterized
by a scalar θ which ranges from zero to one. A value of zero implies shrinking all fitted
values to that of the root of the tree, whereas a value of one implies no shrinking
whatsoever. The shrinking parameter must be specified or otherwise selected on the
basis of the data. We have used cross-validation to guide the choice in certain of the
applications we have examined.

Shrinking and pruning are qualitatively different although they tend to have simi-
lar predictive ability. We draw on analogies with the usual linear model to emphasize
the differences as well as the similarities between the two methods. A comparison of
shrinking and pruning on two data sets suggests that neither is dominant on strictly
quantitative grounds. The qualitative difference between the two is that shrinking is
‘smoother’ and less sensitive to the specific choice of it’s tuning parameter. Pruning on

∗This is an unpublished AT&T technical memorandum, which formed the basis of the shrink.tree()

software in Splus (“Statistical Models in S”, Chambers, J. and Hastie, T., eds, 1991, Chapman and Hall).
This on-line version (March 2000) was made possible by Mu Zhu, who re-created the figures in the new
Splus environment and made minor modifications to the original version.
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the other hand lends itself to simpler tree structure. We discuss a flexible software im-
plementation that permits shrinking and pruning to be applied quite selectively allowing
the particular application to guide the choice of method.

1 Introduction

Binary trees provide a class of models for the analysis of regression and classification data
that are gaining widespread usage. One reason for their popularity is the particularly simple
display of a fitted model as a binary tree, such as that shown in Figure 1. This tree models
how physical characteristics of an automobile, weight, length, and engine size (displace),
affect its gasoline consumption (mpg). The tree, based on data on 74 automobiles, is
a called a regression tree since the response variable is continuous. The idea is that in
order to predict automobile mileage, one follows the path from the top node of the tree,
called the root, to a terminal node, called a leaf, according to the rules, called splits, at the
interior nodes. Automobiles are first split depending on whether they weigh less than 2365
pounds. If so, they are again split according to weight being less than 2060 pounds, with
those lighter cars having predicted mileage of 31 miles per gallon and those heavier cars
having slightly lower mileage of 26 miles per gallon. Automobiles in this latter category
are further split according to engine size, with those under 101.5 cubic inch displacement
achieving 27 miles per gallon, and those over 101.5 in3 achieving 25 miles per gallon. For
those automobiles weighing more than 2365 pounds, seven classes are ultimately formed,
with predicted mileage varying from 24 miles per gallon to a gas-guzzling low of 15 miles per
gallon. The relationship between mileage and automobile characteristics seems to behave
according to intuition, with heavier cars having poorer mileage than the lighter cars, and
for a given weight, smaller engines consuming less fuel than larger ones. It appears that
doubling the weight of an automobile roughly halves its mileage. Finally, it is instructive to
note that none of the splits involve length. This does not mean that length is unimportant
for predicting mileage, but merely reflects the fact that it adds little predictive value in
addition to weight.

The tree in Figure 1 was grown using a standard recursive partitioning algorithm based
on decreasing the within-node heterogeneity. Only splits along coordinate axes are con-
sidered and nodes are continually split unless they contain fewer than ten cases or are
completely homogeneous. There is therefore a strong tendency for over-fitting when mod-
eling with trees. This problem has not gone unnoticed and has been addressed by applying
various stopping rules in the tree growing process, and more recently, by applying a pruning
procedure to an overly large tree. Both approaches are intended to eliminate over-fitting,
especially as regards using the tree for prediction.

This paper explores yet another method of improving the quality of predictions from
binary trees. The methodology is appropriate for both regression trees and class probability
trees (e.g when the response variable is categorical). By the latter we mean classification
trees, but where emphasis is on the entire vector of class probabilities at each node, and not
simply on the misclassification error rate. We find that most real applications of tree-based
modeling convolve the output of classification trees with other contextual information which
ultimately requires that a ranking of alternatives be provided.

Our methodology, called shrinking, is an alternative to the common technique of pruning.
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Figure 1: The tree grown to the automobile mileage data prior to simplification or shrinkage.
The numbers within the nodes refer to the average mileage for automobiles in that node. The
numbers below the terminal or leaf nodes are standard errors of the estimates. The branches
of the tree are labeled with the values of the predictor variables that are appropriate for that
branch. There are a total of ten leaf nodes.

As in the pruning case, we start with an overly large tree, but rather than cut off branches
which seem to contribute little to the overall fit, we simply smooth the fitted values in the
leaves to that of their ancestors. To illustrate the distinction and also to suggest the close
connection of the two methods, we return to the example introduced above. The tree in
Figure 2 is the best four-terminal-node subtree obtained using error-complexity pruning
(Breiman, Friedman, Olshen, and Stone, 1984). The tree in Figure 3 is a shrunken version
of the complete tree with four ‘effective’ terminal nodes. It has the same shape as the full
tree in Figure 1, but the predictions in each of the nodes have been shrunken toward the
root node. Details of the pruning and shrinking processes are given in Section 2.

The tree in Figure 4 is an equivalent representation of the pruned tree in Figure 2. All
nodes below those terminal nodes in Figure 2 share the same predictions. This suggests
a relationship between shrinking and pruning that is explored in Section 3. This example
points out the major qualitative differences between shrinking and pruning. Shrinking
sacrifices simplicity for smoothness in addressing the over-fitting problem, while pruning
sacrifices smoothness for simplicity. This suggests that the two methods are competitors
only in those cases where the primary issue is not one of simplicity. Guidance in the choice
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Pruned Mileage Tree
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Figure 2: The pruned automobile mileage tree. This tree was chosen on the basis of 10-fold
cross-validation and corresponds exactly to the top of the tree displayed in Figure 1. There
are a total of four leaf nodes.

of method is therefore dependent on the particular application.
The remainder of the paper expands on the basic notion of recursive shrinking. Section

4 describes a way to characterize the amount of shrinking by relating it to ‘effective’ tree
size. Section 5 generalizes the simple shrinking scheme of Section 2 allowing for a variable
amount of shrinkage depending on individual nodal characteristics. An ‘optimal’ procedure
is defined and applied to two examples. Section 7 relates the methodology to that appearing
in the literature and the more typical non-recursive shrinkage methods. The final section
concludes with some comments on computing requirements for tree-based modeling.

2 Recursive Shrinking

We follow the framework pioneered by Breiman et al (1984) whereby tree-based modeling
is characterized by the two-stage process of building an initial over-sized tree, which is then
parameterized to yield a sequence of nested subtrees, one of which is selected as ‘the’ fitted
tree. Selection of a specific subtree is done on the basis of expected prediction error (PE), a
function of variance and bias. The trade-off between variance and bias can be summarized
as follows:

• prediction error in shallow trees is dominated by bias (the tree just does not fit well)

• prediction error in large trees is dominated by variance (it over-fits the data)

Error-complexity pruning (Breiman et al 1984) is a method to objectively trade-off variance
and bias whereby the least effective branches are successively pruned from the tree. The
error-complexity measure is defined as
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Shrunken Mileage Tree
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Figure 3: The shrunken automobile mileage tree. This tree was chosen on the basis of 10-
fold cross-validation and shares the same topology as the tree displayed in Figure 1; only the
predicted mileages in certain nodes have changed. There are a total of ten actual and four
‘effective’ leaf nodes.

Eα = E(T ) + αC(T )

where E(T) is a measure of the (predictive) error of the tree and C(T) is a measure of
tree complexity. E(T) is a decreasing function of tree complexity and as α varies, emphasis
shifts from favoring simple trees (α large) to favoring complex trees (α small). Breiman et
al (1984) consider the case where complexity is captured by tree size. A general treatment
is provided by Chou, Lookabaugh, and Gray (1989). Both references provide an algorithm
to determine the pruning sequence based on this parameterization.

Once the pruning sequence is determined, the problem of selecting a specific value of
the error-complexity parameter remains. The (now) conventional wisdom suggests that this
selection be based on data which is independent of the fitted tree structure. Independent
test data is preferable on grounds of computational efficiency, but often one must resort to
resampling techniques such as cross-validation.

We concentrate on the predictions themselves to motivate an alternative approach to
reducing PE. Let ŷ(node) denote the predicted value for a node. Typically ŷ = ȳ(node) for
regression trees and ŷ(node) = p(node) for class probability trees. We define the shrunken
prediction by
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Pruned Mileage Tree
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Figure 4: The pruned automobile mileage tree. This tree is that of Figure 2 but expanded to
share the same topology as the tree displayed in Figure 1. Thus nodes of depth greater than
two have their predictions set to that of their parents. There are a total of ten actual and
four ‘effective’ leaf nodes.

ŷ(node; θ) ≡ θŷ(node) + (1 − θ)ŷ(parent; θ), 0 ≤ θ ≤ 1,

where ŷ(root; θ) ≡ ŷ(root). Note that for θ = 1, no shrinking is performed. For θ = 0,
the prediction is shrunk to its parent, ŷ(parent; 0), which itself is shrunk to its parent,
ŷ(parent2; 0), et cetera all the way to the root, ŷ (root). In general, predictions are shrunk
along the path from a leaf node to the root.

An alternative (non-recursive) way to view this procedure is to expand the recursion
in terms of the usual node predictions ŷ(node). For example, the shrunken prediction of a
node of depth 2 can be written as

ŷ(node; θ) = θŷ(node) + θ(1 − θ)ŷ(parent) + (1 − θ)2ŷ(root)

In general, for a leaf node of depth d one can write,

ŷ(node; θ) ≡
d∑

j=0

wj(θ)ŷj
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where j indexes nodes along the path from the root (depth 0) to the leaf node, and

wj(θ) =

{
(1 − θ)d for j=0
θ(1 − θ)d−j for j > 0.

Note that
∑

wj(θ) ≡ 1 for all θ. Thus a shrunken prediction is a convex linear combi-
nation, an exponential weighted moving average, of the original predictions along its path
to the root.

3 Relating Pruning to Recursive Shrinking

In the introduction we presented an intuitive graphical illustration of a connection between
pruning and recursive shrinking. In this section we explore this relationship more systemat-
ically. Before doing so, it is perhaps useful to review the three elements of tree construction
(Breiman al, page 22 or page 229, 1984):

[1] A way to select a split at every intermediate node.

[2] A rule for determining when a node is terminal.

[3] A rule for assigning a prediction ŷ to every terminal node.

The qualitative difference between pruning and shrinking is whether emphasis and re-
sources are spent on [2] or [3] respectively. Pruning devotes its resources to find the right size
subtree of an overly large tree and then simply uses the observed node frequency/average as
the prediction. Shrinking maintains the overly large tree structure, and devotes its resources
to assigning a prediction other than the observed node frequency/average. But despite this
apparent difference in the means to an end, we now demonstrate that the two are quite
similar in the end itself.

Consider a change in basis from predictions to effects, defined, for a leaf node of depth
d, as follows:

ŷ(node) = ŷ(node) − ŷ(parent) ← ed

+ŷ(parent) − ŷ(parent2) ← ed−1

+ŷ(parent2) − ŷ(parent3) ← ed−2

· · ·
+ŷ(root−1) − ŷ(root) ← e1

+ŷ(root) ← e0

Thus we define ej ≡ ŷj − ŷj−1 for j = 1, ..., d. In this representation recursive shrinking
can be expressed as

ŷ(node; θ) =
d∑

j=0

Wj(θ)ej

where the relationship of Wj to the wj given earlier is
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Wd = wd

Wd−1 = wd + wd−1

Wd−2 = wd + wd−1 + wd−2

. . .

W0 = wd + wd−1 + wd−2 + · · · + w1 + w0 ≡ 1.

The ‘effect’ weights are a monotone decreasing function of depth, starting from full weight
for the overall mean, ŷ (root), and decreasing thereafter.

To draw the connection with pruning, let T̃ denote a subtree of T such that along the
path from the root to the leaf node, only the first γ nodes are retained by the pruning
process. Then we can write

ŷ(node; γ) =
γ−1∑
j=0

ej =
d∑

j=0

Wj(γ)ej

where

Wd = Wd−1 = ... = Wγ ≡ 0
Wγ−1 = Wγ−2 = ... = W0 ≡ 1.

This system of weights is also monotone decreasing in depth, but once pruning decides to
reduce the weight of an effect, it and all subsequent effects are discarded completely.

On a path-by-path basis, shrinking and (simple) pruning differ only in the system of
weights that are applied to the effects. So long as pruning is independent of node charac-
teristics and done solely on the basis of depth, this similarity between the two procedures
obtains. But error-complexity pruning uses information about the importance of each split
(relative to the others) in determining it’s optimal pruning sequence. This suggests that
the naive method of shrinking discussed so far will have to be improved if shrinking is to
be a viable alternative to error-complexity pruning. We introduce a generalized shrinking
scheme in Section 5. We first turn to a means of calibrating shrunken trees to pruned trees
using the concept of ‘effective’ tree size.

4 Sizing Shrunken Trees

For a given θ, what size tree does Tθ correspond to? We address this question to further
draw on the relationship to pruned trees where the concept of size is fairly well-defined. In
doing so we draw on an analogy between tree-based models, conditioned on tree topology,
and linear models that we explore further in Section 7.

A familiar construct in the analysis of linear models concerns the so-called ‘hat matrix’
which takes observations into predictions by ŷ = Hy. The rows of H can be interpreted as
the weights applied to the individual responses that determine the fit at each observation.
The diagonal elements of H play a special role in what follows and have the interpretation
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as measures of ‘self-influence’ since they characterize the amount of influence an observation
has on it’s own fitted value. The particular property of H that we explore here concerns it’s
use to determine the number of independent regression coefficients fitted by a linear model.
This is obtained as trace(H) =

∑
hii = K the number of linearly independent predictor

variables.
A fitted tree-based model can be represented as a linear model by choosing a set of basis

vectors which characterize the partition structure, or more simply, the mutually exclusive
set of leaf nodes. A particularly convenient basis for the latter consists of a single basis
vector for each leaf node k = 1, . . . , K of the form

xik =

{
1 if observation i in leaf node k
0 otherwise

It is clear that ŷ = Hy = X(X ′X)−1X ′y, corresponds to the usual fitted values in the leaf
nodes (i.e. the node averages). The diagonal elements of H are hii = 1/nk where k denotes
the terminal node containing the ith observation. Denoting tree size by s(T), we easily
obtain, for a tree with K terminal nodes,

s(T ) =
N∑

i=1

hii =
K∑

k=1

nk∑
i=1

1
nk

= K.

We extend this notion to shrunken trees by writing the fitted values of Tθ as ŷ = H(θ)y.
Denoting the diagonal elements of H(θ) by hii(θ), the size of a shrunken tree is defined by

s(Tθ) =
N∑

i=1

hii(θ).

In the Appendix we show that the hii(θ) can be obtained by the basic recursion of Section
2. Specifically, for each node in T, define h(node) = 1/(# in node). The recursion,

h(node; θ) ≡ θh(node) + (1 − θ)h(parent; θ), 0 ≤ θ ≤ 1,

where h(root; θ) = h(root), leads to the ‘hat matrix’ diagonals, hii(θ).
It is easy to show that 1 ≤ s(Tθ) ≤ K for 0 ≤ θ ≤ 1. The fact that s(T0) = 1 and

s(T1) = K is reassuring since the trees defined by these limiting values of θ consist of 1 and
K different predictions respectively. Because of this behavior at the limiting values of θ, we
are comfortable calling s(Tθ) the ‘effective’ number of terminal nodes for arbitrary θ.

One use of this measure is to mimic the display of prediction error as a function of
tree size as defined by the error-complexity pruning sequence. For the data introduced in
Section 1, the prototypic behavior for pruning and shrinking is displayed in Figure 5. The
former is a step function due to the fact that there are a finite number of subtrees of T. The
latter is a smoothly decreasing function of effective tree size. In this particular example we
display the curve for two shrinking plans. The dashed curve corresponds to ‘naive’ shrinking
(as described in Section 2) while the dotted curve corresponds to ‘optimal’ shrinking (as
described in the next section). The fact that the former lies above the step function led
us to consider more generalized shrinkage schemes. In the context of the relationship of
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Figure 5: Prediction error versus tree size (bottom axis) and complexity penalty (top axis) for
the automobile mileage example. The curves are based on the resubstitution estimate, that
is, prediction error is computed on the same data used to grow the tree. The step function
defines prediction error for error-complexity pruning. The dashed curve defines prediction
error for ‘naive’ shrinking. The dotted curve defines prediction error for ‘optimal’ shrinking.

shrinking to pruning discussed in the previous section, the dominance of error-complexity
pruning is due to the fact that the decrease from unit weights near the root occurs too fast
for naive shrinking so that substantial bias is incurred. Similarly the decrease to near-zero
weights deep in the tree occurs too slow so that excess variance is incurred. The ‘optimal’
shrinking scheme introduced in the next section attempts to ameliorate this behavior. In
nearly all examples we have looked at to date, optimal shrinking (smoothly) follows the
lower frontier of the error-complexity pruning curve.

In general, prediction error is a decreasing function of actual or effective tree size when
applied to the training set. For independent test data or cross-validation, prediction error
is minimized, sometimes rather crudely, between the extremes of the full tree and the
trivial (root node) tree. Figure 6 shows how imprecise the minimum is determined for this
example. In particular, a maximal tree is indicated by both cost-complexity pruning and
the two shrinking methods. This is hardly surprising in this case due to the strong smooth
dependence of mpg on weight which successively larger trees are attempting to capture
by a series of steps.
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Figure 6: Prediction error versus tree size and complexity penanlty for the automobile
mileage example. The curves are based on 10-fold cross-validation, that is, prediction error
is computed on data other than that used to grow the tree. The step function defines pre-
diction error for error-complexity pruning. The dashed curve defines prediction error for
‘naive’ shrinking. The dotted curve defines prediction error for ‘optimal’ shrinking. The
scales are the same as that of Figure 5.

5 Generalized Recursive Shrinking

The discussion so far has concentrated on a scalar shrinkage parameter θ which does not
depend on the importance of the split, the fitted value in the node, the node size, et cetera.
In this section we generalize the notion of recursive shrinking to allow shrinkage to depend
on local node characteristics and yet still be parameterized by a scalar θ which globally
controls the amount of shrinking. Thus certain local characteristics can be used to temper
the amount of shrinking as the application dictates. We call one particular scheme “optimal
shrinking” as it leads to node predictions that can be justified from determining the amount
of shrinkage to minimize expected prediction error.

5.1 Node Functions

Let θl = f(node l; θ) denote a function of node l and a scalar (global) shrinkage parameter θ.
It is convenient, but not necessary, to define θl such that f(node; 1) ≡ 1 and f(node; 0) ≡ 0,
so that irrespective of local node characteristics, we obtain ‘no shrinking’ and ‘shrinking to
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the root’ respectively. An example of a node function satisfying these requirements is

θl =
(# in node)

(# in node) + (1/θ − 1)(# in sister)
.

Generalized recursive shrinking is defined by

ŷ(node l; θl) ≡ θlŷ(node l) + (1 − θl)ŷ(parent l; θp)

where θp = f(parent l; θ), the node function corresponding to the parent of node l. Pre-
dictions based on generalized recursive shrinking behave as those described in previous
sections. In particular, predictions are convex combinations of the usual node predictions
along the path from a leaf node to the root,

ŷ(node; θ) ≡
d∑

j=0

wj(θ)ŷj

where

wj(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d∏
l=1

(1 − θl) for j=0

θd

d−j∏
l=1

(1 − θj+l) for j > 0.

Similarly, tree sizing as described in Section 4 still obtains. We now describe a particular
choice of the function f(node; θ) that enjoys some hueristic optimality justification as well
as good performance in practice.

5.2 Optimal Shrinking of Regression Trees

Consider a simple tree consisting of a parent and two children nodes. Call the tree T, which
results in predictions ŷ(x) = T (x), where T (x) = ȳL or ȳR depending on whether split(x)=
LEFT or split(x)= RIGHT. Without loss of generality assume that x follows the left-hand
branch. The question we address is whether it is possible to do better than ŷ = ȳL by
considering node predictions of the form

ŷθ = θȳL + (1 − θ)ȳ,

where ȳ = ȳ (parent). By ‘better’ we mean smaller expected prediction error, which for a
new observation is given by

PE(θ) = E(y − ŷθ)2 = E(y − θȳL − (1 − θ)ȳ)2.

This is a quadratic function of θ minimized at

θ∗ = 1 − σ2

σ2 + nLnR
nL+nR

(µL − µR)2
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where µL = E(y|LEFT ), nL = # in LEFTnode, and similarly for the right node. The
term σ2 is the variance of y which is assumed constant across the tree. At optimal shrinkage,
the PE is given by

PE(θ∗) = σ2
{

1 + 1
nL

− nR/nL

nLnR∆+nL+nR

}

where ∆ = (µL − µR)2/σ2, the scaled difference between the children means. Optimal
prediction error is an increasing function of ∆ with limiting cases

PE(θ∗) =

⎧⎪⎨
⎪⎩

σ2(1 + 1
nL+nR

) if ∆=0

σ2(1 + 1
nL

) if ∆ = ∞

Thus the optimal prediction error varies between the prediction error of the parent
(∆ = 0) and that of the child (∆ = ∞). This optimum is attainable only if ∆ and σ2 are
known. In practice they are not known, and because Stein shrinkage only works for three
or more means, replacing unknowns by estimates does not lead to an improvement over the
unshrunken node averages. Our intention, however, is to shrink the entire set of terminal
nodes toward the overall mean (i.e. the root node) in a recursive fashion. We therefore
proceed to estimate the signal to noise ratio, for it will determine the relative amounts of
shrinking in the overall shrinking scheme.

The numerator and the denominator of the second term on the right hand side of θ∗

can be estimated by the within and between node mean squares respectively. The resulting
estimated optimal shrinkage parameter is

θ̂∗ = 1 − W

B

where

(nL + nR − 2)W =
∑

y∈LEFT

(y − ȳL)2 +
∑

y∈RIGHT

(y − ȳR)2

and

B =
∑

y∈PARENT

(y − ȳP )2 −

⎡
⎣ ∑

y∈LEFT

(y − ȳL)2 +
∑

y∈RIGHT

(y − ȳR)2
⎤
⎦

=
nLnR

nL + nR
(ȳL − ȳR)2.

In the framework of generalized recursive shrinking, the basic idea is to apply this optimal
estimate locally. Thus we consider node functions of the form θ̂∗l = f (node l; θ) where the
information at node l consists of W l and Bl. A useful way to interpret the local behavior
of this shrinkage scheme relies on the fact that the significance level of the importance
of splitl(x) is a one-to-one function of θ̂∗l . Thus, optimal shrinking allows one to weight
a prediction according to the strength of the evidence that the split is meaningful. In
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comparison, procedures which control tree growth use this test to either wholly accept or
discard a candidate split. Error-complexity pruning on the other hand, uses the collection
{B̄l : l = 1, ..., K − 1} to determine it’s ‘optimal’ sequence of subtrees.

As mentioned earlier, none of the shrunken nodes are really optimal. There are several
reasons, the most basic being that the Stein result does not apply to individual node pairs.
Also the optimal shrinkage estimator derived above assumes a fixed structure T , when in
reality, T is the result of searching for that split(x) such that the between node mean
square is maximal. This implies that the estimates, W̄ and B̄, of the numerator and
denominator of θ̂∗, are severely biased. For non-trivial trees things get worse rather than
better as this maximization is performed at each node. In addition to this selection bias,
the individual estimates W̄l are also quite unstable across the tree, especially at the leaves
of particularly large trees where pure nodes are not uncommon. For all these reasons we
introduce an additional regulating parameter θ to modify the “optimal” values of θ̂∗, while
still maintaining the spirit of the optimality result.

The particular ‘optimal’ shrinkage function we propose is given by

θ̂∗l = f(node l; θ) =

{
1 − (1

θ − 1) × W̄0

B̄l
for (1

θ − 1)W̄0 ≤ B̄l

0 otherwise

where W 0 = s2, the root node mean square. The purpose of replacing W l by W 0 is to
trade local adaptation (by W l) for global stability (of W 0). The scalar multiple (1

θ − 1) is
introduced to adapt to the selection bias. This peculiar choice of scaling is used so that
θ → 1 forces θ̂∗l → 1, while θ → 0 drives θ̂∗l → 0 regardless of local node characteristics.
Despite these modifications, we still call this scheme ‘optimal’ local shrinkage, if only because
we have yet to find a generalized recursive shrinkage scheme which demonstrates better
performance.

5.3 Class Probability Trees

The derivation in the previous section concerned regression trees and squared prediction
error. This leads to the optimal scheme being a function of (ȳL − ȳR)2, or equivalently,
a function of the between node sum of squares. By analogy, but without formal justifica-
tion, we generalize this scheme to class probability trees by replacing squared error by the
multinomial deviance

dev(node) = −2loglik(p; node) = −2
∑

i∈node

J∑
j=1

yijlogpij ,

where yij = 1 if observation i is in class j and yij = 0 otherwise. This results in the optimal
shrinkage scheme defined by the between node deviance

Bl = dev(parent l) − [dev(node l) + dev(sister l)]

and the (global) within node deviance

W 0 =
dev(root)

N − 1
.
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For readers unfamiliar with the term ‘deviance’, Bl is simply the likelihood ratio statistic
associated with the hypothesis test that splitl is unnecessary. The example described in the
next section uses this definition, with apparent success, although extensive examination of
alternatives has not been undertaken.

6 The Faulty LED Example

A small but useful example of class probability trees is that based on recognizing the digit
output by an LED device (Breiman et al, 1984). Such devices display the digits 0—9 by
activating combinations of seven line segments which define the top, upper left, upper right,
middle, lower left, lower right, and bottom sides of a rectangle split in two. A faulty LED
display is considered whereby each line segment can have its parity changed with a fixed
probability, independently of the others. In the example discussed below this probability
is 0.10. Given a sample of faulty LED digit data, the challenge is to construct a class
probability tree for prediction of future digits.

We use a sample {y, x1, . . . , x7} of size N=200 for tree construction, where y denotes
the target digit and xj the parity of the jth segment. We use the deviance measure for node
heterogeneity and halt tree growth only when the node is pure or the node size is less than
10. The resulting tree is displayed in Figure 7. Nodes are labeled by their modal category
(i.e. the most numerous digit in the node). Optimal shrinking was applied to this tree at
10 prespecified values of α in the unit interval, (1/20, 2/19,. . . , 10/11), resulting in tree
sizes ranging from 1.8 to 33 effective terminal nodes. Figure 8 displays the dependence of
prediction error for the optimal shrinking scheme as a function of effective tree size. The
monotone decreasing curve is the resubstitution estimate of prediction error; the upward
arrows point to that obtained from 10-fold cross-validation on these data; the solid curve
is based on an independent test sample of size 200. The latter two point fairly sharply to
a shrunken tree with approximately 10 effective terminal nodes. This in turn corresponds
to α = 5/16.

A comparison of shrinking with error-complexity pruning is hampered by the fact that
the latter ‘explodes’ when a node predicts the observed digit to have probability zero (recall
that the deviance is a sum of terms of the form logpij). Shrinking is immune to this problem
since the shrunken prediction at each node borrows from the root, which only in extremely
pathological cases will not have particular classes represented. One measure which can
be computed for both methods is the misclassification error rate. Breiman et al (1984)
obtain a misclassification error rate of cost-complexity pruning of 0.30. (Cost-complexity
means that the pruning was done using this measure as opposed to error deviance.) The
misclassification error rate of the optimally shrunken tree is also 0.30. Both of these are
obtained on independent test samples.

7 Related Methods

There is little existing treatment of shrinkage for trees, save one reference, which we discuss
below. An abundance of material has appeared on shrinkage in other more common models.
We superficially discuss the apparent connection between our method and this material,
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Figure 7: The tree grown to the faulty LED data prior to simplification or shrinkage. The
numbers under each node correspond to the modal category for each node. Thus for these
data, the digit “4” is the most numerous. The left side of the tree is attempting to sort out
differences between the digits “2” and “7” and then “1” and “7” and then “0” and “3”.
The right side is attempting to sort out differences between the digits “4” “5” and then ‘5”
“9” and “0” and then “0” “6” and “4” and finally “2” “8” and “6”.

which we hope will encourage others to pursue in more detail.

7.1 Shrinking classification trees

Bahl, Brown, de Souza, and Mercer (1987) introduce shrinking in their application of clas-
sification trees in natural language speech recognition. Their primary motivation is to
smooth class probabilities based on sparse data; the particular application involved model-
ing a 5000-nomial! They assign a separate vector θk to each leaf node, where the elements
of θk weight cell proportions along the path from the leaf to the root. They determine
the entire set Θ by minimizing prediction error (deviance) in an independent test set. The
similarity with our approach is that they condition on the topology of the fitted tree in
their optimization over the shrinkage parameters. The difference is the dimensionality of
the parameter space, ours having a single adjustable parameter and a user-defined function
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Figure 8: Prediction error (deviance) versus tree size for the faulty LED tree. All points
and curves are for ‘optimal’ shrinking. The asterisks are based on the resubstitution esti-
mate. The arrowheads are based on 10-fold cross-validation. The solid curve is based on an
independent test sample of size 200.

f(node; θ), while theirs is wholly unconstrained, except that for each leaf the θ’s along the
path to the root are required to sum to one. We have made no formal comparison of the
two approaches.

7.2 Non-Recursive Shrinkage Methods

An alternative class of shrinkage estimates for trees is nonrecursive, and based on a linear
model representation of a binary tree. Specifically consider a set of basis vectors for a fixed
tree T which corresponds to the sequence of splits defined by T, one basis vector for each
split and one for the root node. The root is the “grand mean” and is represented by a
column of 1’s. The remaining columns can be defined in a variety of ways. We choose a
representation that coincides with the “effects” defined in Section 3, namely that at each
split, the effect is e = ŷ(left child) − ŷ(parent).

If the first split sends nL observations to the left, and nR to the right, then it is easy
to show that the appropriate contrast vector for this first “effect” has nL elements equal
to 1, the remaining nR elements equal to −nL/nR. This contrast is orthogonal to the root
contrast (i.e. the column of ones). This pattern is repeated for further splits, with zeros in
the contrast vector for observations not in the node being split. The resulting basis, say A,
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has dimension N × K where K is the number of terminal nodes. The vector of “effects,”
e = (A′A)−1A′y, is that defined in Section 3, where each effect has an associated depth.
Fitted values are obtained as linear combinations of these effects, namely ŷ = Ae.

We now consider shrinking the effects. As a further simplification, we can assume that
A is orthonormal. Then ŷ = AA′y and H = AA′ is the operator (projection) matrix
for the tree. By analogy with Section 3, we must shrink effects at depth q using weights
Wq = 1 − (1 − θ)d−q where d is the maximum depth of the tree. If D(θ) is the K × K
diagonal matrix of these effect weights, then H(θ) = AD(θ)A′ is the shrunken operator
matrix. An alternative form is:

H(θ) = A(I + D(θ)−1 − I)−1A′

= A(A′A + P (θ))−1A′

where P (θ) is the diagonal “penalty” matrix with elements corresponding to depth q having
value pq = 1

Wq
− 1. Since W0 = 1, the root effect is not penalized, but successively deeper

effects receive a higher penalty. Notice that this shrinkage scheme is not the same as
recursive shrinking which has the property that an effect which is shared by terminal nodes
of different depths receives different weights.

The resulting shrunken estimator solves the penalized least squares problem

min
e

|| y − Ae ||2 + e′P (θ)e,

and has a flavor very similar to smoothing splines. This analogy with more traditional
shrinkage and smoothing methods is alluring, and encourages one to “design” other shrink-
age schemes. The ingredients for such a construction are:

• a basis A representing the full tree; preferably the elements of the basis should be
orthonormal vectors with an obvious ordering; in our example above the basis vectors
are ordered by depth.

• a shrinking scheme D(θ) for weighting the effects.

We resist the temptation to pursue these ideas but expect that the presentation here will
facilitate the future development of such methods.

8 Computing

It is an interesting historical note that the idea of shrinking trees initially arose in an effort to
implement tree-based models in a widely used and extendible computing environment (S—
Becker, Chambers, and Wilks, 1988). Specifically, that implementation (Becker, Clark and
Pregibon, 1989) was based on the ideas in Breiman et al. (1984) as seen through a software
developer’s eyes: separate out the logical and distinct steps in fitting tree-based models into
distinct software modules. The initial modules consisted of functions for growing, pruning
and cross-validating trees and five functions for displaying trees. These were followed by
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a host of functions for interacting graphically with trees, such as snipping off branches,
selecting subtrees, identifying which observations fall where, et cetera. The idea was to
exploit the graphical representation of the model as a binary tree in the analysis of the
data, and not merely for presentation purposes. Subsequent functions included those for
prediction, auto-coding of C language prediction subroutines, editing splits, and interactive
tree growing whereby the user can temper the optimization performed at each node with
contextual information to alter the usual tree growth.

The key notion that ties the functions together is the tree data structure, which in
the current implementation, consists of a matrix summarizing the results of the recursive
partitioning algorithm, and an (optional) list of which terminal node each observation falls
into. This object can be plotted and manipulated by other functions, most of which produce
either a side-effect (e.g. some tree display) or a new tree structure (e.g. the result of snipping
branches off a tree).

The software implementation thus supports the notion that one grows an overly large
tree and assigns the result to a tree object. The tree can be simplified by applying error-
complexity pruning. But so long as we have the overly large tree, why not entertain other
methods of simplification or enhancement for prediction? And thus the germ of the idea,
”What else can one do?” was born and subsequently addressed by relating it to ideas more
commonly applied to linear parametric models, namely shrinkage.

The computations are carried out by determining the generalized shrinkage parameters
θl for each node in the tree, and then applying these to the nodal predictions layer by layer,
starting from the root and proceeding to the maximal tree depth. This procedure thereby
provides shrunken predictions throughout the tree, not just at the leafs. Once deviances
are computed at each node, the information is organized into a tree data structure, thereby
allowing plotting, prediction, cross-validation, or further manipulation.

We note finally that there is no inherent restriction that shrinking be applied to an entire
tree. Indeed it might often be the case that certain subtrees are singled out for differential
treatment. Thus, one portion of the tree can be shrunken at a certain value, θ, another
at a different value, θ′, and yet another can be simply pruned or left alone entirely. Any
implementation of tree-based methods should encourage such improvisation.
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11 Appendix: H (θ) for Simple Recursive Shrinking

Let X be the N × K matrix of dummy variables that represent the set of terminal nodes.
Suppose that the columns of X are ordered by the depth of the corresponding terminal
node, and denote the number of observations at leaf node l by nl. Now H = X(X ′X)−1X ′

where X ′X = diag (n1, n2, . . . , nK). The vector of fitted values for the K terminal nodes is
ȳ = (X ′X)−1X ′y, and premultiplication by X expands them out to fitted values, ŷ = Xȳ =
Hy, for the N observations.

The operator matrix for a recursively shrunken tree can be expressed as

H(θ) = XΘ(X ′X)−1X ′.

The size of the tree is defined as s(Tθ) = traceH(θ) = traceΘ. The matrix Θ is a full
K × K matrix since every shrunken terminal node depends on all the other nodes. For a
simple 3 terminal node example with the first terminal node at depth one and the other
two at depth two, Θ = {Θi,j : i, j = 1, 2, 3} has individual elements:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θ + (1−θ)n1

n1+n2+n3

(1−θ)n2

n1+n2+n3

(1−θ)n3

n1+n2+n3

(1−θ)2n1

n1+n2+n3
θ + θ(1−θ)n2

n2+n3
+ (1−θ)2n2

n1+n2+n3

θ(1−θ)n3

n2+n3
+ (1−θ)2n2

n1+n2+n3

(1−θ)2n1

n1+n2+n3

θ(1−θ)n2

n2+n3
+ (1−θ)2n3

n1+n2+n3
θ + θ(1−θ)n3

n2+n3
+ (1−θ)2n3

n1+n2+n3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Further insight can be gained by expressing H(θ) = XΘ̄X′ where Θ̄ = Θ(X′X)−1. The
individual elements of Θ̄ are obtained by dividing the jth column of Θ by nj . For our simple
three terminal node example one obtains

Θ̄2,2 =
θ

n2
+

θ(1 − θ)
n2 + n3

+
(1 − θ)2

n1 + n2 + n3
.

Since X represents the set of basis vectors for the K terminal nodes, pre- and post-
multiplication of Θ̄ by X yields

hii(θ) = Θ̄k,k

where the subscripts convey the fact that the ith observation falls into the kth terminal
node. Thus the diagonal elements of H(θ) are defined by the usual recursion applied to

1
# in node

as described in Section 4.
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