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Abstract

We consider linear equations y = Φα where y is a given vector in Rn, Φ is a given n by m
matrix with n < m ≤ An, and we wish to solve for α ∈ Rm. We suppose that the columns
of Φ are normalized to unit `2 norm 1 and we place uniform measure on such Φ. We prove
the existence of ρ = ρ(A) so that for large n, and for all Φ’s except a negligible fraction, the
following property holds: For every y having a representation y = Φα0 by a coefficient vector
α0 ∈ Rm with fewer than ρ · n nonzeros, the solution α1 of the `1 minimization problem

min ‖x‖1 subject to Φα = y

is unique and equal to α0.
In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and

thresholding – perform poorly in this challenging setting.
The techniques include the use of random proportional embeddings and almost-spherical

sections in Banach space theory, and deviation bounds for the eigenvalues of random Wishart
matrices.
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1 Introduction

Many situations in science and technology call for solutions to underdetermined systems of
equations, i.e. systems of linear equations with fewer equations than unknowns. Examples in
array signal processing, inverse problems, and genomic data analysis all come to mind. However,
any sensible person working in such fields would have been taught to agree with the statement:
“you have a system of linear equations with fewer equations than unknowns. There are infinitely
many solutions.” And indeed, they would have been taught well. However, the intuition imbued
by that teaching would be misleading.

On closer inspection, many of the applications ask for sparse solutions of such systems, i.e.
solutions with few nonzero elements; the interpretation being that we are sure that ‘relatively
few’ of the candidate sources, pixels, or genes are turned ‘on’, we just don’t know a priori which
ones those are. Finding sparse solutions to such systems would better match the real underlying
situation. It would also in many cases have important practical benefits, i.e. allowing us to
install fewer antenna elements, make fewer measurements, store less data, or investigate fewer
genes.

The search for sparse solutions can transform the problem completely, in many cases making
unique solution possible (Lemma 2.1 below, see also [7, 8, 16, 14, 26, 27]). Unfortunately, this
only seems to change the problem from an impossible one to an intractable one! Finding the
sparsest solution to an general underdetermined system of equations is NP-hard [21]; many
classic combinatorial optimization problems can be cast in that form.

In this paper we will see that for ‘most’ underdetermined systems of equations, when a
sufficiently sparse solution exists, it can be found by convex optimization. More precisely, for
a given ratio m/n of unknowns to equations, there is a threshold ρ so that most large n by m
matrices generate systems of equations with two properties:

(a) If we run convex optimization to find the `1-minimal solution, and happen to find a solution
with fewer than ρn nonzeros, then this is the unique sparsest solution to the equations;
and

(b) If the result does not happen to have ρn nonzeros, there is no solution with < ρn nonzeros.

In such cases, if a sparse solution would be very desirable – needing far fewer than n coeffi-
cients – it may be found by convex optimization. If it is of relatively small value – needing close
to n coefficients – finding the optimal solution requires combinatorial optimization.

1.1 Background: Signal Representation

To place this result in context, we describe its genesis.
In recent years, a large body of research has focused on the use of overcomplete signal rep-

resentations, in which a given signal S ∈ Rn is decomposed as S =
∑
αiφi using a dictionary of

m > n atoms. Equivalently, we try to solve S = Φα for Φ and n by m matrix. Overcompleteness
implies that m > n, so the problem is underdetermined. The goal is to use the freedom this
allows to provide a sparse representation.

Motivations for this viewpoint were first obtained empirically, where representations of sig-
nals were obtained using in the early 1990’s, eg. combinations of several orthonormal bases by
Coifman and collaborators [4, 5] and combinations of several frames in by Mallat and Zhang’s
work on Matching Pursuit [19], and by Chen, Donoho, and Saunders in the mid 1990’s [3].

A theoretical perspective showing that there is a sound mathematical basis for overcomplete
representation has come together rapidly in recent years, see [7, 8, 12, 14, 16, 26, 27]. An early
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result was the following: suppose that Φ is the concatenation of two orthobases, so that m = 2n.
Suppose that the coherence - the maximal inner product between any pair of columns of Φ -
is at most M . Suppose that S = Φα0 has at most N nonzeros. If N < M−1, α0 provides the
unique optimally sparse representation of S. Consider the solution α1 to the problem

min ‖α‖1 subject to S = Φα.

If N ≤ (1 +M−1)/2 we have α1 = α0. In short, we can recover the sparsest representation by
solving a convex optimization problem.

As an example, a signal of length n which is a superposition of no more than
√
n/2 total

spikes and sinusoids is uniquely representable in that form and can be uniquely recovered by `1

optimization, (in this case M = 1/
√
n). The sparsity bound required in this result, comparable

to 1/
√
n, is disappointingly small, however, it was surprising at the time that any such result

was possible. Many substantial improvements on these results have since been made [12, 8, 14,
16, 26, 27].

It was mentioned in [7] that the phenomena proved there represented only the tip of the
iceberg. Computational results published there showed that for randomly-generated systems Φ
one could get unique recovery even with as many as about n/5 nonzeros in a 2-fold overcom-
plete representation. Hence, empirically, even a mildly sparse representation could be exactly
recovered by `1 optimization.

Very recently, Candès, Romberg and Tao [2] showed that for partial Fourier systems, formed
by taking n rows at random from an m-by-m standard Fourier matrix, the resulting n by
m matrix with overwhelming probability allowed exact equivalence between (P0) and (P1) in
all cases where the number N of nonzeros was smaller than cn/ log(n). This very inspiring
result shows that equivalence is possible with a number of nonzeros almost proportional to
n. Furthermore, [2] showed empirical examples where equivalence held with as many as n/4
nonzeros.

1.2 This Paper

In previous work, equivalence between the minimal `1 solution and the optimally sparse solution
required that the sparse solution have an asymptotically negligible fraction of nonzeros. The
fraction O(n−1/2) could be accommodated in results of [7, 12, 8, 14, 26], and O(1/ log(n)) in [2].

In this paper we construct a large class of examples where equivalence holds even when
the number of nonzeros is proportional to n. More precisely we show that there is a constant
ρ(A) > 0 so that all but a negligible proportion of large n by m matrices Φ with n < m ≤ An,
have the following property: for every system S = Φα allowing a solution with fewer than ρn
nonzeros, `1 minimization uniquely finds that solution. Here ‘proportion of matrices’ is taken
using the natural uniform measure on the space of matrices with columns of unit `2 norm.

In contrast, greedy algorithms and thresholding algorithms seem to fail in this setting.
An interesting feature of our analysis is its use of techniques from Banach space theory, in

particular quantitative extensions of Dvoretsky’s almost spherical sections theorem, (by Mil-
man, Kashin, Schechtman, and others), and other related tools exploiting randomness in high-
dimensional spaces, including properties of the minimum eigenvalue of Wishart matrices.

Section 2 gives a formal statement of the result and the overall proof architecture; Sections
3-5 prove key lemmas; Section 6 discusses the failure of Greedy and Thresholding Procedures;
Section 7 describes a geometric interpretation of these results. Section 8 discusses a heuristic
that correctly predicts the empirical equivalence breakdown point. Section 9 discusses stability
and well-posedness.
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2 Overview

Let φ1, φ2, . . . , φm be random points on the unit sphere Sn−1 in Rn, independently drawn from
the uniform distribution. Let Φ = [φ1 . . . φm] be the matrix obtained by concatenating the
resulting vectors. We denote this Φn,m when we wish to emphasize the size of the matrix.

For a vector S ∈ Rn we are interested in the sparsest possible representation of S using
columns of Φ; this is given by:

(P0) min ‖α‖0 subject to Φα = S,

It turns out that, if (P0) has any sufficiently sparse solutions, then it will typically have a unique
sparsest one.

Lemma 2.1 On an event E having probability 1, the matrix Φ has the following unique spars-
est solution property:

For every vector α0 having ‖α0‖0 < n/2 the vector S = Φα0 generates an instance
of problem (P0) whose solution is uniquely α0.

Proof. With probability one, the φi are in general position in Rn. If there were two solutions,
both with fewer than n/2 nonzeros, we would have Φα0 = Φα1 implying Φ(α1 − α0) = 0, a
linear relation involving n conditions satisfied using fewer than n points, contradicting general
position. QED

In general, solving (P0) requires combinatorial optimization and is impractical. The `1 norm
is in some sense the convex relaxation of the `0 norm. So consider instead the minimal `1-norm
representation:

(P1) min ‖α‖1 subject to Φα = S,

This poses a convex optimization problem, and so in principle is more tractable than (P0).
Surprisingly, when the answer to (P0) is sparse, it can be the same as the answer to (P1).

Definition 2.1 The Equivalence Breakdown Point of a matrix Φ, EBP (Φ), is the maximal
number N such that, for every α0 with fewer than N nonzeros, the corresponding vector S = Φα0

generates a linear system S = Φα for which problems (P1) and (P0) have identical unique
solutions, both equal to α0.

Using known results, we have immediately that the EBP typically exceeds c
√
n/ log(m).

Lemma 2.2 For each η > 0,

Prob
{
EBP (Φn,m) >

√
n

(8 + η) log(m)
}
→ 1, n→∞.

Proof. The mutual coherence M = maxi6=j |〈φi, φj〉| obeys M <

√
2 log(m)

n (1 + op(1)), compare
calculations in [7, 8]. Applying [8], (P0) and (P1) have the same solution whenever ‖α0‖0 <
(1 +M−1)/2. QED.

While it may seem that O(
√
n/ log(m)) is already surprisingly large, more than we ‘really

deserve’, more soberly, this is asymptotically only a vanishing fraction of nonzeros. In fact,
the two problems have the same solution over even a much broader range of sparsity ‖α0‖0,
extending up to a nonvanishing fraction of nonzeros.
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Theorem 1 For each A > 1, there is a constant ρ∗(A) > 0 so that for every sequence (mn)
with mn ≤ An

Prob{n−1EBP (Φn,m) ≥ ρ∗(A)} → 1, n→∞.

In words, the overwhelming majority of n by m matrices have the property that `1 mini-
mization will exactly recover the sparsest solution whenever it has at most ρ∗n nonzeros. An
explicit lower bound for ρ∗ can be given based on our proof, but it is exaggeratedly small. As we
point out later, empirical studies observed in computer simulations set (3/10)n as the empirical
breakdown point when A = 2, and a heuristic based on our proof quite precisely predicts the
same breakdown point – see Section 8 below.

The space of n×m matrices having columns with unit norm is, of course,

←m terms →
Sn−1 × · · · × Sn−1 .

Now the probability measure we are assuming on our random matrix Φ is precisely the canonical
uniform measure on this space. Hence, the above result shows that having EBP (Φ) ≥ ρ∗n is a
generic property of matrices, experienced on a set of nearly full measure.

2.1 Proof Outline

Let S = Φα0 and let I = supp(α0). Suppose there is an alternate decomposition

S = Φ(α0 + δ)

where the perturbation δ obeys Φδ = 0. Partitioning δ = (δI , δIc), we have

ΦIδI = −ΦIcδIc .

We will simply show that, on a certain event Ωn(ρ,A)

‖δI‖1 < ‖δIc‖1 (2.1)

uniformly over every I with |I| < ρn and over every δI 6= 0. Now

‖α0 + δ‖1 − ‖α0‖1 ≥ ‖δIc‖1 − ‖δI‖1.

It is then always the case that any perturbation δ 6= 0 increases the `1 norm relative to the
unperturbed case δ = 0. In words, every perturbation hurts the `1 norm more off the support
of α0 than it helps the norm on the support of α0, so it hurts the `1 norm overall, so every
perturbation leads away from what, by convexity, must therefore be the global optimum.

It follows that the `1 minimizer is unique whenever |I| < ρn and the event Ωn(ρ,A) occurs.
Formally, the event Ωn(ρ,A) is the intersection of 3 subevents Ωi

n, i = 1, 2, 3. These depend
on positive constants ηi and ρi to be chosen later. The subevents are:

Ω1
n The minimum singular value of ΦI exceeds η1, uniformly in I with |I| < ρ1n

Ω2
n Denote v = ΦIδI . The `1 norm ‖v‖1 exceeds η2

√
n‖v‖2, uniformly in I with |I| < ρ2n.

Ω3
n Let δIc obey v = −ΦIcδIc . The `1 norm ‖δIc‖1 exceeds η3‖v‖1 uniformly in I with |I| < ρ3n.
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Lemmas 3.1,4.1, and 5.1 show that one can choose the ρi and ηi so that the complement of
each of the Ωi

n, i = 1, 2, 3 tends to zero exponentially fast in n. We do so. It follows, with
ρ4 ≡ mini ρi, that the intersection event Eρ4,n ≡ ∩iΩi

n is overwhelmingly likely for large n.
When we are on the event Eρ4,n, Ω1

n gives us

‖δI‖1 ≤
√
|I| · ‖δI‖2

≤
√
|I|‖v‖2/λ

1/2
min(Φ

T
I ΦI)

≤ η−1
1 |I|1/2‖v‖2.

At the same time, Ω2
n gives us

‖v‖1 ≥ η2

√
n‖v‖2.

Finally, Ω3
n gives us

‖δIc‖1 ≥ η3‖v‖1,

and hence, provided
|I|1/2 < η1 · η2 · η3 ·

√
n,

we have (2.1), and hence `1 succeeds. In short, we just need to bound the fraction |I|/n.
Now pick ρ∗ = min(ρ4, (η1 · η2 · η3)2), and set Ωn(ρ∗, A) = Eρ4,n; we get EBP (Φ) ≥ ρ∗n on

Ωn(ρ∗, A).
It remains to prove Lemmas 3.1, 4.1, and 5.1 supporting the above analysis.

3 Controlling the Minimal Eigenvalues

We first show there is, with overwhelming probability, a uniform bound η1(ρ,A) on the minimal
singular value of every matrix ΦI constructible from the matrix Φ with |I| < ρn. This is of
independent interest; see Section 9.

Lemma 3.1 Let λ < 1. Define the event

Ωn,m,ρ,λ = {λmin(ΦT
I ΦI) ≥ λ, ∀|I| < ρ · n}.

There is ρ1 = ρ1(λ,A) > 0 so that, along sequences (mn) with mn ≤ An,

P (Ωn,mn,ρ1,λ) → 1, n→∞.

The bound η1(ρ,A) > 0 is implied by this result; simply invert the relation λ 7→ ρ1(λ,A) and
put η1 = λ1/2.

3.1 Individual Result

We first study λmin(ΦT
I ΦI) for a single fixed I.

Lemma 3.2 Let ρ > 0 be sufficiently small. There exist η = η(ρ) > 0, β(ρ) > 0 and n1(ρ), so
that for k = |I| ≤ ρn we have

P{λmin(ΦT
I ΦI) ≤ η2} ≤ exp(−nβ), n > n1.
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Effectively our idea is to show that ΦI is related to matrices of iid Gaussians, for which such
phenomena are already known.

Without loss of generality suppose that I = {1, . . . , k}. Let Ri, i = 1, . . . , k be iid random
variables distributed χn/

√
n, where χn denotes the χn distribution. These can be generated by

taking iid standard normal RV’s Zij which are independent of (φi) and setting

Ri = (n−1
n∑
j=1

Z2
ij)

1/2. (3.1)

Let xi = Ri · φi; then the xi are iid N(0, 1
nIn), and we view them as the columns of X. With

R = diag((Ri)i), we have ΦI = XR−1, and so

λmin(ΦT
I ΦI) = λmin((R−1)TXTXR−1) ≥ λmin(XTX) · (max

i
Ri)−2. (3.2)

Hence, for a given η > 0 and ε > 0, the two events

E = {λmin(XTX) ≥ (η + ε)2} F = {max
i
Ri < 1 + ε/η}

together imply
λmin(ΦT

I ΦI) ≥ η2.

The following lemma will be proved in the next subsection:

Lemma 3.3 For u > 0,
P{max

i
Ri > 1− u} ≤ exp{−nu2/2}. (3.3)

There we will also prove:

Lemma 3.4 Let X be an n by k matrix of iid N(0, 1
n) Gaussians, k < n. Let λmin(XTX)

denote the minimum eigenvalue of XTX. For ε > 0 and k/n ≤ ρ,

P{λmin(XTX) < (1−√ρ− ε− t)2} ≤ exp(−nt2/2), n > n0(ε, ρ). (3.4)

Pick now η > 0 with η < 1−√ρ, and choose ε so 2ε < 1−√ρ−η; finally, put t = 1−√ρ−2ε−η.
Define u = ε/η. Then by Lemma 3.4

P (Ec) ≤ exp(−nt2/2), n > n0(ε, ρ),

while by Lemma 3.3
P (F c) ≤ exp(−nu2/2).

Setting β < min(t2/2, u2/2), we conclude that, for n1 = n1(ε, ρ, β),

P{λmin(ΦT
I ΦI) < η2} ≤ exp(−nβ), n > n1(ε, ρ, β).

QED
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3.2 Invoking Concentration of Measure

We now prove Lemma 3.3. Now (3.1) exhibits each Ri as a function of n iid standard normal
random variables, Lipschitz with respect to the standard Euclidean metric, with Lipschitz con-
stant 1/

√
n. Moreover maxiRi itself is such a Lipschitz function. By concentration of measure

for Gaussian variables [18], (3.3) follows.
The proof of Lemma 3.4 depends on the observation – see Szarek [25], Davidson-Szarek [6]

or El Karoui [13] – that the singular values of Gaussian matrices obey concentration of measure:

Lemma 3.5 Let X be an n by k matrix of iid N(0, 1
n) Gaussians, k < n. Let s`(X) denote the

`-th largest singular value of X, s1 ≥ s2 ≥ . . . . Let σ`;k,n = Median(s`(X)) Then

P{s`(X) < σ`;k,n − t} ≤ exp(−nt2/2).

The idea is that a given singular value, viewed as a function of the entries of a matrix, is Lipschitz
with respect to the Euclidean metric on Rnk. Then one applies concentration of measure for
scaled Gaussian variables.

As for the median σk;k,n we remark that the well-known Marcenko-Pastur law implies that,
if kn/n→ ρ

σkn;kn,n → 1−√ρ, n→∞.

Hence, for given ε > 0 and all sufficiently large n > n0(ε, ρ), σkn;kn,n > 1 −√ρ − ε. Observing
that sk(X)2 = λmin(XTX), gives the conclusion (3.4).

3.3 Proof of Lemma 3.1

We now combine estimates for individual I’s obeying |I| ≤ ρn to obtain the simultaneous result.
We need a standard combinatorial fact, used here and below:

Lemma 3.6 For p ∈ (0, 1), let H(p) = p log(1/p) + (1− p) log(1/(1− p)) be Shannon entropy.
Then

log
(

N

bpNc

)
= NH(p)(1 + o(1)), N →∞.

Now for a given λ ∈ (0, 1), and each index set I, define the event

Ωn,I;λ = {λmin(ΦT
I ΦI) ≥ λ}

Then
Ωn,m,ρ,λ = ∩|I|≤ρnΩn,I;λ.

By Boole’s inequality,
P (Ωc

n,m,ρ,λ) ≤
∑
|I|≤ρn

P (Ωc
n,I;λ),

so
logP (Ωc

n,m,ρ,λ) ≤ log #{I : |I| ≤ ρn}+ logP (Ωc
n,I;λ), (3.5)

and we want the right-hand side to tend to −∞. By Lemma 3.6,

#{I : |I| ≤ ρn} = log
(
mn

bρnc

)
= AnH(ρ/A)(1 + o(1)).
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Invoking now Lemma 3.2 we get a β > 0 so that for n > n0(ρ, λ), we have

logP (Ωc
n,I;λ) ≤ −βn.

We wish to show that the −βn in this relation can outweigh AnH(ρ/A) in the preceding one,
giving a combined result in (3.5) tending to −∞. Now note that the Shannon entropy H(p) → 0
as p→ 0. Hence for small enough ρ, AH(ρ/A) < β. Picking such a ρ – call it ρ1 – and setting
β1 = β −AH(ρ1/A) > 0 we have for n > n0 that

log(P (Ωc
n,m,ρ1,λ)) ≤ AnH(ρ1/A)(1 + o(1))− βn,

which implies an n1 so that

P (Ωc
n,m,ρ,λ) ≤ exp(−β1n), n > n1(ρ, λ).

QED

4 Almost-Spherical Sections

Dvoretsky’s theorem [10, 22] says that every infinite-dimensional Banach space contains very
high-dimensional subspaces on which the Banach norm is nearly proportional to the Euclidean
norm. This is called the spherical sections property, as it says that slicing the unit ball in
the Banach space by intersection with an appropriate finite dimensional linear subspace will
result in a slice that is effectively spherical. We need a quantitative refinement of this principle
for the `1 norm in Rn, showing that, with overwhelming probability, every operator ΦI for
|I| < ρn affords a spherical section of the `1n ball. The basic argument we use derives from
refinements of Dvoretsky’s theorem in Banach space theory, going back to work of Milman and
others [15, 24, 20]

Definition 4.1 Let |I| = k. We say that ΦI offers an ε-isometry between `2(I) and `1n if

(1− ε) · ‖α‖2 ≤
√

π

2n
· ‖ΦIα‖1 ≤ (1 + ε) · ‖α‖2, ∀α ∈ Rk. (4.1)

Remarks: 1. The scale factor
√

π
2n embedded in the definition is reciprocal to the expected

`1n norm of a standard iid Gaussian sequence. 2. In Banach space theory, the same notion would
be called an (1 + ε)-isometry [15, 22].

Lemma 4.1 Simultaneous ε-isometry. Consider the event Ω2
n(≡ Ω2

n(ε, ρ)) that every ΦI

with |I| ≤ ρ · n offers an ε-isometry between `2(I) and `1n. For each ε > 0, there is ρ2(ε) > 0 so
that

P (Ω2
n(ε, ρ2)) → 1, n→∞.

4.1 Proof of Simultaneous Isometry

Our approach is based on a result for individual I, which will later be extended to get a result for
every I. This individual result is well known in Banach space theory, going back to [24, 17, 15].
For our proof, we repackage key elements from the proof of Theorem 4.4 in Pisier’s book [22].
Pisier’s argument shows that for one specific I, there is a positive probability that ΦI offers an
ε-isometry. We add extra ‘bookkeeping’ to find that the probability is actually overwhelming
and later conclude that there is overwhelming probability that every I with |I| < ρn offers such
isometry.
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Lemma 4.2 Individual ε-isometry. Fix ε > 0. Choose δ so that

(1− 3δ)(1− δ)−1 ≥ (1− ε)1/2 and (1 + δ)(1− δ)−1 ≤ (1 + ε)1/2. (4.2)

Choose ρ0 = ρ0(ε) > 0 so that

ρ0 · (1 + 2/δ) < δ2
2
π
,

and let β(ε) denote the difference between the two sides. For a subset I in {1, . . . ,m} let Ωn,I

denote the event { ΦI offers an ε-isometry to `1n }. Then as n→∞,

max
|I|≤ρ1n

P (Ωc
n,I) ≤ 2 exp(−β(ε)n(1 + o(1))).

This lemma will be proved in Section 4.2. We first show how it implies Lemma 4.1.
With β(ε) as given in Lemma 4.2, we choose ρ2(ε) < ρ0(ε) and satisfying

AH(ρ2/A) < β(ε),

where H(p) is the Shannon entropy, and let γ > 0 be the difference between the two sides. Now

Ω2
n = ∩|I|<ρ2nΩn,I .

It follows that
P ((Ω2

n)
c) ≤ #{I : |I| ≤ ρ2n} · max

|I|≤ρn
P (Ωc

n,I).

Hence
log(P ((Ω2

n)
c)) ≤ n[AH(ρ2/A)− β(ε)](1 + o(1)) = −γn · (1 + o(1)) → −∞.

4.2 Proof of Individual Isometry

We temporarily Gaussianize our dictionary elements φi. Let Ri be iid random variables dis-
tributed χn/

√
n, where χn denotes the χn distribution. This can be generated by taking iid

standard normal RV’s Zij which are independent of (φi) and setting

Ri = (n−1
n∑
j=1

Z2
ij)

1/2. (4.3)

Let xi = Ri · φi ·
√

π
2n . Then xi are iid n-vectors with entries iid N(0, π

2n2 ). It follows that

E‖xi‖1 = 1.

Define, for each α ∈ Rk, fα(x1, . . . , xk) = ‖
∑

i αixi‖1. If α ∈ Sk−1, the distribution of
∑

i αixi
is N(0, π2nIn), hence Efα = 1 for all α ∈ Sk−1. More transparently:

E‖
∑

αixi‖1 = ‖α‖2, ∀α ∈ Rk.

In words, there is exact isometry between the `2 norm and the expectation of the `1 norm.
We now show that over individual realizations there is approximate isometry, i.e. individual
realizations are close to their expectations.

We need two standard lemmas in Banach space theory [15, 24, 17, 20]; we simplify versions
in Pisier [22, Chapter 4]:
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Lemma 4.3 Let xi ∈ Rn. For each ε > 0, choose δ obeying (4.2). Let Nδ be a δ-net for Sk−1

under `2k metric. The validity on this net of norm equivalence,

1− δ ≤ ‖
∑
i

αixi‖1 ≤ 1 + δ, ∀α ∈ Nδ,

implies norm equivalence on the whole space:

(1− ε)1/2‖α‖2 ≤ ‖
∑
i

αixi‖1 ≤ (1 + ε)1/2‖α‖2, ∀α ∈ Rk.

Lemma 4.4 There is a δ-net Nδ for Sk−1 under `2k metric obeying

log(#Nδ) ≤ k(1 + 2/δ).

So, given ε > 0 in the statement of our Lemma, invoke Lemma 4.3 to get a workable δ, and
invoke Lemma 4.4 to get a net Nδ obeying the required bound. Corresponding to each element
α in the net Nδ, define now the event

Eα = {1− δ ≤ ‖
∑
i

αixi‖1 ≤ 1 + δ}.

On the event E = ∩α∈Nδ
Eα, we may apply Lemma 4.3 to conclude that the system (xi : 1 ≤

i ≤ k) gives ε-equivalence between the `2 norm on Rk and the `1 norm on Span(xi).
Now Eα ≡ {|fα − Efα| > δ}. We note that fα may be viewed as a function gα on kn iid

standard normal random variables, where gα is a Lipschitz function on Rkn with respect to the
`2 metric, having Lipschitz constant σ =

√
π/2n. By concentration of measure for Gaussian

variables [18, Section 1.2-1.3],

P{|fα − Efα| > t} ≤ 2 exp{−t2/2σ2}.

Hence
P (Ecα) ≤ 2 exp{−δ2 · n · 2

π
}.

From Lemma 4.4 we have
log #Nδ ≤ k(1 + 2/δ)

and so
log(P (Ec)) ≤ k · (1 + 2/δ) + log 2− δ2 · n · 2

π
< log(2)− nβ(ε).

We conclude that the xi give a near-isometry with overwhelming probability.
We now de-Gaussianize. We argue that, with overwhelming probability, we also get an

ε-isometry of the desired type for ΦI . Setting γi = αi ·
√

2n
π ·R−1

i , observe that∑
i

αixi =
∑
i

γiφi. (4.4)

Pick η so that
(1 + η) < (1− ε)−1/2, (1− η) > (1 + ε)−1/2. (4.5)

Consider the event
G = {(1− η) < Ri < (1 + η) : i = 1, . . . , n},

11



On this event we have the isometry

(1− η) · ‖α‖2 ≤
√

2n
π
· ‖γ‖2 ≤ (1 + η) · ‖α‖2.

It follows that on the event G ∩ E, we have:

(1− ε)1/2

(1 + η)
·
√

2n
π
‖γ‖2 ≤ (1− ε)1/2‖α‖2

≤ ‖
∑
i

αixi‖1 (= ‖
∑
i

γiφi‖1 by (4.4))

≤ (1 + ε)1/2‖α‖2 ≤
(1− ε)1/2

(1− η)
·
√

2n
π
‖γ‖2.

taking into account (4.5), we indeed get an ε-isometry. Hence, Ωn,I ⊂ G ∩ E.
Now

P (Gc) = P{max
i
|Ri − 1| > η}.

By (4.3), we may also view |Ri − 1| as a function of n iid standard normal random variables,
Lipschitz with respect to the standard Euclidean metric, with Lipschitz constant 1/

√
n. This

gives
P{max

i
|Ri − 1| > η} ≤ 2m exp{−nη2/2} = 2m exp{−nβG(ε)}. (4.6)

Combining these we get that on |I| < nρ,

P (Ωc
n,I) ≤ P (Ec) + P (Gc) ≤ 2 exp(−β(ε)n) + 2m exp(−βG(ε)n).

We note that βG(ε) will certainly be larger than β(ε). QED.

5 Sign-Pattern Embeddings

Let I be any collection of indices in {1, . . . ,m}; Range(ΦI) is a linear subspace of Rn, and
on this subspace a subset ΣI of possible sign patterns can be realized, i.e. sequences in {±1}n
generated by

σ(k) = sgn
{ ∑

I

αiφi(k)
}
, 1 ≤ k ≤ n.

Our proof of Theorem 1 needs to show that for every v ∈ Range(ΦI), some approximation y to
sgn(v) satisfies |〈y, φi〉| ≤ 1 for i ∈ Ic.

Lemma 5.1 Simultaneous Sign-Pattern Embedding. Positive functions δ(ε) and ρ3(ε;A)
can be defined on (0, ε0) so that δ(ε) → 0 as ε → 0, yielding the following properties. For each
ε < ε0, there is an event Ω3

n(≡ Ω3
n,ε) with

P (Ω3
n) → 1, n→∞.

On this event, for every subset I with |I| < ρ3n, for every sign pattern σ ∈ ΣI , there is a vector
y (≡ yσ) with

‖y − εσ‖2 ≤ ε · δ(ε) · ‖σ‖2, (5.1)

and
|〈φi, y〉| ≤ 1, i ∈ Ic. (5.2)
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In words, a small multiple εσ of any sign pattern σ almost lives in the dual ball {x : |〈φi, x〉| ≤
1}. The key aspects are the proportional dimension of the constraint ρn and the proportional
distortion required to fit in the dual ball.

Before proving this result, we indicate how it supports our claim for Ω3
n in the proof of

Theorem 1; namely, that if |I| < ρ3n, then

‖δIc‖1 ≥ η3‖v‖1, (5.3)

whenever v = −ΦIcδIc . By the duality theorem for linear programming the value of the primal
program

min ‖δIc‖1 subject to ΦIcδIc = −v (5.4)

is at least the value of the dual

max〈v, y〉 subject to |〈φi, y〉| ≤ 1, i ∈ Ic.

Lemma 5.1 gives us a supply of dual-feasible vectors and hence a lower bound on the dual
program. Take σ = sgn(v); we can find y which is dual-feasible and obeys

〈v, y〉 ≥ 〈v, εσ〉 − ‖y − εσ‖2‖v‖2 ≥ ε‖v‖1 − εδ(ε)‖σ‖2‖v‖2;

picking ε sufficiently small and taking into account the spherical sections theorem, we arrange
that δ(ε)‖σ‖2‖v‖2 ≤ 1

4‖v‖1 uniformly over v ∈ VI where |I| < ρ3n; (5.3) follows with η3 = 3ε/4.

5.1 Proof of Simultaneous Sign-Pattern Embedding

The proof introduces a function β(ε), positive on (0, ε0), which places a constraint on the size of
ε allowed. The bulk of the effort concerns the following lemma, which demonstrates approximate
embedding of a single sign pattern in the dual ball. The β-function allows us to cover many
individual such sequences, producing our result.

Lemma 5.2 Individual Sign-Pattern Embedding. Let σ ∈ {−1, 1}n, let ε > 0, and y0 =
εσ. There is an iterative algorithm, described below, producing a vector y as output which obeys

|〈φi, y〉| ≤ 1, i = 1, . . . ,m. (5.5)

Let (φi)mi=1 be iid uniform on Sn−1; there is an event Ωσ,ε,n described below, having probability
controlled by

Prob(Ωc
σ,ε,n) ≤ 2n exp{−nβ(ε)}, (5.6)

for a function β(ε) which can be explicitly given and which is positive for 0 < ε < ε0. On this
event,

‖y − y0‖2 ≤ δ(ε) · ‖y0‖2, (5.7)

where δ(ε) can be explicitly given and has δ(ε) → 0 as ε→ 0.

In short, with overwhelming probability (see (5.6)), a single sign pattern, “shrunken” appro-
priately, obeys (5.5) after a slight modification (indicated by (5.7)). Lemma 5.2 will be proven
in a section of its own. We now show that it implies Lemma 5.1.

Lemma 5.3 Let V = Range(ΦI) ⊂ Rn. The number of different sign patterns σ generated by
vectors v ∈ V obeys

#ΣI ≤
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

|I|

)
.

13



Proof. This is known to statisticians as a consequence of the Vapnik-Chervonenkis VC-class
theory. See Pollard [23, Chapter 4]. QED

Let again H(p) = p log(1/p) + (1 − p) log(1/(1 − p)) be the Shannon entropy. Notice that if
|I| < ρn, then

log(#ΣI) ≤ nH(ρ)(1 + o(1)),

while also
log #{I : |I| < ρn, I ⊂ {1, . . . ,m}} ≤ n ·A ·H(ρ/A) · (1 + o(1)).

Hence, the total number of all sign patterns generated by all operators ΦI obeys

log #{σ : σ ∈ ΣI , |I| < ρn} ≤ n(H(ρ) +AH(ρ/A))(1 + o(1)).

Now the function β(ε) introduced in Lemma 5.2 is positive, and H(p) → 0 as p→ 0. hence, for
each ε ∈ (0, ε0), there is ρ3(ε) > 0 obeying

H(ρ3) +AH(ρ3/A) < β(ε).

Define
Ω3
n = ∩|I|<ρ3n ∩σ∈ΣI

Ωσ,I ,

where Ωσ,I denotes the instance of the event (called Ωσ,ε,n in Lemma 5.2) generated by a specific
σ, I combination. On the event Ω3

n, every sign pattern associated with any ΦI obeying |I| < ρ3n
is almost dual feasible. Now

P ((Ω2
n)
c) ≤

∑
|I|<ρ3n

∑
σ∈ΣI

P (Ωc
σ,I)

≤ exp{n(H(ρ3) +AH(ρ3/A))(1 + o(1))} · exp{−nβ(ε)(1 + o(1))}
= exp{−n(β(ε)− (H(ρ3) +AH(ρ3/A)))(1 + o(1))} → 0, n→∞.

5.2 Proof of Individual Sign-Pattern Embedding

5.2.1 An Embedding Algorithm

We now develop an algorithm to create a dual feasible point y starting from a nearby almost-
feasible point y0. It is an instance of the successive projection method for finding feasible points
for systems of linear inequalities [1].

Let I0 be the collection of indices 1 ≤ i ≤ m with

|〈φi, y0〉| > 1/2,

and then set
y1 = y0 − PI0y0,

where PI0 denotes the least-squares projector ΦI0(Φ
T
I0

ΦI0)
−1ΦT

I0
. In effect, we identify the indices

where y0 exceeds half the forbidden level |〈φi, y0〉| > 1, and we “kill” those indices. Repeat the
process, this time on y1, and with a new threshold t1 = 3/4. Let I1 be the collection of indices
1 ≤ i ≤ m where

|〈φi, y1〉| > 3/4,

and set
y2 = y0 − PI0∪I1y0,
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again “killing” the “offending” subspace. Continue in the obvious way, producing y3, y4, etc.,
with stage-dependent thresholds t` ≡ 1− 2−`−1 successively closer to 1. Set

I` = {i : |〈φi, y`〉| > t`},

and, putting J` ≡ I0 ∪ · · · ∪ I`,
y`+1 = y0 − PJ`

y0.

If I` is empty, then the process terminates, and set y = y`. Termination must occur at stage
`∗ ≤ n. (In simulations, termination often occurs at ` = 1, 2, or 3). At termination,

|〈φi, y〉| ≤ 1− 2−`
∗−1, i = 1, . . . ,m.

Hence y is definitely dual feasible. The only question is how close to y0 it is.

5.2.2 Analysis Framework

In our analysis of the algorithm, we will study

α` = ‖y` − y`−1‖2,

and
|I`| = #{i : |〈φi, y`〉| > 1− 2−`−1}.

We will propose upper bounds δ`,ε,n and ν`,ε,n for these quantities, of the form

δ`,ε,n = ‖y0‖2 · ω`(ε),

ν`,ε,n = n · λ0 · ε2 · ω2`+2(ε)/4;

here λ0 can be taken in (0, 1), for example as 1/2; this choice determines the range (0, ε0) for ε,
and restricts the upper limit on ρ. ω(ε) ∈ (0, 1/2) is to be determined below; it will be chosen
so that ω(ε) → 0 as ε→ 0. We define sub-events

E` = {αj ≤ δj , j = 1, . . . , `, |Ij | ≤ νj , j = 0, . . . , `− 1};

Now define
Ωσ,ε,n = ∩n`=1E`;

this event implies

‖y − y0‖2 ≤ (
∑

α2
` )

1/2 ≤ ‖y0‖2 · ω(ε)/(1− ω2(ε))1/2,

hence the function δ(ε) referred to in the statement of Lemma 5.2 may be defined as

δ(ε) ≡ ω(ε)/(1− ω2(ε))1/2,

and the desired property δ(ε) → 0 as ε → 0 will follow from arranging for ω(ε) → 0 as ε → 0.
We will show that, for β(ε) > 0 chosen in conjunction with ω(ε) > 0,

P (Ec`+1|E`) ≤ 2 exp{−β(ε)n}. (5.8)

This implies
P (Ωc

σ,ε,n) ≤ 2n exp{−β(ε)n},

and the Lemma follows. QED
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5.2.3 Transfer To Gaussianity

We again Gaussianize. Let ϕi denote random points in Rn which are iid N(0, 1
nIn). We will

analyze the algorithm below as if the ϕ’s rather than the φ’s made up the columns of Φ.
As already described in Section 4.2, there is a natural coupling between Spherical φ’s and

Gaussian ϕ’s that justifies this transfer. As in Section 4.2 let Ri, i = 1, . . . ,m be iid random
variables independent of (φi) and which are individually χn/

√
n. Then define

ϕi = Riφi, i = 1, . . . ,m.

If the φi are uniform on Sn−1 then the ϕi are indeed N(0, 1
nIn). The Ri are all quite close to 1

for large n. According to (4.6), for fixed η > 0,

P{1− η < Ri < 1 + η, i = 1, . . . ,m} ≥ 1− 2m exp{−nη2/2}.

Hence it should be plausible that the difference between the φi and the ϕi is immaterial. Arguing
more formally, we notice the equivalence

|〈φi, y〉| < 1 ⇔ |〈ϕi, y〉| < Ri.

Running the algorithm using the ϕ’s instead of the φ’s, with thresholds calibrated to 1− η via
t0 = (1 − η)/2, t1 = (1 − η) · 3/4, etc. will produce a result y obeying |〈ϕi, y〉| < 1 − η, ∀i.
Therefore, with overwhelming probability, the result will also obey |〈φi, y〉| < 1 ∀i .

However, such rescaling of thresholds is completely equivalent to rescaling of the input y0

from εσ to ε′σ, where ε′ = ε(1 − η). Hence, if we can prove results with functions δ(ε) and
β(ε) for the Gaussian ϕ’s, the same results are proven for the Spherical φ’s with functions
δ′(ε) = δ(ε′) = δ(ε(1− η)) and β′(ε) = min(β(ε′), η2/2).

5.2.4 Adapted Coordinates

It will be useful to have coordinates specially adapted to the analysis of the algorithm. Given y0,
y1, . . . , define ψ0, ψ1, . . . by Gram-Schmidt orthonormalization. In terms of these coordinates
we have the following equivalent construction: Let α0 = ‖y0‖2, let ξi, 1 ≤ i ≤ m be iid vectors
N(0, 1

nIn). We will sequentially construct vectors ϕi, i = 1, . . . ,m in such a way that their joint
distribution is iid N(0, 1

nIn), but so that the algorithm has an explicit trajectory.
At stage 0, we realize m scalar Gaussians Z0

i ∼iid N(0, 1
n), threshold at level t0, say, and

define I0 to be the set of indices so that |α0Z
0
i | > t0. For such indices i only, we define

ϕi = Z0
i ψ0 + P⊥ψ0

ξi, i ∈ I0.

For all other i, we retain Z0
i for later use. We then define y1 = y0 − PI0y0, α1 = ‖y1 − y0‖2 and

ψ1 by orthonormalizing y1 − y0 with respect to ψ0.
At stage 1, we realize m scalar Gaussians Z1

i ∼iid N(0, 1
n), and define I1 to be the set of

indices not in I0 so that |α0Z
0
i + α1Z

1
i | > t1. For such indices i only, we define

ϕi = Z0
i ψ0 + Z1

i ψ1 + P⊥ψ0,ψ1
ξi, i ∈ I1.

For i neither in I0 nor I1, we retain Z1
i for later use. We then define y2 = y0 − PI0∪I1y0,

α2 = ‖y2 − y1‖2 and ψ2 by orthonormalizing y2 − y1 with respect to ψ0 and ψ1.
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Continuing in this way, at some stage `∗ we stop, (i.e. I`∗ is empty) and we define ϕi for all
i not in I0 ∪ . . . ∪ I`∗−1 (if there are any such) by

ϕi =
`∗−1∑
j=0

Zji ψj + P⊥ψ0,...,ψ`∗−1
ξi, i 6∈ I0 ∪ . . . I`∗−1

We claim that we have produced a set m of iid N(0, 1
nIn)’s for which the algorithm has the

indicated trajectory we have just traced. A proof of this fact repeatedly uses independence
properties of orthogonal projections of standard normal random vectors.

It is immediate that, for each ` up to termination, we have expressions for the key variables
in the algorithm in terms of the coordinates. For example:

y` − y0 =
∑̀
j=1

αjψj ; ‖y` − y0‖2 = (
∑̀
j=1

α2
j )

1/2

5.2.5 Control on α`

We now develop a bound for

α`+1 = ‖y`+1 − y`‖2 = ‖PI`(y`+1 − y`)‖2.

Recalling that
PI`v = ΦI`(Φ

T
I`

ΦI`)
−1ΦT

I`
v,

and putting λ(I`) = λmin(ΦT
I`

ΦI`), we have

‖PI`(y`+1 − y`)‖2 ≤ λ(I`)−1/2‖ΦT
I`

(y`+1 − y`)‖2.

But ΦI`y`+1 = 0 because y`+1 is orthogonal to every ϕi, i ∈ I` by construction. Now for i ∈ I`.

|〈ϕi, y`〉| ≤ |〈ϕi, y` − y`−1〉|+ |〈ϕi, y`−1〉| ≤ |α`Z`i |+ t`

and so

‖ΦT
I`
y`‖2 ≤ t`|I`|1/2 + α`

∑
i∈I`

(Z`i )
2

1/2

(5.9)

We remark that

{i ∈ I`} ⇒ {|〈ϕi, y`〉| > t`, |〈ϕi, y`−1〉| < t`−1} ⇒ {|〈ϕi, y` − y`−1〉| ≥ t` − t`−1};

putting u` = 2−`−1/α` this gives∑
i∈I`

(Z`i )
2 ≤

∑
i∈Jc

`−1

(Z`i )
21{|Z`

i |>u`}.

We conclude that

α2
`+1 ≤ 2 · λ(I`)−1

[
|I`|+ α2

`

( ∑
i∈Jc

`−1

(Z`i )
21{|Z`

i |>u`}
)]
. (5.10)
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5.2.6 Large Deviations

Define the events
F` = {α` ≤ δ`,ε,n}, G` = {|I`| ≤ ν`,ε,n},

so that
E`+1 = F`+1 ∩G` ∩ E`.

Put
ρ0(ε) = λ0ε

2.

On the event E`, |J`| ≤ ρ0(ε)n. Recall the quantity η1(ρ,A) from Lemma 3.1. For some ε1,
η1(ρ0(ε), A)2 ≥ λ0 for all ε ∈ (0, ε1]; we will restrict ourselves to this range of ε. On E`,
λmin(I`) > λ0. Also on E`, uj = 2−j−1/αj > 2−j−1/δj = vj (say) for j ≤ `. Now

P{Gc`|E`} ≤ P{
∑
i

1{|Z`
i |>v`} > ν`},

and
P{F c`+1|G`, E`} ≤ P{2 · λ−1

0

[
ν` + δ2`

( ∑
i

(
Z`i

)2
1{|Z`

i |>v`}
)]
> δ2`+1}.

We need two simple large deviations bounds.

Lemma 5.4 Let Zi be iid N(0, 1), k ≥ 0, t > 2.

1
m

logP{
m−k∑
i=1

Z2
i 1{|Zi|>t} > m∆} ≤ e−t

2/4 −∆/4,

and
1
m

logP{
m−k∑
i=1

1{|Zi|>t} > m∆} ≤ e−t
2/2 −∆/4.

Applying this,
1
m

logP{F c`+1|G`, E`} ≤ e−τ
2
` /4 −∆`/4,

where
τ` = n · v2

` = 2−2`−2/ε2ω2`(ε),

and
∆` = (λ0δ

2
`+1/2− ν`)/δ2` = λ0ω

2(ε)/4.

By inspection, for small ε and ω(ε), the term of most concern is at ` = 0; the other terms are
always better. Putting

β(ε) ≡ β(ε;ω) = λ0ω
2(ε)/4− e−1/(16ε2ω2(ε)),

and choosing ω well, we get β > 0 on an interval (0, ε2), and so

P{F c`+1|G`, E`} ≤ exp(−nβ(ε)).

A similar analysis holds for the G`’s. We get ε0 in the statement of the lemma taking ε0 =
min(ε1, ε2). QED

Remark: The large deviations bounds stated in Lemma 5.4 are far from best possible; we
merely found them convenient in producing an explicit expression for β. Better bounds would
be helpful in deriving reasonable estimates on the constant ρ∗(A) in Theorem 1.
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6 Geometric Interpretation

Our result has an appealing geometric interpretation. Let Bn denote the absolute convex hull
of φ1, . . . , φm;

Bn = {x ∈ Rn : x =
∑
i

α(i)φi,
∑
i

|α(i)| ≤ 1}.

Equivalently, B is exactly the set of vectors where val(P1) ≤ 1. Similarly, let the octahedron
Om ∈ Rm be the absolute convex hull of the standard Kronecker basis (ei)mi=1 :

Om = {α ∈ Rm : α =
∑
i

α(i)ei,
m∑
i=1

|α(i)| ≤ 1}.

Note that each set is polyhedral, and it is almost true that the vertices {±ei} of Om map under
Φ into vertices {±φi} of Bn. More precisely, the vertices of Bn are among the image vertices
{±φi}; because Bn is a convex hull, there is the possibility that for some i, φi lies strictly in the
interior of Bn.

Now if φi were strictly in the interior of Bn, then we could write

φi = Φα1, ‖α1‖1 < 1,

where i 6∈ supp(α1). It would follow that a singleton α0 generates φi through φi = Φα0, so α0

necessarily solves (P0), but, as
‖α0‖1 = 1 > ‖α1‖1.

α0 is not the solution of (P1). So, when any φi is strictly in the interior of Bn, (P1) and (P0)
are inequivalent problems.

Now on the event Ωn(ρ∗, A), (P1) and (P0) have the same solution whenever (P0) has a
solution with k = 1 < ρ∗n nonzeros. We conclude that on the event Ωn(ρ∗, A), the vertices of
Bn are in one-one correspondence with the vertices of Om. Letting Skel0(C) denote the set of
vertices of a polyhedral convex set C, this correspondence says:

Skel0(Bn) = Φ[Skel0(Om)].

Something much more general is true. By (k − 1)-face of a polyhedral convex set C with
vertex set v = {v1, . . . , }, we mean a (k − 1)-simplex

Σ(vi1 , . . . , vik) = {x =
∑
j

αjvij , αj ≥ 0,
∑

αj = 1}.

all of whose points are extreme points of C. By (k − 1)-skeleton Skelk−1(C) of a polyhedral
convex set C, we mean the collection of all (k − 1)-faces.

The 0-skeleton is the set of vertices, the 1-skeleton is the set of edges, etc. In general one
can say that the (k − 1)-faces of Bn form a subset of the images under Φ of the (k − 1)-faces of
On:

Skelk−1(Bn) ⊂ Φ[Skelk−1(Om)], 1 ≤ k < n.

Indeed, some of the image faces ΦΣ(±ei1 , . . . ,±eik) could be at least partially interior to Bn,
and hence they could not be part of the (k − 1)-skeleton of Bn

Our main result says that much more is true; Theorem 1 is equivalent to this geometric
statement:
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Theorem 2 There is a constant ρ∗ = ρ∗(A) so that for n < m < An, on an event Ωn(ρ∗, A)
whose complement has negligible probability for large n,

Skelk−1(Bn) = Φ[Skelk−1(Om)], 1 ≤ k < ρ∗ · n.

In particular, with overwhelming probability, the topology of every (k− 1)-skeleton of Bn is
the same as that of the corresponding (k− 1)-skeleton of Om, even for k proportional to n. The
topology of the skeleta of Om is of course obvious.

7 Other Algorithms Fail

Several algorithms besides `1 minimization have been proposed for the problem of finding sparse
solutions [21, 26, 9]. In this section we show that two standard approaches fail in the current
setting, where `1 of course succeeds.

7.1 Subset Selection Algorithms

Consider two algorithms which attempt to find sparse solutions to S = Φα by selecting subsets
I and then attempting to solve S = ΦIαI .

The first is simple thresholding. One sets a threshold t, selects a subset Î of terms ‘highly
correlated with S’:

Î = {i : |〈S, φi〉| > t},

and then attempts to solve Ŝ = ΦÎαÎ . Statisticians have been using methods like this on
noisy data for many decades; the approach is sometimes called “subset selection by preliminary
significance testing from univariate regressions”.

The second is greedy subset selection. One selects a subset iteratively, starting from R0 = S
and ` = 0 and proceeding stagewise, through stages ` = 0, 1, 2, . . . . At the 0-th stage, one
identifies the best-fitting single term:

i0 = argmaxi|〈R0, φi〉|,

and then, putting αi0 = 〈R0, φi0〉, subtracts that term off

R1 = R0 − αi0φi0 ;

at stage 1 one behaves similarly, getting i1and R2, etc. In general,

i` = argmaxi|〈R`−1, φi〉|,

and
R` = S − Pi1,...,i`S.

We stop as soon R` = 0. Procedures of this form have been used routinely by statisticians
since the 1960’s under the name stepwise regression; the same procedure is called Orthogonal
Matching Pursuit in signal analysis, and called greedy approximation in the approximation
theory literature. For further discussion, see [9, 26, 27].

Under sufficiently strong conditions, both methods can work.

Theorem 3 (Tropp [26]) Suppose that the dictionary Φ has coherence M = maxi6=j |〈φi, φj〉|.
Suppose that α0 has k ≤ M−1/2 nonzeros, and run the greedy algorithm with S = Φα0. The
algorithm will stop after k stages having selected at each stage one of the terms corresponding to
the k nonzero entries in α0, at the end having precisely found the unique sparsest solution α0.
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A parallel result can be given for thresholding.

Theorem 4 Let η ∈ (0, 1). Suppose that α0 has k ≤ ηM−1/2 nonzeros, and that the nonzero
coefficients obey |α0(i)| ≥ η√

k
‖α‖2 (thus, they are all about the same size). Choose a threshold

so that exactly k terms are selected. These k terms will be exactly the nonzeros in α0 and solving
S = ΦÎαÎ will recover the underlying optimal sparse solution α0.

Proof. We need to show that a certain threshold which selects exactly k terms selects only
terms in I. Consider the preliminary threshold t0 = η

2
√
k
‖α0‖2. We have, for i ∈ I,

|〈φi, S〉| = |αi +
∑
j 6=i

α0(j)〈φi, φj〉|

≥ |αi| −M
∑
j 6=i

|α0(j)|

> |αi| −M
√
k‖α0‖2

≥ ‖α0‖2 · (η/
√
k −M

√
k)

≥ ‖α0‖2 · η/2
√
k = t0

Hence for i ∈ I, |〈φi, S〉| > t0. On the other hand, for j 6∈ I

|〈φj , S〉| = |
∑
i

α0(i)〈φi, φj〉|

≤ M
√
k‖α0‖2 = t0

Hence, for small enough δ > 0, the threshold tδ = t0 + δ selects exactly the terms in I. QED

7.2 Analysis of Subset Selection

The present article considers situations where the number of nonzeros is proportional to n. As
it turns out, this is far beyond the range where previous general results about greedy algorithms
and thresholding would work. Indeed, in this article’s setting of a random dictionary Φ, we have
(see Lemma 2.2) coherence M ∼

√
2 log(m)/

√
n. Theorems 3 and 4 therefore apply only for

|I| = o(
√
n) � ρn. In fact, it is not merely that the theorems don’t apply; the nice behavior

mentioned in Theorems 3 and 4 is absent in this more challenging setting.

Theorem 5 Let n, m, A, and ρ∗ be as above. On an event Ωn having overwhelming probability,
there is a vector S with unique sparsest representation using at most k < ρ∗n nonzero elements,
for which the following are true:

• The `1-minimal solution is also the optimally sparse solution.

• The thresholding algorithm can only find a solution using n nonzeros.

• The greedy algorithm makes a mistake in its first stage, selecting a term not appearing in
the optimally sparse solution.

Proof. The statement about `1 minimization is of course just a reprise of Theorem 1. The
other two claims depend on the following.
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Lemma 7.1 Let n,m,A, and ρ∗ be as in Theorem 1. Let I = {1, . . . , k}, where ρ∗/2n < k < ρ∗n.
There exists C > 0 so that, for each η1, η2 > 0, for all sufficiently large n, with overwhelming
probability some S ∈ Range(ΦI) has ‖S‖2 =

√
n, but

|〈S, φi〉| < C, i ∈ I,

and
min
i∈I

|〈S, φi〉| < η2.

The Lemma will be proved in the next subsection. Let’s see what it says about thresholding.
The construction of S guarantees that it is a random variable independent of φi, i 6∈ I. With Ri
as introduced in (4.3), the coefficients 〈S, φi〉Ri i ∈ Ic, are iid with standard normal distribution;
and by (4.6) these differ trivially from 〈S, φi〉. This implies that for i ∈ Ic, the coefficients 〈S, φi〉
are iid with a distribution that is nearly standard normal. In particular, for some a = a(C) > 0,
with overwhelming probability for large n, we will have

#{i ∈ Ic : |〈S, φi〉| > C} > a ·m,

and, if η2 is the parameter used in the invocation of the Lemma above, with overwhelming
probability for large n we will also have

#{i ∈ Ic : |〈S, φi〉| > η2} > n.

Hence, thresholding will actually select a · m terms not belonging to I before any term
belonging to I. Also, if the threshold is set so that thresholding selects < n terms, then some
terms from I will not be among those terms (in particular, the terms where |〈φi, S〉| < η2 for η2

small).
With probability one, the points φi are in general position. Because of Lemma 2.1, we can

only obtain a solution to the original equations if one of two things is true:

• We select all terms of I;

• We select n terms (and then it doesn’t matter which ones).

If any terms from I are omitted by the selection Î, we cannot get a sparse representation. Since
with overwhelming probability some of the k terms appearing in I are not among the n best
terms for the inner product with the signal, thresholding does not give a solution until n terms
are included, and there must be n nonzero coefficients in the solution obtained.

Now let’s see what the Lemma says about greedy subset selection. Recall that the 〈S, φi〉Ri
i ∈ Ic, are iid with standard normal distribution; and these differ trivially from 〈S, φi〉. Combin-
ing this with standard extreme value theory for iid Gaussians, we conclude that for each δ > 0,
with overwhelming probability for large n,

max
i∈Ic

|〈S, φi〉| > (1− δ)
√
ρ∗ logm.

On the other hand, with overwhelming probability

max
i∈I

|〈S, φi〉| < C.

It follows that with overwhelming probability for large n, the first step of the greedy algorithm
will select a term not belonging to I. QED

Not proved here, but strongly suspected, is that there exist S so that greedy subset selection
cannot find any exact solution until it has been run for at least n stages.
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7.3 Proof of Lemma 7.1

Let V = Range(ΦI); pick any orthobasis (ψi) for V , and let Z1, . . . Zk be iid standard Gaussian
N(0, 1). Set v =

∑
i Zjψj . Then for all i ∈ I, 〈φi, v〉 ∼ N(0, 1).

Let now ξij be the array defined by ξij = 〈φi, ψj〉. Note that the ξij are independent of v
and are approximately N(0, 1

k ). (More precisely, with Ri the random variable defined earlier at
(4.3), Riξij is exactly N(0, 1

k )).
The proof of Lemma 5.2 shows that the Lemma actually has nothing to do with signs; it

can be applied to any vector rather than some sign pattern vector σ. Make the temporary
substitutions n ↔ k, σ ↔ (Zj), φi ↔ (ξij), and choose ε > 0. Apply Lemma 5.2 to σ. Get a
vector y obeying

|〈ξi, y〉| ≤ 1, i = 1, . . . , k. (7.1)

Now define

S ≡
√
n

‖y‖2
·
k∑
j=1

yjψj .

Lemma 5.2 stipulated an event, En on which the algorithm delivers

‖y − εv‖2 ≤ εδ(ε)‖v‖2.

This event has probability exceeding 1− exp{−βn}. On this event

‖y‖2 ≥ ε(1− δ(ε))‖v‖2.

Arguing as in (4.6), the event Fn = {‖v‖2 ≥ (1− η)
√
k} has

P (F cn) ≤ 2 exp{−kη2/2}.

Hence on an event En ∩ Fn,
‖y‖2 ≥ ε(1− δ(ε))

√
k.

We conclude using (7.1) that, for i = 1, . . . , k,

|〈φi, S〉| =
√
n

‖y‖2
|〈ξi, y〉| ≤

1
ε(1− δ(ε))(1− η)

√
ρ∗/2

· 1 ≡ C, say.

This is the first claim of the lemma.
For the second claim, notice that this would be trivial if 〈S, φi〉 were iid N(0, 1). This is not

quite true, because of conditioning involved in the algorithm underlying Lemma 5.2. However,
this conditioning only makes the indicated event even more likely than for an iid sequence. QED

8 Breakdown Point Heuristics

It can be argued that, in any particular application, we want to know whether we have equiv-
alence for the one specific I that supports the specific α0 of interest. Our proof suggests an
accurate heuristic for predicting the sizes of subsets |I| where this restricted notion of equiva-
lence can hold.

Definition 8.1 We say that local equivalence holds at a specific subset I if, for all vectors
S = Φα0 with supp(α0) ∈ I, the minimum `1 solution to S = Φα has α1 = α0.
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It is clear that in the random dictionary Φ, the probability of the event “local equivalence
holds for I” depends only on |I|.

Definition 8.2 Let Ek,n = { local equivalence holds at I = {1, . . . , k}}. The events Ek,n are
decreasing with increasing k. The Local Equivalence Breakdown Point LEBPn is the
smallest k for which event Eck,n occurs.

Clearly EBPn ≤ LEBPn.

8.1 The Heuristic

Let x be uniform on Sn−1 and consider the random `1-minimization problem

(RP1(n,m)) min ‖α‖1 Φα = x.

Here Φ is, as usual, iid uniform on Sn−1. Define the random variable Vn,m = val(RP1(n,m)).
This is effectively the random variable at the heart of the event Ω3

n in the proof of Theorem 1.
A direct application of the ”Individual Sign-Pattern” Lemma shows there is a constant η(A) so
that, with overwhelming probability for large n,

Vn,m ≥ η
√
n.

It follows that for the median
ν(n,m) = med{Vn,m};

we have
ν(n,An) ≥ η

√
n.

There is numerical evidence, described below, that

ν(n,An) ·
√

π

2n
→ ν0(A), n→∞. (8.1)

where ν0 is a decreasing function of A.

Heuristic for Breakdown of Local Equivalence. Let ρ+ = ρ+(A) solve the equation

√
ρ

(1−√ρ)
= ν0(A− ρ).

Then we anticipate that
LEBPn/n→P ρ

+, n→∞.

8.2 Derivation

We use the notation of Section 2.1. We derive LEBPn/n ≤ ρ+. Consider the specific perturba-
tion δI given by the eigenvector emin of GI = ΦT

I ΦI with smallest eigenvalue. This eigenvector
will be a random uniform point on Sk−1 and so

‖δI‖1 =

√
2
π

√
|I|‖δI‖2(1 + op(1)).
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It generates vI = ΦIδI with
‖vI‖2 = λ

1/2
min‖δI‖2.

Letting ρ = |I|/n, we have [11]

λmin = (1− ρ1/2)2 · (1 + op(1)).

Now vI is a random point on Sn−1, independent of φi for i ∈ Ic. Considering the program

min ‖δIc‖1 subject to ΦIcδIc = −vI

we see that it has value Vn,m−|I| · ‖vI‖2. Now if ρ > ρ+, then

‖δI‖1 ∼
√

2
π

√
|I|‖δI‖2 =

√
2
π

√
ρn‖δI‖2

>

√
2
π

√
n · ν0(A− ρ) · (1− ρ1/2)‖δI‖2

∼ ν(n,m)‖vI‖2 ∼ ‖δIc‖1.

Hence, for a specific perturbation,
‖δI‖1 > ‖δIc‖1. (8.2)

If we pick α0 supported in I with a specific sign pattern sgn(α0)(i), i ∈ I, this equation implies
that a small perturbation in the direction of δ can reduce the `1 norm below that of α0. Hence
local equivalence breaks down.

With work we can also argue in the opposite direction, that this is approximately the worst
perturbation, and it cannot cause breakdown unless ρ > ρ+. Note this is all conditional on the
limit relation (8.1), which seems an interesting topic for further work.

8.3 Empirical Evidence

Yaakov Tsaig of Stanford University performed several experiments showing the heuristic to
be quite accurate. He studied the behavior of ν(n,An)/

√
n as a function of A, finding that

ν0(A) = A−.42 fits well over a range of problem sizes. Combined with our heuristic, we get that,
for A = 2, ρ+ is nearly .3 – i.e. local equivalence can hold up to about 30% of nonzeros. Tsaig
performed actual simulations in which a vector α0 was generated at random with specific |I|
and a test was made to see if the solution of (P1) with S = Φα0 recovered α0. It turns out that
breakdown in local equivalence does indeed occur when |I| is near ρ+n.

8.4 Geometric Interpretation

Let Bn,I denote the |I|-dimensional convex body {
∑

i∈I α(i)φi : ‖α‖1 ≤ 1}. This is the image
of a |I|-dimensional octahedron by ΦI . Note that

Bn,I ⊂ Range(ΦI) ∩Bn,

however, the inclusion can be strict. Local Equivalence at I happens precisely when

Bn,I = Range(ΦI) ∩Bn.

This says that the faces of Om associated to I all are mapped by Φ to faces of Bn.
Under our heuristic, for |I| > (ρ∗+ε)n, ε > 0, each event {Bn,I = Range(ΦI)∩Bn} typically

fails. This implies that most fixed sections of Bn by subspaces Range(ΦI) have a different
topology than that of the octahedron Bn,I .

25



9 Stability

Skeptics may object that our discussion of sparse solution to underdetermined systems is irrel-
evant because the whole concept is not stable. Actually, the concept is stable, as an implicit
result of Lemma 3.1. There we showed that, with overwhelming probability for large n, all
singular values of every submatrix ΦI with |I| < ρn exceed η1(ρ,A). Now invoke

Theorem 6 (Donoho, Elad, Temlyakov [9]) Let Φ be given, and set

η(ρ,Φ) = min{λ1/2
min(Φ

T
I ΦI) : |I| < ρn}.

Suppose we are given the vector Y = Φα0+z, ‖z‖2 ≤ ε, ‖α0‖0 ≤ ρn/2. Consider the optimization
problem

(P0,ε) min ‖α‖0 subject to ‖Y − Φα‖2 ≤ ε.

and let α̂0,ε denote any solution. Then:

• ‖α̂0,ε‖0 ≤ ‖α0‖0 ≤ ρn/2; and

• ‖α̂0,ε − α0‖2 ≤ 2ε/η, where η = η(ρ,Φ).

Applying Lemma 3.1, we see that the problem of obtaining a sparse approximate solution to noisy
data is a stable problem: if the noiseless data have a solution with at most ρn/2 nonzeros, then
an error of size ≤ ε in measurements can lead to a reconstruction error of size ≤ 2ε/η1(ρ,A). We
stress that we make no claim here about stability of the `1 reconstruction; only that stability
by some method is in principle possible. Detailed investigation of stability is being pursued
separately.
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